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ABSTRACT

Phasing of single nucleotide (SNV), and structural
variations into chromosome-wide haplotypes in hu-
mans has been challenging, and required either trio
sequencing or restricting phasing to population-
based haplotypes. Selvaraj et al. demonstrated sin-
gle individual SNV phasing is possible with proximity
ligated (HiC) sequencing. Here, we demonstrate HiC
can phase structural variants into phased scaffolds
of SNVs. Since HiC data is noisy, and SV calling is
challenging, we applied a range of supervised clas-
sification techniques, including Support Vector Ma-
chines and Random Forest, to phase deletions. Our
approach was demonstrated on deletion calls and
phasings on the NA12878 human genome. We used
three NA12878 chromosomes and simulated chro-
mosomes to train model parameters. The remaining
NA12878 chromosomes withheld from training were
used to evaluate phasing accuracy. Random For-
est had the highest accuracy and correctly phased
86% of the deletions with allele-specific read evi-
dence. Allele-specific read evidence was found for
76% of the deletions. HiC provides significant read
evidence for accurately phasing 33% of the deletions.
Also, eight of eight top ranked deletions phased
by only HiC were validated using long range poly-
merase chain reaction and Sanger. Thus, deletions
from a single individual can be accurately phased
using a combination of shotgun and proximity liga-
tion sequencing. InPhaDel software is available at:
http://l337x911.github.io/inphadel/.

INTRODUCTION

Reference genomes are often represented as a haploid set of
chromosomes, but humans and many other organisms are
diploid. The two homologous chromosomes from a donor
may differ from the haploid reference in the form of single
nucleotide variations (SNVs), or structural variants (SVs),
such as deletions. The variant sites are genotyped as het-
erozygous (only one chromosome differs from the refer-
ence), or homozygous (both chromosomes differ from the
reference). Whole genome shotgun sequencing (WGS) ac-
curately genotypes variants, mainly SNVs (1), but also SVs
(2).

However, these technologies do not immediately extend
to phasing, defined by the linking of alleles at heterozygous
sites to the same chromosome. Unlinked alleles can indicate
numerous possible genome interpretations, as shown in Fig-
ure 1A. Phased data is important for numerous biomedical
applications. An important application of phasing is finding
the causal variants for rare recessive Mendelian disorders.
Phasing helps identify compound heterozygotes–mutant al-
leles that appear on different chromosomes (in trans) to
knock out both copies of the same gene. In landmark stud-
ies, Ng et al. (3) and Roach et al. (4) found the cause of
Miller Syndrome to be compound heterozygous single nu-
cleotide mutations inactivating the DHODH gene. In the
families analyzed, each parent was heterozygous for a muta-
tion in DHODH and no unaffected siblings had compound
heterozygous mutations. Additionally, two of the children
in the quartet sequenced had compound heterozygous mu-
tations in DNAH5, which explained why these children also
presented with primary ciliary dyskinesia (4).

Compound heterozygous mutations are not limited to
SNVs. Microarray analysis of large cohorts of schizophre-
nia and autism spectrum disorder (ASD) individuals have
shown 17–21 megabase (Mb) sized de novo copy number
variation (CNVs) to be a strong risk factor (5). In par-
ticular, loss of 22q11.2 has been shown to increase risk
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Figure 1. Phasing is necessary to identify heterozygous mutations are in cis or trans. (A) There are eight possible diploid genome interpretations given
three genotypes, two heterozygous SNVs and one heterozygous deletion. (B) WGS and HiC reads mapping to intervals of length d around a putative
deleted segment [a, b] are used as features to phase deletions or determine homozygosity. Examples of paired end (PE) reads fitting WGS, WGS pA and
HiC HindIII cutsite features are shown, and an exhaustive list of features is given in Supplementary Data 5. A feature consists of the number of PE reads
fitting the feature type, which is then normalized by interval length and million reads sequenced (RPKM).

of schizophrenia (6). The hemizygosity due to deletion,
combined with other rare mutations within the locus, pro-
duces diverse phenotypes, including velo-cardio-facial syn-
drome and DiGeorge syndrome (6). Similarly, compound
heterozygous CNV and rare variants have been implicated
in partial loss of function in a number of genes suspected to
explain ASD (5).

Hemizygosity can also be attributed to small deletions.
For example, bi-allelic mutations in ABCC6, a 16.5 kilo-
base (kb) deletion of exons 23–29 compounded with more
common mutations R1141X, R1164X and R1138W, are
known to cause psuedoxanthoma elasticum (7). As the sin-
gle nucleotide mutations overlap the deleted exons and ad-
ditively depress ABCC6, the gene was easily implicated in
the disease. The compound heterozygous mutations dis-
covered in disease-related genes typically affect biophysi-
cal properties of both gene copies by altering protein func-
tion or dosage. In addition to compound heterozygosity,
cis interactions, including long-range interactions, such as
enhancer–promoter interactions can also affect expression
of the same genes. In the absence of phasing, these are diffi-
cult to identify among the large numbers of mutations ob-
served in any genomic study. Inferring whether the com-
pound mutations act in cis or trans could greatly narrow
down the list of candidate variations, and is only possible
with long range phasing.

Variants in an individual can be phased to the two
parental chromosomes, by assuming consistent Mendelian
transmission and genotyping variants in the individual’s
parents (8). Similarly, in related individuals, identity-by-
descent can be exploited for phasing (9). Furthermore,
experimental and computational methods have been de-
veloped to phase variants to larger haplotypes in both
related and unrelated individuals (10,11). The computa-
tional methods have been effective for estimating haplo-

type phase, when considering sets of common haplotypes
(12–14). While the computational developments have fo-
cused on phasing single nucleotide polymorphisms (SNPs),
the methods are amenable to phasing deletions (15). Also,
many common deletions have been shown to have perfect
or high linkage disequilibrium with nearby SNPs (16,17).
These population-based phasing methods typically cannot
span recombination hot-spots, and do not work for rare
variants.

