
UC Merced
Proceedings of the Annual Meeting of the Cognitive Science 
Society

Title
Biologically-Based Neural Representations Enable Fast Online Shallow Reinforcement 
Learning

Permalink
https://escholarship.org/uc/item/49v0x3rz

Journal
Proceedings of the Annual Meeting of the Cognitive Science Society, 44(44)

Authors
Bartlett, Madeleine
Stewart, Terrence C
Orchard, Jeff

Publication Date
2022

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License, 
available at https://creativecommons.org/licenses/by/4.0/
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/49v0x3rz
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/


Biologically-Based Neural Representations Enable Fast Online Shallow
Reinforcement Learning

Madeleine Bartlett (madeleine.bartlett@uwaterloo.ca)
Cheriton School of Computer Science, University of Waterloo

Waterloo, ON, N2L 3G1, Canada

Terrence C Stewart (tcstewar@uwaterloo.ca)
National Research Council of Canada, University of Waterloo Collaboration Centre,

Waterloo, ON, N2L 3G1, Canada

Jeff Orchard (jorchard@uwaterloo.ca)
Cheriton School of Computer Science, University of Waterloo

Waterloo, ON, N2L 3G1, Canada

Abstract

Biological brains learn much more quickly than standard deep
neural network reinforcement learning algorithms. One rea-
son for this is that the deep neural networks need to learn a
representation that is appropriate for the task at hand, whilst
biological systems already possess an appropriate representa-
tion. Here, we bypass this problem by imposing on the neural
network a representation based on what is observed in biol-
ogy, such as grid cells. This study explores the impact of using
a biologically-inspired grid-cell representation vs. a one-hot
representation, on the speed at which a Temporal Difference-
based Actor-Critic network learns to solve a simple 2D grid-
world reinforcement learning task. The results suggest that the
use of grid cells does promote faster learning. Furthermore,
the grid cells implemented here have the potential for accu-
rately representing unbounded continuous space. Thus, their
promising performance on this discrete task acts as a first step
in exploring their utility for reinforcement learning in continu-
ous space.
Keywords: Reinforcement Learning; grid cells; Spatial Se-
mantic Pointers;

Introduction
Reinforcement Learning (RL), inspired by the phenomenon
of conditioning observed in humans and non-human animals,
is a method of training machine learning models through a
process of trial and error (Sutton & Barto, 2018). An agent
explores an environment and receives either rewards or penal-
ties for its actions. These methods have the goal of finding a
policy that describes which actions to take in order to maxi-
mize total reward (Stone, 2011).

Neurally-based RL algorithms make use of neural net-
works, often taking the current state (s) as input. Depend-
ing on the situation, the output might be a measure of how
good that state is (V (s)), or a distribution indicating the
likelihood of performing different actions (a) in that state
([p(s,a1), p(s,a2), ...p(s,an)]). In either case, this is a more
difficult task than traditional neural-network learning because
the network needs to do two things at once: it needs to learn
from experience about the task, and it needs to learn the right
way to represent the input data in order to produce the correct
output.

Biological systems, however, seem to learn reinforcement
tasks more quickly than artificial neural networks. One stan-
dard hypothesis about why this is the case is that biological

systems do not need to learn a new representation for each
task; rather, they already have representations and can re-
purpose these representations for each new task. Importantly,
there is evidence about what sorts of representations biologi-
cal systems use (O’Keefe & Dostrovsky, 1971; Grieves & Jef-
fery, 2017). The most widely-known of these are grid cells:
neurons that use a hexagonal grid pattern to represent spatial
locations (Hafting et al., 2005a).

Research has already demonstrated the benefits of us-
ing a biologically-inspired method for representing the state
(Frémaux et al., 2013; Gustafson & Daw, 2011). For exam-
ple, Gustafson & Daw (2011) trained a network to solve a
series of navigation tasks in 2D grid-worlds using a Temporal
Difference-based network. The state was represented either
in a tabular form, or using place or grid cells, inspired by
the representations of spatial information evidenced in rodent
brains. Whilst this comparison was not the primary focus of
their study, Gustafson & Daw (2011) did find that, in most of
the environments, the use of grid and place cells resulted in
faster learning than when a tabular representation was used.

