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Estimating the Price Elasticity of Gasoline Demand in
Correlated Random Coefficient Models with

Endogeneity

Michael Bates∗ and Seolah Kim†

May 26, 2023

Abstract

We propose a per-cluster instrumental variables approach (PCIV) for estimating
linear correlated random coefficient models in the presence of contemporaneous endo-
geneity and two-way fixed effects. This approach estimates heterogeneous effects and
aggregates them to population averages. We demonstrate consistency, showing robust-
ness over standard estimators, and provide analytic standard errors for robust inference.
In Monte Carlo simulation, PCIV performs relatively well in finite samples in either
dimension. We apply PCIV in estimating the price elasticity of gasoline demand using
state fuel taxes as instrumental variables. We find significant elasticity heterogeneity
and more elastic gasoline demand on average than with standard estimators.

Keywords: instrumental variables, per-cluster estimation, heterogeneous effects, popu-
lation average effects, local average treatment effects.
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1 Introduction
The price elasticity of the demand for gasoline is an integral parameter for climate miti-

gation policy, modeling energy and automotive markets, and urban planning (Dahl, 1986;

Dahl and Sterner, 1991; Espey, 1998). However, several econometric issues complicate the

estimation of this important parameter. First, gasoline prices and the volume purchased

likely depend upon each other through the interaction of supply and demand forces. Second,

quantities, prices, and taxes trend over time. Finally, there is marked heterogeneity across

this market with geography, industry composition, population density, demographic compo-

sition, transportation substitutes, economic climates, regulations, and tax rates each varying

across states. Assuming homogeneous elasticities across this landscape seems questionable

(Wadud et al., 2010; Frondel et al., 2012; Blundell et al., 2012; Hausman and Newey, 2016;

Levin et al., 2017), and ignoring this likely heterogeneity when using standard estimators

may cause bias. As a result, we introduce an approach to estimate linear correlated random

coefficient models in the presence of contemporaneous endogeneity and two-way fixed effects.

The method we propose has the added benefit of estimating the distribution of heterogeneous

effects rather than only the mean.

Our estimator for the price elasticity of gasoline demand has broader applicability than

our current context.1 Empirical work often aims to identify the population average effect

(PAE)—the average causal relationship between two variables over an entire population of

interest. Heterogeneous effects within the population are inherent in these conceptualiza-

tions and often hold economic significance (Heckman and Vytlacil, 1998).2 These correlated

random coefficient (CRC) models, however, add complications for estimation even when

1This method is well suited to settings in which data is grouped into moderately large clusters, endo-
geneity is plausible, and where heterogeneous effects are likely such as in development and political economy
(Miguel et al., 2004), industrial organization and energy markets, (Bushnell et al., 2008), public finance and
education (Jackson et al., 2016), labor economics (Kostol and Mogstad, 2014), and trade (Feyrer, 2019).

2While Heckman and Vytlacil (1998) coined the helpful phrase “correlated random coefficients models,”
similar models originate much earlier with examinations appearing in Rubin (1950); Klein (1953); Kuh
(1959); Swamy (1971); Mundlak (1978); Raj et al. (1980), and Chamberlain (1992).
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regressors are otherwise exogenous (Wooldridge, 2005; Arellano and Bonhomme, 2011; Gra-

ham and Powell, 2012; Bates et al., 2014). This effect heterogeneity may produce even

further complications in so-called two-way fixed effects models with multiple time periods

(De Chaisemartin and d’Haultfoeuille, 2020; Borusyak et al., 2021; Callaway and Sant‘Anna,

2021; Goodman-Bacon, 2021; Sun and Abraham, 2021; Wooldridge, 2021).

Applied economic researchers, however, often work in settings where some explanatory

variables may be correlated with the error term (for instance due to omitted variables or si-

multaneity). In those cases when a valid instrument is available, it is typical for researchers to

turn to pooled two-stage least squares (P2SLS) or fixed effects instrumental variables (FEIV)

estimators. Murtazashvili and Wooldridge (2008) provide the conditions under which a gen-

eral class of FEIV estimators consistently estimate PAEs with endogenous regressors. They

find that in CRC models, consistency requires the assumption that the heterogeneous slopes

are uncorrelated with the covariance between the instruments and endogenous regressors.3

This restriction may not hold in many cases. Consider the local average treatment effect

(LATE) framework from Imbens and Angrist (1994). The instrument is not relevant for

some individual clusters within the population, and treatment effects differ on average by

whether the individual is moved toward treatment by the instrument. Such a setting would

prevent FEIV from consistently estimating the average treatment effect (ATE). Even in a

population in which all are influenced by a valid instrument, if effect heterogeneity correlates

with the strength of the instrument within-cluster, FEIV would continue to fail to estimate

the ATE among a population of compliers with the instrument (the LATE).

Fernández-Val and Lee (2013) introduce an approach of estimating cluster-specific slopes

and averaging over them.4 They iteratively apply generalized method of moments (GMM)

estimators separately to the time series of each cluster. As the GMM approach is asymp-

totically biased, they introduce bias corrections. Per-cluster estimation, however, may be

3P2SLS requires a similar restriction for consistency.
4Kelejian (1974) also demonstrates that treating these random coefficients as fixed effects is useful for

identification in such models with endogenous covariates.
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taxing on the data, particularly when there are many covariates and relatively short panels.

Designating some conditioning variables to have common coefficients may help. Fernández-

Val and Lee (2013) preserves degrees of freedom for estimation by netting out the effects of

covariates with common coefficients. They estimate this vector of common coefficients in an

additional step within each iteration using time averages. Accordingly, parameters on vari-

ables that vary only across time cannot be identified, thus ruling out common applications

such as two-way fixed effects models.

