
UC Berkeley
UC Berkeley Previously Published Works

Title
CALDERA: finding all significant de Bruijn subgraphs for bacterial GWAS

Permalink
https://escholarship.org/uc/item/49r7b84m

Journal
Bioinformatics, 38(Suppl 1)

ISSN
1367-4803

Authors
Roux de Bézieux, Hector
Lima, Leandro
Perraudeau, Fanny
et al.

Publication Date
2022-06-24

DOI
10.1093/bioinformatics/btac238

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License, 
available at https://creativecommons.org/licenses/by/4.0/
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/49r7b84m
https://escholarship.org/uc/item/49r7b84m#author
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/


CALDERA: finding all significant de Bruijn subgraphs for

bacterial GWAS

Hector Roux de B�ezieux1,*, Leandro Lima2, Fanny Perraudeau1, Arnaud Mary3,

Sandrine Dudoit4 and Laurent Jacob3,*

1Pendulum Therapeutics, Inc., San Francisco, CA 94107, USA, 2European Bioinformatics Institute, Cambridge CB10 1SD, UK, 3Univ.

Lyon, Universit�e Lyon 1, CNRS, Laboratoire de Biom�etrie et Biologie Évolutive UMR 5558, Villeurbanne 69100, France and 4Division of
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Abstract

Motivation: Genome-wide association studies (GWAS), aiming to find genetic variants associated with a trait, have
widely been used on bacteria to identify genetic determinants of drug resistance or hypervirulence. Recent bacterial
GWAS methods usually rely on k-mers, whose presence in a genome can denote variants ranging from single-
nucleotide polymorphisms to mobile genetic elements. This approach does not require a reference genome, making
it easier to account for accessory genes. However, a same gene can exist in slightly different versions across differ-
ent strains, leading to diluted effects.

Results: Here, we overcome this issue by testing covariates built from closed connected subgraphs (CCSs) of the de
Bruijn graph defined over genomic k-mers. These covariates capture polymorphic genes as a single entity, improv-
ing k-mer-based GWAS both in terms of power and interpretability. However, a method naively testing all possible
subgraphs would be powerless due to multiple testing corrections, and the mere exploration of these subgraphs
would quickly become computationally intractable. The concept of testable hypothesis has successfully been used
to address both problems in similar contexts. We leverage this concept to test all CCSs by proposing a novel enu-
meration scheme for these objects which fully exploits the pruning opportunity offered by testability, resulting in
drastic improvements in computational efficiency. Our method integrates with existing visual tools to facilitate
interpretation.

Availability and implementation: We provide an implementation of our method, as well as code to reproduce all
results at https://github.com/HectorRDB/Caldera_ISMB.

Contact: hector.rouxdebezieux@pendulum.co or laurent.jacob@univ-lyon1.fr

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Genome-wide association studies (GWAS) look for genetic variants
whose presence or absence is associated with a trait of interest, such as
the risk for a person to develop a disease, or the yield for a crop. They
were originally used on human genomes using single-nucleotide poly-
morphisms (SNPs) as genetic variants (Visscher et al., 2017). While
SNPs do capture most of the genetic variation in genomes that are simi-
lar enough, they can miss essential variants in other situations. For ex-
ample, some bacterial species are known to have large accessory
genomes, i.e. sets of genes that are not present in every strain in the spe-
cies. In spite of their name, some of these accessory genes play a central
role for some traits of interest, such as antibiotic resistance. In
Pseudomonas aeruginosa, for instance, accessory genes account for
70% of known genetic determinants of resistance to amikacin (Jaillard
et al., 2017). In this context, k-mers—defined as all words of length k
found in the genomes—have emerged as a popular alternative to SNPs
to describe genetic diversity (Earle et al., 2016; Sheppard et al., 2013).
More specifically, bacterial GWAS often test the association between
the trait of interest and the presence/absence of k-mers. A broad variety

of genetic variants—ranging from SNPs to mobile genetic elements or
translocations—cause the mutated strains to contain one or several spe-
cific k-mers. These GWAS are therefore able to capture any of these
variants without requiring their prior identification or even definition.
On the other hand, k-mer-based GWAS suffer from two important lim-
itations. First, interpreting their result is notoriously tedious: any given
k-mer can belong to several regions of the same genome, and converse-
ly a gene causing the trait of interest can contain many specific k-mers.
Second, because a resistance-causing gene often exists in slightly differ-
ent version, the k-mers of each version are only present in a fraction of
the resistant strains. As a consequence, these k-mers are less strongly
associated with resistance than the presence of the polymorphic gene
itself.

Jaillard et al. (2018) proposed DBGWAS to help interpret the re-
sult of k-mer-based GWAS using the de Bruijn graph (DBG, de
Bruijn, 1946; Pevzner et al., 2001), which connects overlapping k-
mers. Several significant k-mers arising from a single polymorphic
gene typically aggregate into a somewhat linear subgraph of the
DBG (Fig. 1), making their interpretation easier. Similarly, pyseer
(Lees et al., 2018), a widely-used bacterial GWAS pipeline, now
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recommends using unitigs over k-mers. However, DBGWAS still tests
the individual nodes of this subgraph separately, at the risk of miss-
ing causal genes whose presence is too diluted across different ver-
sions and therefore different k-mers. Kover (Drouin et al., 2016)
uses conjunction and disjunction of patterns of presence/absence of
k-mers to predict the phenotype. However, that approach does not
directly allow performing inference and requires specifying the max-
imum number of allowed combinations.

Here, we propose to test the association between the phenotype
and a single covariate capturing the presence of any version of a
gene—or any other potential genetic determinant. Concretely, this
covariate indicates the presence in each genome of any k-mer among
those represented in a particular connected subgraph of the DBG.
More specifically, we restrict ourselves to closed connected sub-
graphs (CCSs). A CCS is a connected subgraph such that adding any
neighbor does not change the created covariate (i.e. the set of sam-
ples containing a k-mer that is also in the subgraph). Non-closed
subgraphs are represented by the exact same covariate as their clos-
ure, and would therefore be redundant.