In this paper, we explore a variety of biologically-based
neural representation patterns and see how quickly RL algo-
rithms using those representations can learn. The overarching
goal here is to find generic approaches to neural representa-
tion that can provide good performance across a wide variety
of tasks, without requiring deep neural network learning to
create new representations for each task. We therefore utilise
a shallow network, using only one hidden layer. We further
restrict ourselves to online learning algorithms: that is, algo-
rithms that work only using data that is currently available to
the agent. Many RL algorithms require storing complete his-
tories of actions and doing parallel batch-processing on large
amounts of data at once.

In keeping with our goal of exploring biologically-based
approaches to RL, we have also restricted ourselves to algo-
rithms that might mirror the process of learning seen in bio-
logical systems, namely, Temporal Difference (TD) methods
which are grounded in concepts from animal learning in psy-
chology (Sutton & Barto, 2018). Since its conception, evi-
dence showing similarities between the TD signal and neuro-
logical correlates of conditioning has supported the biological

2981
In J. Culbertson, A. Perfors, H. Rabagliati & V. Ramenzoni (Eds.), Proceedings of the 44th Annual Conference of the Cognitive Science
Society. ©2022 The Author(s). This work is licensed under a Creative Commons Attribution 4.0 International License (CC BY).



relevance of this class of algorithms (Di Castro et al., 2008;
Suri & Schultz, 2001; Seymour et al., 2004).

The goal of any RL algorithm is to find a policy that maxi-
mizes total reward. This can be done by solving the Bellman
equation,

V (s) = max
a

(R(s,a)+ γV (s′)), (1)

where V (s) is the value of state s, a is the action, R(s,a) refers
to the reward obtained for performing action a in state s, and
V (s′) is the value of the next state, s′, reached after perform-
ing action a. The parameter γ (gamma) is a discount term,
usually a value between 0 and 1, that determines the amount
of importance given to future rewards (‘future’ from the per-
spective of the state being updated). In words, Equation (1)
says that the value of a state is equal to the maximum of the
reward received from the next action, combined with the pre-
dicted, discounted value of all possible future states. Solv-
ing this equation involves policy iteration; a random policy is
chosen, evaluated by calculating the value of each state given
that policy, and then the policy is improved based on this eval-
uation.

The idea of solving this equation is central to the TD learn-
ing rules. In this work we use two TD learning rules: TD(0)
and TD(λ) (lambda).

TD(0): Under TD(0) (also referred to as the 1-step TD
method), each time step involves updating the value of the
previous state based on the reward received and the estimated
value of the current state. For example, at step t in the pro-
cess, the estimated value of state st is Vt(st). However, after
taking another step (moving to state st+1 and receiving reward
rt+1), we have more information, which we can use to update
(improve) the value of the previous state st . The updated es-
timate of that value is denoted Vt+1(st).

This update process starts with calculating the TD error,

δt = rt+1 + γVt(st+1)−Vt(st), (2)

where rt+1 is the reward gained by moving from the previous
to the current state, Vt(st+1) is the value of the current state,
and Vt(st) is the value of the previous state, which is about to
be updated using the information gained from our last action.
The expression rt+1 + γVt(st+1) is referred to as the 1-step
return and utilises the discount factor γ.

Once the error (δt ) has been calculated, it can be used to
update the value of the previous state using

Vt+1(st) =Vt(st)+αδt ,

where Vt(st) is the value of the state being updated (before it
is updated), α is a learning rate (usually ranging between 0
and 1), and δt is the error term.

TD(λ): The second learning rule we use is TD(λ). The
main difference between TD(0) and TD(λ) is that, whereas
TD(0) involves calculating a 1-step return, TD(λ) averages
across all possible n-step returns on every step.

At each time step, the TD error (δ) for the immediately
preceding time step is calculated. This error term is then used
to update the values of all the states visited in previous time
steps. In order to keep track of which states have been vis-
ited, and therefore need to be updated, this method incorpo-
rates an eligibility trace. The role of the eligibility trace is to
keep track of which states have been visited recently or fre-
quently. The concept is similar to a scent trail that decays
over time. For each state, its value update is scaled by the el-
igibility trace. Thus, states that were visited recently (or fre-
quently) receive larger updates than states that have not been
visited, or were visited a long time ago. The eligibility trace
for state s, denoted et(s), is initially zero for all states, and is
updated according to

et(s) ← λγet−1(s)+ I(s = st) ,

where I is an indicator function which equals 1 when s = st
(i.e. when the state s is the state visited in the previous time
step), and otherwise equals 0. This version of the eligibil-
ity trace is referred to as the incremental eligibility trace; at
each step, the eligibility trace for the most recent state is in-
cremented by 1, and the eligibility trace for all states is mul-
tiplied by λγ. This update equation incorporates γ – the dis-
count factor for future rewards – as well as a new parameter,
λ (lambda), which is another discount factor, similar to γ.

