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Vortex methods and vortex statistics
. Alexandre J. Chorin -

Department of Mathematics and Lawrence Berkeley Laboratory
University of California

Berkeley, CA 94720, USA

1. Introduf:fion: what are vdrtéx methbds and Why do 'ive care?

Vortex methods originated from the observation that in incompressible, inviscid, isen-
tropic flow vorticity (or, more accurately, circulation) is a conserved quantity, as can be
readily deduced from the absence of tangential stresses. Thus if the vorticity is known at
time t = 0, one can deduce the flow at a latef time By simply following it around. In this

narrow context, a vortex method is a numerical method that makes use of this observation.

However, more generally, viscous flow problems have a Lagrangian, albeit stochas-
tic, representati'on’ [C6],{G2],]L4]. Compressible flow has Lagrangian répresentations’ [L1].
More generally yet, in many problems there are variabies such as charge, stellar or plasma
mass, heliéity, impulse, chemical species that are transported éither passi\;ely or modified
by known interaétioﬁs;_ this transport/modification can be reprgsented by the transport
of particles, or polygons, or domain bound_aries; by ﬁnite elements, ﬁnité differences, or
boundary integrals. Légrangian methods have a close reserhblance to integral methods |
(see e.g. [G5]). Aspects of Lagrangian methods, such as particle creation at walls, havé
found appli(':atvion in non-Lagrangian methods (see e.g. [H5]). Fast suﬁmation methods,

designed for particle methods, have found uses outside of computational physics.

- Even more generally, the analysis of vortex methods leads, as we shall see, to problems
that are closely related to problems in quantum physics and field theory, as well as in
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harmonic analysis. A broad enough definition of vortex methods ends up by encompassing
much of science. Even the purely computational aspects of vortex methods encompass a

range of ideas for which vorticity may not be the best unifying theme.

We shall restrict ourselves in these lectures to a special class of numerical vortex
methods, those that are based on a Lagrangian transport of vorticity in hﬁdrodynamics
by smoothed particles (“blobs”) and those whose understanding contributes to the under-
stan'ding of blob methods. Since excellent recent surveys are available [G7],[P2], the accént
will be on fenent de\l'elopments. Blob methods stafted in the thirties as two—dimenéional
“point” nieﬁhods [R7]). By the fifties, it was dispovefed that “pnint vortex” methods had
drawbacks, and a misinterpretation of the _Péincaré recurrence theorem led to the con-
clusion ;that the drawbacks could not be remedied (for an analysis, see [K12]). In the
late sixties and early seventies, the virtues of smoothing were discovered [C12],[C24] and

viscosity and boundaries were added.

The generalization to three dimensions follqwed soon [C8],{L2},[L3], and was found to
be non-unique. Arrows, filaments, dipoles, magnets, all generalize two-dimensional blobs,
and we shall cornp.ar«.a tnem below. All three—dimensional inviscid blob ‘me.thods eventually
lose stability; the analysis of that instabilify requires a deeper understanding of turbulen.cé

and contributes to the understanding of quantum fluids.

Aré vortex methods good numerical methods? The answer is ‘time—dependent and
problem dependent. Vortex methods made possible pioneering investigations of vortex
sheets [KlO],[K13],I high Reynolds number wakes [C4] and various three-dimensiqnal prob-
lems involving vortex rings, jets, and wakesv(see e.g. [A5],[K6],[M6]) As time progressed;
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other methods ca.ﬁght up with some of these applications, but then vortex methods also

improved. Various hybrids involving vorticity have appeared in recent years and show

great promisé (see e.g. [C30],[R9],[W1]). Vortex methods (i.e., “blob” methods) are a very

useful part of the pandply of cdmputatio'nal fluid mechanics, bﬁt do not exhaust it.

I wéuld like however to put some emphasis on a more arcane use of these methods.
Vortex methods for inviscid flow lead to systems of ordinary differential equations that can
Be readily clothed in Hamiltonian fofm, both in three va.nd two space dimensions, and they
can preserve exactly a number of invariants of the Euler equations, including topological
invariants. Their viscous versions resemble Langevin equations. As a result, they provide
a \‘zery useful cartoon of statistical hydrodynamics, i.e., of turbulence, one that c#n to
some extent be analyzed analytically.and more imporﬁa.ntly, explored -nu.merically, with
important implications also for superfluids, super_conductors, and even polymers. In my
view, vortex “blob” methods provide thé most promising path to the understanding of

these phenomena.

2. Vortex methods .in the. plane.

We begin wifh’a quick descriptive version of vortex methods for two-dimensional
incompressible flow. >Aﬁalysis will appear in a latér section. |

Consider first inviscid flow in the absence of boundaries. The Euler equ;':mtions take

the form

D - o
—D—$-=0, divua=20 : | (1)
where u = (uj,u;) is the velocity, —g—t = 3‘95 +u-V, tis the time, V = (3—27,3‘95),

x = (21, z2) is the coordinate vector and £ = Oyuy — Oqu;y is the vorticity, where §; = -5%.

3



Define the stream function (scalar vector potential) by u; = —02%, ups = O1¢; ¢ exists

because div u = 0. A quick calculation yields
Ay = —€, A=0%+02 - 2)
make the solution of (2) unique by réquir:ing lu| =70 as |x| — o0; (2) then yields
L - - [Gx-x)gx)ax,

where G = — = log |x| is Green’s function for the A operator in two dimensions. Differen-
tiation of v yields |

u= K =*¢, ' (3)
where.bK = (0,G, —0,G) = (27|x[*)"} (~y, z)T, énd T denotes a transpose. Note that the
kernel in the c;)ri;»roiution integral is singular. The .traject.ory of ‘a pérticle originally at o
‘satisﬁes |

dx : ’l
@ =ux@ =Kt @

The integro-differential e(iuation (4) is the starting point for vortex approximations. In a
vortex “blob” method, one pické N points-val ceea N in the support of thé vbrticity, and
follows théir subsequent rﬁotion be apbroxirhating (4); these trajectories will be denoted
by %:(t),%;(0) = o; (the tilde will be omitted when there is no risk of cc_mfusion). It is
na‘gural té appfoximate the integral by a éum, and- useful to modify the singular kernel so
that it becomes.’smvooth, K — Ks = K * ¢s, whefe ¢s = 6724(x/6), [ $dx = 1 (using

