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Criticality of Two-Dimensional Disordered Dirac Fermions in the Unitary Class and
Universality of the Integer Quantum Hall Transition

Björn Sbierski ,1 Elizabeth J. Dresselhaus ,1 Joel E. Moore,1,2 and Ilya A. Gruzberg 3

1Department of Physics, University of California, Berkeley, California 94720, USA
2Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA

3Department of Physics, The Ohio State University, 191 West Woodruff Avenue, Columbus, Ohio 43210, USA

Two-dimensional (2D) Dirac fermions are a central paradigm of modern condensed matter physics, 
describing low-energy excitations in graphene, in certain classes of superconductors, and on surfaces of 3D 
topological insulators. At zero energy E ¼ 0, Dirac fermions with mass m are band insulators, with 
the Chern number jumping by unity at m ¼ 0. This observation lead Ludwig et al. [Phys. Rev. B 50, 
7526 (1994)] to conjecture that the transition in 2D disordered Dirac fermions (DDF) and the integer 
quantum Hall transition (IQHT) are controlled by the same fixed point and possess the same universal 
critical properties. Given the far-reaching implications for the emerging field of the quantum anomalous 
Hall effect, modern condensed matter physics, and our general understanding of disordered critical points, 
it is surprising that this conjecture has never been tested numerically. Here, we report the results of 
extensive numerics on the phase diagram and criticality of 2D DDF in the unitary class. We find a critical 
line at m ¼ 0, with an energy-dependent localization length exponent. At large energies, our results for the 
DDF are consistent with state-of-the-art numerical results νIQH ¼ 2.56–2.62 from models of the IQHT. 
At E ¼ 0, however, we obtain ν0 ¼ 2.30–2.36 incompatible with νIQH. This result challenges conjectured 
relations between different models of the IQHT, and several interpretations are discussed.

Introduction.—The integer quantum Hall effect appears
when a two-dimensional (2D) electron gas is placed in a
strong perpendicular magnetic field. Without disorder, the
electron eigenstates form Landau levels and each filled level
contributes unity to the total Chern number C. Disorder is
essential for experimental observation of the (dimensionless)
quantized Hall conductivity σxy ¼ C; it broadens the Landau
levels into bands and localizes eigenstates on a scale ξðEÞ
that diverges as a power law at a critical energy Ec [1],
ξðEÞ ∼ jE − Ecj−νIQH . For Fermi energies E ≠ Ec and sys-
tem sizes L ≫ ξðEÞ the Hall conductivity is quantized. The
integer quantum Hall transition (IQHT) at E ¼ Ec is the
most studied Anderson transition [2] because of its con-
ceptual simplicity, low dimensionality, and experimental
relevance. However, critical properties at the IQHT are
notoriously difficult to compute analytically; they are mostly
known from numerical studies which employed the
Chalker-Coddington (CC) network model [3–13], micro-
scopic continuous [14,15], lattice [10,14–17], and Floquet
Hamiltonians [18]. In recent works, the critical properties
agree among models, indicating universality of the IQHT.
They include the localization length exponent νIQH ¼
2.56–2.62 and the leading irrelevant exponent y ≃ 0.4 (with
large error bars). At criticality, y describes the approach of
the dimensionless quasi-1D Lyapunov exponent Γ to
its limiting value at infinite system size ΓIQH

0 ¼ 0.77–0.82
[5–7,9,11–13,16]. A similar exponent y was found for the

average conductance ḡ of a square sample with limiting
value ḡIQH ¼ 0.58–0.62 [19,20]. For ongoing analytical
work on the IQHT, see Refs. [21–23] and the discussion
below. The IQHT has also been discussed recently in relation
to exotic topological superconductor surface states [24].
A longstanding conjecture by Ludwig et al. [25] states

that the IQHT fixed point also controls the criticality of
2D disordered Dirac fermions (DDF). The clean Dirac
Hamiltonian is

H0 ¼ ℏvð−iσx∂x − iσy∂yÞ þmσz; ð1Þ

with Pauli matrices σμ, mass m, and velocity v. The
spectrum of H0 has a gap 2jmj symmetric around
E ¼ 0. For Fermi energies E within the gap, the system
is a band insulator with half-integer quantized σxy ¼
CðmÞ ¼ − 1

