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Abstract

This papempresentdnfinite RAAM (IRAAM), anew fusionof
recurrenneuralnetworkswith fractalgeometryallowing usto
understandhe behaior of thesenetworks asdynamicalsys-
tems. Our recentwork with IRAAMs hasshawvn thatthey are
capableof generatinghe contet-free (non-reyular) language
a™b™ for arbitraryvaluesof n. This paperexpandsuponthat
work, shaving thatiIRAAMs arecapableof generatingsyntac-
tically ambiguoudanguagesut seemlesscapableof gener
ating certaincontet-free constructionghat are absentr dis-
favoredin naturallanguages.Together thesedemonstrations
supportour belief thatIRAAMs canprovide an explanatorily
adequateconnectionistmodel of grammaticalcompetenceén
naturallanguage.

Natural Languagelssues

In an early andextremelyinfluential paper NoamChomsly
(1956)shavedthat naturallanguagegNL'’s) cannotbe mod-
eledby a finite-stateautomatonpecausef the existenceof
centerembeddectonstructions. A secondand equally im-
portantobsenationfrom this work wasthata minimally ade-
guateNL grammamustbe ambiguousassigningmorethan
onestructureg(interpretationfo somesentencedpr example,
They areflying planes

Thefirst obsenationled to the developmeniof Chomsk/'s
formal hierarchyof languagesbasedon the computational
resource®f the machinesmeededo recognizethem. In this
hierarchy Chomsk’'s obsenationaboutcenterembeddinds
expressedy sayingthatNL's arenon-regular;i.e., they can-
notbe generatedby a grammarhaving only rulesof the form
A — bC, whereA andC arenon-terminalsymbolsandb is
aterminalsymbol.

WhetherNL's are merely non-regular, belongingin the
next, context-free(CF) level of the Chomsly hierarchyor are
morepowerful, belongingfurtherupin thehierarchybecame
thesubjectof heateddebatgHigginbotham1984; Postaland
Langendoeri984; Shieberl985). Non-CFphenomenauch
asreduplication/coging (Culy 1985)and crossedserial de-
pendencie¢BresnanKaplan,PetersandZaenenl982)sug-
gestedthata morepowerful approachusingsyntactictrans-
formations (Chomslky 1957) was called for, but somere-
searchersriticizedtransformationgshaving arbitrarypower
andthusfailing to constrairthetypesof languageshatcould
be expressed Gazdar1982). Furthercriticism of the entire
formal approachcamefrom observingthat even CF gram-
mars (CFGs) had the power to generatestructuressuchas
a sequencdollowed by its mirror image,that did not seem
to occurin NL (ManastefRamer1986),or which placedan

extraordinaryburdenon thehumanparsingmechanisnwhen
they did occur(Bach,Brown, andMarslen-Wison 1986).

Connectionismand Natural Language

While debatesabout the complexity of NL were raging,
connectionisnwasbeginning to awaken from a fifteen-year
sleep. In connectionistmodelsmary researcherdound a
way of embodyinglexibility, gracefuldegradationandother
non-rigid propertiesthat seemto characterizeeal cognitive

systemslike NL. This researchculminatedthe publication
of a highly controversial paperby Rumelhartand McClel-

land (1986) which provided a connectionistaccountof part
of the grammarof Englishusinga feed-forward neuralnet-
work. The paperwassooncriticized by moretraditionalcog-

nitive scientist{FodorandPylyshyn1988;PinkerandPrince
1988), who cited the non-generatie natureof suchconnec-
tionist modelsas a fundamentalshortcomingof the entire
field.

Partly in responsdo thesecriticisms, mary connection-
ists have spentthe pastdecadanvestigatingnetwork models
which supportgeneratiity throughrecurrenifeedback)on-
nectiongLawrence Giles,andFong1998;RodriguezWiles,
and ElIman 1999; Williams and Zipser1989). The research
we presentereis anattemptto contributeto this effort while
focusingas strongly as possibleon the naturallanguages-
suesdescribedabore. Suchan attemptfacesa numberof
challenges.