As any CCS may represent a causal variant that exists in several
versions in the dataset, we take an agnostic approach and test the as-
sociation between the phenotype and one covariate for every CCS in
the DBG. In contrast, DBGWAS relies on one covariate for each node
of the DBG. This new approach has two potential issues: (i) the
number of CCSs grows exponentially with the number of nodes in
the DBG, making the task computationally intractable, and
(ii) adjusting for multiple testing over this very large number of tests
leaves little to no power to detect associations. Our method
addresses these two issues by using the concept of testability intro-
duced by Tarone (1990). Tarone’s procedure controls the family-
wise error rate (FWER) while disregarding numerous non-testable
hypotheses in its multiple testing correction. Intuitively, a covariate
representing the presence of any k-mer among a growing set that
corresponds to larger and larger CCS quickly becomes true for all
samples. It thus cannot possibly be associated to any phenotype and
can therefore be discarded without being tested or counted toward
multiple testing correction. Testability provides a well-grounded
and quantitative version of this intuition. Furthermore, since adding
nodes to a connected subgraph can only increase the number of pre-
sent k-mers in the corresponding covariate, we can develop a
method that rapidly prunes non-testable CCSs, thereby solving the
computational problem.

Testability has been used in similar situations, but most existing
procedures are restricted to complete (Minato et al., 2014; Terada
et al., 2013) or linear graphs (Llinares-López et al., 2015, 2017).
Sese et al. (2014) described an algorithm to test all CCSs by combin-
ing the testability-based procedure LAMP of Terada et al. (2013)
with COIN (Sese et al., 2010), an enumeration method for CCSs.
While no experiment was provided in Sese et al. (2014), we show

that a version of this algorithm using an improved version of LAMP
(Llinares-López et al., 2015; Minato et al., 2014) could find all sig-
nificant CCSs in graphs with up to 20 000 nodes in less than a day
in only the most favorable settings. However, the DBG built for typ-
ical bacterial GWAS involve millions of nodes, so a more scalable
method is necessary to make CCSs testing amenable.

Our contributions are the following: We introduce a novel,
provably complete and non-redundant enumeration scheme for
CCSs called CALDERA. We also improve an existing pruning cri-
terion for the Cochran–Mantel–Haenszel (CMH) test. We show
that combining these contributions with Tarone’s testability-
based procedure makes it possible to find all significant CCSs in a
large graph, making it suited to bacterial GWAS. We provide the
first implementation of a procedure finding all significant CCSs,
along with a user-friendly visualization tool derived from
DBGWAS. Finally, we demonstrate the advantages of CALDERA
over competing methods on both simulated and real examples in
terms of computational speed, statistical power and biological
interpretation.

Notation and goal for CALDERA: We consider a set of n samples,
ðxi; yi; ciÞni¼1, where xi 2 f0; 1gp are p binary covariates describing
sample i, yi 2 f0; 1g denotes a binary phenotype, and ci 2 f1; . . . ; Jg
assigns sample i to one population among J. We denote n1 and n2

the number of samples such that yi ¼ 0 and 1, respectively.
Furthermore, we consider an undirected unweighted connected
graph G ¼ ðV;EÞ, where V ¼ fv1; . . . ; vpg and each vertex vj 2 V is
associated with one of the p binary covariates represented in x. We
denote by IðvjÞ ¼ fi : xj

i ¼ 1g the indices of samples containing vj.
Conversely, for i 2 ½1 : n�, we note Vi ¼ fv 2 V : i 2 IðvÞg the set of
covariates contained by the i-th sample. For any connected subgraph
S ¼ ðV0;E0Þ, such that V0 � V and E0 � E, we let IðSÞ ¼ [v2V0 IðvÞ
be the indices of samples containing at least one of the covariate rep-
resented by the vertices of S. Of note, this framework addresses
both disjunctions and conjunctions, as the latter can simply be
obtained by replacing each xi by its complement. We now properly
define the notion of CCS and the closure operation (proof in
Supplementary Section S-1.1).

DEFINITION 1. A connected subgraph S is closed if and only if there exists

no edge ðv1; v2Þ 2 E such that v1 2 S, v2 62 S, and IðS [ fv2gÞ ¼ IðSÞ.
We denote by C the set of all closed connected subgraphs of G.

LEMMA 1. For any connected subgraph S of G, there exists a unique sub-

graph S0 2 C such that IðSÞ ¼ IðS0Þ and S � S0, which we note clðSÞ.

Assuming that ðxi; yi; ciÞni¼1 are n i.i.d. realizations of random
variables X;Y, and C, our objective is to test null hypotheses of the
form HS0 ðX;Y;CÞ : ðIðSÞ?YÞjC for all S 2 C, while controlling the
FWER (i.e. the chance of at least one Type I error or false positive)
at level a. Translated in the context of GWAS, we want to test the
association between the phenotype Y and the presence pattern IðSÞ
of the covariate represented by each CCS S, while controlling for
the population structure C. We denote H0ðSÞ ¼ HS0 ðX;Y;CÞ in the
remainder of this manuscript, as X, Y and C are common for all
CCS in C.

2 Background on significant subgraph detection
using testability

We now describe the important concept of minimal attainable p-value
proposed by Tarone (1990), and how it can be used to (i) retain more
power than the Bonferroni procedure while controlling the FWER and
(ii) test more rapidly a large set of hypotheses. Both improvements
come from the possibility to discard a large proportion of hypotheses
without explicitly testing them, and will be exploited in Section 3 to
propose our procedure testing all CCSs in C.

Minimal p-values are a property of discrete tests. For example,
Fisher’s exact test (Fisher, 1922) relies on a 2�2 contingency
table, whose margins would describe in our case the number of
sensitive and resistant bacteria and the number of bacteria whose

Fig. 1. Example of de Bruijn graphs. (a) A general example with two genes, each

with some variability, resulting in a mostly linear sequence only at the coarse level.

More details in Section 4. (b) A simpler setting with two samples and four nodes,

leading to three CCSs: fv1g; fv2g and fv0; v1; v2; v3g
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genome contains or not a genetic variant. Given the margins of
this table, only a finite number of cell count assignment are pos-
sible and Fisher’s test can only lead to a finite number of values,
the smallest of which is strictly positive (see Supplementary Fig.
S1 for an example). Importantly, this minimal attainable p-value
p? is entirely determined by the margins of the contingency table:
given these margins, p? is the minimum over a finite number of
possible partitions and is independent of the actual observed cell
counts. Intuitively, strongly imbalanced margins (e.g. variants
that are present in a very large proportion of samples) cannot pos-
sibly lead to small p-values, no matter how the table is filled (i.e.
how the few samples that do not have the variant are distributed
among resistant and sensitive phenotypes).