2
sgnðmÞ [25]; see Fig. 1(a). If the Dirac fermion

is regularized on a lattice as in the Haldane model [26] or
Eq. (5) below,H0 only describes the low-energy excitations
near a certain point in the Brillouin zone. Bloch states
elsewhere contribute another 1=2 to C, such that jσxyj
jumps between zero and 1 as m changes sign.
With m taking the role of energy, the superficial

similarity of this transition to the IQHT motivated
Ludwig et al. [25] to consider the effects of disorder in
the unitary symmetry class [27,28],
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H ¼ H0 þ
X

μ¼0;x;y;z

Uμðx; yÞσμ: ð2Þ

The random scalar (U0) and vector (Ux;y) potentials and the
random part of the mass (Uz) are taken to be independent
Gaussian fields with the correlators UμðrÞUνðr0Þ ¼
δμνKμðjr0 − rjÞ and zero mean. Time reversal changes
the sign of mþ Uz, connecting two equally likely mem-
bers of the statistical ensembles with opposite values ofm,
and the transition in the disordered model happens
at m ¼ 0. Because of the absence of an extended 2D
metal phase in the unitary class, all eigenstates of H with
jmj > 0 are expected to be localized with the localization
length ξðmÞ ∼ jmj−νE , with a possibly E-dependent critical
exponent νE.
Although model (2) is not solvable analytically, the

conjecture [25] νE¼0 ¼ νIQH was based on a semiclassical
argument that leads to the CC model. Another argument
[29] considers the clean CC model and finds a Dirac
spectrum, but the inclusion of disorder is uncontrolled. In
the Supplemental Material [30], we review these arguments
and identify their possible flaws.
Despite the importance of the 2D Dirac model in modern

physics, the conjectured emergence of IQHT criticality in
DDF was never checked numerically. Here, we address this
issue with extensive simulations employing different
microscopic models and scaling observables. We start with
the continuum model (2) and use the transfer matrix (TM)
approach in quasi-1D geometry to find the critical behavior
near the linem ¼ 0 in them-E plane; see Fig. 1(b). At large
E, our results are consistent with νE ¼ νIQH, but as E is
lowered, the critical exponent decreases toward νE¼0 ¼
2.33ð3Þ still close to, but strikingly incompatiblewith νIQH.
We corroborate our E ¼ 0 results in a lattice model of DDF
employing an alternative 2D scaling observable [10].
In the experimental literature, a quantized nonzero σxy in

the absence of an external magnetic field is known as the

quantum anomalous Hall effect [36–38]. Recent efforts
[39,40] have been directed to the critical scaling at the
topological phase transition in question; however, the error
bars on the resulting exponents are still large.
Continuum model and disorder-induced length scale.—

We start with Hamiltonian (2) at E ¼ 0 and smooth
disorder, KμðrÞ ¼ W2e−r

2=2a2=2π. We use the disorder
correlation length a and ℏv=a as units of length and energy
so that the dimensionless disorder strength W taken to be
the same for all four disorder fields is the bare energy
scale in the model. The mean free path lW equals the quasi-
particle decay time lW ≡ −1=ImΣ↑↑ð0; 0Þ defined in
terms of the disorder-averaged Green’s function
Gðk;ωÞ ¼ ½ω −H0ðkÞ − Σðk;ωÞ�−1. For weak disorder
W ≪ 1, a perturbative renormalization group (RG)
[25,41] gives, for m ¼ 0, lW ∝ ec=W

2

, with c ¼ Oð1Þ. To
ensure that our system sizes L ≫ lW , we work with
strong disorderW ≥ 1.5 where a numerically exact method
[42] yields lW¼1.5 ¼ 1.54. We also observe that for
klW > 1, the peaks in the spectral function Aðk;ωÞ ¼
−ð1=πÞtrImGðk;ωÞ occur at frequencies ω ≃�ℏvk;
i.e., the velocity v is almost unrenormalized. We conclude
that forW ¼ 1.5, system sizes L≳Oð10Þ are large enough
to exhibit disorder-dominated physics.
Lyapunov exponent (LE).—A common method to ana-