First, despiteanalysisof how a network’s dynamicscon-
tribute to its generatiity, it is often uncertainwhetherthe
dynamicscan supportgeneratiorof well-formed stringsbe-
yonda certainlength. Thatis, it is unknavn whetherthe net-
work hasatrue“competencefor thelanguagef whichit has
learneda few exemplars,or is merely capableof generating
afinite, andhenceregular, subsebf thelanguage® Second,
it is often easierto modelweak, ratherthan stronggenera-
tive capacity by building networksthatgenerater recognize
stringshaving certainpropertieswithout assigningary syn-
tactic structureto the strings. Third, this lack of syntactic
structureinhibits the formulation of an accountof syntactic
ambiguity in suchnetworks, making themlessplausibleas
modelsof NL.

1To be fair, not all connectionistspr cognitive scientists take
seriouslythe notionthathumanlanguagehasinfinite generatre ca-
pacity Thoughwe ohviously do not have the resourcedo argue
theissuehere,we are certainthata modelwith a provably infinite
competencavould bemorepersuasie to thecognitive sciencecom-
munity asa wholethanwould amodelwithout one.



In sum,we areconcernedvith formulatingarecurrennet-
work modelthat rigorously addressethe setof criteriathat
emepged from the long debateover the complexity of NL.
As an candidate,theemainderof this paperpresentsa new
formulation of RAAM (Pollack 1990), a recurrentnetwork
modelthataddressethe NL issuedn aprincipledway.

Traditional RAAM

Recursie Auto-Associatve Memory or RAAM (Pollack
1990)is a methodfor storingtree structuresin fixed-width
vectorsby repeateccompressionlts architectureconsistsof
two separat@etworks— anencodemnetwork, which cancon-
structafixed-dimensionatodeby compressiely combining
the nodesof a symbolictree from the bottomup, anda de-
codernetwork, which decompresses fixed-widthcodeinto
its two or more components.The decodelis appliedrecur
sively until it terminatesn symbols,reconstructinghe tree.
Thesetwo networks aresimultaneouslyrainedasanautoas-
sociatorwith time-varyinginputs. If the training is success-
ful, the resultof bottomup encodingwill coincidewith top
down decoding.

Following the publication of (Pollack 1990), RAAM
gainedwidespreagbopularityasamodelof NL syntax.Some
researcher@Blank, MeedenandMarshall1991)foundit an
attractive way of “closing the gap” betweenthe symbolic
and sub-symbolicparadigmsin cognitive science. Others
(Van Gelder1990)sawv in RAAM a direct and simple refu-
tation of the traditionalcognitive scientists’backlashagainst
connectionismand went as far asto shav how traditional
syntacticoperationdik e transformationgould be performed
directly on RAAM representationfChalmersl990). As the
power of the RAAM model becameapparentyvariantsbe-
ganto emege. Theseincludedthe SequentiaRAAMs of
(Kwasry and Kalman 1995), which shoved how a RAAM
could behae like a linked list, and the Labeling RAAMs
of (Sperdutil993),which encodedabeledgraphscontaining
cycles.

In short, RAAM seemedo hold a greatdeal of promise
asa generalconnectionissolutionto encodingnot just NL
syntax,but all sortsof structuredepresentations.

Still, RAAM was plaguedby an apparentlydiversesetof
problems,most notably a failure to scaleup to realistically
largestructuresWe believe thattheseproblemscanbetraced
to the original formulation of the RAAM decodey which
worksin conjunctionwith a logical “terminal test”, answer
ing whetheror nota givenrepresentationequiresfurtherde-
coding. Thedefaultterminaltestmerelyasksif all elements
in a given codeare boolean,e.g. above 0.8 or belov 0.2.
This analog-to-binancorversionwasa standardnterfacein
back-propagatiomesearctof the late 1980 to calculatebi-
naryfunctionsfrom real-valuedneurons.However, although
it enabledthe initial discovery of RAAM training, it led to
several basiclogical problemswhich preventedthe scaling
up of RAAM: 1) The “Infinite Loop” problemis that there
arerepresentations/hich “break” the decodetby never ter-
minating.In otherwords,sometreesappeatinfinitely large”
simply becaus¢heircomponentsiever pasgheterminaltest.
This behaior breakscomputemprogramimplementationr
requiresdepthchecking. 2) The “Precisionvs. Capacity”
problemis thattighter tolerancedeadto more decodinger