2.1 Using minimal attainable p-values for a tighter

FWER control
The FWER is the probability to incorrectly reject at least one null

hypothesis. When testing N of them and rejecting those whose p-

value pi is smaller than a threshold d, FWERðdÞ ¼
Pð
WN

i¼1ðpi � dÞÞ, where P is taken over the N null distributions

ðHi
0Þ

N
i¼1. The Bonferroni correction (Bonferroni, 1936) is a

common procedure to control the FWER at a level a. It is moti-
vated by a simple union bound: as FWERðdÞ is upper-bounded byPN

i¼1 PHi
0
ðpi � dÞ and since by definition PHi

0
ðpi � dÞ � d, con-

trolling each individual tests at level d ¼ a
N makes the FWER

upper-bounded by a. Tarone (1990) sharpens this bound, by using
the fact that p?i >

a
N for some hypotheses. Since by definition

pi � p�i , the corresponding P pi � a
N

� �
term is exactly 0. Therefore,

the FWER is actually controlled at level ma
N � a where m is the

number of testable hypotheses, for which p?i � a
N. This suggests

that using a larger threshold d than the Bonferroni a
N could still

control the FWER at level a—while rejecting more hypotheses
and therefore increasing power. Choosing the largest such d is not
a trivial task, as increasing d also increases the number m of non-
testable hypotheses. Let m(k) be the number of testable hypothe-
ses at level a

k, i.e. such that p? < a
k. In the worst case, m(k) ¼ N

and we recover the Bonferroni procedure. More generally,
Tarone’s analysis guarantees that FWERðdÞ � a for d ¼ a

k as long
as mðkÞ � k. Letting k0 be the smallest k verifying this property,
d ¼ a

k0
maximizes the number of rejections while controlling the

FWER at level a.

2.2 Using minimal p-values to efficiently explore C
Provided that enough CCSs have sufficiently large p?, Tarone’s
procedure could therefore address the loss of power incurred when
exploring C. However, naively finding k0 requires computing the
minimal p-values for all jCj CCSs and iterate through these minimal
p-values to adjust the threshold, leaving the computational problem
unsolved. A more efficient strategy has been introduced to compute k0

(Llinares-López et al., 2015; Minato et al., 2014): starting from k¼1 a
set R of testable hypotheses, i.e. of elements with p? < a

k is grown.
When jRj becomes larger than k, k is incremented to jRj. All hypothe-
ses that are not testable anymore under the new threshold—i.e. such
that a

jRj � p? < a
k —are removed from jRj, and the exploration con-

tinues until the point where all testable hypotheses are in R and k ¼
k0. This strategy finds k0 in a single enumeration of all tests, but still
requires computing all minimal p-values, which would not be feasible
in our case. However, this search algorithm is also well suited to prun-
ing strategies—a fact already used in Llinares-López et al. (2015) and
Minato et al. (2014). Let p?ðSÞ be the minimal p-value associated with
H0ðSÞ for a CCS S. Assuming that for some pairs of subgraphs
S1;S2; S1 � S2 ) p?ðS1Þ � p?ðS2Þ, we can stop exploring all sub-
graphs including S1 as soon as S1 itself is found non-testable. This
monotonic property is verified when using Fisher’s exact test to test
H0ðSÞ: provided that jIðSÞj � maxðn1; n2Þ; p? is strictly increasing in
jI j, and adding nodes to S can only increase jI j (see Supplementary
Fig. S2 for an example). Our main contribution, presented in Section 3
will be an efficient exploration algorithm for S, which is well suited to
pruning.

2.3 Controlling for a categorical covariate: the CMH test
When testing for associations, controlling for confounders is es-
sential to avoid spurious discoveries. This is particularly import-
ant in bacterial GWAS, where strong population structures can
lead to large sets of clade-specific variants to be found associated
with a phenotype. The CMH test can be used to test associations
of two binary variables while controlling for a third categorical
variable. It relies on J two-by-two association tables such as the
one in Table 1, with j 2 f1; . . . ; Jg; aS;j ¼ jfi : yi ¼ 1; i 2 IðSÞ; ci ¼
jgj; xS;j ¼ jfi : i 2 IðSÞ; ci ¼ jgj and n1;j ¼ jfi : yi ¼ 1; ci ¼ jgj.

Like Fisher’s exact test, the CMH test is done conditional on
all margins ðxS;j; n1;j; n2;jÞJj¼1. Papaxanthos et al. (2016) further-
more, demonstrated that its minimal p-value could be computed
in O(J) (proof in Supplementary Section S-1.5) using the margins.
However, the minimal p-value of the CMH test does not verify
the monotonicity property S1 � S2 ) p?ðS1Þ � p?ðS2Þ which is
required to prune while exploring C. Papaxanthos et al. (2016)
introduced the envelope, a lower bound on p?ðSÞ, which verifies
the monotonicity property. It can also be computed in OðJ logðJÞÞ
for all S such that, for all categories j, xS;j � maxðn1;j;n2;jÞ. This
allows for a valid pruning strategy. The condition on xS;j is the
CMH analogous of the jIðSÞj � maxðn1; n2Þ condition of Fisher’s
test, and can decrease the number of prunable subgraphs as it
must be verified for all J groups.

3 Speeding up the detection of all significant
CCSs with CALDERA

We are now ready to present our contributions for scalable detection
of significant elements in C: an efficient exploration algorithm and
an improved envelope for the CMH test, allowing for more pruning
in the presence of imbalanced populations.

3.1 Critical properties for a fast, Tarone-aware

enumeration of C
We exploit several factors to provide a fast exploration of C. First,
we ensure that it is non-redundant, i.e. that each element of C is
enumerated exactly once, by defining a tree whose nodes are the ele-
ments of C and propose an algorithm to traverse this tree. Second,
the tree is directly built over C, as opposed to the set of connected
subgraphs. The latter option, as proposed in Sese et al. (2010) is
more straightforward to define and to explore and still induces a
tree over C, but yields a much larger object and results in a more ex-
pensive traversal. Third, we avoid maintaining subgraph connectiv-
ity, such as a block-cut tree (Westbrook and Tarjan, 1992). Such a
mechanism is efficient to build a tree over connected subgraphs, but
is costly to compute. Finally, in order to exploit the pruning oppor-
tunity offered by the testing procedure, the exploration should be
such that all S0 explored from a given S verify S0 � S.

Haraguchi et al. (2019) and Okuno et al. (2017) define a tree on
C, but the root of the tree corresponds to the entire graph G: the in-
clusion relationship along edges of the tree is the opposite to the one
we need, making their exploration unsuited to our problem. The
COIN/COPINE algorithm described in Seki and Sese (2008); Sese
et al. (2010) builds a tree over the set of connected subgraphs, which
induces a tree over C but has two drawbacks. First, it maintains an
itemtable to avoid enumerating the same element twice. This itemt-
able has an important memory footprint, and only guarantees a tree
structure when exploring in depth first. Secondly, the enumeration

Table 1. Association table in community j for subgraph S, used for

the CMH test

Variable i 2 IðSÞ i 62 IðSÞ Rows totals

yi ¼ 1 aS;j n1;j 	 aS;j n1;j

yi ¼ 0 xS;j 	 aS;j n2;j 	 xS;j þ aS;j n2;j

Cols totals xS;j nj 	 xS;j nj

i38 H.Roux de B�ezieux et al.
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of connected subgraphs requires maintaining a list of articulation
points along each explored branch, a costly operation.