lyze critical behavior in disordered systems employs the
self-averaging LEs γi in a quasi-1D geometry with length
Lx → ∞ [43]. The smallest γi > 0 (the inverse of the 1D
localization length) gives the scaling variable Γ ¼ γLy,
which increases (decreases) with width Ly in a localized
(extended) phase and is scale invariant at a critical point.
Following Ref. [44], we use finite Lx ¼ Oð105Þ and find Γ
as the average over hundreds of disorder realizations; see
Supplemental Material [30] for details.
The eigenvalue problem for the DDF (2) can be rewritten

as ∂xψðx; kyÞ ¼ fðψðx; k0yÞÞ. The right-hand side contains
scattering between transversal wave vectors ky but is local
in x, which allows us to express the TM in exponential
form. We impose periodic boundary conditions (BCs) in
the y direction. We discretize the x direction and stabilize
the TM multiplication by repeated QR decompositions [1]
(to obtain Γ) or via a scattering matrix [45] (for the
conductance of moderately sized systems). Both methods
are numerically exact and faithfully treat model (2) without
band bending or node doubling. The only approximations
are related to the cutoff jkyj ≤ kmax and the x discretization.
The associated length scales (taken equal) were chosen
much smaller than a, and the results are converged with
respect to these parameters.
The results for the dimensionless LE Γ at E ¼ 0,

W ¼ 1.5, various masses m, and system widths Ly are
presented in Fig. 2. The solid lines are fits to the scaling
function

Γðm;LyÞ ¼ Γ0 þ α01L
−y
y þ α20m2L2=ν

y ; ð3Þ

(a) clean Dirac fermion (c) two fixed 
points scenario

(d) marginal 
scaling scenario 

(b) energy dependence 
of critical exponent

band
insulator

metal IQH

FIG. 1. Schematic phase diagram for 2D Dirac fermions.
(a) Clean case: A metal intervenes between two band insulators
with different Chern numbers C at jmj > jEj. With disorder in the
unitary class, the metal localizes except on the critical line m ¼ 0
separating topologically distinct Anderson insulators. (b) The
critical exponent νE is found to vary significantly with energy.
The two fixed points scenario (c) explains this as a result
of a crossover, while the marginal scaling scenario (d) would
be compatible with a smooth evolution of effective critical
exponents.



which is the lowest-order polynomial ansatz allowed by
symmetry, including an irrelevant contribution. The fit
gives the following critical properties:

νE¼0¼ 2.32ð1Þ; y¼ 0.51ð3Þ; Γ0 ¼ 0.84ð1Þ; ð4Þ

the number in parentheses denotes 1 standard deviation.
In the Supplemental Material [30], we give a detailed
account for the fitting procedure and show its stability with
respect to higher-order terms in Eq. (3) and a removal of
data points for largem and small Ly. There, we also present
data for an increased disorder strength W ¼ 2.0, which
yield νE¼0 ¼ 2.31ð2Þ, y ¼ 0.51ð3Þ, and Γ0 ¼ 0.84ð1Þ
compatible with anticipated disorder-independent critical
properties.
Lattice model and alternative scaling observable.—We

now confirm the value of νE¼0 using a square-lattice
regularization of the DDF allowing access to an alternative
scaling observable introduced by Fulga et al. [10]. In
momentum space, the clean model reads [46]

HL
0 ¼σx sinkxþσy sinkyþσzðm−2þcoskxþcoskyÞ; ð5Þ

where the lattice constant and energy scale have been set to
unity. For jkj ≪ 1, this model reduces to Eq. (1), with a
topological transition at critical m ¼ mc ¼ 0 where C
changes by 1, but band bending is important for
k; E≳ 1. We add on-site disorder potentials V ¼P

ri;μ UμðriÞσμ with UμðriÞ uniformly drawn from the
interval ½−w=2; w=2� independently for each lattice site
ri and μ ¼ 0; x; y; z. Transport calculations use the kwant
package [47] and employ two identical leads attached at the
left and right boundaries of the system represented by
decoupled 1D chains extending in the x direction:

Hleadðkx; kyÞ ¼ σx sin kx þ σzð1þ cos kxÞ: ð6Þ

The lattice model (5) has no symmetry that ensuresmc ¼ 0
in the presence of disorder. However, the Dirac node energy
is not renormalized away from E ¼ 0. The reason is that the
eigenenergies come in pairs �E. This symmetry carries
over to the disorder-averaged density of states as long as the
average potential disorder Ū0 ¼ 0.
To determine the exponent νE¼0, we consider the

reflection matrix rðϕÞ of the left lead as a function of
the phase ϕ of twisted BC in the y direction. For a given
disorder realization, the mc occurs when there exists a ϕ
such that rðϕÞ has a zero eigenvalue and det rðϕÞ ¼ 0.
Fulga et al. [10] showed that a scaling observable Λ can be
obtained by working with generalized twisted BC
ψx;y¼L−1 ¼ zψx;y¼0 for all x ¼ 0; 1;…; L − 1, and z ∈ C.
Now, det rðzÞ has zeros z0 even for m ≠ mc but with
jz0j ≠ 1. For the z0 closest to the unit circle, Λ ¼ log jz0j
measures the distance to criticality Λ ¼ 0. For the CC
model, scaling ofΛwith system size Lwas demonstrated in
Ref. [10], reporting ν ¼ 2.56ð3Þ compatible with results
from the TM method.
We computed Λ for the lattice DDF HL

0 þ V for m
around 0, w ¼ 2.5 and system sizes between L ¼ 60 and
200; see Fig. 3 for the results and the Supplemental
Material [30] for details of the fit. We find νE¼0 ¼
2.33ð3Þ in agreement with the result for the continuum
model. Notably, the observable Λ shows no discernible
corrections to scaling, which allows us to omit the
irrelevant terms in the scaling function for Λ. Repeating
the analysis for w ¼ 2.25 and 2.75 (not shown) yields
compatible ν within the given error bars.
Results for finite energy (E > 0).—We now consider the

continuum model (2) with smooth disorder at finite energy
E > 0 (E < 0 is related by the statistical E → −E sym-
metry). In the Supplemental Material [30], we present
scaling results for the LE Γ for E ¼ 0.3, 0.5, 0.7 at disorder
strength W ¼ 2. As in the E ¼ 0 case, we find localizing
behavior for any m ≠ 0. The exponents νE [see Fig. 1(b)]
increase monotonically with E toward νE¼0.7 ¼ 2.53ð2Þ,

FIG. 2. Top: LEs Γ for E ¼ 0 and W ¼ 1.5 as functions of m2.
The relative error is ≤ 0.2%, and error bars are smaller than the
dots. Solid lines denote the best fit [Eq. (3)] with fit parameters as
given in the panels. Bottom: closeup at criticality (m ¼ 0) with
extrapolation to infinite system size determining Γ0 (cross).

m

L=60
    80
  110
150
200

FIG. 3. Scaling plot of the variable Λ for the model (5) at E ¼ 0
and disorder strength w ¼ 2.5. Dots represent averages over at
least 104 disorder realizations, and the solid curves are fits
described in the Supplemental Material [30].



significantly different from νE¼0. Other critical properties
(Γ0 and y) do not seem to vary significantly with E.
To further probe the critical line m ¼ 0, we compute the

critical Landauer conductance g of L × L systems with
periodic BC in the y direction, and metallic leads modeled as
highly doped Dirac nodes [48]. The distribution of g and its
moments are expected to be scale invariant and universal
[2,4]; for E ¼ 0, it is shown in the Supplemental Material
[30]. In Fig. 4 we present the average conductance ḡ. We
observe that for E≲ 0.3, ḡ ≃ 0.5 is almost independent of
the disorder strength and E, which we interpret as evidence
of proximity to an underlying fixed point. With increasing L,
ḡ slightly increases, consistent with decreasing Γðm ¼ 0Þ
in Fig. 2 (bottom).
For 0.3≲ E≲ 1, ḡ begins to depend on W and varies

with E by ∼50% for W ¼ 1.5 but only by ∼10% for
W ¼ 2.5. For W ¼ 1.5 and E > 0.6, ḡ slightly decreases
when L grows from 100 to 200. We interpret this as a
remnant of the crossover from the diffusive to the critical
behavior. It is consistent that LEs obtained in this regime
(not shown) cease to obey critical scaling.
Discussion.—In summary, our numerical results for DDF