Hald’s formalism [H1]), thus
. _ . r

| % =Y EKs(%i - %;), | (5)
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where the £ j are consté,nts, the approximate values of ¢ assigned to the a;. Good choices
for the €; are described e.g. in [A4],[B2],[B6], as well as below for problems with bound-
aries. The smoothing of K by ¢ removes the singulérity in K, anci thus ensures that
the velocity field remains Bounded. More generally, the choice of ¢ controls accuracy, see
below. Examples of useful ¢’s are: (1) ¢ = (2n|x|6)7! for [x| < 8, ¢ = O for |x| > &; (ii)
qﬁ =" |’_‘| see more below. The velocity ﬁeld u=y Ksx— x] ){ jisan approx1mat10n
to the true velocity ﬁeld; it is also the exact veloclty field generated by £ = E ; fing(x —xi)
at time ¢. A term of the form £;¢5(x —x;) will be called a vortex blob o.r vortex for short.
- If ¢5 = 6 (Dirac delta) we recover tHé old “point” vortex approximation. We assume the
reader can solve the ordinary diﬁ'erent’ial equatiohs (5) on a computer, and note that the
system (5) is not particﬁlarly stiff; Runge-Kutta works fine.

There are very useful Lagrangian approximations of equation (4) other than blob
apprdkirhations [B13],[R9],[W1]. In particular, Suppose supp £, the suppor‘t‘ of ¢, can be
approximated by a union of polygons (say, triangles) , S @ N, with £ on ); approximated
/ by a polynomial P, Thé convolution integrals K *13,-, f’,- = P; on i, }5,~ = 0 otherwise, cén
be expressed in terms of elementary funct.io‘ns and defines everywhere a velocity field that
can be used to move the polygons forward. The new vorticitly field can be retria'ngulaﬁed
efficiently, and the result is an z;ccurate and reliable method. This method is most natural

in cases where ¢ is piecewise constant, when the polygons can be large.

The Navier-Stokes equations in two space dimensions can be written as

D¢

= R™! = 6
5 =R~ Ag, dwu 0, (6)

where R is the Reynolds hurnber; we are iriterested, in the case of liu‘ge R. The'inv_iscid
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methods just described can be extended to this case by coupling them to a solution of

the heat equation on a moving set of approximation points, see [C30],[F1]. The random -

‘vortex method [C6] is based on the observation that equation (6) can be viewed as a

Fokker-Planck equation for the stochastic ordinary differential equations
~dx =udt++/2/R dw, u= K %¢, - (7

where dw is two-dimensional Brownian motion and X(t) carried a constant vorticity £.
Equation (7) can be discretized in a straightforward manner; it is a Lémgevin equation for
‘the vortex system.

'Suvppose now a boundary is present. If R~ = 0, the approximate boundary (;ondition

(often u-n= 0, where n is a normal to the boundary) is satisfied if G above is replaced

- by the Green function appropriate to the'domain at hand. In practice, all one has to do is

addtou=K * € a potential flow u, such that their sum satisfies the boundary condition.

If R™* # 0, the condition u- 7 = V;, must also be satisfied, where T is tangential to the

boundary and V; is the tangential velocity of a solid boundary. In principle, all one has
" to do in vthis case is create a vortex sheef, at the .wall, with a strength calculated so as
to annihilate unwanfed de\‘/iations of u- 7 from its prescribed value. The»vorticity in the
‘sheet difflises into the fluid and participate‘s in the subsequent motion; this process mimics

~ the physical process of vorticity generation.

What is simple in principle is not necessarily so simple in practice. If one calculates |

with a finite time step At, and if at each time step one allows the vorticity to diffuse and be
advected, the boundary condition u-7 = V; is satisfied exactly only at the beginning and at
the end of each step, with local error that is at best O(v/ At) [C26]. One has to create some
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device to satisfy the boundary condition continuously. In the context of a blob method,
this is done naturally by symmetry. For example, if the boundary is the r, axis, with the

fluid in the z3 > 0 half-plane, then one can continue the flow to the lower half-plane by the

- symmetry u(zy, —z;) = 2V, — u(zy, z2), guara,nieein'g uy(z1,0) = V,. Unfortunately, the

Navier-Stokes equatiof;s are not invariant unde_i: this symmetry (cohsider what happens
to £ = a?ul — Blué), but the Prandti equations & + (u- V)¢ = R"lagf, div u = 0,
that approximate therﬁ near walls, are invariant. The Prandtl equations have a blob
fepresentation [C8], and one can use the Prandt] blobs near walls, in a numerical boundary »
1ayér that should be thinnef than any physical boundary lay'er,and then use a standard

blob method in the interior.

The problem that remains is the correct matching of boundary blobs with standard
blobs. An easy and workable solution is to transfer circulation from one type to the other
across some. line parallel to the wall, while matching the velocities parallel to the wall.
However, as is known from experience with matched ‘asymptotic expansions, high accuracy
requires a cleverer match. In particular, one should note that the Velocity field induced
by a Pr@ndtl blob in its own neighborhood differs substantially from the velocity field
induced by a standard blo‘b, and the resulting mismatch of vertical veiocities caﬁ deplet'é
or overcrowd the vorticity in the transition zone and delay convergence. One.would like

an overlap between the numerical boundary layer and the interior, and a match of both

‘velocity components. For an appropriate construction, see [R2] and also [B10].

Finally, note that equations (5) can be written in Hamiltonian form. The variable
conjugate to the z; coordinate of the position of the vortex is the z; coordinate of the
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position; the Hamiltonian, in the case of point vortices, has the form

H= “217; YD &fjlogIxi — x5,

i g
with an appropriate smoothing when ¢5 # 6. H differs from the kinetic energy % [ u?dx

by a constant, which is finite if ¢; is smooth.

3. Fast summation.

At first glance, a time step iq a blob method with IV blobs brequires O(N?) operat;on's,
a for'bidding number if NV is large. It turns out that the calculations require far less effort,
typicélly O(N log N') operations.