3.2 Defining and exploring the tree over C
In order to build a tree over C rooted on the empty CCS, we use a re-
verse search, a strategy introduced in Avis and Fukuda (1996).
Reverse search relies on a reduction operation, which takes one
element of the set to be enumerated, and returns a unique, strictly
smaller element of the same set. This operation necessarily defines a
tree over the elements of the set, by ensuring a unique path between
any element and the empty one—the root of the tree. This reduction
operation defines the unique parent of every element in the tree. In
order to traverse the tree from the root, one needs to inverse the re-
duction operation, i.e. in our setting, given a CCS S to recover all
CCSs that lead to S by reduction. Here, we introduce a reduction
operation over C, as well as its inversion. We consider the parent op-
eration P given by Definition 2 for any element of C, and show that
it defines a valid reduction as introduced above. We then show its
inversion in Algorithm 1. All proofs are presented in the
Supplementary Appendix.

DEFINITION 2. For a subgraph S 2 C, we denote J ðSÞ ¼ \v2S IðvÞ the in-

dices of samples containing all covariates represented by nodes in S.

• If IðSÞ ¼ J ðSÞ, then the parent of S is 1, i.e. PðSÞ ¼1.
• Else we note iS ¼ maxifi : i 2 IðSÞ n J ðSÞg. The parent PðSÞ

of S is the connected subgraph of S n ViS that contains

maxvfv : v 2 S n ViS g.

Here, the maxv over a set of nodes is defined through some arbi-
trary numbering of the elements of V. In layman’s terms, our reduc-
tion first finds the largest index iS among samples that contain at
least one but not all covariates represented by nodes in S. It then
removes all nodes representing a covariate contained by this sample,
and retains one of the connected components as PðSÞ. Our reduc-
tion therefore relies on a numbering of both the samples—to decide
which nodes are removed—and the nodes—to define which

connected component resulting from the removal is retained as the
unique parent.

LEMMA 2. The function P defines a valid reduction over C.

Note that we have S � PðSÞ for all S so this structure allows
pruning. Lemma 3 then provides necessary and sufficient conditions
for S0 2 C to be a child of S 2 C. The third condition involves the set
of neighboring nodes of S, defined as NeðSÞ ¼ fv 2 G n S :
9v1 2 S; ðv; v1Þ 2 Eg.

LEMMA 3. For S;S0 2 C such that S 
 S0 6¼1, we have: S ¼ PðS0Þ if

and only if the three following conditions are verified:

(C1) iS0 62 IðSÞ
(C2) maxv0 fv0 2 S0 n ViS0 g ¼ maxvfv : v 2 Sg
(C3) fv0 2 S0 n ViS0 : v0 2 NeðSÞg ¼1, or written differently, ðS0 n ViS0 Þ
\NeðSÞ ¼1.

Using (C1–3) in Lemma 3 to check whether S ¼ PðS0Þ for any S0
does not require identifying the connected components of S0 n ViS0 ,
even though the reduction P itself does rely on these connected com-
ponents. This property of the inverse reduction is critical for the
scalability of CALDERA: repeatedly identifying or maintaining these
components would be very costly. It results from the fact that the re-
duction operation P does not maintain full connectivity, but only
retains one of the connected components obtained by removing a
subset of its nodes. Doing so comes at a price: finding all children of
S is not straightforward—Lemma 3 only provides a way to check if
a candidate S0 is a child of S. We must therefore provide a non-
redundant way to explore all potential children, after which Lemma
3 will guarantee a non-redundant exploration of C.

More precisely, reducing any CCS S0 to its parent S involves the
removal of a subset ViS0 of its nodes, breaking S0 into several con-
nected components—the one containing the largest vertex being
retained as the unique parent. For this reason, the reverse search for-
malized in Algorithm 1 cannot just search for children of S among
all closures obtained after adding one of its neighbors NeðSÞ (Lines
6–7): larger CCSs may also lead to S by reduction if they involve
other nodes that are not in its direct neighborhood. For example, the
graph shown in Figure 1 and discussed in Section 3.3 contains two
CCS (fv1; v3; v4g and fv1; v2; v3; v4g) which both lead to fv3g by re-
duction but cannot be obtained from fv3g by just adding its (single)
neighbor and taking the closure. For every identified child S0—e.g.
fv3; v4g in the example—we must therefore recursively search for
other candidates among the closures obtained after adding one of its
own neighbors NeðS0Þ—nodes v1 or v2 in the example. This proced-
ure is necessary to reconnect all children that include S0 but would
leave it as a separated connected component after removing nodes
ViS0—node v4 in the example. This recursive exploration is guaran-
teed to visit each candidate child, but does not ensure that each child
is visited only once. A redundant exploration would lose the benefit
of building a tree to explore C efficiently. We therefore need an
itemtable T that keeps track of visited patterns I : if a candidate
child S00 has a pattern IðS00Þ that includes the pattern of an already
enumerated child from the neighborhood of the same S0, we know
that S00—and any child that could be obtained from it—has already
been visited and the algorithm stops exploring from S00. In practice,
we do not need to store the full table T , and rely on a concept from
Uno et al. (2004) and further described in Supplementary Section S-
2 to reduce memory footprint.

THEOREM 1. For any S 2 C; Algorithm 1 applied on ðS;S;NULL;1Þ
returns the set fS0 2 C : S ¼ PðS0Þg.

Theorem 1 says that Algorithm 1 solves the problem of invert-
ing the reduction, and therefore of building a tree structure on C.
Of note, Algorithm 1 effectively explores equivalence groups of
neighbors, yielding the same pattern. Formally, an equivalence
group GkðSÞ 
 NeðSÞ verifies: v1; v2 2 GkðSÞ ) IðS [ fv1gÞ
¼ IðS [ fv2gÞ. We name IkðSÞ the pattern of the k-th equivalence
group GkðSÞ.