are consistent with localized behavior anywhere in the
m − E plane except on a critical line m ¼ 0; see Fig. 1. At
m ¼ 0, both the dimensionless LE extrapolated to infinite
system size Γ0 ¼ 0.82–0.85 and the irrelevant exponent y
do not vary significantly with energy or disorder strength
below E ≃ 1, while the average conductance ḡ of fixed-size
square samples at stronger disorder varies at most by
∼10%. In contrast, the localization length exponent νE
significantly depends on energy; see Fig. 1(b). While
νE¼0.7 ¼ 2.53ð2Þ is more or less consistent with the
established value for the IQHT νIQH ¼ 2.56–2.62, the value
νE significantly decreases with energy down to

νE¼0 ¼ 2.30–2.36; ð7Þ
where we took a union over error bars for the two models
and two scaling methods we used for E ¼ 0.
Let us now put our findings in the context of existing

arguments and first discuss the case of large E and low W
characterized by a large Drude conductivity σDxx ≫ 1. In the

Supplemental Material [30], we numerically confirm that
this regime is achievable in the DDF, albeit not for the
parameters used for the scaling analysis above. Large σDxx
controls the derivation of an effective field theory for the
DDF with short-range disorder [49] as it justifies the
required saddle point approximation. The resulting non-
linear sigma model with a θ term can also be derived for
other models of the IQHT: the Schrödinger equation with
short-range disorder and strong magnetic field [50,51] and
the CC model [52]. These relations rationalize our finding
of IQHT-like criticality in the DDF at E ¼ 0.7. Note,
however, that the CC model lacks the large parameter
analogous to σDxx, and the derivation of the sigma model for
it is uncontrolled, as well as for the DDF at E ≃ 0,
where σxx < 1.
We now discuss three possible scenarios addressing the

E dependence of νE [see Fig. 1(b)].
(i) Insufficient system size. In the history of IQHT

numerics, refined fitting functions and the ability to study
larger systems shifted the value of ν considerably over time.
We also cannot exclude that our results for νE<0.7 are not
the true asymptotic values, and further increase in Ly would
bring them closer to νIQH. However, our system sizes,
quality of numerical data, and its analysis are comparable to
recent work on the IQHT. Also, we do not see a tendency
for a drift in νE if the minimal Ly involved in the fit is
increased from 40 to 68; see Supplemental Material [30].
Finally, we corroborated our E ¼ 0 result (7) at two
disorder strengths and with an alternative scaling observ-
able for the DDF on a lattice. Our finding for νE¼0 is also
supported by numerical results from a massless DDF in a
magnetic field [53]. At strong enough potential disorder,
only the critical state deriving from the Landau level at
E ¼ 0 persists, separating localized states at E ≶ 0. The
scaling of dσxy=dEjE¼0 and the width of the conductance
peak around E ¼ 0 with system size gave ν ≈ 2.3, but no
error bars were provided.
(ii) Two fixed points. In a more intriguing scenario, our

results could be consistent with the existence of two
different fixed points. One of them is the conventional
IQHT fixed point that controls the critical behavior at
E > 0, while the other fixed point controls the system at
m ¼ 0, E ¼ 0; see the dot in Fig. 1(c). We conjecture that
this fixed point is multicritical, where both m and E are
relevant, with the RG eigenvalues ym ¼ 1=νE¼0 and yE.
The RG flow near this point would resemble that near the
tricritical point in the Ising model with vacancies [54]. In
this scenario, the critical behavior at any E > 0 should be
the same and coincide with that for the IQHT. Our
observation of intermediate values νE¼0.3;0.5 may stem
from the small (or even zero, if E is marginally relevant)
value of the crossover exponent yE=ym at the multicritical
point, resulting in the cusplike shape of the crossover line in
Fig. 1(c), which might cause smearing of νE when extracted
over a too large range of m. However, concerns about this

FIG. 4. Critical Landauer conductance ḡ of square samples at
m ¼ 0, disorder strengths W ¼ 1.5 and 2.5, size L ¼ 100, 200,
and periodic BC in transversal direction averaged over at least
104 disorder realizations.



scenario arise from the absence of any kinks in the Γ vs m2

data for E > 0 (see Supplemental Material [30]) as well as
the apparent energy independence of Γ0.
(iii) Marginal scaling. In a recent development,