Haplotype assembly methods linking single nucleotide
variants (SNV) that co-occur on WGS reads have been
used to phase rare variants (18,19). While haplotype as-
sembly methods can link many variants, they are unable
to achieve chromosome wide haplotypes. Sequenced frag-
ments for short-read technologies, such as Illumina are typ-
ically less than 1 kb, and distant variants cannot be linked.
Alternate WGS sample preparation steps such as generating
mate pair libraries (fragment sizes of 2–40 kb) (20) or iso-
lating single clones (21–23), increase haplotype lengths, but
are labor intensive and lower-throughput. Advanced WGS
approaches, such as Complete Genomics’s Long Fragment
Read (LFR) and Illumina’s Moleculo technologies, are ca-
pable of sequencing longer fragments and have been shown
to generate haplotypes with median lengths of several hun-
dred kilobases (24). These recent developments have the po-
tential for producing chromosome wide haplotypes, but fur-
ther investigation is needed.

Another sequencing approach, proximity ligation se-
quencing (HiC) involves a modification to sample prepa-
ration, and has been shown to successfully capture distant
genome interactions. The HiC method has found many ap-
plications, beyond the original goal of determining 3D spa-
tial organization of nuclear DNA (25). This includes finding
long range interactions of regulatory elements with gene ex-
pression (26), and efficiently scaffolding large genomes (27).
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In brief, the HiC method captures spatially proximal DNA
fragments where paired ends (PEs) reads mapping to dis-
tant chromosomal locations link spatially proximal regions
of chromosomes. A majority of the ends located <2 Mb
apart are drawn from the same chromosome (cis) (28). As
these PEs often span variants, HiC can link distant variants
and generate longer haplotypes. Selvaraj et al. (29) coupled
HiC to the haplotype assembly method HapCUT (18) to
construct chromosome wide haplotypes for both mouse and
human genomes.

In this paper, we develop a technique, Integrative Phasing
of Deletions (INPHADEL), to phase deletions to SNVs using
only WGS and HiC sequencing from a single human donor.
Phasing SNVs and deletions is similar to the haplotype as-
sembly problem. For example in Figure 1A, the donor has
a heterozygous deletion spanning nucleotide G, and a dis-
tant heterozygous site A/C. A PE read spanning G and A
will place the deletion in the haplotype containing allele C,
which would support the Phase 1 in Figure 1A. We directly
extend the method of Selvaraj et al. (29), by using it to phase
SNVs into parental haplotypes A and B. INPHADEL then
uses read evidence to phase previously called deletions to a
parental haplotype A or B.

MATERIALS AND METHODS

Overview

INPHADEL takes as input, a list of heterozygous SNVs
(genome positions), sequence of parent A alleles (pA), par-
ent B alleles (pB) and deletion calls (represented by break-
points (a, b)). INPHADEL reports a classification for each
deletion as pA, pB, homozygous, or a fourth class denoted
inconsistent, and explained below. Our method relies on ac-
curate deletion calls, for which a number of methods have
been developed (2,30–33). Since these calls are imperfect,
if INPHADEL finds read evidence inconsistent with a het-
erozygous or homozygous deletion call, we place the dele-
tion into a separate, inconsistent class. Finally, some dele-
tions have zero reads supporting either allele––missing read
evidence. These deletions were excluded from analysis by IN-
PHADEL, since correct predictions in these cases would only
arise by chance.

We used a combination of HiC and WGS read data to
phase deletions. Because of the complexity of both data
types and erroneous calls, applying simple phasing rules
would result in low accuracy. For reliable phasing, we need
to integrate different signals, including counts of discordant
WGS reads and read depth changes in HiC and WGS cover-
age on one or both parental chromosomes, all of which can
suggest or refute a deletion belongs to a particular class. A
direct approach to integrate the signals is to frame the prob-
lem as a classification task and test a range of supervised
learning techniques (see Supplementary Data 1 for diagram
of class prediction). We demonstrated deletion phasing us-
ing K-Nearest Neighbors (NN), Support Vector Machines
(INPHADEL-SVM) and Random Forest (INPHADEL-RF)
methods. The learning methods were trained on deletions
from NA12878 chromosomes 2, 3 and 4, and a simulated
dataset. We then demonstrated performance using deletions
on NA12878 chromosomes that were not used for training

(see Supplementary Data 1 for diagram of training). Inde-
pendent from the learning methods, the true deletion phas-
ings for the NA12878 European individual were previously
assigned using trio analysis (8).

SNV haplotypes in NA12878

An input to INPHADEL is SNV haplotypes. We used SNV
haplotypes from NA12878, which were previously phased
by (29) in human assembly hg18. For use in our analysis, we
converted the positions to hg19 using liftOver (34). While
the haplotypes on each chromosome could be used to phase
deletions in NA12878, only haplotypes from chromosomes
2, 3 and 4 were used in the training procedure for learning
models.

Simulating WGS and HiC data for a diploid genome

As HiC datasets with known phasing are not readily avail-
able, we used simulated data to improve training of IN-
PHADEL. To generate simulated data, we started with hu-
man assembly hg19, and constructed a diploid assembly
using the NA12878 SNV haplotypes. We used wgsim (35)
to simulate WGS reads from the diploid sequences. Addi-
tionally, simulated HiC reads were generated by a custom
HiC read shuffler (see Supplementary Data 2). HiC exper-
iments create a highly distinct pattern of PE reads com-
pared to WGS (28). In WGS (Illumina format), PE reads
are expected to map concordantly with the lower position
end mapping to the + strand, and the higher position end
mapping to the − strand. In contrast, all four PE read com-
binations ( +/−, −/+, −/−, +/+ ) are concordant in HiC
experiments. Typically, +/− and −/+ read orientations are
dominant when the ends map to <25 kb, which likely rep-
resent intrachromosomal interactions (28). Our HiC simu-
lator was designed to produce a similar distribution of PE
orientations at each distance as the reads generated from a
real HiC experiment, and the pattern was confirmed empir-
ically (Figure 2 and Supplementary Data 3). In addition,
the simulator accounts for a majority of the PE reads hav-
ing ends mapping within HindIII cut sites. The cut site bias
results in non-uniform read coverage at >25 kb distances in
Figure 2. For our HiC simulator, we chose not to simulate
distant chromosomal spatial interactions as the effects are
only observed at distances >25 kb. At a distance >25 kb on
chromosome 20 there were only 2 million reads. This aver-
ages to a low 10.3 reads per 100 kb square bin and would
not contribute greatly to deletion phasing. Most of the reads
lie at distances <40 kb, and data simulated from the HiC
shuffler and real HiC experiments appear identical at these
distances (see right panel of Figure 2).