Our approach, which we term per-cluster instrumental variables (PCIV), in simple set-

tings applies 2SLS estimation on a cluster-by-cluster basis before aggregating them. The

general PCIV estimator accommodates differential cluster sizes and covariates with both

heterogeneous and homogeneous slopes, allowing the dimension of the vector of covariates

to exceed the number of observations per cluster (T ), as in the presence of two-way fixed

effects. We show that the asymptotic distribution of the estimator is normal and centered

at the true parameter value without placing restrictions on the correlation between the

explanatory variables and random coefficients. In each stage, we do this by first netting

out cluster-specific slopes from the left-hand-side variables and variables with homogeneous

slopes. Second, we pool over those residuals to consistently estimate homogeneous coeffi-

cients using both time-series and cross-sectional variation. We use those estimated common

parameters to net out the effects of the covariates from the left-hand-side variables, which

we regress on the variables with heterogeneous slopes again by cluster. We aggregate over

those cluster-specific slopes using appropriate weights to estimate relevant parameters such

as the PAE or LATE. We propose accompanying analytic standard errors that are robust to

arbitrary within-cluster correlation. This approach can be viewed as extending an estimator

described in Wooldridge (2010 Section 11.7.2) to account for endogeneity.

Due to the long panel and likely effect heterogeneity, the method is ideal for estimating the

price elasticity of gasoline demand in the United States. We follow Davis and Kilian (2011);
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Blundell et al. (2012); Li et al. (2014); Hausman and Newey (2016); Coglianese et al. (2017);

and Hoderlein and Vanhems (2018) in using state fuel taxes as our source of exogenous

variation and use them to instrument for average state gasoline prices. Given the variation

in state changes to gasoline taxes and the likely heterogeneity in gasoline demand, ignoring

such heterogeneity may lead to inconsistent estimates. Accordingly, we perform estimation

using standard approaches from the literature and the more robust PCIV approach. As

earlier work relies on aging and discontinued data series, we update and bolster the analysis

with novel data collection.5

This analysis allows us to demonstrate additional advantages of PCIV estimation. First,

we find that both the magnitude and significance of the results are sensitive to the methods

used. The robust PCIV approach estimates a population average elasticity of the demand

for gasoline of -0.4 to -0.6 whereas FEIV estimates range from -0.75 to -0.95. Second, PCIV

provides the distribution of state-specific elasticities in addition to the mean effects. We see

substantial heterogeneity in both. The standard deviation of state-specific elasticities are

38% of the mean elasticity. Third, in seeming violation of the key assumption for consistency

of P2SLS and FEIV, we observe a meaningful correlation between the first-stage variation

and the state-specific elasticity estimates. Fourth, we find a significant divergence between

the implicit weighting of FEIV and the natural market share weights we employ with PCIV.

Finally, as the instrument is not universally strong, we provide a LATE (-0.56) for the 46

states in which the instrument is strong, which is very close to the PAE though the LATE

carries smaller standard errors.

We organize the remainder of the paper as follows. Section 2 introduces the econometric

model and the proposed estimator. Section 3 provides the main consistency results. Section 4

contains a Monte Carlo study showing that the PCIV estimator performs comparably to

5Along with Davis and Kilian (2011); Li et al. (2014); and Coglianese et al. (2017), we rely on the
U.S. Department of Energy, Energy Information Administration, ‘Petroleum Marketing Monthly Report:
Gasoline Prices by Formulation, Grade, Sales Type’ for gasoline prices by state for 1989-2008. However, this
series was discontinued in 2011. As a result, we add to this data state-by-month averages of at-the-pump
gasoline prices collected from Gasbuddy.com.
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standard estimators in the ideal setting but outperforms P2SLS and FEIV when there is

a correlation between effect heterogeneity and first-stage variation. We estimate the price

elasticity of gasoline demand in Section 5 before concluding in Section 6.

2 Model specification and proposed estimator
Consider a correlated random coefficients (CRC) model as follows:

yij = x1ijbi + x2ijδ + eij,

x1ij = zijγi + x2ijη + uij, i = 1, ..., n; j = 1, ..., T,

(1)

where yij is the dependent variable of the jth unit of a randomly sampled cluster i and eij

is an idiosyncratic error. The 1 × K vector, x1ij, includes 1 as well as covariates that may

be endogenous and are allowed to vary both between and within clusters. We assume the

presence of zij, a 1 × L (L ≥ K) vector of instrumental variables, which are excluded from

the second-stage equation. A vital feature of the model is the K × 1 vector of cluster-specific

slopes, bi = β+di, where E(di) = 0 by definition. We are primarily interested in estimating

the PAE, β. This vector indicates the heterogeneous effects that vary by cluster and may be

correlated with x1ij. We allow for a 1 × H vector of exogenous covariates, x2ij, with δ and

η, H × 1 vectors of homogeneous slopes. We use a standard formulation of the first stage

except that we allow the relationship between the instruments and the endogenous variables

to vary across clusters, as γi = Γ + gi such that E(gi) = 0.

This model is perhaps most naturally applied to long panel settings in which n clusters

(indexed by i) are randomly sampled bringing with them T time observations per cluster

(indexed by j). However, this model and the methods described below may also be applied

to clustered cross-sections if there is reason to suspect effect heterogeneity across clusters.

Likewise, if effects differ across time instead of space, we may think of time as comprising

clusters (indexed by i), while cross-sectional units comprise the observations per cluster

(indexed by j).
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The identification of CRC models has received earlier attention. Graham and Powell

(2012), Arellano and Bonhomme (2011), and Chernozhukov et al. (2013) study the identifi-

cation of CRC models when T is fixed and the explanatory variables are otherwise exogenous.

In particular, Graham and Powell (2012) show that regular identification of CRC models may

not be possible in many settings, such as if there is insufficient variation over time in covari-

ates within each cluster. Fernández-Val and Lee (2013) consider the identification of CRC

models in the presence of endogeneity as n and T tend to infinity, similar to this setting. In

particular, they note that the number of parameters with heterogeneous slopes must be less

than T and that the presence of endogeneity requires there to also be all-else-equal exoge-

nous variation within each cluster in order to identify the model parameters. Accordingly, we

require similar conditions to estimate PAEs. We provide more detail about the assumptions

we require in the discussion of consistency below.