Zirnbauer [23] proposed a solvable conformal field theory
for the IQHT featuring a fixed point with only marginal
perturbations, implying ν ¼ ∞, y ¼ 0. In this case, higher-
order terms in the β functions for relevant and irrelevant
scaling fields (the deviations δσxx and δσxy of the con-
ductivities from their fixed-point values) could lead to an
effective critical exponent νeff [55] dependent on the bare
value of δσxx. For a slow RG flow of δσxx, νeff could appear
scale independent but vary with the parameters of the
model such as energy; see Fig. 1(d). Reference [56] reports
further study of this scenario in the numerically more
convenient framework of the CC model.
Outlook.—We hope our findings will prompt a careful

reexamination of criticality at the IQHTand other Anderson
transitions. Future work on the critical DDF should address
multifractal properties of wave functions and compare them
to established results for the IQHT [2]. Moreover, working
withN ¼ 3; 5; 7… flavors of DDF, the assumption σDxx ≫ 1
could be justified even for E ¼ 0, and it would be
interesting to compute νE¼0 in this case. Further, extension
of our methods to DDF in the symmetry classes of the spin
and thermal quantum Hall effects is worthwhile.
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heterostructure, Science 367, 900 (2020).

[39] C.-Z. Chang, W. Zhao, J. Li, J. K. Jain, C. Liu, J. S.
Moodera, and M. H.W. Chan, Observation of the Quantum
Anomalous Hall Insulator to Anderson Insulator Quantum

Phase Transition and Its Scaling Behavior, Phys. Rev. Lett.
117, 126802 (2016).

[40] M. Kawamura, M. Mogi, R. Yoshimi, A. Tsukazaki, Y.
Kozuka, K. S. Takahashi, M. Kawasaki, and Y. Tokura,
Current scaling of the topological quantum phase transition
between a quantum anomalous Hall insulator and a trivial
insulator, Phys. Rev. B 102, 041301(R) (2020).

[41] A. Schuessler, P. Ostrovsky, I. Gornyi, and A. Mirlin,
Analytic theory of ballistic transport in disordered graphene,
Phys. Rev. B 79, 075405 (2009).

[42] B. Sbierski and C. Fräßdorf, Strong disorder in nodal
semimetals: Schwinger-Dyson-Ward approach, Phys. Rev.
B 99, 020201(R) (2019).

[43] B. Kramer and A. McKinnon, Localization: Theory and
experiment, Rep. Prog. Phys. 56, 1469 (1993).

[44] M. Amado, A. V. Malyshev, A. Sedrakyan, and F.
Domínguez-Adame, Numerical Study of the Localization
Length Critical Index in a Network Model of Plateau-
Plateau Transitions in the Quantum Hall Effect, Phys. Rev.
Lett. 107, 066402 (2011).

[45] J. Bardarson, J. Tworzydlo, P. Brouwer, and C. Beenakker,
One-Parameter Scaling at the Dirac Point in Graphene,
Phys. Rev. Lett. 99, 106801 (2007).

[46] X.-l. Qi, Y.-s. Wu, and S.-c. Zhang, Topological quantiza-
tion of the spin Hall effect in two-dimensional paramagnetic
semiconductors, Phys. Rev. B 74, 085308 (2006).

[47] C. Groth, M. Wimmer, A. Akhmerov, and X. Waintal,
KWANT: A software package for quantum transport, New J.
Phys. 16, 063065 (2014).

[48] J. Tworzydlo, B. Trauzettel, M. Titov, A. Rycerz, and
C.W. J. Beenakker, Quantum-Limited Shot Noise in
Graphene, Phys. Rev. Lett. 96, 246802 (2006).

[49] P. M. Ostrovsky, I. V. Gornyi, and A. D. Mirlin, Quantum
Criticality and Minimal Conductivity in Graphene
with Long-Range Disorder, Phys. Rev. Lett. 98, 256801
(2007).

[50] A. M. M. Pruisken, On localization in the theory of the
quantized Hall effect: A two-dimensional realization of the
θ-vacuum, Nucl. Phys. B235, 277 (1984).

[51] H. Weidenmüller, Single electron in a random potential and
a strong magnetic field, Nucl. Phys. B290, 87 (1987).