Simulating reads from reference chromosomes with deletions.
Simulated data was only used to train models. We simulated
six pairs of haploid chromosomes 2, 3 and 4, each contain-
ing at most 50 deletions. For each chromosome pair we ran-
domly assigned deletions, (a1, b1), (a2, b2), . . . , (a50, b50),
to classes pA, pB, homozygous or inconsistent. The loca-
tion ai of the ith deletion was randomly selected from non-
centromere and non-telomere regions and the size, bi − ai,
was randomly drawn according to the deletion length distri-
bution from Mills et al. (2). In total, our simulated dataset
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Figure 2. Simulated HiC reads have the same distribution of counts as the real HiC dataset. The visualization shows counts across 62 Mb length chromo-
some 20 with 100 by 100 kb bins (left panels). The x-axis marks the binned positions of the left-most mapped read ends and the y-axis marks the binned
position of the right-most mapped read ends. Top left shows real HiC data from chromosome 20 (29). Bottom left shows similar read counts, but was
generated by shuffling the HiC reads mapping to chromosome 20. Within 40 kb windows, the simulation and real data have indistinguishable read count
distributions (right panels). The simulation preserves read count distributions of each orientation type (28). The close-up is a read count average over 100
windows with 200 by 200 bp binning. In the right panels, above the diagonal are read counts for PE orientations, +/− (blue), −/+ (yellow) and +/+, −/−
(green). Below the diagonal, is the total read count (red). The top right shows real HiC data from chromosome 20 (29). The bottom right shows the same
pattern, but was generated by shuffling HiC reads mapping to chromosome 20.

comprised of 256 homozygous, 263 pA, 263 pB deletions.
The simulated dataset also included 268 inconsistent dele-
tion examples, for a total of 1050 simulated deletion phas-
ings.

Depending on the deletion class, the corresponding hap-
loid chromosome pair may have deletions on both copies
(homozygous), one copy (heterozygous pA or pB), or no
copies (inconsistent). For each haploid chromosome pair,
we simulated 100 bp WGS mapped reads to 81X depth of
coverage using wgsim (35) at default settings 500 bp frag-
ment size and 50 standard deviation, and HiC mapped reads
to 41X depth of coverage using our HiC read shuffler (see
Supplementary Data 2 and Figure 2). The total simulated
read counts mapped for the chromosome pairs is listed
in Supplementary Data 3. As the simulated chromosome
matched the reference except at deletions, each position of
the simulated chromosome aligned to a unique position on
the reference chromosome. Thus, the reference starting po-

sition for each simulated read was known. Simulated reads
with a starting reference position p where ai − 75 ≤ P <
ai for some deletion i would form split read mappings and
were considered unmapped.

Deletion calls and phasings in NA12878 genome

We analyzed INPHADEL on the well-sequenced European
individual, NA12878, which has been previously studied
by both HapMap Consortium and 1000 Genomes Project
(36). We identified a high confidence set of 421 deletion
variants of size >1 kb from a combination of previously
made SV calls (2), a split-read alignment method (Bansal et
al., unpublished data), and visual inspection of read align-
ments in Integrative Genome Viewer (IGV) (37) (see Sup-
plementary additional files). The set was identified by re-
moving deletion calls with no supporting evidence in the
form of discordantly mapping read pairs or reduced read
depth. Additionally, the visual inspection was used to ver-
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ify a highly accurate set of deletion calls for training clas-
sifiers. Since the parents of NA12878 were also sequenced,
the phase of each heterozygous NA12878 deletion was in-
ferred (8) from transmittance of parental deletion geno-
types (see Supplementary Data 4). For example, a heterozy-
gous deletion in NA12878 that is only observed in one par-
ent is phased to the same chromosomal haplotype shared
between NA12878 and the parent. Furthermore, the phas-
ings were confirmed by manual inspection using Savant
Genome Browser (38). Thus, we started with a final high-
confidence set of 421 deletion variants.

For our method, we used 2.57 billion PE 101 bp reads
from WGS (2,36) and 1.15 billion PE 100 bp reads from
HiC (29) generated from NA12878. After mapping (29),
the WGS and HiC data amount to 81 and 41× coverage of
the genome, respectively. As mentioned earlier, scaffolded
phased SNPs from NA12878 were obtained from Selvaraj
et al. (29).

Training versus test data

Simulated data was only used for training models. Out of
the 1050 simulated deletions generated, 171 were missing
allele specific read evidence and were excluded from train-
ing.

From the NA12878 sample, we used 99 deletions anno-
tated on the chromosomes 2, 3 and 4 for training. These
deletions comprised of 25 homozygous, 60 heterozygous
and 14 inconsistent. The inconsistent deletions were se-
lected from the pool of Yoruba deletion polymorphisms
analyzed by the 1000 Genomes Project (2) where the copy
number for each European individual in the NA12878 trio
was 2. Among these 99 deletions, there were 22 deletions
missing reads supporting either pA or pB, and were ex-
cluded from training.

In all, our training dataset contained simulated and
NA12878 deletions from chromosomes 2, 3 and 4, which
amounted to 261 heterozygous pA, 273 heterozygous pB,
159 homozygous and 263 inconsistent examples. The re-
maining 336 deletions on NA12878 non-training chromo-
somes (test chromosomes) were used for a final independent
evaluation of the learning methods.

INPHADEL deletion classification

Our approach relied on supervised learning of classes C = [
heterozygous pA, heterozygous pB, homozygous, inconsis-
tent ] to predict deletion phasings. As with all supervised
learning procedures, the key first step is to represent each of
the n deletions with ‘feature vectors’ f1, f2, . . . , fn and cor-
responding class labels l1, l2, . . . , ln where li ∈ C. Once a
model is learned, the model can then predict the class label
for a new object represented by f. For our purpose, the fea-
ture vector comprises of read counts from WGS and HiC
datasets that distinguish deletions calls belonging to classes
in C (see Figure 1B). Deletions with no reads specific to pA
or pB were excluded from training and testing.

INPHADEL defining feature vectors

When PE reads from whole genome sequencing are sampled
from a donor genome and mapped to a reference, they can

reveal clues about heterozygous, homozygous and inconsis-
tent deletions (32,33,39,40). We define PE read mapping as
concordant if the distance between PEs is consistent with
insert size distribution, and discordant otherwise. Likewise,
the PE reads mapping with +/− orientation are denoted
as normally oriented, while PE reads mapping with +/+ or
−/− orientation are denoted as identically oriented.