Once the eligibility traces have been updated, we calculate
TD error using the same equation as used in TD(0) (Eq. 2).
The update equation is then applied to all the states that have
been visited, yielding the update rule

Vt+1(s)←Vt(s)+αδtet(s).

An extension of the TD method is the TD-based Actor-
Critic network (Sutton & Barto, 2018). Actor-Critic networks
separate the policy and the value function into two modules.
The value function is contained within the critic module, so
named because it criticizes the performance of the system;
after each action selection, the critic evaluates whether the
value of the new state is higher or lower than predicted. The
policy, on the other hand, is part of the actor – actions are
chosen such that the agent moves towards states which are
currently predicted to lead to greatest reward. We chose this
particular RL approach because it can be implemented in a
biologically realistic fashion.

The current study explores the effect of different repre-
sentations on the performance of Temporal Difference-based
Actor-Critic networks. The goal is to examine whether the
use of biologically-inspired representations (i.e. Spatial Se-
mantic Pointers and grid cells) leads to differences in perfor-
mance when compared to the One-Hot representation (which
could be described as ‘computationally inspired’).

Given the exploratory nature of this study, no explicit hy-
pothesis or predictions are put forward for testing. However,
this work has been motivated by the idea that, given that bio-
logical agents are able to solve associative learning tasks, we
theorize that RL methods should be able to solve such tasks

2982



Figure 1: Screenshot of the 8×8 Mini-Grid environment.

Figure 2: Schematic of the neural network

when using a biologically plausible/inspired method of rep-
resenting the agent’s state.

Methods
Learning Task
The learning task was Gym MiniGrid (Chevalier-Boisvert et
al., 2018) – a minimal grid world designed using the OpenAI
Gym library (Brockman et al., 2016). The world is an N×M
grid of empty tiles. For this study, an 8× 8 grid was chosen
(see Figure 1). The agent (red triangle) always has 3 actions
available: ‘turn left’, ‘turn right’ and ‘move forward’. In each
time step, the agent is able to take one action. The agent starts
every trial in the top left-hand corner of the grid and is tasked
with finding a goal (green square) located in the bottom right-
hand tile. For these experiments, each learning trial consists
of a total of 200 time steps. The trial terminates either at the
end of 200 time steps, or after the goal has been reached and
a reward of 1 obtained. Failure to reach the goal results in a
reward of 0. The agent’s ‘state’, in this environment, is a 3-
dimensional vector, consisting of the (x,y) coordinates of the
occupied tile, and the direction that the agent is facing (up,
down, left, or right).

Implementation
The network was implemented in Python using the Neural
Engineering Framework (NEF) (Bekolay et al., 2014). The

basic structure of the network is represented in Figure 2. The
network takes the state as input – a 3D vector – and trans-
forms it into the chosen representation (One Hot, SSPs or grid
cells). The representation is passed to a hidden layer made up
of rate neurons utilizing a rectified linear activation function.
The activities of these neurons, along with the most recently
chosen action and the most recent reward are then used to
perform the TD update. This TD update trains the network
weights to approximate the optimal policy for completing the
task whilst maximizing reward. The network’s outputs are the
updated state value, and a vector of the preferences for each
action in the next step. The agent then randomly chooses an
action according to the result of a softmax function applied to
those preferences.

Representations

Three different methods of representing the state were used.

One Hot: This method represents states by storing an array
containing one value for each possible state. The state is rep-
resented by setting all of the entries in the array to 0, except
the one corresponding to the state, which is set to 1. This
method requires that the state space be discrete (that it can be
divided into a finite number of states) rather than continuous.

The One-Hot representation, when implemented in a net-
work which does not use a neuron layer, is equivalent to a
look-up table method; the decoding matrix takes the form of
a state-value look-up table. The One-Hot representation was,
therefore, used twice in each set of experiments: once where
the representation was passed to the hidden neuron layer, and
once where no neurons were implemented. This latter method
was then treated as a baseline as it would be the standard non-
neural approach to this task. In all other cases the representa-
tion was passed to the network’s hidden neuron layer.