The key observation, as explained by Almgren et al. [Ai], is that interactions that
can be described by partial differeﬁtial equations aré overwhelmingly local_. In particular,
interactions described by a Gr‘een.’s function for a Laplacian place a heavy emphasis on what
happens when particles are near each other. For overall éccuracy, it 1s enough if nearby
interactions are calculate(i accurately, while distant interactions‘ are calculated in a more
global way, for example by conflating series_of inverting an approximate Laplacian. Such
partitioning schemes can be relatiVély inexpensive. Examples of algorithms‘that émBody :

. these observations are the local corréction method [Ai],[A2] the rhultipole exi)ansion (G5],
and cher partitioning schemcs [B1]. To explain the ideé here, we pick a c'onsfruction that -
is simple, elegant, and not very well known: Anderson’s Poisson integratiqn method [A3].

It can be viewed as a reformulation of the multipole method, and uses ideas developed by

Rohklin.

We consider the two-dimensional case (extension to three dimensions is straightfor-
ward). Diffusion does not affect the summation. To begin with, we consider point vortices,
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¢s5 = §; the ev)vctensionb to blob_s is trivial. We thus have N point vortices, whose éffect we

v(zish to evaluate at N points. For simplicity, we shall write formulas as if the object were to

\ evéluate a stream function 1; formulas for‘ the velocity can be obtained by differentiétion.
Suppose one hé.s M vortices within a circle C of fadius a and boundary 0C, centered at

the origin for ease 'of notation. Remember that two stream functions that are ir?otatidnal

outéide C, have the corresponding velocity fields vanish at infinity, and agree on 9C, are

identical. At a point (r,0) outside C, 1 is given by

#(r6) = wlogr+ 3= [ p(a,6)P(r,0)a8" (™)

where k is a constant and

P(r,0) = (1 —(a/r)?)/ (1 —2(a/r)cos(6 - '9') + (a/r)?)

(the Poisson integration formula). The logarithrhic ferni is written explicitly for conve-
nience, and can be incdrp'orated'ip the integral by addinjg a constant to ¢¥(r,8). ¥(a,6) is
determine(i by the given vortices inside C. If the integral is approximatéd by a sum with K
terms, K <« M, and one wishes to calculafce the ¥ due to the M vortices at points Qutside _
C, then lg,bor 1s s.aved.. Accuracy for modest K normally requires equidistant ir;tegratiori'
n.odesv on C.

' A reminder of the defivation of the Poisson formula briﬁgs some useful insights. ¥(r, 0)
can be expanded outside C in planar harmonics, |

k=1

onr = a, this series reduces to a Fourier series, and thus the Cy can be found. A summation
and an interchange of summation and integration yields (7). Note:
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(i) Numerical integration mishandles high wave numbers, and thus for numerical pur-
poses the expansion in planar harmonics need only be carried up to a finite number of
terms. Summation and exchange of limits then produce a new kernel Px that is better

- conditioned than P.

(ii) The error in the expansion, and thus in the use of the Poisson formula, depends

only on ¢(r,9) and on. r/a, and is therefore scale invariant.

It is obvious that dafa on circles of one size can Be used to produce values of 1) on
larger circles that surround the srﬁaller ones. Qne can thus produce values of ¥ on a
growing family of circles, each level using distant large.é:ircles or nearly small circles as .
needed for accuracy. If s # 6,‘the support of ¢s sets a lower bound on the radii of the
circles; the results is an O(N log N) algorithm.

For more detail, see [A3]; the general structure of fast sumniation algorithms is dis-

cussed in [K1].

4. The convergence of vortex methods.

We now present a brief sketch of | the convergence thebry for vdrtex methods
[B5],[B6],[C29],[H1];[H2],[R1], iﬁ the‘simplest case: twc; dimensions, R™! = 0, £ of com-
pa‘ctvsupp-ort and no boundaries. The theory presented should be sufficient to illustrate
the following points: (1) The efrqr in vortex methods is primarily due to the error in the
evaluation of the convolution integrals (4), and (ii) Accuracy depends on the properties
of the smoothing ¢, and can be enhanced by imposing on it certain moment conditions.
The theory here should also give some of the flavor of the extensive and eiega,nt bddy of
work that has arisen in this context. Thé presentation here follows in the main references

~
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[A4],[C28).

Remember that the kernel K has been smoothed in the form: K — Kj, K5 = K * ¢;,

\

qSé = 672¢(x/6), [ ¢dx = 1. Suppose ¢ is smooth enough (for p.recise.requirements, see the
references) and in addition, satisfies Jx*¢(x)dx = 0, where x* = x‘l"?:}:;”, la)l = a1 + a2,
and 0 < |a| < p—1 fc;r some p, i.e., the mbments of ¢ up to order p—1 vanish. The vortex
methoci is written in the form (5): d%;/dt = Vi(X), where V;(x) = Z]fij&(x; - X;).

Consider N blobs initially ét a js ] = 1,...,N, where the &¢; are nodes of a regular
square mesh of mesh size h placed on the support of 3 " and let Ej = (). Let xj(ay,t)
be the true trajectofies issuing from the a;, and X;(;,t) the computed trajectories. Let
ej(t) = :z:j(av,t) — Zj(a,t), and for the sake of brévity, omit the subscript j from now on.
€= %% satisfies

¢ = x-V(%)

= em + eq + e,
with

em = [K(x —.x’)ﬁ(x’)dx” [ Ks(x - X)E(x')dx!
e = Kl xE N — 5 Kok~ )
es = 2 Ks(x —x;)& — 3; Ks(%i — %;)E;.

_em 1s the “mqment error” which arises be(;ause K — K (the origin of the name will become
clear in a morhént); eq is the discretization error which resﬁlts from the reblacément of the
Iintegfél by a sum; e, is the stability error which ariées because thé sum is evaluated on the
computed rather than thé exact location 6f the blobs.‘v We shall now estimate these errors,
noting that any integration over X or x' can be replaced by an integration over & or o'

~ (the Jacobian of the map & — x Being 1 by ‘inc'ompressibiiity); the grid in the integrations
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‘can thus be viewed as being regular even when the blob distribution has ceased to be

regular as a result of the motion.

We defined e,,, = K x £ — Ks * £; Thus -

ém(k,t) = (K - Kol
where k is the variable conjugate to x and " denotes a Fourier transform;-
| ém = K(1-45), |
= KE(3(0) - d(ek))

since 1 = [¢dx = $(0). The moment ‘condition guarantgés that thé derivatives of orders
up to p—1 of ¢ are zero, and straightforward manipulatioﬁ yields || em ||z1 < constant -6P.