Consider a heterozygous deletion of an interval (a, b). We
expect half of the expected number of concordant mapping
reads within the deleted segment (a, b) (41). Correspond-
ingly, a homozygous deletion of an interval (a, b), would
have zero concordant mapping reads within then deleted
segment. Therefore, we count the number of concordant
and normally oriented reads mapping between a and b as a
feature (see Figure 1B for illustration of some features and
Supplementary Data 5 for a complete list). Second, for some
window of size d (d = 1000 bp), consider normally oriented
but discordant PE reads with the ends mapping to the in-
tervals [a − d, a) and [b, b + d), respectively. These reads
are indicative of deletions. Similarly normally oriented PE
reads with ends mapping in the intervals [a − d, a), [a, a +
d), or the intervals [b − d, b), [b, b + d) also provide clues to
the deletion phasing. We use the counts of these four sets of
PE reads as four features supporting a deletion call.

Next, we filter for WGS reads supporting the two haplo-
types. Reads where one of the PEs maps to an allele in pA
are filtered into a WGS pA subset, and reads overlapping
pB go into a WGS pB subset. For each of the two subsets,
we create four features reporting the following: (i) counts of
normally oriented concordant reads mapping to the inter-
val [a, b); (ii) counts of normally oriented, discordant PE
reads with ends falling in segments [a − d, a) and [b, b + d)
respectively; (iii) counts of normally oriented PE reads with
ends in [a − d, a) and [a, a + d); and, (d) counts of normally
oriented PE reads with ends in [b − d, b) and [b, b + d), for
a total of eight features supporting phasing.

Similar to WGS, we filter for HiC reads overlapping
phased variants and assign the filtered HiC reads into pA
and pB subsets. For HiC, we count the number of identi-
cally oriented PE reads with PEs mapping in [a, b) as a sepa-
rate feature from the number of opposingly (+/− and −/+)
oriented PE reads. Correspondingly, identically and oppos-
ingly oriented PE reads with ends mapping to [a − d, a) and
[a, a + d) are counted as two separate features, and identi-
cally and opposingly oriented PE reads with ends mapping
to [b − d, b) and [b, b + d) provide additional two features.
Unlike WGS reads, HiC reads mapping in [a − d, a) and [b, b
+ d) are not necessarily discordant and thus not informative
of which allele a deletion appears. These HiC reads create
six additional features for each chromosome for a total of
12 features.

Recall that a majority of HiC reads, but not all, map
close to HindIII cut sites. To incorporate this additional
signal, consider closest cut sites s and t, where s < a <
t < b. The number of identically oriented HiC pA subset
reads mapping [s − d

2 , s + d
2 ) and [t − d

2 , t + d
2 ) is counted

as a single feature. Likewise, we add a feature for HindIII
supported reads around breakpoint b. Another two features
come from reads in opposite orientation, and finally, a simi-
lar set of 4 features is obtained from HindIII supported HiC
pB reads, for a total of eight features. In total, there are
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20 allele-specific features derived from HiC data. All read
counts are normalized to reads per kilobase per million to-
tal reads mapped to each chromosome (RPKM).

Training classifiers

We trained K Nearest Neighbors, SVM and Random For-
est learning techniques on simulated and NA12878 deletion
phasings restricted to chromosomes 2, 3 and 4. Nested cross
validation was used to select the best performing model,
while minimizing generalization error and parameter opti-
mization bias (42) (see Supplementary Data 1 for diagram
of parameter optimization procedure). The nested cross val-
idation consisted of an inner loop, which chose the best pa-
rameters for learning a model, and an outer loop, which in-
dependently assessed the performance of the model–model
selection. In the inner loop, the deletions are divided into
five approximately equal-sized subsets where one subset is
used to test models with different parameters built on the
remaining four deletion subsets. The parameters supplying
the greatest accuracy across the five sets is then used in the
outer loop. In the outer loop, all the training deletions are
randomly partitioned into five approximately equally sized
subsets. Each partition was used to test the performance of
a parameterized model selected by an inner cross validation
on the remaining four partitions. This procedure results in
five models, with potentially different parameters. For SVM
and Nearest Neighbors, the parameters did not differ and
accuracies were similar. Random Forest had differing pa-
rameters with similar accuracies (maximal difference 5%),
and the most general parameters were selected as the best.
Lastly, a final model was built using all the training chro-
mosome deletions with the best parameter set (see Supple-
mentary Data 1 for diagram of training).

We repeated the above training procedure for each learn-
ing technique. For K Nearest Neighbors, the brute-force al-
gorithm was used and parameters K = 2, 4, 8, 16, 32 were
tested in the inner cross validation. For SVM, a linear ker-
nel SVM (43) is trained for each pair of classes, constituting
a total of six models. The final prediction for a deletion is
the class that received the most votes out of the six SVM
models (44). For the linear kernel SVM, regularization co-
efficients C = 1, 10, 100 were tested in the inner cross vali-
dation. For Random Forest (45), forests were trained with
number of tree estimators 10, 20, 50 and100, and tree max
depth of 2, 5, 10 and 20. The training procedure selects the
best performing parameters using the inner cross validation.
The scikit-learn python package (46) was used for K Nearest
Neighbors, SVM and Random Forest training, prediction
and measuring accuracy. For Random Forest (45), normal-
ized mean decrease impurity is used to compute the relative
feature importance from the ensemble of decision trees as
implemented in the scikit-learn package (46).

Performance

Each parameterized model’s accuracy is measured by the
fraction of correctly classified predictions. For each learn-
ing technique, the 5-fold nested cross validation procedure
yielded five models with accuracies on five test sets from the
training chromosomes, which estimated the training accu-

racy for the technique. In addition, a final model is gener-
ated using all the deletions on training chromosomes, and
assessed on deletions from test chromosomes. Thus, we have
two measures for performance, (i) average test accuracy es-
timated from our training procedure, and (ii) test accuracy
from test chromosomes that were withheld from any train-
ing. In addition to a class prediction, the models also re-
ported the log probability that the deletion belongs to each
class. A good classifier should have high accuracy, and as-
sign lower log probability to misclassified predictions.

RESULTS

Phasing accuracy from training procedure and simulations

SNV phasing produces two set of alleles pA and pB, one
for each homologous chromosome. Thus, phasing of dele-
tion calls corresponds to classifying each deletion as pA, pB,
homozygous (on both chromosomes) or inconsistent (read
mappings do not support a deletion call).