Grid Cells and Spatial Semantic Pointers: For our
biologically-based representations, we turn to grid cells
which we implement using Spatial Semantic Pointers (SSPs).
Grid cells are neurons found throughout the brain (most no-
tably in hippocampus) that are active for a hexagonal grid-like
pattern across space (Hafting et al., 2005b). While grid pat-
terns are common in two-dimensions, in higher dimensions
patterns without global order are also found (Ginosar et al.,
2021). We include both possibilities in our experiments.

The first step for both grid cells and random patterns is
to encode the state information into a vector using fractional
binding with circular convolution. That is, for each value (x,
y, etc.) in our state, we choose a high-dimensional unitary
vector1 (X , Y , etc.), compute its Fourier transform (F(X)),
raise that to an exponent (F(X)x), multiply it by the other
transformed values, and finally take the inverse Fourier trans-
form, as in Equation 3. This is done as the Representation

1A unitary vector has a Fourier transform where all complex
numbers have a magnitude of 1. This means that the resulting vector
S in Equation 3 will also always have a magnitude of 1.

2983



Figure 3: Receptive fields of neurons (A) with random en-
coders and (B) of grid cells used to represent SSPs.

box in Figure 2.

S = F−1(F(X)xF(Y )yF(Z)z). (3)

This construction of using multiplication in the Fourier do-
main (i.e. circular convolution) has been previously used to
create neural models of cognitive processes such as list mem-
ory and symbol-like reasoning (Eliasmith et al., 2012). While
that research focused on the symbol-like nature of these rep-
resentations, more recent work has shown that including these
exponents allows for the representation of continuous values
(Voelker et al., 2021). The resulting formulation is known as
Spatial Semantic Pointers (SSP).

In our SSP implementation, each Fourier coefficient is a
unit-length complex number. Thus, raising it to the exponent
x simply multiplies its phase by x. In this way, an SSP en-
codes the value x in the phases of its Fourier coefficients. This
phase encoding is similar in nature to how we use the hands
of an analog clock to represent time. The hour-, minute-, and
second-hands change phase (rotate) as time progresses, and
we can tell what time it is by looking at the phase of the 3
hands on the clock. By combining phases of the 3 hands, we
can decode the time to the precision of 1 second, but over a
12-hour period.

Importantly, given this transformation, we can now gener-
ate neurons that are grid cells or random pattern cells. Choos-
ing a random set of weights for Wencoders in Figure 2 gives us
neurons sensitive to patterns without global order, as seen in
biology (Ginosar et al., 2021) (Figure 3A). However, by care-
fully selecting X and Wencoders as per Dumont & Eliasmith
(2020) we can also generate the grid cells that are also seen
in biology (Figure 3B). This gives us two biologically-based
representations to test .

Learning Procedure
At the beginning of a learning trial, the environment is reset,
including the state of the agent. In subsequent time steps,
where the state and action values are updated, we follow the
procedure:

1. The agent chooses an action based on the action prefer-
ences, and moves into the new state.

2. The reward and new state are observed, along with whether
or not the goal state has been reached.

3. The new state is converted into the chosen representation
and passed to the neuron population.

4. The TD update is performed, adjusting the connection
weights in Wdecoders.

5. The network returns the updated state value and the action
preferences for the new state.

If the agent has reached the goal state, a final update is per-
formed and then the environment is reset for the agent to try
again.

Experiments
In total, this study involved testing the performance of the
network using one of two learning rules (TD(0) and TD(λ)),
and one of four representations (baseline, one hot, SSPs, and
grid cells), on the MiniGrid reinforcement learning task.

In each experiment, a configuration was tested 5 times
(i.e. 5 runs). Each of these runs consisted of 10,000 learn-
ing trials. A trial consisted of the agent taking 200 time steps
through the learning procedure outlined above. We counted
how many trials it took for an implementation to ‘solve’ the
task. A rolling average was calculated, looking at the average
reward achieved over the last 100 learning trials. The Mini-
Grid task was considered solved if this rolling average reward
exceeded 0.95.

Exploring the Parameter Space
The first step was to find a working region of the parameter
space for each configuration – a set of parameters that re-
sulted in the network solving the task. A parameter set would
be considered ‘working’ if the network solved the task on at
least 2 of 5 runs. This search was conducted manually, and a
unique parameter set was found for each configuration (high-
lighted in Figures 4 and 5).