To estimate e4, we vshall first exhibit some iﬁequalities which pfove the high order
a(;cura_cy of t.rapezoidal rulé integration for sufficiently smooth integr:.a,nvds. Elementary
considerations show that if i = (¢1,%2) is a pair of integers‘, i=0if1 =0, = ‘O, and_
| i |= max(}éi], |i2]), then for L .2 3y 2o 1 ||‘L§ 16. Suppose g = g(ml,iz) € C§, and

define || ¢ ||»= max(|| 8¢ ||£1) (the maximum of the L' norms of all the derivatives of g

up to order r). Then, for r > 3,

> o) - [ gxyis

1

12 o
<o el b

~(@m)r

(trapezoidal rule integration is very accurate). Indeed, by the Poisson summation formula

[D3],

W3 ol = 3 4G/,

where § i1s the Fourier transform of g." Therefore,

B3 g(ih) - [ gx)ax

= 12 g(ih) — g(d)‘ =13 " a(i/n) @

i#0
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Also, ] < [lg(x)|dx, and 8*g(k) = (2m:)l*/k§(k), where 8% = 0™ 85?, |a| = ay + az,
and k% = k{" ky?; thus |
eyra < [1orgldx <l gl

Then

) gl
19(k)| < )y T

and for r > 3,

ol < lLg e Looas .
;g(z/h) <|@nyr Zn l/ﬁ 17| < (%) gl

To estimate ey, all we need is an estimate for the derivatives of Ks = K * ¢s. K has as
many derivatives as ¢ has, and if ¢ has L derivatives, a straightforward analysis yields at
finite time T

. L
o < tant - - 6.
OréltagcT | ed ||L> < constan (6)

We omit the analysis of e;, which can be bounded in such a way that the over-all error 1s

bounded by a constant times (|| eq || + || €m ||); thus

|| error || 11 < constant <6” + (%) 6) .

(Noté the usefulness of 6.) If L ié large enough, one can choose h/§ < lr(thus méking -thé
blobs overlap) so that the error in the trajectories of the blobs is close to O(h?). We omit
the diséussion of how one goes from trajectory error to éther measureé of the error, and
how one accounts for the effects.of time discretization, For error estimates in the presence
- of viscosity or in three dimensions, see the references. :

The key to accuraéy (or more precisely,'to local accuracy, see below) in blob methods
is to satisfy the‘ moment conditions [ x* qux = 0 for a as large as possible. An appropria.ﬁe
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choice of ¢ can produce spectral gccufat;y [H2]. A popular choice of ¢ is the Beale-Majda
fourth order (p = 4) core ¢y = é_'z'—' %e"'z/z; for a derivation, see [B6], where the
three-dimensional case is ‘discussed as well. |

The error in bloB method does grow.in,time. One factor in thislexponent,iél growth is
the growiné irregularity of the blob distribution and the resulting grow*rth in the derivatives
that enter the error in a trapezoidal rule. This growt'h can be remedied by periodic rezoning
(see e.g. [N4]). By construction, the polygon methods mentioned above perform a rezoning

at each time step, and as a result the errors they produce often grow less rapidly. -

Other limitations on long-time accuracy will be discussed in the next few sections.

5. Vortex methods in three dimensions.
In three space dimensions, vortex methods are a little more difficult to formulate
because the vorticity is now a divefgence—free vector whose rha.gnitude changes in time.

The Euler equations take the forms
D€ +(u-V)E = (€ V), - ®
div u =0,

where £ =curl uis the vorticity. 'The definition of € can be inverted and yields, as in
equation (3),

u=Kx¢, | | )

<

where the kernel K is now K = — (47r|x|3)_l X, X denoting a cross-product. Equation (9)

is known as the Biot-Savart law. In the filament method, one writes

' §=Z€i
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where the supports of the §; are tubes of small cross-section tangeht to the vofticity field
(“vortex filaments”). u is approximated by K5 * € = Y, K; * §;, where K; is a smoothed
" kernel Kj =K « #s, and the integration along a filament is{a'p_pr'oxi'mated by a sum. The
non-constancy of u along the support of &; automatically takes care of vortex stretching
(the effect of the right-hand—side of _équation (8)). High order methods can be obtained
through a good choice of ¢ in.qﬁg = 673¢4(x/6) [B5],[G4]. With $s 76 8, and the integral
replgced by a sum, and u # K * £, and thus div € # 0, but,oﬁe can make div £ be small
enough for practical purposes. Vortex stretching is a strong eﬁ'ect? and as it takes hold,
approximaLtion points mﬁst' be added to the filaments [C10],[K5]. Practical applications

can be found in [C10),[G1],[K7],[K14],[L3].

The problem with the filament method is that it is not obvious how to céuple it to
- a diffusion method; furthermore, there is little experience in producing filament at walls
" (but see [S6]). >A way around these difficulties is to approximate each filament by a sum of
vortex seg_ments,.(also .know as “sticks”, “arrows” and “vortons”), and then proceed as if
the segments were independent, relying o‘n convergence to make div £ ~ 0, see [B4],[C8].
Diffusion and boundary conditions can then be dealt \.Nith quite easily. On the other hand,
it is Veryvimp'ortant for long-time accuracy that div € be very small [B14], and.Qne may
héve to filter out the non-divergence-free part of the vorticity field at frequent intervals.
For a recent review, see [W5]. There is a substantial recent Russian literature .on segment

- methods with ¢5 = § (no smoothing), for reasons that are hard to fathom.

An interesting alternative to segment methods that deals with “local” elements, en-
forces div € = 0 and can be coupled to diffusion has been introduced by Buttke [B 14] ,[B15];
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the computational elements are small vortex loops [01],[R4],[R8], appropriately smoothed.
At t =0, pick a scalar function g and consider the equétions of motion for m = u+grad q. |
m is a “magnetization”, or .“imp.ulsé density”, or “dipole density”, and g being arbitrary
at t'7= 0, is cleérly not unique. However, if P is the operator that projects érbitrary vec-
tor fields on their divergence-free part that is tangential to boundaries (P is well defined

[C25]), and if m remains the sum of u and a gradient at later times, then u = Pm is

uniquely defined. Let m = (m,, mz, m3). One can readily check that the equations.