rorsinsteadof agreatersetof reliablerepresentations3) The
“TerminatingNon-Terminal” problemariseswhenthereis a
“fusion” betweera non-terminabndaterminal,suchthatthe
decodingof anencodedreeterminatesabruptly

In thefollowing sectionof this paperwe presentanew for-
mulationof RAAM networks basedon an analysisof the it-
erateddynamicsof decodingthatresohesall theseproblems
completely Thisformulationleadsto anew “naturalterminal
test”,anaturallabelingof terminals,andaninherentlyhigher
storagecapacity

New RAAM Formulation

XL Yo XRr YRr
X Y Bias
1
XL = 1+ e—(wLXX-T"FwLXYerwLX)
v, — 1
L 1+ e—(wLYXw-i-wLYYZH-wLY)
1
Xr = 1 + e~ (wrxxT+wrxyy+wrx)
1
Yr =

1 + e—(wryxz+wryyy+wry)

Figurel: An exampleRAAM decodethatis a4 neuronnet-
work, parameterizethy 12 weights. Eachapplicationof the
decodercorvertsan (X,Y’) coordinatento two new coordi-
nates.

ConsidetheRAAM decodeshovnin figurel. It consists
of four neuronghateachrecevethesame(X,Y") input. The
outputportionof thenetwork is dividedinto aright andaleft
pair of neurons. In the operationof the decoderthe output
from eachpair of neuronsds recursvely reappliedto the net-
work. Usingthe RAAM interpretationeachsuchrecursion
implies a branchingof a nodeof the binary treerepresented
by the decoderandinitial startingpoint. However, this same
network recurrenceanalsobeevaluatedn thecontext of dy-
namicalsystems.This network is a form of iteratedfunction
systemor IFS (Barnslg/ 1993), consistingof two pseudo-
contractve transformswhich areiteratively appliedto points
in atwo-dimensionakpace.

In the pastwe have examinedthe applicability of the IFS
analogyto otherinterpretation®f neuraldynamicgBlair and
Pollack1997;Kolen 1994; Melnik andPollack 1998; Stucki
and Pollack1992). But in the context of RAAMs the main
interestingpropertyof contractie IFSeslies in the trajecto-
ries of pointsin the space. For contractie IFSesthe space
is divided into two setsof points. The first set consistsof
pointslocatedontheunderlyingattractor(fractalattractor)of
thelFS. The secondsetis the complemenbf thefirst, points



thatarenot on the attractor Thetrajectoriesof pointsin this
secondsetare characterizedby a gravitation towardsthe at-
tractor Finite, multiple iterationsof the transformshave the
effectof bringingthepointsin this secondsetarbitrarily close
to the attractor

As notedbefore thelnfinite LoopandTerminatingNonter
minal problemsarisefrom aninsufiicientterminaltest. Since
sometrajectoriemneverleave theattractorandall otherseven-
tually hit theattractor The only terminaltestthatguarantees
theterminationof all trajectoriesof theRAAM (IFS)is atest
thatincludesall the pointsof the attractoritself.

By taking the terminaltest of the decodemetwork to be
“on the attractor”, not only are problemsof infinite loops
and early termination corrected,but it is now possibleto
have extremelylarge setsof treesrepresenteth smallfixed-
dimensionaheuralcodes.The attractor beinga fractal, can
be generatedat arbitrary resolution. In this interpretation,
eachpossibletree, insteadof being describedby a single
point, is now an equivalenceclassof initial points sharing
the sametree-shapedrajectoriesto the fractal attractor For
this formulation, the setof treesgeneratechnd represented
by a specificRAAM is a function of the weights,but is also
governedby how theinitial conditionspaces sampledand
by the resolutionof the attractor construction. Note that
the lower-resolutionattractorscontainall the points of their
higherdimensionatounterpart¢they coverthem);therefore,
as a coarserterminal set, they terminatetrajectoriesearlier
andsoactto “prefix” the treesof the higherdimensionaht-
tractors.