2.1 Proposed estimator in a simple model

Before handling the general case, we illustrate the intuition behind our approach by proposing

a per-cluster instrumental variables estimator for a simplified setting (PCIV) in which all

clusters are of equal size (such that all the weights are equal) and there are no influential

exogenous covariates. PCIV estimation follows three steps:

1. Use OLS to regress each element of x1ij on zij separately for each cluster i, obtaining

the vector of fitted values, x̂1ij.

2. Use OLS to regress yij on x̂1ij within each cluster, obtaining the vector of cluster-

specific estimates, b̂i,PCIV .6

3. Average over b̂i,PCIV for the population to provide the PAE estimate, β̂PCIV .

6The “statsby” command in Stata 15 (Stata Corp, 2015) allows these first two steps to be completed in
a singular line of code.
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Accordingly, we may write the cluster-specific PCIV estimates as the following:

b̂i,PCIV = β + di +

(
T∑

j=1

x′1ijHzijx1ij

)−1 T∑
j=1

x′1ijHzijeij, (2)

where Hzij = zij

(∑T
j=1 z′ijzij

)−1
z′ij. The intuition here is that because di does not vary

within the cluster, it must be mean independent of within-cluster deviations of zij and x1ij

used in the per-cluster regressions, even if it is correlated with both zij and x1ij. Maintaining

random sampling and homogeneous cluster size, we then average over the estimated cluster-

specific slopes to provide our PCIV estimate of β.

This case restricts the model studied in Murtazashvili and Wooldridge (2008) by disal-

lowing exogenous regressors and time effects. Common parameters pose a significant issue

for the simple estimator above and the proposed estimator in Fernández-Val and Lee (2013).

In both, the estimation of all parameters occurs on a per-cluster basis. Accordingly, each

additional parameter significantly reduces the degrees of freedom in each regression and the

number of parameters cannot exceed T , disallowing the inclusion of time effects.

Furthermore, the class of FEIV estimators discussed in Murtazashvili and Wooldridge

(2008) require additional assumptions for consistency. Consider the following representation

of the estimate of β from 2SLS applied to the time-demeaned covariates and instruments:

β̂FEIV = β +

(
n∑

i=1

T∑
j=1

ẍ′1ijHzẍ1ij

)−1 [ n∑
i=1

T∑
j=1

ẍ′1ijHzẍ1ijdi +
n∑

i=1

T∑
j=1

ẍ′1ijHzëij

]
, (3)

where Hz = z̈ij

(∑n
i=1

∑T
j=1 z̈′ij z̈ij

)−1
z̈′ij. Murtazashvili and Wooldridge (2008) observe that

they also “need assumptions such that z̈ij is uncorrelated with ẍ1ijdi.”7 This is required in

FEIV estimation because FEIV tends to apply relatively more weight to clusters with more

7In the simulation and application, we will also consider pooled two-stage least squares and pooled two-
stage least squares applied to first-differenced data. Neither estimator avoids making a similar assumption
for consistency in estimating the PAE.
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identifying first-stage variation.

If the instrument’s strength is related to the effect heterogeneity (allowing a LATE to

differ from the ATE), E[(z̈′ijẍ1ij)
−1z̈′ijẍ1ijdi] 6= 0 and FEIV may be inconsistent. Further,

a correlation between the strength of the instrument and the heterogeneous effects at the

intensive margin may cause FEIV to fail to estimate even the LATE consistently. It is this

assumption that estimators in Fernández-Val and Lee (2013) and our paper avoid without

imposing a homogeneous first-stage relationship.8

2.2 Proposed estimator in a general model

Empirical contexts are wide-ranging. Clusters are often different sizes and the inclusion of

time effects and other exogenous covariates is ubiquitous. Here, we introduce an estimator

which researchers may apply to the multiplicity of contexts encompassed in equation 1. For

ease of exposition, we use matrix notation such that yi is a T × 1 vector of a dependent

variable, X1i is a T ×K matrix of endogenous variables, X2i is a T × H matrix of exogenous

covariates, and Zi is a T × L matrix of instruments. We list the steps for estimating each

stage of the general PCIV estimator below using OLS. The first-stage estimation is related to

the estimators proposed in Pesaran (2006) and more closely follows an estimator described

in Wooldridge (2010).

First-stage estimation:

1. Per-cluster, regress x1ij and x2ij on zij, saving the residuals X̃1i = MZi
X1i and X̃2i =

MZi
X2i where MZi

= IT − Zi(Z
′
iZi)Z

′
i. This step allows us to eliminate γi when we

estimate η in the second step.

This step is akin to the common practice of detrending data to accommodate cluster-specific

linear time trends.
8Murtazashvili and Wooldridge (2016), and Laage (2019) introduce estimators for CRC models with

endogenous regressors, but rely on homogeneous first-stage coefficients across individuals, thus ruling out
the possibility of compliers, always-takers, and never-takers usually associated with the LATE.
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2. To consistently estimate η, regress the residuals x̃1ij on x̃2ij pooling over clusters to

estimate η̂ = (
∑n

i=1 X′2iMZi
X2i)

−1∑n
i=1 X′2iMZi

X1i.

In the analogous example of handling cluster-specific time trends, this step is similar to

pooled OLS on detrended data.

3. Estimate γi per-cluster by regressing (x1ij − x2ijη̂) on zij. Then, we can construct

X̂1i = Ziγ̂i + X2iη̂, where γ̂i = (Z′iZi)
−1Z′i(X1i −X2iη̂).

Here, we use OLS within each cluster to estimate cluster-specific slopes after accounting for

covariates with homogeneous slopes.

Second-stage estimation

Second-stage estimation in steps 1 - 3 are directly comparable to the same steps in the first

stage, except that yij is substituted in for x1ij and x̂1ij is substituted in for zij.