Dm,- '
Dt

= —m;0;u; + R7'Am;, u= Pm, | ‘(10)
prodﬁce a velocity ﬁeld that is equal to the oné produced by the Navief—Stokes equations
with i:he same data. If R™! =0, (10) is e.quiva,lent to Euler’s equations.

The freedom in choosing ¢ can be put to very good use. Suppose the vorticity & has
compact support. The velocity field u haé suppoft in a set that extends to ihfinity_. Let'
H be the convex hull of the sﬁpport of €. Outéide H, u can bé written as w = —grad ¢, .
since the complement of H is simply connect;ed. At t =0, set ¢ = §. The cor;esponciing
m has support in H and has thus been “loca,lized”; If one‘ then writes m = Y. m;,
with the supports of the m; small and in H (m; is a “magnet”), thén one obtains'a
representation of the flow field by a sum of localized particles. The vorticity € = curl m
satisfies div £ = 0; u can be obtained by u =K . €. If x; is the “center” of the i-th
.. magnet, then dx;/ dt =u= z K+ (cuﬂ mj). Equation (10) yields an evolution equation
for m; K — Kj yields accuracy. If R™! = 0, the equations form a Hamilt(;nian system. If
R™1 3£ 0, diffusion can be handled as in two dimensions.

A com;;ahlrison of u = Kx*curl m, where mis one magnet, with the velocity ﬁelci vinduc.ed
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by a small vorf,ex loop at a large distance, shows that the magnetizafion m representation
1s in fact a represéntation in terms of small vor»texioops. Consider a large-scale vortex I';
to construct an m representation one finds a (non-unique) surface T that spans T, aﬂd one
places magnets m on I so that they are normal to ¥ and have magnifudes lm]| = 3 ITldZ],
where |T'| is the circulation in the vortex loop I' and dX 1s the surface element on Z. It is
easy fo check that m remains orthogonal to ¥ as both are evolved by the flow map. This
construction points out a problem with the m representation: A V(;rtex lodp will eject fluid
to its rear and thus & will balloon; as its area increases so does 3 |m;|; as a result the time
sfeps may become small and the ;:alculation expensive. Appropriate remaps to remedy this
pfoblem have been considéred by Cortez [C27]. The-magnetization representation has not
yet been test;ad as z; sufficient number of examples for firm conclusions about its usefulness
tb be drawn. If R~! = 0, one can verify that the-equations of motion of N magnets have

Hamiltonian form.

All inviscid three-dimensional vortex representations eventually run into the “folding”
problem. As a flow evolyes, vortesc'lines stretch; as they stretch they must fold, or else
energy conservation cannot be obeyed; folding creates the necessary cancellations between
the velocity fieldsj induced by the stretching vortex liﬁes_. Stretching and folding are real
physical processes that occur in fluid flows [C11},{C18],[C21]; their numerical versions are
not necessarily faithful to reality.. The explosive growth in stretéhiﬁg and folding that is
characteristic of vortex methods cén limit their usefulness. The reasons for this growth
and the methods that control it can be understo.o_d in a statistical mechanics context that

we shall now develop.  The analysis also has direct applications to the analysis of vortex
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motion in turbulent flow and in quantum fluids.

6. Statistical mechanics of vortices in the plane. We start the statistical analysis
by considering N vortices in the bounde'd region D 1n two dimensions. The entropy S of
the system is the logaritvhm of the density of its states (the Bol’tzma.nv constant can be set
equal to 1 By using appropriate units). The temperature T' is defined by T~ = dS/d(E),
where (E) s the average of fhe energy E. If the éysten’i has states labelled by 2 parametér
"s,then § = — Es P, log P,, where P is the probability of the stat¢ s and the sum is to be
interpreted as ari integral when the states form a continuum. In the canonical ensemble,
P, = z-1 exp(—E/T), where E = E(s) is the energy of the state labelled by s and Z is zi :
normalizing constant, the “partition function” Z = Y. P,

One is used to having T > 0, but ihis iiiequality is not a law of vna,ture_._ One can
perfectly well imagine systems such that for (E) moderate there are many ways of arranging
their components si) that tile energy adds up to (E) but for (E) Ilai‘ge there are only a few
- ways of doing so. Then the derivative dS/d(E) is negative for (E) large enough and T is
negative. This situation will indeed occur for vortex systems. If 7 > 0 low energy states
have a high probability, and if T < 0 high energy states have a high probability.

Suppose one takes two sysfems, each Separaitely in equilibrium, cine with energy E,
(we drop the brackets) and entropy S;, the other with eriergy E, aind entropy Ss. Stippose
one joins them; the resulting union has energy Ej +E; and is not necessarily in equilibrium. |

Its entropy, initially S = 53 + Sz, will increase in time ¢. Then

dS _d$i  dS, _dSidEy  dS;dE, _
dt — dt dt ~ dE, dt ' dE, dt ’
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)

while energy is conserved:

dE, dE,

& Ta

Therefore

ds (dS’l ds’z)dEl_<1 1>dE1

4t ~ \dE, dE,) d T, T,) dt

Suppose T; > Ty, both positive; then %’- >0, ie, enefgyv moves from the hotter body
| to the colder body. Now suppose Tp < 0. Tt still follows that if—t‘- > 0, i.e. a body
with negative tempersture is “hotter” than a body with positive temperatuse. Negative
temperatuses are above T = 0o, rather than below absolute zero. Further, the canonical
formula shows that T' = —oo is indistinguishable from T = 4o0; |T| = oo is the i)oundary
between T < 0 and T > 0. In terms of 3 = T, temperature increases as B varies
. from infinity to zero through positive values, and then from zero to minus inﬁnity through
negative values.