The chosen parameters were not necessarily the optimal
ones. However, our goal was to examine the relative learning
performance afforded by the different state presentations. To
get a broader, more robust view of the performance, we varied
this initial set of parameters over a wide range of values, al-
tering one parameter at a time. We performed our experiment
(described above) at each of these parameter settings. This
parameter survey was conducted to evaluate whether differ-
ences in performance were a result of the state representation,
or an artifact of the parameter settings.

Results
We measured the learning performance of each method by
counting the number of learning trials it took to ‘solve’ the
task (i.e. average rolling reward ≥ 0.95). Using this measure,
we compared our four methods for representing the state:
baseline, one hot, SSPs, and grid cells.

For each experiment, we averaged the number of trials
taken to solve the task across the 5 runs. For experiments
where the goal rolling average was not reached (i.e. the agent
did not learn to solve the task) the total number of runs
(10,000) was used in calculating the average across runs. This

2984



Table 1: Table showing best performing parameter sets for each of the representations, mean number of learning trials for that
implementation to reach target rolling average, and 95% confidence intervals.

Rule Rep Alpha Beta Gamma Lambda N Neurons Dims Sparsity Mean N 95% CI
Trials (LL, UL)

Baseline 0.99 0.9 0.95 N/A N/A N/A N/A 174.8 156.0, 201.3
TD (0) One Hot 0.5 0.8 0.99 N/A 3000 N/A 0.1 157.0 149.3, 163.0

SSP 0.5 0.6 0.99 N/A 3000 128 0.25 156.6 127.7, 172.1
Grid Cells 0.5 0.85 0.95 N/A 1000 N/A 0.1 122.2 115.3, 132.9

Baseline 0.1 0.99 0.95 0.9 N/A N/A N/A 142.8 135.5, 154.7
TD(λ) One Hot 0.1 0.85 0.99 0.8 2000 N/A 0.005 147.8 133.5, 164.9

SSP 0.1 0.9 0.99 0.5 5000 256 0.2 176.6 162.8, 189.1
Grid Cells 0.1 0.85 0.95 0.9 2000 N/A 0.2 105.4 102.1, 109.8

was done to prevent inappropriately optimistic averages. For
experiments where none of the runs succeeded, no mean was
calculated.

Plots of these averages for experiments using TD(0) can
be seen in Figure 4, and for experiments using TD(λ) in Fig-
ure 5. Of key interest is that the grid cell representation con-
sistently outperformed the other representations. Addition-
ally, this pattern remains mostly consistent across different
parameter values.

To gain further insight into this pattern, we identified the
‘best performing’ parameter sets for each representation and
learning rule. Here, ‘best performance’ is defined as the
smallest mean number of trials to reach the target rolling av-
erage. These parameter sets and the associated average num-
ber of trials to reach success are shown in Table 1. The best
performing implementations using each representation are all
able to solve the MiniGrid task within 200 learning trials.
This is arguably unsurprising given the simplicity of the task.
However, it is still notable that the use of grid cells to repre-
sent the state results in a marked improvement in efficiency.
Where the TD(0) rule was used, implementing grid cells re-
sulted in an average of 122.2 trials (CI = [115.3, 132.9]) to
solve the task, compared to the next fastest – the SSP repre-
sentation – which solved the task in 156.6 trials (CI = [127.7,
172.1]). With TD(λ), the best model using grid cells solved
the task in 105.4 trials (CI = [102.1, 109.8]), whereas the
baseline model (second fastest) solved it in an average of
142.8 trials (CI = [135.5, 154.7]).

We also varied the number of dimensions used in the SSPs,
between 64 and 532. However, the number of dimensions
seemed to have little, to no, effect on the results, at least in
the range that we investigated.

Discussion
This study explored whether the use of biologically-inspired
representations (i.e. SSPs and grid cells) would lead to dif-
ferences in performance when compared to the One-Hot
method. Two TD-based Actor-Critic networks were imple-
mented, using either the TD(0) or TD(λ) learning rules, and

tasked with solving the Gym MiniGrid RL task. After work-
ing parameter sets were found for each implementation, a pa-
rameter survey was conducted to investigate a broader range
of the parameter space, to compare performance when differ-
ent representations were used. The results suggest that the
use of biologically-inspired grid cells reduces the number of
learning trials required for a network to solve the MiniGrid
task. This trend held over a wide range of parameter values.