We first attempted classification with training restricted
to high confidence deletions on chromosomes 2, 3 and 4
of the NA12878 genome. Our training procedure on these
deletions, which used nested cross validation (see ‘Materi-
als and Methods’ section and Supplementary Data 1), re-
ported five best parameterized models with five test accu-
racies for each classification method: Nearest Neighbors,
Support Vector Machines (INPHADEL-SVM) and Random
Forest (INPHADEL-RF). When only the NA12878-specific
deletions were used for training, each method resulted in
cross validation models with different optimal parameters,
and highly variable test accuracies (see Figure 3A). The low
and variable test accuracies indicated the number of dele-
tions were insufficient for appropriately training models,
and assessing the performance of these classification meth-
ods. While using the first 10 chromosomes for training re-
sulted in a better training model selection, there remained
few test chromosomes to confidently estimate independent
accuracy.

To boost the number of deletions used for nested cross
validation training without sacrificing NA12878 deletions
used for testing, we simulated deletions on the same three
chromosomes, and simulated corresponding HiC and WGS
data. On the combined set of 956 training deletions and us-
ing all 32 features, INPHADEL-SVM and INPHADEL-RF
averaged phasing test accuracies of 92.8 and 95.8% respec-
tively (see Figure 3B). These methods outperformed the
Nearest Neighbors method, which had an average accuracy
of 84.0%.

Each learning method involves selecting parameters for
training models. The nested cross validation used in our
training procedure, independently optimizes for selecting
the best parameters, and evaluates models trained with
the best parameters (see ‘Materials and Methods’ section
and Supplementary Data 1). In the learning procedure, five
models with optimal parameters are trained on distinct sub-
sets of the training deletions and evaluated on deletions
from training chromosomes that were not used for training
the specific model. Since the parameters were optimized on
a distinct subset of training deletions, it is possible for the
models to have different parameters for the same learning
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Figure 3. Training on simulated and NA12878 deletions results in accurate and consistent classifiers. Panels (A–C) show accuracies estimated from training
models for nearest neighbors, INPHADEL-SVM and INPHADEL-RF. In the training procedure, accuracy is measured as the fraction of correct predictions
made on a test during the outer loop of nested cross validation. The error bars show standard deviation between the outer five tests. Panel A shows
accuracies for models trained using only deletions from NA12878 training chromosomes. These models had highly variable and low accuracy. Panel (B)
shows models trained using deletions from NA12878 chromosomes 2, 3 and 4, and simulated chromosomes resulted in high accuracy with lower standard
deviation than panel (A). Panel (C) shows models trained using deletions from NA12878 training chromosomes and simulated chromosomes, when using
only simple sum features (see Supplementary Data 6). Panels (A and B) used 32 distinct features for training, while simple sum features in panel (C) only
used 6 to achieve a similar level of accuracy. Panel (D) compares accuracy of INPHADEL-SVM and INPHADEL-RF models trained on WGS allele-specific
features, HiC allele specific features, and all features, when accuracy is separated by class. Deletions are classified as pA, pB, homozygous (hom.), excluded
(excl.), or inconsistent. Note, deletions missing reads supporting either allele are excluded from analysis. The width of each column is proportional to
the number of examples in each class. While the overall test accuracies are similar, there are fewer deletions with WGS allele-specific support than HiC
allele-specific support.

technique. For example, the Nearest Neighbor method pre-
dicts phasings using a maximum vote for k nearest neigh-
bors found in the training dataset. In our training proce-
dure, we optimized across 2, 4, 8, 16 and 32 neighbors. For
training on deletion phasings from three NA12878 chro-
mosomes and simulations, one model used four neighbors,
two models used two neighbors and two models used eight
neighbors. Since the accuracy of the models was similar, we
selected the largest number of neighbors for final training
across all training deletions. For parameter selection of lin-
ear Support Vector Machines, we optimized across the regu-
larization coefficients 1, 10 and 100. Larger coefficients cor-
respond to defining larger margins of separation between
deletion phasings, by permitting for more incorrect deletion
phasings in training. In our training procedure, a coefficient
of 100 was found to be optimal for all five models, and was
used for the final training. Lastly, Random Forest method
uses training deletions to create a forest of decision trees,

where the maximum vote for a phasing across decision trees
is the final predicted phasing. For Random Forest, we op-
timized across the number of decision trees, 10, 20, 50 and
100, and the maximum depth of each decision tree, 2, 5, 10
and 20 (16 parameter sets total). Only two of the five mod-
els had the same parameters; maximum tree depth of 10,
and number of decision trees 50. The other optimized pa-
rameters ranged between maximum depth of 10–20 and 20–
100 decision trees. Although, the parameters were different,
the evaluated accuracy of on training deletions were within
1.1% of the mean accuracy across the five models. Thus, we
used a maximum tree depth of 10, and 50 decision trees for
the final training, however any of these other optimal pa-
rameters could be used to achieve similar results.

In the above classification, each deletion was represented
by 32 features drawn from the HiC and WGS data. Alterna-
tively, these features can be summarized into six read count
features distinguishing the possible phasings (see Supple-
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mentary Data 6). We found each method yields similar per-
formance when training used the summarized six features.
Nearest Neighbors, INPHADEL-SVM and INPHADEL-RF
had average test accuracies of 89.0, 93.9 and 96.3%, respec-
tively (see Figure 3C). While the summary six features re-
sulted in good test accuracy, analyzing other feature subsets
informed the importance of specific data sources.

For example, WGS is insufficient for phasing distant sin-
gle nucleotide variants (29), and we expected allele-specific
features from WGS reads to be insufficient for accurate
deletion phasing. To test the power of HiC, we repeated
the training procedure using two feature subsets: WGS
unfiltered plus WGS pA and pB filtered data, and unfil-
tered WGS plus HiC pA and pB filtered data. Respec-
tively, the subsets had 12 and 24 features (see Supplemen-
tary Data 5). INPHADEL-SVM and INPHADEL-RF trained
on allele-specific feature subsets had high phasing accuracy
(see Figure 3D). INPHADEL-RF trained on only WGS data
had an accuracy of 97.3 ± 1.1%, which was higher than
INPHADEL-SVM’s 94.1 ± 1.9% accuracy on the same fea-
ture subset. This corroborated INPHADEL-RF was a bet-
ter method for phasing deletions. The most drastic differ-
ence between WGS and HiC allele-specific feature subsets
is the number of deletions with missing allele-specific reads.
The HiC feature subset had 43.3% more deletions with allele
supporting reads than the WGS feature subset. While HiC
data covers more deletions, the phasing accuracy is worse.
INPHADEL-RF trained on only WGS data had 4.7% higher
accuracy than INPHADEL-RF trained on WGS unfiltered
plus HiC pA and pB filtered data. Of all the correct predic-
tions for simulated deletions between the INPHADEL-RF
HiC and WGS feature subset models, 32.1% were phased
only by HiC compared to 3.2% by WGS alone (see Figure
4).