Consider a collection vof N vortices of small support occupying a finite portion D of
the".plane, of area A = |D| (see [E1]). The area can be made finite by surrounding it
with vrigid boun&aries, in which case the vortex Hamiltonian must be modified through
the addition of immsterial smooth terms; alternaﬁively, one_ can confine the vortices to a
finite area initially and conclude that they will remaiﬁ in a finite area, because the center
of vorticity X = Efix; / Ef,-, X; = positions of the vortice's; ond'the angular momentum
Egﬂx; - X|2 are inyaria.nt. For tho moment, consider inviscid flow with all the §; = L

The entropy of this system is

S = —/Nf(xl,...v,xN)logf(xl,...,xN)dxldx2---de,' ,
DN :
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where f is the probability that the first vortex is in a small neighborh;)od of x;, the sécond
in a small .neighborhood of X3, etc. The energy of this system is £ = H + B, where H ié
the two—dime_nsio'nal vortex Hamiltonian and B is an appropriate constant. The entropy
1s maximum when

f = constant = AN,

The corresponding energy is

1

(E) = (E.) =—Z;N(N__1)/Ddx/pdx"1og|x—x'|+3.

Clearly, one _.can produce a larger (E) by bunching vortices tbgether, and thus T~ =
ds/ dE <0 fc;r- E > (E.). This is Onsager’s observation. If T > 0, ‘the Gibbs factor
exp(—E/T) gives a high probability to low energy states, and if T < 0, high energy states
are favored; the latter are produced by bunching together vorticés; forming large, conceﬁ-
trated vortex structures. The f = Icoﬁstanf state is the |T'| = co boundary between T < 0
and T > 0. The T introduced here-z‘ has no cohnection whatsoe..'ver with the rﬁolecular tem-
- perature of the underlying fluid; in incompressible ﬁéw, the molecular degrees of freedom
and»th.e vortek variablés are insulated from each otiler.

To give this argument a more quantitative forfn, we turn to the elementary combina-
torial method [Jvl]. We assume there ére N vorticés. N7 vortices have strength'{~ =1, N~
havé §=—1, Nt + N~ = N. We divide ’D into M boxes of area hz,_with nf posi’pive and
n; negative vortices in each. The corresponding probability (= _multiplicity) W is

we () (N Y
nil.. . nj ! ny!...ny! .

2

To a good approximation, the entropy is S = log W (for the conditions under which this
is true, see e.g. [E1],[C21]). To obtain an equilibrium, S is to be maximized subject to the
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constraints En;" =N7¥,Zn] = N~, and

1 | _ . _ -
E = 5 Z Z(nj’ —n; )G,‘j(n;' —n;) = constant,
i A1 }
where G;; = ——% log |x; — x;| + B, x; is in the i-th box, x; is in the j-th box, and B is
a constant. This E approximates the energy of a vortex system. The maximization of S

E produces a thermal equilibrium and leads to the equatiohs

log n;" +at +4 ZJ Gij(nj' - nJ_) = 0,
, (11)
logn; — at + B, G,-]-(n;' -n;) = 0,
where o, a™, B are Lagrange multipliers. A little algebra yields
nf —n7 = exp (—a+ - ﬂzj G,-j(n;' - n]'))

— exp (—a" + 8%, Gij(nf - n})) :
 fors =1,...,M. Let h — 0 so that n} —=n] — £(x)h? = f(x)dx, (exp(—a™)) /R — dT,
and G;j(n} —n]) - [ G(x—x")¢(x")dx', where G(x) = — 5= log |x| +B. Equations (11)

converge to
€x) = dy exp(+8 [ G(x = x)e(x')ix') + d_ exp(~ [ Glox = X )e(xyix')

where d,d_ are appropriate normalization coefficients.
Let ¢ be the‘ stream function, u; = —0y¢, uy = 0O1¢; an easy calculation gives

) A = ¢, A= Laplace operator and ¢ = — [ G(x — x')¢(x')dx’. Thus,

— A - E(x) =dye PV — d_ef. | (12)

This is the Joyce-Montgomery equation. In a periodic domain one can set ¢ =0 on the -

boundary of a period; Nt = N~ = N/2,d; = d- = d. Then

N

20 = P
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—AY(x) = £(x) = dsinh fi(x).

IfNt=N,N~=0,thend_=0,d* =N/Z, Z = [,e"P¥dx, and
' N
Ay = £(x) = 5 exp (B(x))-

In either case, £ is a function of ¢). The Euler equation is

Bt = —uy0y¢ — uydot

= (2)(&6) - (Br)(3aE) = I($,6),
where J = Jacobian of £, ¢ which is zero when 5 = €(y). The resuiting average flow is
a stationary (time-independent ) solution of the Euler equation,. with macroscopic motién,
as expected when 8 < 0. _Appropriate forrﬁs of equation (12) can be derived, in which the
limit N — oo can be.easily. takén (E1},[K3],[M9].

It should be emphasizéd thai: the £ we h‘ave rcalculated is not only a épeciﬁc sqlution o.f‘
Euler’s equation, but more importantly it is the sté,tionary avefage density of the vorticity.
Speéific flows may depart from this average, but one expects the départure té'be small.

For 8 > 0 and for —87N < 8 < 0 equation (‘1.2) can be shown to have'solutions._ In the
latter case the solutions are non-uniqué; thgl solutions have multiple peaks; the solution
that 'maxirhizes the entropy has a single sharp but smooth peak. For ‘< —8rN (i.e.,.
“hotter” than T' = —1/87N), the Joyce-Montgomery eqqation with_'f > 0 has no classical
solution and in fact does not describe reasonable physics.

Statistical equilibria are of interest only if fhey are reached from most initial data.
There is strong evidence, mainly numerical, that the two-dimensional equilibrié, _constfucted
above a.fe in fact réached. Some general statements can be made about the relaxation to
equilibrium, and some equations remain open.
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Suppése one starts from initial data that consist of two patches of vorticity, say £ =1
in sets Cy, Cs, both bounded, Ci, C; disjoint, and € = 0 elsewhere. Since vorticity is merely
transported by the fluid motion, one has to imagine a process by which the vorticity in the
patches is fedistributed so as to match £, the solution of the one-sign Joyce-Montgomery
equation (12). One can imagine that the boundaries of Cy,C; sprout filaments, as in the
convergence of subsets of the constant energy surface to the microcanonical ensemble; the

resulting filaments could reorganize 50 as to approximate £, on a sufficiently crude scale.