[52] M. R. Zirnbauer, Toward a theory of the integer quantum
Hall transition: Continuum limit of the Chalker–Coddington
model, J. Math. Phys. 38, 2007 (1997); Erratum, J. Math.
Phys. 40, 2197 (1999).

[53] K. Nomura, S. Ryu, M. Koshino, C. Mudry, and A.
Furusaki, Quantum Hall Effect of Massless Dirac Fermions
in a Vanishing Magnetic Field, Phys. Rev. Lett. 100, 246806
(2008).

[54] J. Cardy, Scaling and Renormalization in Statistical Physics
(Cambridge University Press, Cambridge, 1996).

[55] M. R. Zirnbauer, Logarithmic scaling at the integer quantum
Hall plateau transition, in talk at the conference Localisation
2020 (unpublished).

[56] E. J. Dresselhaus, B. Sbierski, and I. Gruzberg, Numerical
evidence for marginal scaling at the integer quantum Hall
transition, arXiv:2101.01716.

https://doi.org/10.1016/j.nuclphysb.2019.02.017
https://doi.org/10.1016/j.nuclphysb.2019.02.017
https://doi.org/10.1103/PhysRevX.10.021025
https://doi.org/10.1103/PhysRevB.50.7526
https://doi.org/10.1103/PhysRevLett.61.2015
https://doi.org/10.1063/1.531675
https://doi.org/10.1063/1.531675
https://doi.org/10.1103/PhysRevB.55.1142
https://doi.org/10.1103/PhysRevB.54.8708
http://link.aps.org/supplemental/10.1103/PhysRevLett.126.076801
http://link.aps.org/supplemental/10.1103/PhysRevLett.126.076801
http://link.aps.org/supplemental/10.1103/PhysRevLett.126.076801
http://link.aps.org/supplemental/10.1103/PhysRevLett.126.076801
http://link.aps.org/supplemental/10.1103/PhysRevLett.126.076801
http://link.aps.org/supplemental/10.1103/PhysRevLett.126.076801
http://link.aps.org/supplemental/10.1103/PhysRevLett.126.076801
https://doi.org/10.1103/PhysRevB.100.140201
https://doi.org/10.1103/PhysRevB.100.140201
https://doi.org/10.1103/PhysRevB.59.15836
https://doi.org/10.1103/PhysRevB.59.15836
https://doi.org/10.1103/PhysRevLett.86.2094
https://doi.org/10.1103/PhysRevB.87.125144
https://doi.org/10.1103/PhysRevLett.81.2767
https://doi.org/10.1103/PhysRevLett.81.2767
https://doi.org/10.1126/science.1234414
https://doi.org/10.1146/annurev-conmatphys-031115-011417
https://doi.org/10.1146/annurev-conmatphys-031115-011417
https://doi.org/10.1126/science.aay5533
https://doi.org/10.1103/PhysRevLett.117.126802
https://doi.org/10.1103/PhysRevLett.117.126802
https://doi.org/10.1103/PhysRevB.102.041301
https://doi.org/10.1103/PhysRevB.79.075405
https://doi.org/10.1103/PhysRevB.99.020201
https://doi.org/10.1103/PhysRevB.99.020201
https://doi.org/10.1088/0034-4885/56/12/001
https://doi.org/10.1103/PhysRevLett.107.066402
https://doi.org/10.1103/PhysRevLett.107.066402
https://doi.org/10.1103/PhysRevLett.99.106801
https://doi.org/10.1103/PhysRevB.74.085308
https://doi.org/10.1088/1367-2630/16/6/063065
https://doi.org/10.1088/1367-2630/16/6/063065
https://doi.org/10.1103/PhysRevLett.96.246802
https://doi.org/10.1103/PhysRevLett.98.256801
https://doi.org/10.1103/PhysRevLett.98.256801
https://doi.org/10.1016/0550-3213(84)90101-9
https://doi.org/10.1016/0550-3213(87)90179-9
https://doi.org/10.1063/1.531921
https://doi.org/10.1063/1.533118
https://doi.org/10.1063/1.533118
https://doi.org/10.1103/PhysRevLett.100.246806
https://doi.org/10.1103/PhysRevLett.100.246806
https://arXiv.org/abs/2101.01716