Algorithm 1 Children of Sp

Input parent CCS Sp, current CCS S, largest index i, itemtable

T
1: procedure Children(Sp; S, i, T )

2: children 1
3: for k, G in enumerate(EqGroupsðSÞ) do

4: S0  clðS [ fG½0�gÞ S0 is a candidate child

5: if ðSp;S0Þ verify (C1	 3) then S0 is a child

6: if i is NULL then Exploring from the direct

neighbors of Sp

7: Add S0 to children

8: Add ChildrenðSp;S0; iS0 ;T ¼1Þ to children

9: else Exploring from the neighbors of another child

10: if iS0 ¼ i and fI 2 T : I 
 IðS0Þg ¼1 then

Check that S0 was not enumerated earlier

11: T 0 ¼ T [ fI1ðSÞ; . . . ;Ik	1ðSÞg
12: Add S0 to children

13: Add ChildrenðSp;S0; iS0 ;T 0Þ to children

14: end if

15: end if

16: end if

17: end for

18: return children

19: end procedure
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3.3 Example of exploration
To help provide a better intuition of Algorithm 1, we use a simple
graph with four nodes and four samples in Figure 2 and will unfold
how various CCS are explored. The algorithm technically starts
from the empty CCS, whose children are in this case
fv1g; fv2g; fv3g; fv4g, each of them (i) being closed and (ii) leading
to the empty set by reduction.

Starting from v4, we can construct the connected subgraph fv4g
whose pattern Iðfv4gÞ ¼ f4g. Adding any of its neighbors will
change that pattern, so fv4g is a CCS. Can we explore from fv4g?
We use Algorithm 1 with Sp ¼ S ¼ fv4g, i ¼ NULL and T ¼1.
We enumerate over the neighbors of S (Line 3), which are v1, v2 and
v3. For example, with v3, S0 ¼ clðS [ fv3gÞ ¼ fv3; v4g (Line 4). iS0 ¼
maxf3; 4g ¼ 4 is equal to iS so we do not verify (C1) (Line 5) and
we stop there. The same happens with v1 and v2. This can be
expected. When applying the reduction to any CCS that contain v4,
we will remove all the nodes containing the biggest sample, that is 4
so we will always remove v4. So no CCS gives fv4g by reduction.
Therefore, when inverting the reduction with Algorithm 1, we
should find no children of fv4g.

If we start from v3, we begin similarly. S ¼ fv3g, whose pattern
Iðfv3gÞ ¼ f3g, is a CCS. If we add its (only) neighbor v4 (Line 4),
we construct again S0 ¼ fv3; v4g. But this time we have (C1)
iS0 ¼ 4 6¼ 3 ¼ iS ; (C2) maxfv0 : S0 n V4g ¼ maxfv3g ¼ fv3g ¼
maxfv 2 Sg; (C3) S0 n V4 ¼ fv3g while NeðSÞ ¼ fv4g so
ðS0 n V4Þ \NeðSÞ ¼1. So we verify (C1–3), which ensures that
fv3; v4g is indeed a child of f3g (Line 5).

Since i is NULL (Line 6), we add S0 to the list of the children of
Sp ¼ fv3g (Line 7). We then call Algorithm 1 again (Line 8), with
Sp ¼ S; S0 ¼ fv3; v4g; i ¼ iS0 ¼ 4 and T ¼1. We have two possible
neighbors (and corresponding equivalence groups), v1 and v2 (Line
3). We first add v2. However, fv2; v3; v4g is not closed. By the clos-
ure operation, we add v1 as well, so we have a new S0 ¼
fv1; v2; v3; v4g (Line 4), and ðSp;S0Þ verify (C1–3) (Line 5). i¼4 is
not NULL anymore, so we move to Line 10. i0S ¼ 4 ¼ i and T ¼1.
Since k¼1 (we are exploring the first equivalence group from
fv3; v4g), we do not update T 0 (Line 11) but add S0 to the children
of Sp ¼ fv3g (Line 12). S0 ¼ fv1; v2; v3; v4g has no neighbors since it
is the full graph, so Line 13 returns no more values.

We return to Line 3 to explore the second equivalence group
from fv3; v4g, with k¼2: we add v1. The new S0 ¼ fv1; v3; v4g is a
CSS (Line 4) and ðSp;S0Þ verify (C1–3) (Line 5). i¼4 is not NULL
and T ¼1 (Line 10). We now update it to
T 0 ¼ T [ I1ðSÞ ¼ fIðv2Þg ¼ ff1; 2gg. We add fv1; v3; v4g to the
list of children and call Algorithm 1 again (Line 13), with
Sp ¼ fv3g; S0 ¼ fv1; v3; v4g, i¼4 and T ¼ ff1; 2gg.
fv1; v3; v4g has a single neighbor (Line 3), v2. fv1; v2; v3; v4g is a

CCS (Line 4), ðSp; fv1; v2; v3; v4gÞ verify (C1–3) (Line 5). i is not
NULL. However, IðS0Þ ¼ f1;2; 3; 4g so fI 2 T : I 2 IðS0Þg 6¼1.
We stop the exploration here. This illustrates the importance of the
local itemtables since without them, we would have enumerated
fv1; v2; v3; v4g twice.

Algorithm 1 applied to ðfv3g; fv3g;NULL;NULLÞ returned
fv3; v4g; fv1; v2; v3; v4g; fv1; v3; v4g. When doing the reduction of
any of those CCS, we remove v4 which breaks the CCS into several
components. Since v3 will always be the biggest remaining node, it
will always be picked as the parent. So, when inverting the reduc-
tion, we find all subgraphs containing v3 and v4 as children.

The remaining CCS will be found similarly by starting from v1

(for fv1; v4g) and v2 (for fv2; v4g and fv1; v2; v4g).

3.4 A Breadth-first-search (BFS) enumeration
We argue that exploring any tree structure on C in breadth first will
often allow for more pruning than in depth first. Pruning occurs
among children, not siblings. At any level, even if the CCSs visited
along a branch do increase k and therefore lower the testability
threshold, all the other CCSs of the level will need to be visited re-
gardless of their testability. In contrast, the increase of k gained by
visiting all CCSs of the same level in the tree will lower the threshold
a=k for all CCSs at the next level, making more branches prunable.
We demonstrate this in Section 4 and provide more intuitive exam-
ples in the Supplementary Appendix (Supplementary Sections S-5.1
and S-5.2). A search in breadth is also easily parallelized since the
computation of the minimal p-value, the envelope and the children
of every CCS of a given level can be done in parallel, before increas-
ing k and updating R. In contrast, a parallelized search in depth-
first must share and regularly update k and R, which negates the
advantages of parallelization.