The filamentation of the bouhc%ary should lower the energy. Indeed, if a small ydrtex
patch is broken into two halves that are pulled apart, the energy goes down; two {rortices of
strength é = 1 each, near each other, act as one vortex of strength 2, whose energy is four
times that of one of them; two vortices of ‘strength 1 far from each other have an energy that
is the sum of their inciividual energies. To make up for the loss of energy in. filamentation
the two paﬁches have to approach ~each other. This process of simultaneous filamentation
and consolidation is well documented numerically. Sirﬁilarly, one expects a non-circular
patch to become nearly circular with a halo ofv ﬁlamenﬁs, the whole approximé,ting € On a
réugh scale. Even a circular patch with non-constant £, increasing from its center outwérd,
can reorganize its vorticity so that filaments shootv off whiie energy is being conserved. On |
the other hand, a patch with £ decreasing‘ as one moveé away from the center is stable,
and belongs té the set of initial data that dé not approa(;h €o; such a patch of courée does

in itself constitute a rough version of €.

This process of simultaneous filamentation and consolidation can be deduced from
the invariance of the energy and the enstrophy in spectral form: [ E(k)dk = constant,
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[ K*E(k)dk = constént, where E(k) is the energy spectrum. If some energy moves towards
the large k’s (small scales), thén even more energy must move towards the small k’s (large

scales). On the whole, there is an energy “cascade” toward the small k’s.

If the initial € is complicated,. and has many maxima and minima, one can imagine,
and indeed see on the computer, a ?rocess of progressive curdling, in which nearly circular
patchés that look locally like £, first form on small scales, then slqwly migrate towards
eaéh other and consolidate if viewed on a crude enough scale. The curdles can never truly. N
merge, since the ﬂow‘ map .is one-to-one. At each stage of this curdling the néa.rly circular
patch‘és ére nearly independent, with whatever correlations théir locations havé manifesting
itself only on large s;caleé. The ﬂow.can then be approximated as Enifoc;(x —-Xi), i =
random cqefﬁcients. The energy séectrum is approximately proportional to |k|2|€c0(k)|2,
where £ is the bFou.rier transform of {o(x), and is a property of each curd individuélly.

One then has local equilibria slowly consolidating into larger eqﬁili_bria.

This successive curdling picture provides a suggestion as to what happens in the |
presence of shear or in complex geometries. In three spéce dimensions the “un_iversal’;
aspects of turbuleﬁce appear on small scales, and one can readily imagine that arbitrary
large scale structures have “universal” small scale features. Here, in two dimensions, the

: J o v . .
universal étructures grow to large scales, and an imposed shear or an imposed boundary

mass interferes with them. It is readily imagined however that the curdling process will

simply stop when it ceases to be compatible with the conditions imposed on the problem.

Note that if ¢5 in the two-dimensional vortex method is identified with £, then the
vortex method can be reinterpreted as a model of two-dimensional turbulence, in which
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the smallest scales have reached equilibrium. Indeed., this is how the ¢5 in [C5,[C6] was

chosen.

On¢ cah wonder about the effect of a small viscosity v on the processes just described.
To the extent- that the effect of viscosity is to smear the small scales, and as long as the
time it takes to reach equilibrium is small compared to the time scale of viscous decay,
the picture above should be unaffected. One could say a littlé more: suppose the effect of
viscosity is approximated by Brownian motion (equatipn (7)). The _Bfownian motion can
be thought of as being genefated by the bonib.ardment of the vortices by the molecules of
an ambient 'ﬂui.d at a temperature v. Th¢ effect of the bombardment that has just been
imagined is to couple weakly the “ﬂuid” at the temperature » with the vortex system, and
if v < T = vortex temperatdre, to reduce the latter. If T < 0, the cooling of the vortex |
system brings one closer to the |T| = oo equidistribution séiution, in agreement with the
intuitive idea that random pushes ShO;.lld interfere with the formation of concentrated

vortices. After a long enough time one may end up with £ = constant.

7. Statistics of vortex filaments in three dimensions.

We now turn to the three-dimensional analogues of the cénstructions of the previous
section. In three dimensions, vortex ﬁlafngnts. are extended Qb jects, more like polymers
than like particles; vortex stretching is important, and only a statistically steady state can
be expected as the time ¢ — co. To make the présgntation easy, we consider a single vortex
ﬁlamer'ltk (a tight bunch of inﬁegfal lines of the vorticity field) in a dilute “suspension” of

such filaments; more genefal situations are considered in [C18],[C21].

Suppdse our filament can be covered by N nearby circular cylinders, each of length

95



h > 0. Endow the filament with an energy

ZZh_J' S m

where t; is a vector of length h 6riginating'at the center of the i-th cylinder, |z — j] is
the distance between the i-th and j-th cylinders, and T" is the circulation of the vortex.

Equation (13) is the discrete analogue of the Lamb expression for the energy -

P} [ e [ [ RsT
The vortex is self a;»roi.ding: |x — x'| # 0 for x € the i-th cylinder, X' € the ] -th cylinder.
Assume that | each’ configuration C of the vortex has probaBility P(C) =
Z 'exp(—E/T), where Z - Yc P(C) T can be positive or hegatiVe; “increasing T
is deﬁned_as in the preyioﬁs section. The éverage energy (E) = Y.c E(C)P(C) is an -
increasing function of both T and vortex length L = Nh.

. o
Define

where .is ’ghe end-to-end 1eﬁgth of the Qortek measured by a straight ruler, or alterné—
tively, the diameter of the vortex as it is usually definedi As N —> 00, h fixed for Nh ﬁxed,
pn T tends to a limit pp; 1/pr is the fractal dimension of the resulting limiting object
[C18],[C21].

For fixed, finite N, ?—”—"—"—T— < 05 i.e., as T decreases, the. vortex becomes an increasingly
folded object. In the limit N — oo, uyr =1for T < 0, pr =1/3 for T >0, pr = .59 for
IT| = oo.‘ Note that |T'| = oo is the maximum entropy stafe. |
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Suppose n‘ow that’ the “vortex” is imbedded in an Euler flow. Its length will increase,
by stretching and by fractahzatlon, N > 0. The everage energy 1S an increasing function
of both T' and of the vortex length L. If energy is conserved it follows that 4L < 0 and
the temperature decreases. Also, isf’-. <0 a.nd the vortices fold, as described at the end of
section 5. If the vortex is initially srnooth, T(t = 0) < 0, and the temperature decreases
to |T| = oo.. The peint |T| = o0 is a.n.att-racting fixed point for Euler dynamics; that is
where the vortices will end up and generate a Kolmogorov spectrum [C19]. |T| = oo is an
uncrossable barrier for Euler dynamics. Asymptotic vortex structures are poised at the

boundary between T < 0 and T > 0.