Two last piecescompletethe new formulation. First, the
encodemetwork, ratherthanbeingtrained,is constructedli-
rectly asthe mathematicainverseof the decoder The termi-
nal setof eachleaf of a treeis run throughthe inverseleft
or right transformsandthentheresultantsetsareintersected
andary terminalssubtractedThis processs continuedfrom
thebottomup until thereis anemptyset,or we find the setof
initial conditionswhich encodethedesiredree.

Secondysingthe attractorasa terminaltestalsoallows a
naturalformulation of assigninglabelsto terminals. Barns-
ley (1993)notedthateachpoint onthe attractoris associated
with anaddressvhichis simplythesequencef indicesof the
transformsusedto arrive on that point from otherpointson
the attractor The addresss essentiallyan infinite sequence
of digits. Thereforeto achieve alabelingfor a specificalpha-
betwe needonly considera sufficient numberof significant
digits from this address.

Example of New RAAM Formulation

In this section,we describehow we obtainthe attractorand
thetreesfor a RAAM decoderof the sortshavn in figure 1.
Thedecodemeightsin thepresenexamplewereobtainedby
ahill-climbing searcifor anaestheticallyappealingattractor
but the demonstratioris valid for ary setof decodemeights.
Recallthatwe aretreatingthedecodeliasan IFS thatmaps
eachinputpoint (X,Y") in therange[0,1] to two otherpoints
(Xr,Yr) and(Xg,YRr) in the samerange. To generatehe
attractorof the IFS, we first apply the two mappings(trans-
forms)to the entireunit squareat somefixedresolution.We
thenre-applythetransformso theresultingsetof points. We
repeatthis operationuntil the transformsdo not changethe

setof pointsary further at that resolution. Hence,we can
visualizethe behaior of the decoderin the unit squareby
examiningthesetof pointsobtaineadhroughiteratedapplica-
tionsof thetwo transforms.

In figure 2, we have appliedthe transformsonceto all
pointsin theunit squarepbtainingtwo large, overlappingre-
gions,correspondingo theleft andright transformsof all the
original points. Notethatsomepointsarepartof boththeleft
andright regions.

1

!

Y e

i e
0 —X— 1

Figure2: The unit squareafter one applicationof the trans-
forms. The attractoris shavn in gray: dark gray = points
reachabldrom attractoron left transform light gray= points
reachabl®nright. Thesmallwhite wedgewherethegrayar-
easoverlapcontains‘ambiguous”attractorpointsreachable
onbothtransforms.

.. -

Figure 3: The unit squareafter two andfive applicationsof
thetransforms.

Figure 3 shows the unit squareafter anotheriteration of
thetransformsandafterfive suchiterations.Figure4 shows
thefinal “Galaxy” attractorobtainedwhenfurtheriterations
fail to produceary more contraction. Like ary fractal, this
attractorexhibits self-similarity, with the two longestarmsof
thegalaxyendingin shapedik e thatof thewhole attractor

Figure4 alsoshovs how we derive thetree(1 (1 2)) from
a point not on the attractor Startingat a point not on the
attractor(the small circle at the top of the figure), the left
transform(dashedine) takesusimmediatelyto the attractor;
specifically to an attractorregion labeled1, indicatingthat
thisregionis reachabldrom the otherattractorpointson the
left (first) transformonly. Henceourtreesofaris (1...). The
right transformof thepointatthetoptakesusto anothempoint



not on the attractor indicatedby the circle in the lower left
partof the figure. Like the first point, this point goesto the
attractorregionlabeledl onits left transform;however, it also
goesto the attractoronits right transform;specifically to the
regionlabeled2, whichindicatesthatthis regionis reachable
from the otherattractompointsontheright (second}ransform
only. Sothis secondpointdecodeghetree(1 2), andits par
enttreeis (1 (1 2)), completingthe derivation.