Algorithm 2 explores C through a BFS traversal of the tree
defined by the reduction P, exploiting Algorithm 1 (L.15) to invert
the reduction and using this exploration to apply the Tarone testing
procedure described in Section 2.2 (L7–12, 14), before finally testing
the testable CCSs (L21-25). However, BFS is more memory intensive
than depth-first search (DFS, see Section 4). In order to control the
trade-off between speed and memory, we implemented a hybrid

Fig. 2. A short illustration of CALDERA’s exploration. A simple graph with four

nodes and four samples. Nodes v1, v2 and v3 are linked to node v4. To construct the

CCS fv1; v2; v3; v4g from fv3; v4g, we can either first add v1—and thus construct

fv1; v3; v4g—and then add v2, or directly add v2 and then we get fv1; v2; v3; v4g by

closure. To avoid enumerating fv1; v2; v3; v4g twice, we therefore need local

itemtables

Algorithm 2 List significant closed connected subgraphs

1: procedure List_sig_closed_subgraphs(G; a)

2: Q Childrenð1;1;NULL;1Þ
3: R  1
4: k 1

5: while Q 6¼1 do

6: S  DequeueðQÞ
7: if p?ðSÞ � a=k then

8: R  R[ fSg
9: end if

10: if jRj > k then

11: k kþ 1

12: R  fS 2 R : p?ðSÞ � a=kg
13: end if

14: if ~p
?ðSÞ � a=k then

15: for S0 2 ChildrenðS;S;NULL;1Þ do

16: EnqueueðS0;QÞ
17: end for

18: end if

19: end while

20: Solutions 1
21: for S 2 R do

22: if pðSÞ � a=k then

23: Add S to Solutions

24: end if

25: end for

26: return Solutions

27: end procedure
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exploration scheme in which we allow each stage of the tree to be
split into several batches. The tree is explored in BFS until some
user-defined maximal width is reached at any level, at which point
we start a DFS from the visited nodes. We then restart the explor-
ation of the level in BFS.

3.5 Pruning more CCSs when controlling for an

imbalanced categorical covariate
The envelope ~p

?ðSÞ ¼ minx0�xSp
?ðSÞ introduced in Papaxanthos

et al. (2016) verifies the monotonicity for any subgraph S because
S0 � S ) xS0 � xS . However, the OðJ log JÞ algorithm to compute
this envelope only applies to the so called potentially prunable sub-
graphs which are such that xS;j � maxðn1;j; n2;jÞ for all subgroups
j ¼ 1; . . . ; J defined by the categorical covariate adjusted for by the
CMH test. Pruning can therefore not be done from subgraphs for
which at least one of the J groups has few occurrences of the corre-
sponding covariate. This limitation arises in Lemma 2 of
Papaxanthos et al. (2016), which characterizes the argmin of the en-
velope of a subgraph S. Lemma 4 lifts this restriction:

LEMMA 4. For any connected subgraph S, the envelope ~p
?

is attained for

an optimum x�S0 such that x�S0;j 2 fmaxðxS;j; n1;jÞ;maxðxS;j; n2;jÞ; njg.

The proof is provided in Supplementary Section S-1.5. Lemma 4
exploits a cruder bound for groups that are not in the increasing re-
gime of the minimal p-value. It recovers the Lemma 2 of Papaxanthos
et al. (2016) for potentially prunable subgraphs, while offering an
additional pruning opportunity for the other ones. If a subgraph was
not potentially prunable only because it was missing the xS;j �
maxðn1;j;n2;jÞ condition for one small group j, it may still be actually
prunable since small groups of samples only affect the CMH test stat-
istic marginally. On the other hand, if the condition is not verified for
a large group or several small ones, the resulting envelope will be very
loose and will not allow for pruning in practice. We provide some in-
tuition in the Supplementary Appendix (Supplementary Fig. S3).

4 Experiments

We demonstrate the superiority of CALDERA in terms of computa-
tional speed, statistical power and biological interpretation. To do
so, we rely on both simulated and real datasets.

4.1 Datasets and settings
To test the speed of the methods, we generate datasets with n sam-
ples represented by p 2 ½100 : 20; 000� covariates, and a graph con-
necting these covariates. We vary the proportion prop of samples
that are resistant, i.e. have a phenotype of 1, and the number of sam-
ples. We also perform exploration when changing the value of a,
which impacts pruning. This leads to 4 scenarios to compare the
runtimes of the methods, named Speed 1 to Speed 4. More details
on implementations and parameters can be found in Supplementary
Section S-6. In order to test the speed gains provided by the new
lower bound, we also explore an Imbalance in which we add a bin-
ary confounding variable, fixing n¼100 and p¼3000 but varying
the balance of samples across the confounding variable.

To test the power of the different methods, we rely on a simula-
tion where the ground truth is known, named Exploration. We gen-
erate a dataset with n¼100 samples, 50 of each phenotype, where
two genes A and B are present. Gene A is present for all samples,
while gene B is only present for resistant samples. We introduce het-
erogeneity such that the DBG of the two genes is only linear at a
coarse level (Fig. 1b). More details for the setting of those simula-
tions are provided in Supplementary Section S-7.

We also rely on two real datasets, where we use compacted
DBGs (de Bruijn, 1946; Pevzner et al., 2001). In a DBG, k-mer are
nodes and k-mer that overlap by k – 1 nucleotides are connected by
an edge. The graph is then compacted by reducing all linear sequen-
ces to a single node. The first dataset, which we name Pseudomonas,
consists of the n¼280 P.aeruginosa genomes along with their

resistance phenotype to amikacin, used in DBGWAS (Jaillard et al.,
2018). The bacteria are partitioned based on k-mean into two dis-
tinct groups. The compacted DBG is constructed using the k-mers
with k¼31 (default) using DBGWAS, leading to a graph with over
2.3 million nodes and average degree �2:7. The second, named
Akkermansia, consists of the Akkermansia muciniphila genomes
collected in Karcher et al. (2021). We use host information as cova-
riates: we want to identify genetic sequences that are associated with
a body mass index over 30. The compacted DBG constructed over
those n¼401 strains has 1.3 million nodes with an average degree
of �2:7. On these two real datasets, we rely on heuristics to choose
the level a at which the FWER is controlled and the number of stages
explored in the BFS search—a full exploration being too memory in-
tensive. The level is fixed at the lowest value at which 10 CCSs at
stage 1 of the BFS (i.e. unitig closures) are found significant. The
stage is chosen by stopping when the number of unitigs covered by a
significant CCS reaches a plateau—suggesting that further explor-
ation would not bring much novelty.