Note that as long as N is finite, strong, organized, coherent structures contribute less
to the energy dissipation than weaker, incohe;‘ent vortices. vIndeed, contrast two vortex
filaments with the same finite NV but different circulations I'y,I';, say I'; > T's. - The
energy integral being proportional to 1_"2, the Gibbs weights attacned to the two filaments
are Z~! exp(—BT3E), Z~' exp(— BT E), where E is the energy that results from T =1
These weights are the same as those one would obtain with I' = land Ty = T/T? in
the first case, Ty = T / I'Z in the second. If one thinks of D = 1/u N,T as an anproximate
fractal dimension, the vortex with larger I‘. has a smaller |T|, iand if T < 0 (which is
the physically. relevant case); then the vortex with larger I' has a smaller dimension and
appears smoother. Strong vortices are less folded. The more folded vortex has a broader

spectrum and thus contributes more to dissipation relative to its energy.

In a numerical calculation, N remains finite, and the |T| = oo barrier_can be crossed.
If it 1s, excess folding and stretching may follow, as is indeed observed. One can reduce
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this excess by a systematic removal of folds (“hairpins”) which can be justified as a renor-

malization. Hairpin removal thus becomes a very useful tool in vortex methods.

There may however be simpler ways to arrest the crossing of the |T| = co barrier. A
key observation in this respect is Qi’s observation [Q1] that the crossing is most likely to
happen where the vortex torsion is zero;.such points are readily identifiable before disaster

strikes.

8. Remarks on turbulence and on superfluid vortices.

In the previous section we developed a theory of thermal equilibria of vortex filaments
and used it vto_explvain the folding instability of computational vortex filaments. The theory

can also be applied directly to physical vortices.

. : . J ) .
In a classical (i.e., non quantum) fluid in turbulent motion vortex filaments typically

form a dense suspension; their cross-sections vary rapidly and play a role in the dynamics.
The equilibrium theory of filaments is a plausible cartoon of the equilibrium states of vortex

filaments in this context, and reveals important features _of thé'rﬁotion; it must however
be interpretéd with some care [C21].

A major conceptual leap that must be made 1h order to apply the model té_turbulence
concerns the idea that the inertial range of turbulence can be described by an equilibrium
model. In the usual presentation of the Kolmogorov -theory, inertial scales do little besides
fransféf énergy from large to srhall scales, in an irreversibie waterfall-like cascade that
cannot be assimilated to a thermal equiiibrium. -However, there is overwhelming experi-‘
ment;a,l [M8] and numerical [C21] evidence that energy goes both up and down the ladder
of scales; in other problems, even in Burgers’ equation, equilibrium and a power law spec-
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trum appear together. An equilibrium with a wide spectrum may enhance dissipation,
bﬁt not necessarily be domiﬁated by it. This argument is laid out in detail in [C21]. vIn
superfluid (quantum) turbulence these arguments are easier to visualize. In a superfluid,
vortices exist as physical entities; theif cores are well defined. The dissipation mechanisms
(e.g., the Hall-Vinen friction [H3]) dc; not concentrate at the smallest scales and the simple
cascade ideas are not as attractivé. Indeed, “fractal” voftex equilibria similar tb the ones
described above do occur, for example, near the T) transition to superfluidity [S4],[W3] or

in the related problem of “vortex glasses” in “high temperature” supercohductors [H6].

However, some paradoxgs appear as soon as one considefs turbulence in superfluids
'more cloéely.' In many important resi)ects, quantum and classical turbulence ére very
different. Quantum vortices geﬁerally look smoother than classical vortices. The raté :
at which vortex length per unit volume L is generated appears to be bfoportional to
L3, wiaere wis a quaqtum “counterflow” velocity that vanishes in.a non-superfluid.
By contrast, ‘t‘he rate of 'change of L in classical turbulence is proportional to L [C21]. -
Th‘us vortex stretching appears to be much more impofté,nt in classical than in quantum

turbulence.

,A’ qualitative explanation of these differences is containéd in the theovry of the last
section. The rate of change of L was connected with the rate of change of the temperature
T. A classical fluid ﬁés a self-adjusting temperature T such that |T| — oo, and there
are no bounds on L. In a quantum fluid (and maybe also in compressible turbulence)
Wave/vortex interactionsvcontroll T and then L may be bounded. * Deeper explanations
remain to bé explored; the relations of quantum to-ﬂuid vortex motion.avmre discu';ssed in
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' [Clg].,[C21]. Vorté); methods appear as the natural tools for analyéing these relations and
the structure of turbulence in general.

This may be the place to dwell on a numerical mystery. If vortex stretching and folding
are inhibited in quantum tu£bulence, \.rortex motion in qv;lantﬁm and classical fluids should
be very different. In a partial recognibtion of this fa;:t, superfluid physicists often replace the
Biot-Savart law (9)'by a different veloéity fluid that depends only on a local curvature of
the vortex filament. The'ééuations obtainéd from this approximation, the “local induction
approximation” (LIA) have a very different character from the _Euier equations, and in
particular they preserve vortex length [B12],{C10]. It is however persistently claimed in the
superfluidity literature that the LIA and the Biot-Savart law can be used interchangeably.

In one case, examined by Buttke [B12], itrturns out that the resemblance between
the LIA qnd the Euler results claimed in earlier work is an artifact :)f the numerics; a
sufficient reﬁnemegt of the mgéh in the LIA destroys this resemblance. There are however
more suBtle prc;blems. For examplé, according to recent work [S1], waves propagate on
vortex filaments withbo'nly a “conﬁﬁed chaos” and no breakdown of the vortex. A ‘crude.
: enough solution of the Eule; equatibns in this case reproduces the results of the LIA to a
good approximation. A more resolved calculation is at sharp variaﬁce with the LIA,‘but
an even more refined calculation produces again results that have a qﬁalitative (But not
quantitative) similarity to the results obtained by the LIA [Q1]. A deeper undérst_anding

of this situation is not yet available.
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