1. For the second stage, we regress yij and x2ij on x̂1ij per-cluster, obtaining the residuals

ẏi = MX̂1i
yi and Ẋ2i = MX̂1i

X2i, where MX̂1i
= IT − X̂1i(X̂

′
1iX̂1i)

−1X̂′1i.

2. Regressing the residuals ẏij on ẋ2ij pooling over clusters allows us to eliminate bi when

estimating δ̂ = (
∑n

i=1 X′2iMX̂1i
X2i)

−1∑n
i=1 X′2iMX̂1i

X1i.

3. The heterogeneous slopes b̂i = (X̂′1iX̂1i)
−1X̂′1i(yi−X2iδ̂) can be consistently estimated

by regressing (yij − x2ij δ̂) on x̂1ij per cluster.

4. Averaging over b̂i obtains β̂PCIV =
∑n

i=1wib̂i.

The general PCIV estimator allows for flexibly weighting clusters and models where the

dimension of covariates may be large, including when K+H > T . Researchers often include

additional variables in their models, which they assume to be exogenous. In some instances,

the instrument may only be exogenous conditional on such covariates. Time effects provide
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one such example, where we may expect the outcome, endogenous, and instrumental variables

to each trend over time.

There are a variety of contexts in which heterogeneously weighting cluster-specific esti-

mates may be attractive. In many panel data settings, clusters represent individuals from the

population of interest about whom we have multiple observations. Under random sampling

of these individuals, we may wish to afford each individual equal weight. However, many

popular panel data sets are not random samples of the population.9

Such nonrandom sampling schemes would, in turn, lead the average of effects to over-

weight the populations which are over-represented, obscuring the true PAE. Solon et al.

(2015) discuss overcoming such nonrandom sampling as one possible rationale for when em-

pirical researchers should use weights. Fortunately, researchers may still uncover PAEs using

per-cluster approaches with relative ease. In this case, the PAE can be identified using the

inverse of the probability of selection as a cluster-level weight.

Varying cluster sizes may also necessitate weighting for uncovering the PAE. This may

be the case in settings with grouped cross-sectional data or state-level panels, as in our

application below. When clusters form the population of interest, we have a similar situation

to the panel data setting above. However, if we are instead interested in the population of

individuals nested in clusters, we must consider each cluster’s size in the population, and wi

may take the relative size of each cluster. Our application falls into this situation, as states

vary widely in their relevance to the nationwide market for gasoline.

Efficiency may provide a third rationale for heterogeneously weighting cluster-specific

estimates. Swamy (1971) cites this rationale for introducing a precision weighted estimator

for CRC models with exogenous regressors and Fernández-Val and Lee (2013) propose an

analogous optimal weighting matrix for their GMM estimation. These weighting schemes

weight estimates of bi by the relative variance of xi or covariance between xi and zi. We,

9For instance, the Panel Survey of Income Dynamics over-samples low-income families, and the National
Longitudinal Survey of Youth over-samples African American, Hispanic or Latino, military, and economically
disadvantaged youth.
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however, view the primary advantage of the PCIV estimator to be its robustness. Were we

to adopt a precision weighting approach similar to Swamy (1971) and Fernández-Val and Lee

(2013), we would need to impose the same uncorrelated covariance assumption underpinning

FEIV estimation. Consequently, we only pursue weighting schemes that do not impose such

restrictive assumptions.

3 Consistency and inference of a proposed estimator

3.1 Consistency

While CRC models are perhaps more plausible representations of many economic contexts,

incorporating such heterogeneity comes with greater demands on the data. We enumerate

further assumptions below:10

(A1) {yi,X1i,X2i,Zi,di,gi}ni=1 is i.i.d. across i.

(A2) E[eij | X2i,Zi,di] = 0, E[uij | X2i,Zi,gi] = 0, E[eie
′
i] = Ω, E[e4ij] <∞. Also, E(di) = 0

where V (di) = σ2
d <∞, and E(gi) = 0 where V (gi) = σ2

g <∞.

(A3) rank[Ei(z
′
ijxij)] = K, rank[Ei(z

′
ijzij)] = L, and E[z′ijzije

2
ij] is positive definite.

(A4) E[‖x2ij‖2] <∞, E[‖zij‖2] <∞; E[‖zij‖4] <∞, and E[‖x2ij‖4] <∞.

(A5) wi = Op(n
−1) where

∑n
i=1wi = 1; As n, T →∞, n/T → 0.

We assume independence across the cluster i in our model to estimate the population average

treatment effect. Assumption (A2) is a standard strict exogeneity assumption and says that

once we control for x2it, zit, and di, (x2is, zis) (where s 6= t) do not explain yit, and that the

variance of the error is well-defined. E(di) = 0 and E(gi) = 0 are true by definition when

the expectation is taken over the population. The condition that rank[Ei(z
′
ijxij)] = K is

meaningful, and can be viewed as an application of results from Graham and Powell (2012),

10Note that Ei[·] refers to the expectation over T for each cluster i.
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extended to the endogenous case. It requires 1) variation in the instruments and endoge-

nous regressors within each cluster, and 2) all clusters to be influenced by the instrument.

This condition is demanding on the data, but as noted in Graham and Powell (2012), it is

a function of the model rather than a particular estimator. Further, the first-stage PCIV

regressions demonstrate its plausibility within the sample. Assumption (A4) ensures finite

variances in the population model and is needed for the consistency of the estimator’s vari-

ance. We require an assumption about appropriate weights in (A5), which is needed for

estimating the population average treatment effect. The second part of Assumption (A5) is

in line with the assumption in Fernández-Val and Lee (2013). Since both Fernández-Val and

Lee (2013) and our estimator require estimation at the cluster level after the within-cluster

estimation, the assumption on the ratio of n and T convergence is needed. Combined with

weighting, this assumption allows our estimator to be consistent both within the cluster and

at the population level.