Finally, our method depends on accurate SNP phasing
and SV calls. We tested the tolerance of INPHADEL-RF to
increasing errors in deletion breakpoints a, b. Starting with
the true pA and pB deletion call set, we modified a in decre-
ments of 100 bp and b in increments of 100 bp for each dele-
tion to create erroneous call sets. To compare calls made
from different deletion error sets, we compute accuracy as
the fraction of correctly phased deletions over all deletions,
including deletions missing read evidence. INPHADEL-RF
retained greater than 73% accuracy when the errors for a
and b were <200 bp (see Supplementary Data 7). Regard-
less of deletion size, the INPHADEL-RF had the largest loss
of accuracy when the error in each end-point exceeded 500
bp. Additionally, there is higher tolerance of breakpoint er-
rors for larger deletions. For example, deletions with 400 bp
error and size between 5 and 10 kb are called with 67% ac-
curacy, whereas deletions with size greater than 10 kb are
called with a 92% accuracy.

Evaluation of models on NA12878 chromosomes withheld
from training

In our training procedure, we restricted training classifiers
to only NA12878 high-confidence deletions from chromo-
somes 2, 3 and 4 that were annotated by Bansal et al. (un-
published data), and Mills et al. (2) on the 1000 Genomes
Project data. The remaining 336 high-confidence deletions

on other chromosomes were intentionally left out from our
training procedure to independently evaluate the accuracy
of the final trained models. Of these test chromosomes dele-
tions, only 256 had allele-specific evidence, and were used to
evaluate the methods.

The best performing method on these test chromosomes
was INPHADEL-RF (see Figure 5), which achieved 85.9 ±
4.3% accuracy (95% binomial confidence interval estimated
using normal approximation). In comparison, the accuracy
was 70.7 ± 5.6% and 31.6 ± 5.7% for INPHADEL-SVM
and Nearest Neighbors, respectively. In comparison to the
simpler Nearest Neighbors classifier, the more complex au-
tomated feature learning used by INPHADEL-SVM and
INPHADEL-RF was necessary for accurate deletion phas-
ing.

INPHADEL-RF was trained on a mixture of deletions
from three NA12878 chromosomes and simulated data.
Random Forest when trained using only deletions from
three NA12878 chromosomes had an accuracy of 79.3 ±
5.0%. Similarly, Random Forest trained using only sim-
ulated deletions had an accuracy of 77.7 ± 4.6% on
NA12878 chromosomes. Even though the performance is
worse than INPHADEL-RF, the result is surprising since
Nearest Neighbors and SVM had much lower accuracies
when trained exclusively on simulated data (see Supplemen-
tary Data 8).

In general, the actual accuracy, which is measured by
evaluation on independent deletions from NA12878 test
chromosomes, is lower than the accuracy estimated from
the training procedure. For example, INPHADEL-RF had
an accuracy of 85.9 ± 4.3% when evaluated on NA12878
test chromosomes, and 95.8 ± 1.1% when evaluated by the
training procedure (see Figure 3). Random Forest trained
using only deletions from 3 NA12878 chromosomes had
an estimated 89.8% accuracy from the training procedure,
whereas Random Forest trained on exclusively simulated
instances had an estimated 97.7% accuracy. As apparent
from the accuracy estimated from training, estimation of
accuracy in the training procedure was 10% higher than
evaluation on test chromosomes, and simulated instances
were easily phased. Likewise, INPHADEL-RF training in-
cluded numerous simulated deletions, which were likely eas-
ier to phase than deletions on NA12878 chromosomes and
boosted training procedure accuracy.

We also performed Random Forest training using dele-
tions from the first 10 NA12878 chromosomes, and found
similar training accuracy to INPHADEL-RF (see Figure
3A). Since 10 NA12878 chromosomes were used for train-
ing, only 109 deletions remained on NA12878 chromo-
somes used for testing. Random Forest trained on 10 chro-
mosomes had an accuracy of 88.1 ± 6.1% on the training-
independent NA12878 test chromosomes (see Supplemen-
tary Data 9). While the accuracy is greater than INPHADEL-
RF, the 95% confidence interval is much larger due to the
smaller set of test deletions. Thus, the simulated deletions
used in training of INPHADEL-RF improved the confidence
of an accurate and reliable Random Forest model on phas-
ing an independent test set of deletions.

Additionally, for each deletion INPHADEL-RF assigns a
probability estimate for each possible phasing. As shown
in Figure 5, INPHADEL-RF assigns higher probabilities to
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Figure 4. HiC contributed to correctly predicting 33% of the deletion classes in the simulated dataset. (A) The contribution of HiC reads remained con-
sistent between deletions in the NA12878 genome and the simulated deletions. WGS reads corrected HiC incorrect phasings for deletions in the NA12878
genome. The plot shows the breakdown of the correct phasings made by only INPHADEL-RF HiC feature subset model (red), WGS feature subset model
(blue) or both (magenta). (B) For each deletion, four primers (black arrows) were designed to carry out three PCRs. One reaction verifies the presence of
a deletion with the expected breakpoints (red box on reference) by amplifying the reference sequence marked in orange. The second PCR encompasses
the deletion and corresponding variant (marked in red). A third PCR encompasses the non-deleted sequence and variant (marked in blue). (C) Sanger se-
quencing of amplicons generated from non-deleted sequence corroborated the predicted phase. Chromatograms for the top eight ranked deletions classified
using only HiC data are shown.

deletions that were correctly phased, and lower probabilities
to incorrectly phased deletions.