These results are arguably unsurprising considering the ev-
idence suggesting that grid cells are optimal for encoding
spatial locations (Hayman et al., 2011, 2015; Hafting et al.,
2005a; Sorscher et al., 2019). The state information from
MiniGrid included the (x,y) coordinates denoting the agent’s
position. Given that the grid cells used here are designed to
represent the type of information present in this task, it is not
wholly remarkable that their use led to improved performance
over models using less specialized representations.

These findings do, however, hold promise for future work.
The grid cells used here were developed for representing
SSPs (Dumont & Eliasmith, 2020). A key feature of SSPs
is that they can be used to represent continuous variables
(Komer et al., 2019). Consequently, the current implementa-
tion has the potential to be useful for modelling RL where the
state contains continuous variables. For example, the bench-
mark RL tasks Mountain-Car and Cart-Pole (from Open-AI
Gym) incorporate continuous state information (Brockman et
al., 2016). A future direction for this work, then, is to explore
whether biologically-inspired neural representations might be
useful in solving these types of tasks.

Finally, whilst we have discussed that the current re-
sults appear to be promising in showing the efficacy of
biologically-based neural representations for solving RL
problems, it should be noted that our parameter search was
not exhaustive. That is, the chosen parameters were not nec-
essarily ‘optimal’, and it may be that there are parameter sets
which result in improved performance for the SSP or one-hot
representations. A continuation of this work could include
a full parameter sweep and examining the reliability of the
current findings.

2985



.001 .01 .05 .1 .5 .75 .9 .95 .99 1.0
102

103

104

Nu
m

be
r o

f T
ria

ls

Alpha

100 500 1000 1500 2000 2500 3000 5000
102

103

104 Number of Neurons

.01 .1 .25 .5 .6 .7 .75 .8 .85 .9 .95 .99
102

103

104 Beta

.01 .1 .25 .5 .6 .7 .75 .8 .85 .9 .95 .99
102

103

104

Nu
m

be
r o

f T
ria

ls

Gamma

.001.005.01.05 .1 .2 .25 .3 .4 .5 .6 .7 .8 .9 .95.99
102

103

104 Sparsity Value

Legend
Baseline
1 Hot
SSP
Grid Cells

Figure 4: Results of experiments using the TD(0) learning rule comparing the different methods of representing the state. Plots
show the mean number of learning trials taken to reach the target rolling average across each of the 5 runs testing each parameter
value. Highlighted markers indicate the chosen parameter value, which is not necessarily the ‘best’ value.

.01 .1 .25 .5 .6 .7 .75 .8 .85 .9 .95 .99
102

103

104

Nu
m

be
r o

f T
ria

ls

Alpha

100 500 1000 1500 2000 2500 3000 5000
102

103

104 Number of Neurons

.01 .1 .25 .5 .6 .7 .75 .8 .85 .9 .95 .99
102

103

104 Beta

.01 .1 .25 .5 .6 .7 .75 .8 .85 .9 .95 .99
102

103

104

Nu
m

be
r o

f T
ria

ls

Gamma

.01 .1 .25 .5 .6 .7 .75 .8 .85 .9 .95 .99
102

103

104 Lambda

.001.005.01.05 .1 .2 .25 .3 .4 .5 .6 .7 .8 .9 .95.99
102

103

104 Sparsity

Legend
Baseline
1 Hot
SSP
Grid Cells

Figure 5: Results of experiments using the TD(λ) learning rule comparing the different methods of representing the state. Plots
show the mean number of learning trials taken to reach the target rolling average across each of the 5 runs testing each parameter
value. Highlighted markers indicate the chosen parameter value, which is not necessarily the ‘best’ value.

Online Resources

Experiment and analysis scripts can be found in the
github repository: https://github.com/maddybartlett/
Bio Based Reps for RL.

References

Bekolay, T., Bergstra, J., Hunsberger, E., DeWolf, T., Stewart,
T. C., Rasmussen, D., . . . Eliasmith, C. (2014). Nengo: a
python tool for building large-scale functional brain mod-
els. Frontiers in Neuroinformatics, 7, 48.

Brockman, G., Cheung, V., Pettersson, L., Schneider, J.,
Schulman, J., Tang, J., & Zaremba, W. (2016). OpenAI
Gym.