Theorem 1 Under the assumptions (A1)-(A5),

β̂PCIV = β +
∑n

i=1widi +
∑n

i=1wi(X
′
1iPiX1i)

−1X′1iPiei
p→ β as n, T → ∞, where Pi =

HZi
+ MZi

X2i(X
′
2iMZi

X2i)
−1X′2iMZi

, where HZi
= Zi(Z

′
iZi)

−1Z′i.

3.2 Inference

In this section, we derive the asymptotic variance of the general PCIV estimator for inference

and describe its estimation. Since we first estimate cluster-level coefficients, bi, to obtain

an estimate of the global-level estimate, β̂PCIV , we need to account for possible estimation

13



error. We construct a sample variance as follows:

V̂(β̂PCIV − β) (4)

= V

(
n∑

i=1

wi

[
d̂i + (X′1iPiX1i)

−1
X′1iPiêi

])

=
n∑

i=1

w2
i d̂id̂

′
i +

n∑
i=1

w2
i (X′1iPiX1i)

−1
X′1iPiêiê

′
iP
′
iX1i (X′1iPiX1i)

−1

where d̂i = b̂i − β̂PCIV , and êi = yi −X1ib̂i −X2iδ̂. Throughout this paper, we will apply

this estimated variance in the simulation as well as application studies to construct the

standard errors. The standard errors from this estimator are robust to heteroskedasticity

and arbitrary correlation in the error term within clusters. The proof of Theorem 2 is shown

in Appendix B.

Theorem 2 Under the assumptions (A1)-(A5),
√
n(β̂PCIV −β)→ N(0, V (β̂PCIV )), where

V̂ (β̂PCIV ) is a consistent estimator of V (β̂PCIV ).

3.3 Finite samples in one dimension

While very large data sets are becoming more commonplace, researchers may not wish to rely

on asymptotic arguments with respect to both dimensions of their data in many applications.

Consequently, we also consider the properties of the PCIV estimator with a fixed number of

clusters (n) while the number of observations per cluster (T ) → ∞, before considering the

probability limit more comparable to FEIV with fixed observations per cluster and n→ ∞.

Re-writing the expression for our PCIV estimator,

β̂PCIV − β =
n∑

i=1

wi(b̂i − β) =
n∑

i=1

wi(bi − β) +
n∑

i=1

wi(b̂i − bi)

=
n∑

i=1

widi +
n∑

i=1

wi(b̂i − bi).

(5)
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We start with fixed n while the number of observations per cluster goes to infinity. While

this could be true with panel data, this setting is perhaps more commonplace for clustered

cross-sectional data. Accordingly, we take the probability limit of equation 5 as T → ∞,

providing the following:

plim
T→∞

(β̂PCIV − β) =
n∑

i=1

widi +
n∑

i=1

wiEi[b̂i − bi]

=
n∑

i=1

widi +
n∑

i=1

wi(Ei[X
′
1iPiX1i])

−1Ei[X
′
1iPiei].

Ei[·] denotes the expectation over T only. The previously stated rank and validity assump-

tions applied to each cluster ensure that
∑n

i=1wi(Ei[X
′
1iPiX1i])

−1Ei[X
′
1iPiei] = 0, which

leads to the consistency of b̂i. With finite n, the first term is not zero, though, with random

sampling, the expectation of it is zero by assumption. This finite sample bias with limited

n shrinks as n grows as shown in the proof of Theorem 1. Thus, the PCIV approach is

asymptotically unbiased in estimating the PAE, though consistency requires n→ ∞.

Perhaps a more common setting exists when T is fixed and n tends to infinity. This setting

is common in applications with panel data. Taking the probability limit of equation 5 with

n→ ∞ provides the following:

plim
n→∞

(β̂PCIV − β) = wiE[di] + wiE[b̂i − bi]

= wiE[di] + wiE[(X′1iPiX1i)
−1

X′1iPiei].

With a fixed number of observations per cluster, additional complications arise. While by

definition, E(di) = 0, we first require that T is large enough (T > K) to estimate bi.

Second, an asymptotic bias arises with a fixed T since we cannot rely on E[X′1iPiei] = 0 and

b̂i − bi = Op(T
− 1

2 ).11 Unlike in the exogenous case presented in Wooldridge (2010), each

11A more detailed expression for the bias term is given in equation 8 in Appendix A.
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estimated b̂i will likely manifest some degree of finite sample bias. The question is whether we

may expect the biases to be well-behaved or mean zero in expectation as only the number of

clusters approaches infinity. The first way this finite sample bias is well-behaved is apparent

from the consistency argument above. The finite sample bias falls as the ratio of observations

per cluster to regressors (and instruments) grows, as shown in Theorem 1.

However, even with a reasonably large fixed T , each b̂i will suffer from a finite-sample

bias if the instrument is weak within the cluster. As discussed in Bound et al. (1995) and

Staiger and Stock (1997), with weak instruments, the finite sample bias is in the direction

of the OLS estimates. If there are also correlations between instrument strength and effect

heterogeneity, it would be unreasonable to expect mean-zero finite sample bias. However, as

can be seen in equation 8 in Appendix A, this finite sample bias is well-behaved since it falls

as the strength of the instrument within each cluster increases. In the extreme, if we have

an exogenous instrument that perfectly predicts the regressor, there is no endogeneity issue,

and the unbiasedness result from Wooldridge (2005); Arellano and Bonhomme (2011); and

Bates et al. (2014) apply.