Evaluating INPHADEL-RF on independent HiC data

To address possible bias when using a single source of HiC
data, we re-evaluated phasing our high-confidence dele-
tion calls on test chromosomes using INPHADEL-RF on
a deeper coverage HiC dataset generated by Rao et al.
(47). Even though there were 84.3% more reads in the Rao
et al. (47) HiC data compared to (29) (2.12 billion com-
pared to 1.15 billion in Selvaraj), only 7.2% more dele-
tions had allele-specific read evidence. Also, INPHADEL-
RF using the Rao et al. data had a lower 79.0 ± 4.8% ac-
curacy for phasing deletions on test chromosomes. Specif-
ically, INPHADEL-RF had difficulty in accurately predict-
ing homozygous deletions (see Table 1). The phasing accu-
racy on only heterozygous deletions was 84.4 ± 4.8%, which
is similar to INPHADEL-RF on the lower coverage HiC
dataset. Additionally, a similar number of correct phas-
ings were called incorrectly when using the other HiC data.
There were 15 deletions that were correctly phased using the
low-coverage HiC data that were incorrectly phased by the
high-coverage HiC data, with eight correct phasings miss-
ing evidence in the high-coverage HiC data. Similarly, there
were 11 deletions correctly phased using the high-coverage
HiC data that were incorrectly phased by the low coverage
HiC data. Also, nine correct phasings in the high-coverage

HiC data were not covered by the low-coverage HiC data.
In all, the deeper HiC coverage did not correctly phase more
deletions, and INPHADEL-RF retains reasonable accuracy
when phasing HiC data generated by different laboratories.

Evaluation of INPHADEL-RF on deletion phasings by other
technologies

Recently, Pendleton et al. (48) utilized Illumina WGS,
single-molecule sequencing and single-molecule genome
maps to reconstruct the NA12878’s diploid genome. The re-
construction included identifying 1323 deletions with size
>1 kb. In addition, their reconstruction used trio analysis
to infer the homozygous, maternal or paternal phasing for
336 deletions (see Supplementary additional file). While 407
of their deletions overlapped with our 421 high-confidence
deletions, only 194 deletions were annotated with parent
transmittance. Assuming the scaffold pair (pA, pB) is as-
signed either (maternal, paternal) or (paternal, maternal)
for each chromosome, 93% of the shared deletions had the
same phasing (see Table 2). The few deletions that differed
in phasings are likely due to mismatching of parental trans-
mittance to chromosome scaffolds. Overall, the high con-
cordance between the two deletion phasing sets derived us-
ing orthogonal sequencing technologies indicates the dele-
tion calls and phasings used for training and testing of
INPHADEL-RF are highly accurate.
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Figure 5. INPHADEL-RF accurately phased deletions on NA12878 test chromosomes. The top panel shows INPHADEL-RF accuracy for each phasing type.
The bottom panel shows INPHADEL-RF has weaker confidence in deletions that were incorrectly phased. The blue histogram shows the log probabilities
INPHADEL-RF assigned to correctly predicted phasings, while the red histogram shows the log probabilities assigned to incorrectly predicted phasings.

Next, we used INPHADEL-RF to predict phasings for the
Pendleton et al. (48) deletion calls, in conjunction with our
previously compiled SNV haplotypes, WGS and HiC read
data. For these new deletion calls and assigned phasings,
INPHADEL-RF concurred with 72% of the Pendleton et al.
(48) deletion phasings with allele-specific read data on non-
training chromosomes (see Table 2). Of note, INPHADEL-
RF identified 18% of the deletions as inconsistent. The in-
consistent deletion labeling arises from complex read map-
pings that do not fit a specific phasing, and are a limita-
tion of short read sequencing. Single molecule sequencing
as used by Pendleton et al. (48) generates longer reads, and

can more accurately identify deletions that confuse short
read sequencing technologies.

Importance of features in INPHADEL-RF

The Random Forest approach produces an ensemble of de-
cision trees, which can be used to report the relative im-
portance of features (see ‘Materials and Methods’ section).
WGS features were found to be slightly more important
than HiC features for deletion phasing. The relative impor-
tance of WGS features was 0.579 compared to 0.421 for HiC
based features (see Supplementary Data 10). Features as
used in previous structural variation analysis (32,33,39,40)
to call deletions had the highest importance. Since WGS
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Table 1. Analysis of INPHADEL-RF on deep coverage HiC data from Rao et al. (47)

Rao et al. HiC data pA pB hom. inc. excl.
123 107 27 15 64

High confidence deletions
pA 96 (0.35) 8 (0.03) 0 (0.00) 6 (0.02) 7 (0.03)
pB 14 (0.05) 93 (0.34) 1 (0.00) 6 (0.02) 1 (0.00)
hom. 13 (0.05) 6 (0.02) 26 (0.10) 3 (0.01) 56 (0.21)

Rao et al. HiC data pA pB hom. inc. excl.

Selvaraj et al.
HiC data
pA 92 (0.34) 8 (0.03) 0 (0.00) 1 (0.00) 2
pB 15 (0.06) 90 (0.33) 0 (0.00) 2 (0.01) 1
hom. 1 (0.00) 1 (0.00) 24 (0.09) 0 (0.00) 5
inc. 3 (0.01) 1 (0.00) 0 (0.00) 10 (0.04) 0
excl. 12 7 3 2 56

The confusion matrices shows InPhaDel-RF deep coverage HiC predictions on NA12878 test chromosome deletions compared to high confidence deletion
phasings, and to InPhaDel-RF low coverage HiC predictions (29). Parenthesis show fraction of deletions divided by total shared deletions, or fraction of
deletions divided by total deletions with InPhaDel-RF predictions.

Table 2. Comparison of Pendleton et al. (48) deletion phasings from single-molecule technologies to our high confidence deletion phasings and INPHADEL-
RF predictions

Pendleton et al. phasings pA pB hom. disjoint
142 122 101

High confidence phasings
pA 68 (0.35) 5 (0.03) 1 (0.01) 68
pB 7 (0.04) 65 (0.34) 1 (0.01) 73
hom 0 (0.00) 0 (0.00) 47 (0.24) 88
disjoint 67 52 52

Pendleton et al. phasings pA pB hom.
121 100 76

INPHADEL-RF
pA 69 (0.36) 5 (0.03) 6 (0.03)
pB 6 (0.03) 57 (0.30) 2 (0.01)
hom 0 (0.00) 0 (0.00) 11 (0.06)
inc 18 (0.09) 15 (0.08) 2 (0.01)
excl. 28 23 55

Deletions on all chromosomes were used to compare high confidence deletion phasings with Pendleton et al. deletions, whereas only deletions on NA12878
test chromosomes were used to compare InPhaDel-RF predictions. Also, shown are the counts for Pendleton deletion phasings that weren’t in our high
confidence deletion (disjoint), and vice versa. Parenthesis show fraction of deletions divided by total shared deletions, or fraction of deletions divided by
total deletions with InPhaDel-RF predictions.

has more uniform coverage and less noise, the features had
higher rank than the more numerous HiC features. Notably,
HiC allele-specific features were more important than WGS
allele-specific features. Surprisingly, features recruiting only
reads from HindIII cutsites had the least importance. We
expected the feature to be important since the proximity
ligation protocol accumulates HiC reads closest to HindIII
cutsites. However, the low importance is likely due to HiC
allele-specific read depth features, which include read pairs
regardless of ends mapping to cutsites.