Chevalier-Boisvert, M., Willems, L., & Pal, S. (2018). Mini-
malistic gridworld environment for openai gym. https://
github.com/maximecb/gym-minigrid. GitHub.

Di Castro, D., Volkinshtein, D., & Meir, R. (2008). Tempo-
ral difference based actor critic learning-convergence and
neural implementation. In NIPS (pp. 385–392).

Dumont, N., & Eliasmith, C. (2020). Accurate representation
for spatial cognition using grid cells. In Cogsci.

2986

https://github.com/maddybartlett/Bio_Based_Reps_for_RL
https://github.com/maddybartlett/Bio_Based_Reps_for_RL
https://github.com/maximecb/gym-minigrid
https://github.com/maximecb/gym-minigrid


Eliasmith, C., Stewart, T. C., Choo, X., Bekolay, T., DeWolf,
T., Tang, Y., & Rasmussen, D. (2012). A large-scale model
of the functioning brain. Science, 338, 1202-1205. doi:
10.1126/science.1225266

Frémaux, N., Sprekeler, H., & Gerstner, W. (2013). Re-
inforcement learning using a continuous time actor-critic
framework with spiking neurons. PLoS computational bi-
ology, 9(4), e1003024.

Ginosar, G., Aljadeff, J., Burak, Y., Sompolinsky, H., Las, L.,
& Ulanovsky, N. (2021). Locally ordered representation of
3d space in the entorhinal cortex. Nature, 596, 404 – 409.

Grieves, R. M., & Jeffery, K. J. (2017). The representation of
space in the brain. Behavioural processes, 135, 113–131.

Gustafson, N. J., & Daw, N. D. (2011). Grid cells, place
cells, and geodesic generalization for spatial reinforcement
learning. PLoS Computational Biology, 7(10), e1002235.

Hafting, T., Fyhn, M., Molden, S., Moser, M.-B., & Moser,
E. I. (2005a). Microstructure of a spatial map in the en-
torhinal cortex. Nature, 436(7052), 801–806.

Hafting, T., Fyhn, M., Molden, S., Moser, M.-B., & Moser,
E. I. (2005b). Microstructure of a spatial map in the en-
torhinal cortex. Nature, 436, 801–806.

Hayman, R., Casali, G., Wilson, J. J., & Jeffery, K. J. (2015).
Grid cells on steeply sloping terrain: evidence for planar
rather than volumetric encoding. Frontiers in psychology,
6, 925.

Hayman, R., Verriotis, M. A., Jovalekic, A., Fenton, A. A.,
& Jeffery, K. J. (2011). Anisotropic encoding of three-
dimensional space by place cells and grid cells. Nature
neuroscience, 14(9), 1182–1188.

Komer, B., Stewart, T. C., Voelker, A., & Eliasmith, C.
(2019). A neural representation of continuous space using
fractional binding. In Cogsci (pp. 2038–2043).

O’Keefe, J., & Dostrovsky, J. (1971). The hippocampus as a
spatial map: preliminary evidence from unit activity in the
freely-moving rat. Brain research.

Seymour, B., O’Doherty, J. P., Dayan, P., Koltzenburg, M.,
Jones, A. K., Dolan, R. J., . . . Frackowiak, R. S. (2004).
Temporal difference models describe higher-order learning
in humans. Nature, 429(6992), 664–667.

Sorscher, B., Mel, G. C., Ganguli, S., & Ocko, S. A. (2019).
A unified theory for the origin of grid cells through the lens
of pattern formation. In NeurIPS (Vol. 32, pp. 1–18).

Stone, P. (2011). Reinforcement Learning. In C. Sammut
& G. I. Webb (Eds.), Encyclopedia of machine learning.
Boston, MA: Springer.

Suri, R. E., & Schultz, W. (2001). Temporal difference model
reproduces anticipatory neural activity. Neural computa-
tion, 13(4), 841–862.

Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning:
An introduction. MIT press.

Voelker, A. R., Blouw, P., Choo, X., Dumont, N. S.-Y., Stew-
art, T. C., & Eliasmith, C. (2021, 07). Simulating and

predicting dynamical systems with spatial semantic point-
ers. Neural Computation, 33(8), 2033–2067.

2987


	Introduction
	Methods
	Learning Task
	Implementation
	Representations
	Learning Procedure
	Experiments
	Exploring the Parameter Space

	Results
	Discussion
	Online Resources