In cases where some clusters are unmoved by the instrument or the instrument is weak,

the PCIV estimator may still recover LATEs, which may be an advantage over competing

estimators. As we have modeled the treatment effect and compliance heterogeneity as vary-

ing only across individuals, we need no further assumptions regarding monotonicity. That

is, while we do not maintain monotonicity across individual clusters, we do maintain mono-

tonicity within each. Unlike with the independent cross-sectional data model discussed in

Imbens and Angrist (1994), we observe cluster- (or individual-) specific unbiased estimates

of compliance and may perform inference on each. Consequently, we can aggregate our

treatment effect estimates according to the cluster-specific, first-stage estimates to get dif-

ferent LATEs, including separate LATEs for compliers (say those who are moved towards

treatment by the instrument) and defiers (say those who are moved away from treatment
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by the instrument). Accordingly, we may exclude never-takers and always-takers or those

only weakly moved by the instrument (for instance, those with first-stage F-statistics less

than 10, following the rule of thumb from Stock and Yogo (2005)). Thus, PCIV allows us to

estimate LATEs over well-defined and identifiable populations for whom finite sample bias

is likely to be small. Given the potential for bias in the PCIV approach with finite samples,

we use a Monte Carlo study to examine how the per-cluster instrumental variables estimator

performs as we vary the number of observations per cluster below.

4 Simulation Study
We now describe the simulations we use to examine the performance of the P2SLS, FEIV,

and PCIV estimators in finite samples. In conducting this simulation study, we consider

two conditions: (a) where the uncorrelated covariance assumption holds and (b) where it is

violated.We evaluate the performance of each method with respect to the bias, asymptotic

risk as measured by root mean square error (RMSE), the ratio of mean standard errors by

the standard deviations of simulated estimates, and the coverage rate from each approach.

We focus the simulation discussion on the performance of the three estimators when n is

large, and T is fixed as it is likely to arise in applied research and theoretically is more

problematic for PCIV estimation.12 We use different fixed levels of T , ranging from 6 to 250,

with n = 250 throughout the simulation.13

We generate the data based on our model in equation 1.

yij = xijbi + eij,

xij = zijγ + uij,

(6)

where bi = β + di = 1 + di and γ = 1. The key difference in the two cases is that in

12For completeness, we include the symmetric examination in which we hold T = 250 and vary n in
Appendix C. Figure C.1 shows the density plots of the bias for all three estimators to summarize the results.
Due to its asymptotic unbiasedness, Figure C.2 shows that PCIV generally performs relatively better in
cases where n is fixed and T is large.

13Each simulation is repeated 500 times using Stata 16 (Stata Corp, 2019).
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case (a), the random slope, di = dai, is uncorrelated with the variance of xij and zij, and

in case (b), the random slope, di = dbi, is correlated with both variances.14 Specifically,

the excluded exogenous variable, zij ∼ N(0, exp(2dbi)).15 Further, we define the composite

error terms as eij = α1i + oij + εij and uij = α1i + 0.2wi + 0.32vij, where εij ∼ N(0, 1.1).

Both α1i and α0i = α1i + 0.2wi serve as random intercepts; and εij and vij are cluster- and

time-varying errors. We set vij ∼ N(0, 1) for uncorrelated case and vij ∼ N(0, exp(2dbi)) for

the correlated case. An exogenous cluster-level error, wi, is drawn from the standard normal

distribution. We set oij = ξij + ηij with ηij following N(0, 1) and with ξij being residuals

from regressing xij on zij. Then endogeneity of our variable of interest, xij, enters through

the presence of oij in the generation of yij. Our random intercept α1i and correlated random

slope dbi are mean-zero bivariate normal with a correlation of 0.5 and standard deviations

of 0.4 and 0.25 respectively. In case (a), dai is generated in the same setup except we set the

correlation as zero. The key assumption for the consistency of P2SLS and FEIV is that the

within-cluster covariance between xij and zij is uncorrelated with the random slope. When

there is no violation, dai is not related to the variance of zij or xij. In the second case, there

is a violation of the key assumption as dbi acts as a random coefficient on xij and determines

the variance of zij and xij.

The resulting correlations with n = 250 and T = 250 are shown in Table 1. Under both

conditions, xij is correlated with unobserved heterogeneity α1i, dai, and dbi, and the omitted

variable, oij, producing endogeneity. Our variable of interest, xij, is also strongly correlated

with the instrument zij, and zij is otherwise orthogonal to the other terms, such that our

instrument is both relevant and valid. The key condition hinges on whether the hetero-

geneous slope, dai or dbi, is correlated with the strength of the instrument within-cluster.

The correlations between dai and dbi and ẍz̈ are 0.006 and 0.278 respectively reflecting two

14In Appendix C we allow the correlation between effect heterogeneity and the first-stage variation to
vary more continuously. We also allow for heterogeneity in first-stage coefficients.

15Having the variance of zij depend on dbi ensures that the variance of zij in both cases are similar, while
the variance of zij is only related to the random coefficient of xij on yij in the second case.
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possible states of the key condition.

Table 1: Simulated correlations with and without correlated covariance between d and ẍz̈

Panel A: Uncorrelated Covariance Panel B: Correlated Covariance
d ẍz̈ x o z α1 d ẍz̈ x o z α1

d 1 d 1
ẍz̈ 0.006 1 ẍz̈ 0.278 1
x 0.363 0.053 1 x 0.546 0.154 1
o 0.374 0.051 0.385 1 o 0.56 0.157 0.481 1
z 0.0004 0.004 0.789 0.006 1 z 0.002 0.004 0.726 0.007 1
α1 0.01 0.127 0.391 0.401 0.001 1 α1 0.477 0.127 0.538 0.552 0.001 1

Notes : These correlations are calculated across both i and j after pooling a sample from the
simulation. ẍz̈ stands for the product of the time-demeaned variables of interest and the
instrument when the key condition holds and is violated, respectively.