Importance of HiC data for phasing deletions

Additionally, we directly analyzed the importance of HiC
data for phasing. Similar to the simulation results, HiC read
data was responsible for correctly predicting 33.0% of the
deletions on NA12878 test chromosomes (see Figure 4). On
the NA12878 chromosomes, WGS was also important for
correctly predicting 26.4% deletion phasings. The increase
in contribution of WGS in NA12878 phasing in compari-

son to simulated phasing is likely due to low or erroneous
mapping of HiC reads.

To confirm the HiC findings, we chose to experimentally
validate eight top ranked NA12878 deletions that were cor-
rectly phased with adjacent SNVs. Since the deletions were
supported by only HiC read data, the distance between
the deletion breakpoints and nearest SNV ranged from 800
to 4000 bp. Typical, DNA fragments in WGS studies are
<800 bp, which explains the lack of WGS read support in
predicting the deletion phasing. To validate the long range
phased deletions, we used AmBre (49) to design primers for
three polymerase chain reaction (PCR) reactions (see Sup-
plementary Data 11 and 12). The first reaction validated the
presence of a deletion. The remaining reactions amplified
products encompassing the nearest adjacent SNV and ei-
ther the deletion breakpoints or non-deleted sequence. The
PCR products containing a SNV and non-deleted sequence
were subsequently Sanger sequenced and the deletion phas-
ing made by the INPHADEL-RF was confirmed in all 8 cases
(see Figure 4).
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DISCUSSION

Our approach addresses the question of determining if
heterozygous deletions act in cis or trans with other het-
erozygous variants. We formulate the task as a multi-
class classification problem where deletions can be phased
to either chromosome (pA or pB), homozygous or un-
supported by the read data. We used Nearest Neigh-
bors, SVM and Random Forest learning methods to solve
this problem and found INPHADEL-RF provided supe-
rior prediction accuracy. We demonstrated accuracy on the
NA12878 European individual, who was part of a trio ana-
lyzed by whole genome sequencing (1000 Genomes Project
(2,36)). The data on trios provides a truth set of dele-
tions with known phasing or known homozygosity to as-
sess performance. INPHADEL-RF achieved 86% accuracy
on NA12878 deletions that were not used in training. In ad-
dition, INPHADEL-RF reported lower confidence in phas-
ings that were incorrect.

To robustly train and evaluate INPHADEL-RF required
simulation of WGS and HiC reads sets on chromosomes
with known deletions. To our knowledge, there is no known
HiC read simulator. We developed a method for simulat-
ing HiC reads using a read shuffling approach (see Supple-
mentary Data 2). The simulations not only improved ro-
bustness for learning models, but also facilitated analyzing
the capabilities of HiC and WGS for haplotype reconstruc-
tion. Using simulations, we show that INPHADEL-RF toler-
ates breakpoint errors up to 200 bp with 73% accuracy and
then accuracy deteriorates for larger errors depending on
deletion size. Most importantly, simulations show that HiC
read data contributes to uniquely phase 32.1% of deletions
compared to 3.2% that are uniquely phased by WGS data.
HiC enables linkages between distant mutations, in our case
SNPs and deletions. The same concept had been previously
applied to phase distant SNPs (29).

The HiC method is becoming more popular, and re-
searchers are generating WGS and HiC Illumina data for
different individuals. While more data would corroborate
our results on the importance of HiC data, and break-
point error tolerance for phasing deletions, it may obviate
the need for simulating read data to train models. For ex-
ample, linear Support Vector Machines performed poorly
on NA12878 test chromosomes, even though the accu-
racy estimated from training was similar to INPHADEL-
RF. INPHADEL-SVM likely over optimized on the simu-
lated data used for training, and thus performed poorly
on NA12878 deletion phasings. We trained Support Vec-
tor Machines on exclusively deletions from the first 10
NA12878 chromosomes, and the accuracy on NA12878 test
chromosomes increased from 70.7 ± 5.6% to 82.6 ± 7.1%.
Thus, using more empirical data could benefit training of
some models.

The focus of this paper has been on deletions––the pri-
mary category of structural variations analyzed by next gen-
eration sequencing. The next step is to phase duplications.
Our problem formulation, which works well for deletions is
not ideal for duplications. Duplications encompass multiple
copy number states and may or may not occur in tandem.
Thus, there are numerous phasing possibilities for a duplica-
tion event. To handle the additional phasings requires more

data and introduces new kinds of errors. For example, a re-
gion duplicated to a homologous chromosome should be
phased to both chromosomes pA and pB. Further investiga-
tion is needed to address phasing of high CNVs, and other
computational approaches may be more valuable. In any di-
rection taken, the distant interactions provided by HiC will
clearly be informative.

CONCLUSION

To better understand variation in the human genome, com-
putational methods were developed to call deletions (2) and
phasing SNPs (18,29) from WGS data. While proximity lig-
ation methods (HiC) were originally used to investigate spa-
tial nuclear DNA organization, they are also a powerful
tool for phasing variants. In our approach, HiC data is re-
sponsible for phasing 33% of deletions. Phasing deletions
with SNPs is important for identifying genetic causes of rare
diseases (3,4) and neurological disorders (5,6). CNVs have
also been associated with increased risk for schizophrenia
and ASD. The observed diverse phenotypes in neurological
disorders could be explained by compound heterozygous
CNVs and rare variants. Our results show 86% of deletions
with allele-specific read data for an individual can be accu-
rately phased to SNP haplotypes using only shotgun and
proximity-ligation sequencing from the same individual.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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