(1(12)

12)

Figure 4: The final attractor shaving derivation of the tree
(1 (1 2)) andits daughtertree (1 2). The left transformis
shavn asa dashedine, andtheright transformasa straight
line.

By repeatinghis procesdor every point not on the attrac-
tor, we canmapoutthesetof all treesdecodedy theRAAM
at a givenresolution. As describecearlier eachtreein this
setcorresponds$o an equivalenceclassof pointsthatall de-
codeto thattree. Pointsin the sameclasstendto clusterto-
gethergiving usaninterestingvay of layingouttheRAAM'’ s
languagespatially Figure 5 shows this phenomenorfor a
RAAM that we hill-climbed to decodethe languagea™b™
(describedn the next section),with grayscaledenotingtree
equialenceclassesatherthanattractorpoints. The dramatic
striping patternof the equivalenceclassesn thisfigureis not
inherentin the fractal RAAM model, but derives from the
comparatiely elegant solution that hill-climbing produced
for thislanguage.

Linguistic Advantagesof New RAAM

As we describedearlier, the new RAAM formulation thor-
oughly addresseshe three shortcomingsof the traditional
RAAM model. Infinite loopsandterminatingnon-terminals
are both eliminatedby makingthe terminaltestbe a testof
whetheror nota pointis onthefractalattractorof the RAAM
decoder

Furthermorethenew formulationprovidesaprincipledac-
countof generatiity (grammaticacompetence)By treating
the RAAM as a fractal that can be generatecht any arbi-
trary resolution,we canincreasethe generatie capacityof
theRAAM withoutbound,giving usa modelthatscaleger
fectly: hencahenamelnfinite RAAM (IRAAM). Aswehave
recentlyshawvn (?), it is a straightforwardmatterto hill-climb
the weightsfor an IRAAM that generatesll and only the
stringsin thelanguagex™b™ U a™b" 1, n < 5.

Figure5: Treeequialenceclassedor the a™b™ system.At-
tractorpointsclusterat extremeleft (coloredblack, labeledl
or a) andright (coloredwhite, labeled?2 or b).

Briefly, the dynamicsof the network aresuchthatfor ary
point in the unit square,one of the two transformsof the
pointis guaranteedo be on the attractor This behaior cor-
respondgo the terminalcomponenbf a recursve grammar
in Chomsly Normal Form for thelanguage.ln addition,the
left transformof ary pointendsup ontheleft sideof the unit
square(z = 0) andthe right transformendsup on theright
side(xz = 1). Hence successie applicationof left/right/left...
transformdeadsto azigzagdynamicghatbalances’sonthe
left with b’sontheright, until azig or zaglandsontheattrac-
tor andterminateghe oscillation. This behaior corresponds
to the recursve componenbf the grammar In (?), we pro-
vide a constructve prooffor obtainingthesebehaiors atarny
resolution.

The proof givesusanexactiRAAM “competence’'model
for this non-regular CF language Specifically we shav that
thereexists a setof weightsfor which a RAAM with an at-
tractor generatedat a predeterminedesolutioncontainsall
andonly thetreesin thea™b™ language Performancdimita-
tions on the sizesof the treesactually producedderive from
the resolutionat which the non-attractomunit spaceis sam-
pled,andnotfrom anarbitrarystipulationor a breakdevn of
themodel.

Thisinfinite competencés nottheonly thing thatIRAAM
brings to connectionistNL modeling, however. Because
IRAAM is amethodof encodinganddecodingirees notjust
strings,its stronggeneratie capacityis known. We canthere-
fore uselRAAM asa directmodelof hierarchicallinguistic
structure. An immediateimplication of this resultis thatan
IRAAM canbeusedasa parserandnotjustarecognizerTo
theextentthatrealNL processingnvolvesthe assignmenof
meaningto stringsbasedon structure andnot merelygram-
maticality judgmentsthis ability represents significantad-
vancein theapplicationof connectionismo NL.