As the primary potential benefit of PCIV is robustness, we first consider the estimated

bias for the coefficient β̂ to assess each estimator’s performance. Panel (a) of Figure 1

shows the average bias in the three estimators with n = 250 as T increases, maintaining

the uncorrelated covariance assumption on the left and violating it on the right. FEIV and

P2SLS estimators perform consistently well but demonstrate consistent and significant bias

once the uncorrelated covariance assumption is violated. In contrast, the PCIV estimator

manifests finite sample bias under both conditions with very small clusters (when clusters

have 10 or fewer observations). However, across cluster sizes, PCIV outperforms the other

estimators when the uncorrelated covariance assumption is violated. Furthermore, while the

estimated biases of FEIV and P2SLS estimators do not show any improvement even with

the increasing cluster size, the estimated bias of the PCIV approach gets closer to zero as

cluster sizes increase. Table C.1 in Appendix C shows that the magnitude of bias in both

FEIV and P2SLS is almost identical at approximately 12 percent.

Naturally, researchers are not only interested in the bias of estimators but are also inter-

ested in the estimators’ precision. We use RMSEs, which comprise bias and imprecision as

a summative measure of performance on both dimensions. As the scale of RMSEs depends

on both cluster size and the number of clusters present, we show the RMSE of the estimated
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coefficient from the three estimators, with a large number of clusters and the number of

observations per cluster varying between 6 and 250. Again, we repeat the exercise both with

and without the uncorrelated covariance assumption holding.

Panel (b) of Figure 1 reveals that with very small clusters, the PCIV approach is prone

to large RMSE. However, in this simulation, by a cluster size of only 8, the PCIV approach

has comparable or lower RMSE than FEIV or P2SLS. We were somewhat surprised by the

relative performance of the PCIV estimator at such small cluster sizes as Staiger and Stock

(1997) state that the asymptotic distributions provide good approximations on sampling

distributions with 10 - 20 observations per instrument.

We evaluate the performance of the analytic standard errors over cluster size by first

depicting the ratio of the mean of the estimated standard errors (SEs) divided by sampling

standard deviations (SDs) in panel (c) of Figure 1.

In all cases, the analytic standard errors do reasonably well with large sample sizes along

both dimensions. However, they are too small with very small clusters. By nine observations

per cluster, the ratio of mean SE to SD for PCIV is comparable to the same ratio for FEIV.

The ratio is consistently close to one with T above ten, for all three estimators both with

the uncorrelated covariance assumption holding and when it is violated.

Lastly, we show the rates at which the 95 percent confidence intervals constructed from

our estimated standard errors include the true value of the parameter. Naturally, this should

occur 95 percent of the time. Panel (d) of Figure 1 shows the evolution of coverage rates for

each estimator in the uncorrelated covariance case on the left and correlated covariance on

the right with 250 clusters as T grows. In the uncorrelated covariance case, the coverage rates

for all three estimators range from 0.89 to 0.98 for all cluster sizes, though they converge

close to 0.95 as the cluster size grows.

When there is a correlation between the strength of the instrument and random coeffi-

cients, the bias in FEIV and P2SLS is meaningful. Neither standard estimator includes the
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true value in the 95 percent confidence interval more than 40 percent of the time. Moreover,

the rejection rate of the true parameter grows as cluster size grows. In contrast, the PCIV re-

jection rate at the 95 percent confidence level is never more than 6 percentage points from 95

percent, and again, it converges to 95 percent as cluster size grows. Though PCIV inference

performs well overall, the relatively poorer performance when T is small may give researchers

reason to adopt a bootstrap approach to standard error estimation with restricted samples.

5 Estimating the price elasticity of demand for gasoline
There is extensive literature estimating the price elasticity of gasoline demand. However,

estimating this important parameter is not straightforward. Gasoline prices and the volume

purchased likely depend upon each other through the interaction of supply and demand

forces. This simultaneity issue requires a source of exogenous variation to establish a uni-

directional causal link. Consequently, we use instrumental variables estimation and follow

Davis and Kilian (2011); Blundell et al. (2012); Hausman and Newey (2016); and Coglianese

et al. (2017) in using state gasoline taxes to instrument for prices. In many ways, the

empirical setting and design are ideal, especially considering that the efficacy of carbon

taxes in lowering fuel consumption is one reason why the price elasticity of gasoline demand

is of particular interest.

Works such as Davis and Kilian (2011); Levin et al. (2017); and Coglianese et al. (2017)

econometrically model the relationship between gasoline prices and the quantity sold as

though responsiveness to prices is homogeneous. However, heterogeneity in elasticities seems

likely in this context. Regulation of this market varies across states, as does industry com-

position, population density, demographic composition, transportation substitutes, macroe-

conomic climate, and, most importantly, taxes.

Wadud et al. (2010); Frondel et al. (2012); Blundell et al. (2012); and Hausman and

15See Dahl (1986) for a helpful review of early examples and Davis and Kilian (2011); Blundell et al. (2012);
Hausman and Newey (2016); Coglianese et al. (2017); Levin et al. (2017); and Hoderlein and Vanhems (2018)
for more recent examples.
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Newey (2016) examine how demand elasticities for gasoline may differ across individual

characteristics. Of these, only Blundell et al. (2012) and Hausman and Newey (2016) deal

with the endogeneity of prices, and both use state gasoline taxes and distance from the Gulf

of Mexico as instrumental variables. However, in so doing, each implicitly assumes that the

identifying variation (tax changes and tax pass-through) and distance from the gulf are unre-

lated to the potentially heterogeneous demand elasticities. We believe that this assumption

may not be benign. For instance, it is plausible that states with developed transportation

substitutes may have more elastic demand than states with less developed transportation

networks. Further, these same states may be more prone to raise taxes on gasoline than

states with fewer transportation substitutes and less elastic demand. Figure D.1 in Ap-

pendix D shows that states with greater public transportation ridership prior to our sample

have greater subsequent changes in their gasoline tax rates than do states with lower usage

of public transportation.

5.1 Model and estimation

We allow for heterogeneity in both the first and second stages of our econometric model.16

We allow each state (indexed by i) to differ in both the level of gasoline demand, α1i, and in

the price elasticity of gasoline demand (depicted by bi = β + di) according to the following

CRC model similar in structure to equation 1:

logsalesij = α1i + logpriceijbi + xijδ + εij,

logpriceij = α0i + logtaxesijγi + xijη + uij.