4.2 Methods
On top of CALDERA, we use the following methods. COIN (Sese
et al., 2014) is to our knowledge the only described algorithm to
identify significant CCSs, combining the enumeration method of
COPINE with the LAMP algorithm. Minato et al. (2014) presented a
provably superior version of LAMP, which we denote LAMP2. Since
no implementation was provided in Sese et al. (2014), we imple-
mented as a baseline COINþLAMP2. Since CALDERA and
COINþLAMP2 both rely on the same statistical procedures (the iden-
tification of testable hypotheses with Fisher’s test), the set of signifi-
cant CCSs found is the same regardless of the method. For this
reason, we only use COINþLAMP2 in the speed comparison, since
the methods have the same power.

DBGWAS tests individual unitigs for association with a pheno-
type, using a linear mixed-model (LMM). We also benchmark three
k-mer-based methods, available via the pyseer pipeline (Lees et al.,
2018), that recapitulates usual methods: a fixed-effect model with-
out population effect, a LMM similar to the one used in DBGWAS,
which is recommended, and an elastic-net model. Note that, since
those methods, as well as DBGWAS, do not rely on graph exploration,
they will not be benchmarked on the speed simulation portion,
which solely focuses on that task.

4.3 Speed gains of CALDERA
In addition to COINþLAMP2, we benchmark three versions of
CALDERA. The first one, closest to COINþLAMP2, is the DFS imple-
mentation. The second one is the BFS implementation, where we
modify the enumeration order of the elements of C to promote prun-
ing. The last is a parallelized BFS implementation, using five cores.

Benefit of CALDERA’s exploration scheme: In Figure 3a, repre-
senting the results of Speed 2, we see that the ranking in speed is uni-
form over all value of p, with COINþLAMP2 being the slowest,
followed by the DFS and BFS implementation, and finally the paral-
lelized version of CALDERA. For p¼20 000, COINþLAMP2 runs in
2h20 while the parallelized version of CALDERA takes 5 min. The
ranking is the same for Speed 1, Speed 3 and Speed 4 (see
Supplementary Section S-6). For example, for Speed 1 and
p¼20 000, COINþLAMP2 times out (2-day threshold) before finish-
ing, while the parallelized version of CALDERA runs in 6 h. Over all
parameter values, the average ratio of runtime for COINþLAMP2
over CALDERA BFS with 5 cores is 76 and we tested CALDERA on
graphs with up to p¼100 000 nodes in 14 h. In terms of memory,
CALDERA BFS and COINþLAMP2 have near identical requirements,
while the DFS implementation uses about 40% of the other meth-
ods. More details on memory usage can be found in Supplementary
Section S-6.

On the larger Pseudomonas dataset, even CALDERA is unable to
explore the entire C with the heuristic level a ¼ 10	6. We stop the
exploration from any CCS that reaches a size of 2000 nucleotides or
more (-Lmax 2000 option). We also observe that the unitigs covered
by the significant CCSs reaches a plateau after the first six stages of
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the BFS. CALDERA took 3h20 on 4 cores (plus 2h30 to build the
graph), using 200 Gb of RAM to complete these stages using batches
of size 200 000, leading to k0 ¼ 4; 671;265 potentially testable
CCSs and only 39 significant ones. For comparison, after running
for 24 h, COINþLAMP2 was exploring the tree structure with a run-
ning k0 ¼ 105—i.e. had achieved about 2% of the exploration.
DBGWAS runs in 2h45 (15 mn for the statistical test). k-mer-based
methods benefit from a faster initial step of k-mer counting (1h30)
but the statistical test is much longer, even using four cores: 2h30
for the fixed-effect and LMM, 3h30 for the elastic net method.
Overall, CALDERA performs slower than DBGWAS but on par with
the k-mer-based methods.

We provide a more general analysis of the computational cost of
CALDERA against the number of BFS stages in Supplementary
Section S-8 and recommend using a similar analysis and stop after a
few stages in cases where a full exploration is no feasible.

Benefit of CALDERA’s lower-bound on runtime for imbalanced
population: For extreme ratios—below 0.02—the new lower bound
allows much more pruning and enumerates an order of magnitude
fewer elements of C. Up to a ratio of 0.1, the new lower bound leads
to a decrease of at least 10% in the number of explored subgraphs
(see Supplementary Fig. S7).

4.4 Power gains of CALDERA
As mentioned above, COINþLAMP2 and all versions of CALDERA
rely on the same statistical procedures and therefore find an identical
list of significant CCSs for a given level a. However, we can compare
the power of CALDERA with DBGWAS and k-mer-based methods. We
also use the LAMP2 procedure when testing All Unitigs separate-
ly, using Fisher’s test—like CALDERA.

We run all three methods on the dataset Exploration and meas-
ure how many of the 367 unitigs of gene B are called significant,
when controlling the FWER at a varying level a. For CALDERA, a
significant unitig is one that is contained in a significant CCS. Even
when controlling the FWER at very low levels (a ¼ 10	16),
CALDERA correctly recovers the entirety of the resistant gene. On
the other hand, the other methods fail to ever recover the entire
gene, even at a ¼ 0:1. This clearly show the enhanced power of
CALDERA: because of variations along the genome, the association
of any individual unitig with the phenotype is weak, while a covari-
ate that jointly represents all 367 unitigs of the resistant gene is very
strongly associated with that phenotype. The additional loss of
power of k-mer methods stems from the larger multiple testing cor-
rection that they incur. Here, we also benchmarked Kover: al-
though this method focuses on prediction and thus does not return
p-values, its conjunction—disjunction approach could potentially
identify the full gene as the best predictor of the phenotype.
However, that is not the case and Kover only returns one k-mer as
the best predictor.

We also apply those three methods to the Pseudomonas dataset.
While there is no ground truth, this dataset contains two confirmed
genetic variants linked to resistance to amikacin: a SNP on the
aac(60) gene, represented by one unitig, and the pHS87b plasmid,
represented by 476 unitigs. This allows us to see how the methods
handle those different scales. At the default a ¼ 10	6, CALDERA find
the aac(60) mutation as one CCS, and finds significant CCSs that
covers 96% of the plasmid. Those two components represent 59%
of all significant unitigs. In contrast, All Unitigs and DBGWAS do
recover the mutation but only 34% and 0% of the plasmid, respect-
ively. Even at a ¼ 0:1, All Unitigs and DBGWAS only recover re-
spectively 72% and 8% of the plasmid. Moreover, while it is not
possible to compute a false negative rate on a real dataset, we can
see that, at this level, the two known sequences—the plasmid and
the aac(60) mutation—only represent 6% and 17% of all significant
unitigs.