Finally, andperhapsmostinteresting,s the way in which
IRAAM handlessyntacticambiguity Considerthe fractal
addressingschemethat we describedearlier Eachterminal
point (word) on the attractoris associatedvith an address
which is simply the sequenceof indices of the transforms
takento arrive on the attractorpoint from otherpointson the
attractor Given K transformswe would thereforeassume



eachdigit in the sequencevould fall in therangel, 2, ..., K.
For example, a binary-branching RAAM, with two trans-
forms,would have terminalswith addresgligits 1 and2. Us-
ing a one-digitaddressthis effectively putseachword into
oneof K “part of speech’equivalenceclasses.

This is not the whole story, though. Becauseherecanbe
morethanone pathto a giventerminalfrom someotherter-
minal ontheattractor someterminalswill have “ambiguous”
addresseg;ontainingdigits out of therangel.. K, to express
the fact that morethanonetransformwastaken to arrive at
thatpointin thesequenceContinuingthelinguistic analogy
this ambiguity correspondgo a given word’s belongingto
morethanonepartof speechasin Chomsly’'s“flying planes”
example whereflying canbeeitheraverbor anadjectie. For
the binary-branchingRAAM example,if a given point had
both a left andright inverseon the attractor a one-digitad-
dresdor thatpointwould have to beasymbolotherthan1 or
2. In generalfor a K-ary IRAAM, thereare2X — 1 possible
one-digitaddressegonsistingof K unambiguousaluesand
2K _ K — 1 ambiguous/alues.

This fact hasgreatlinguistic importancefor IRAAM, for
the following reason: typically (but not exclusively), an
IRAAM decoderwill favor putting the kth non-ambiguous
terminal classin the kth positionin a string of terminals,
becausehe sameset of weightsis usedto generatethe at-
tractorandthe transientgo the attractor The likeliestnon-
terminalstructureof a binary-branchingRAAM will there-
forebe(1 2), with structureg1 1), (2 1) and(2 2) beingpossi-
ble but lesslikely to occur If, however, thisIRAAM contains
ambiguougerminals,it will verylikely decodehestructures
(1 3),(32) and(3 3) aswell.

Returningto the“flying planes’example let usassignun-
ambiguouwerbslik e are the category 1, unambiguousiouns
like planeg the category 2, andthe ambiguouslying the cat-
egory 3. With this assignmentthe naturalability of a binary
IRAAM to decodehestructureq1 (3 2)) and((1 3) 2) gives
us both parsesof the expressionare flying planes Hence,
we have an existenceproof of a RAAM that can deal with
syntacticambiguityandnon-deterministigrammars.

In short,we believe thatIRAAM notonly solvesthe prob-
lemsof the earlierRAAM model,but alsoaddressethe lin-
guistic inadequacie®f recurrentneuralnet modelsthat we
discusseckarlier

What IRAAM Can’'t Do

In the first sectionof this paperwe outlined two linguis-
tic criteria for a plausibleNL model: the model shouldbe
ableto handlé€'slightly” non-CFphenomendk e copyingand
crossedserialdependencieand shouldalsobe incapableof
handlingCF phenomenabsentfrom or deprecatedn NL's,
like mirror-imageconstructionspr shouldincur a relatively
high costin producingor parsingthosestructures.

To investigatethe latter point, we testedthe ability of the
IRAAM modelshawn in figure 1 to “learn” the context-free
languages™b™ andww®, w € {a,b}. Thetrainingsetcon-
sistedof thefirst 14 exemplarsof eachlanguagdenumerated

2Readerdroubledby the possibility of planesbeinga singular
verb (The carpenterplanesthe wood cansubstitutecars or some
otherunambiguousiounhere.

in increasingorderof length¥, with thefractaladdresd rep-

resentings and2 representing. Hill-climbing wasusedto

learntheweights.Boththeinitial weightsandthenoiseadded
to eachweight camefrom a Gaussiardistribution with zero
meananda standarddeviation of 5.0, with the addednoises

standardieviation beingscaledby thefractionof thetraining

setmissed.Theresultingweightswereusedto generatdrees
on an IRAAM with a resolutionof 2=7. The attractorwas
generatedtthatresolutionandtheinitial startingpointspace
wasalsosampledatthatresolution.