4.5 Simplified biological interpretation
Biological interpretation in DBGWAS or CALDERA happens at the
component levels: significant unitigs or CCSs separated by only a
few non-significant unitigs are displayed as one component. Unitigs
can also be annotated using various databases, to enhance interpret-
ation. Components are ranked in order of decreasing p-values,
choosing the smallest p-value among all unitigs/CCSs. As such, both
the number of components and their rankings will impact the ease
of interpretation.

Figure 4 gives an example: we see the results of running
CALDERA on the Akkermansia dataset. Only one CCS is significant,
while DBGWAS returns no significant unitig. All the unitigs in the sig-
nificant CCS (colored in green) are annotated, using the RefSeq
database of all known A.muciniphila proteins as a reference
(Tatusova et al., 2016), and map to a common gene. This gene is
not well annotated (hypothetical protein) but partially map to a
Tubulin/FtsZ_GTPase A.muciniphila protein.

The plasmid returned as the first component of CALDERA on the
Pseudomonas dataset can be seen in Supplementary Fig. S13.
Visually, we can see clearly a broad circular graph, with local genet-
ic variations. CALDERA returns eight components: the first is the en-
tire plasmid, returned as one component. The second is the aac(60)
mutation. DBGWAS always ranks the aac(60) mutation first but never
returns the plasmid as one component, even when controlling the
FWER at a level of 0.1 (three components, the first one ranked
fourth). Moreover, at this level, DBWGAS returns 77 components,
making the interpretation much harder.
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5 Discussion

This article presented CALDERA, an algorithm to enumerate all sig-

nificant CCSs. CALDERA is between one and two orders of magni-
tude faster than previously described exploration methods. It easily

scales to large datasets, relying on an efficient structure on C and an
exploration scheme that leverages the pruning opportunity offered
by discrete statistics. This increased computational speed allows to

deploy this method to DBG-based bacterial GWAS, which we dem-
onstrate on two real examples. Moreover, we show that considering

the CCSs, as done by CALDERA, leads to increased power and facili-
tates interpretation, compared to previous methods that perform
statistical tests at the node level. CALDERA can better detect low sig-

nal caused by variability in genetic elements. It also returns larger
and more coherent outputs that are easier to interpret.

We extensively discussed how CALDERA performs on bacterial
GWAS. However, CALDERA can also be used for other tests of asso-

ciation involving a graph structure. We provide in Supplementary
Section S-10 an example: we look at the association between SNPs
on Arabidopsis thaliana genomes and a ‘date to flowering’ pheno-

type. In that setting, the graph is a regulatory network on the genes
and the objective is to identify subnetworks whose disruption by at
least one mutation is associated with the phenotype.

In settings where the node is a more natural object than the CCS,
discrete testing can still be used to take advantage of Tarone

(1990)’s procedure and increase power. However, pruning will no
longer be possible, unless some other order can be established be-

tween nodes that preserve the order of minimal p-values.
For now, CALDERA does not scale to datasets with hundreds of

millions of nodes that are possible in metagenome-wide association
studies. Future work that focuses on incorporating pre-processing
schemes before CALDERA would be needed to compact the graph to

both reduce its size and facilitate pruning by increasing the average
jIðvjÞj.
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Llinares-López,F. et al. (2017) Genome-wide genetic heterogeneity discovery

with categorical covariates. Bioinformatics, 33, 1820–1828.

Minato,S.I. et al. (2014). A fast method of statistical assessment for combina-

torial hypotheses based on frequent itemset enumeration. In: Lecture Notes

in Computer Science (Including Subseries Lecture Notes in Artificial

Intelligence and Lecture Notes in Bioinformatics), Vol. 8725 LNAI.

Springer Verlag, pp. 422–436.

Fig. 4. Akkermansia dataset: Tubulin/FtsZ_GTPase gene. Screenshot from the output of CALDERA. We select the first component, which is the one which contains the most sig-

nificant CCS. (a) Unitigs belonging to the most significant CCS are colored in green (darker gray in the black and white version of the document). Other unitigs linked to the

CCS in the DBG are colored in gray. Size denotes overall frequency, while a black contour denotes that the sequence of the unitig has a match in the database, here RefSeq

(Tatusova et al., 2016). (b) All significant hits on that database are listed in a panel, usually on top of the subgraph. (c) User can click on nodes to display information, or right-

click to select all nodes from the same component. This contains info on the node, such as the frequency, the pattern of the associated CCS, or any match to the database (A

color version of this figure appears in the online version of this article)

CALDERA i43

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac238#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac238#supplementary-data
https://github.com/HectorRDB/Caldera_ISMB


Okuno,S. et al. (2017) Parallelization of extracting connected subgraphs with

common itemsets in distributed memory environments. J. Inf. Process., 25,

256–267.

Papaxanthos,L. et al. (2016) Finding significant combinations of features

in the presence of categorical covariates. In: NEURIPS. pp.

2271–2279.

Pevzner,P.A. et al. (2001) An Eulerian path approach to DNA fragment assem-

bly. Proc. Natl. Acad. Sci. USA, 98, 9748–9753.

Seki,M. and Sese,J. (2008) Identification of active biological networks and

common expression conditions. In: 8th IEEE International Conference on

BioInformatics and BioEngineering, BIBE 2008, Athens, Greece.

Sese,J. et al. (2010). Mining networks with shared items. In: International

Conference on Information and Knowledge Management, Proceedings.

ACM Press, New York, NY, USA, pages 1681–1684.

Sese,J. et al. (2014) Statistically significant subgraphs for genome-wide associ-

ation study. SDM, 47, 1–7.

Sheppard,S.K. et al. (2013) Genome-wide association study identifies vitamin

b5 biosynthesis as a host specificity factor in campylobacter. Proc. Natl.

Acad. Sci. USA, 110, 11923–11927.

Tarone,R.E. (1990) A modified Bonferroni method for discrete data.

Biometrics, 46, 515–522.

Tatusova,T. et al. (2016) NCBI prokaryotic genome annotation pipeline.

Nucleic Acids Res., 44, 6614–6624.

Terada,A. et al. (2013) Statistical significance of combinatorial regulations.

Proc. Natl. Acad. Sci. USA, 110, 12996–13001.

Uno,T. et al. (2004) Efficient mining algorithms for frequent/closed/maximal

itemsets. In: IEEE ICDM Workshop on Frequent Itemset Mining

Implementations, Brighton, UK.

Visscher,P.M. et al. (2017) 10 Years of GWAS discovery: biology, function,

and translation. Am. J. Hum. Genet., 101, 5–22.

Westbrook,J. and Tarjan,R.E. (1992) Maintaining bridge-connected and

biconnected components on-line. Algorithmica, 7, 433–464.

i44 H.Roux de B�ezieux et al.