Hill-climbing did not producegood resultson either of
thesdanguagestheaveragesuccessvassix outof 14 strings
coveredfor bothlanguagesilt is, however, instructive to look
out howthosesuccessewereachiered. Comparingthe best
hill-climbed networks from eachlanguage(10 strings cov-
ered),we foundthatmostof thestringsgeneratedby thea™b™
network fit the generalpatternof the training set: 74% of
the stringsfit the patterna™b™. For the bestww® network,
however, only 14%fit the patternww®. In otherwords,the
a™b™ network wasactuallyproducingmostly “grammatical”
strings,whereagheww® network wasessentiallyguessing.

We attributetheseresultsto IRAAM’ saforementioneten-
deng to put symbolsof oneclass(a) on the left side of a
branchand symbolsof anotherclass(b) on the right side.
In otherwords, treesof the form (a b), (a (a b)), ((a b) b),
(a (a (a b)), (((a b) b) b), aremuchmore“natural” for an
IRAAM thanaretreesof theform (a a), (b b), (b a). Butit
is preciselythe latter typesof treesthat are usedashbuilding
blocksfor the mirror-imagelanguagesw®. This biasmakes
the mirror-image languagemuch harderfor an IRAAM to
learnthanthe countinglanguagea™d”, despitethe fact that
bothareexpressibleby asimpleCFG.

Although this resultis by no meansa proof of ary sort,
we considerit interestingfor two reasons.First, it suggests
that the languagesgenerableby an IRAAM sharean im-
portantformal propertywith NL, namely the avoidanceof
mirror-imageconstructionsSecondtheresultillustrateshow
IRAAM imposesa constraintbetweenthe terminal symbol
“semantics”and the nonterminal“syntax”” This constraint
is absentfrom the definition of CFG’s (or of ary grammar
in the Chomsly hierarchy),whereary terminalsymbolcan
appeararywhere. To the extent that individual naturallan-
guagedavor puttinga given partof speectin fixedlocations
in a sentenceor phrase(e.g., Englishgenerallyhassubject-
verb-object,Japanessubject-object-grb), IRAAM appears
to have anadvantageover traditionalgrammarssa modelof
NL.

Conclusionand Inter pretations

We have demonstrate@ new formulationof RAAM, which,
by using a fractal attractoras a terminal test, enablesthe
model to shav competenceand ambiguity to representa
variety of tree structures,and not to representdeprecated
mirror-imagestructures We planto relatethis new formula-

3The number14 was chosenbecausst allowed us to include
all the membersof ww® for |w| < 3. This languagehasmore
stringsof a givenlengththanthe languagex™b™, which meantthat
theexemplarsof thelatterhadto belongerin orderto enumeratéhe
first 14 of them. In effect, this makesthea™b™ taskharder thanthe

ww? task.



tion to linguistic formalismslike Tree-AdjoiningGrammars
(Joshiand Schabed997) and Categorial GrammargSteed-
man 1999) having similar properties. We hypothesizethat
this relationmay be achiered throughthe useof multiplica-
tive connectiongo gatelexical varietiesinto naturallyrecur
sive dynamics.

Ourwork is by no meansompletenor dowe meanto im-
ply thatNL grammarcanberepresenteth four neuronswith
12 weights! On the otherhand,the principle of contractie
mapsandthe emegenceof fractal attractorsin the limit be-
havior of nonlinearsystemsaremathematicatacts,andhave
beenusedsuccessfullyin image-compressiosystems. Re-
centwork by Tabor(1998) providesfurther evidencefor the
relevanceof suchprinciplesto connectionistmodelingof nat-
urallanguageWe now have reasorto believe thattheseprin-
ciples,undertheright interpretatiorandscale,cansupporta
neurallyplausibleuniversalgrammar
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