(7)

We are primarily interested in the population average price elasticity of gasoline demand,

E[bi] = β. We use the log of taxes to instrument for the potentially endogenous log of prices.
16Heterogeneous elasticities may exist at more or less granular levels. However, elasticity heterogeneity

only leads to inconsistency in existing estimators when systematically related to heterogeneity in the first
stage. The first stage does not vary across individuals but across states, making states an intuitive level to
model heterogeneity.
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We allow for possible heterogeneity in tax pass-through rates, as denoted by γi.

Given this suspected heterogeneity, our preferred approach is PCIV. Both for comparabil-

ity to prior elasticity estimates and to benchmark the performance of the PCIV approaches,

we apply P2SLS on first differences and FEIV to the data and model above. We use the

general PCIV estimator presented in section 2.2 rather than the simplified PCIV estimator.

This is because xij indicates the presence of exogenous regressors with common parameters

in the model. Most notably, there are general time and seasonality trends in gasoline prices,

consumption, and taxes, such that our instrument is only exogenous conditional on them. As

the inclusion of month-by-year fixed effects is standard in P2SLS and FEIV, we adopt them

for all three estimators. Including month-by-year fixed effects is impossible using the simple

approach or that described in Fernández-Val and Lee (2013), and allowing for heterogeneous

month and year effects by cluster would be extremely taxing on the data.

Furthermore, states vary substantially in size and relevance to the market for gasoline.

The inclusion of heterogeneous slopes in the econometric model leads us to pay particular

attention to differences in state sizes and volumes of gasoline purchased. Were the respon-

siveness to prices homogeneous across states, such differences in size may only influence the

efficiency of the estimates. However, if the price-elasticities of gasoline demand differ by

state, failing to account for such differences in states’ relevance to the market may lead

to inconsistent estimates of the parameter over the population of gasoline sales. Thus, we

incorporate weights representing the relative average volume purchased in each state. We

use these weights in weighted P2SLS and FEIV regressions, as well as in aggregating the

state-specific coefficients in PCIV estimation. In contrast with PCIV, however, weighting

does not necessarily help recover the PAE with P2SLS and FEIV estimation in the presence

of random coefficients (Solon et al., 2015). We also provide results from regressions without

these weights for comparison.

23



5.2 Data

The data we use carries a fittingly wide scope, containing monthly observations of gasoline

prices, taxes, and volume sold from January 1989 through December 2018 throughout the

United States. The data provides us with 360 time observations over the 50 states and the

District of Columbia.

The data on monthly, statewide, gasoline price averages for 1989 through 2011 comes

from the U.S. Department of Energy, Energy Information Administration (EIA), ‘Petroleum

Marketing Monthly Report: Gasoline Prices by Formulation, Grade, Sales Type.’ It measures

tax-exclusive prices to end-users. We add state and federal taxes to the tax-exclusive prices

to approximate at-the-pump prices. However, the EIA discontinued this series and the

survey on which it relied in 2011, requiring updated subsequent tax changes and significant

additional data collection. We supplement this pricing data with average at-the-pump price

data from Gasbuddy.com.17

We begin with the annual ‘Highway Statistics Series’ for effective dates of state gasoline

taxes and refine these dates against state governmental documentation when possible. Since

thirty states have changed their state gasoline taxes in the last decade (some multiple times),

the recent data provides useful identifying variation. Following Davis and Kilian (2011), we

net out any portion of the state gasoline tax rate due to changes in gasoline prices to avoid

building endogeneity back into our estimation.18 Throughout, we use the EIA, ‘Petroleum

Marketing Monthly Report: Prime Supplier Sales Volumes by Product and Area’ for data
17This data was retrieved as the maximum 10-year (January 2009 - January 2019) charts for each state

plus the District of Columbia from https://www.gasbuddy.com/Charts on March 22, 2019, and digitized
into four or five daily price averages using https://automeris.io/WebPlotDigitizer/. We then averaged
over these prices to form a monthly average. There is a level shift between the at-the-pump prices from
Gasbuddy.com and the series from EIA. However, for the three years in which the data is overlapping, the
trends and fluctuations in prices move in concert. As a result, we believe the month-by-year fixed effects
will absorb the constant gap. There are overlapping periods between March 2009 and February 2011 for the
EIA and Gasbuddy data. The summary statistics during these periods are given in Table D.1.

18We largely use data from Davis and Kilian (2011) during the period from 1989 through 2008 though
discovered a few instances in which the taxes they used either failed to capture per-unit taxes fully or had
price changes built into them. We document these tax changes in the Stata do-file (titled “newtaxes.do”)
and provide within that file links to the documentation for each tax change.
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on gasoline sales volume.

We add several covariates to check the robustness of our results and possibly improve

efficiency. In particular, we include the log of unemployment rates; real per-capita income;

population; the number of licensed drivers; the number of road miles; average, minimum, and

maximum temperatures; and precipitation; as well as indicators for missing values of each.

We list the summary statistics and sources of control variables in Table D.2 in Appendix D.

5.3 Results

We present the elasticity estimates from all three estimators in Table 2. Results without

volume weights appear on the left, and estimates incorporating the state-specific gasoline-

volume weights appear on the right. For PCIV, the standard errors are estimated as described

in section 3.2. We present the first-stage F-statistics for each estimator along the bottom

row of Table 2. We calculate the F-statistics for PCIV using Hotelling’s T-squared test.19

Table 2: Summary of Results Using Three Estimation Methods

Without volume weights Volume weighted
P2SLS FEIV PCIV P2SLS FEIV PCIV

Log price -0.724 -0.929 -0.551 -0.463 -0.873 -0.555
(0.193) (0.415) (0.227) (0.154) (0.394) (0.240)

First-stage F-statistic 36.66 79.71 58.35 47.47 63.70 61.16
Controls N N N N N N

Log price -0.736 -0.828 -0.543 -0.512 -0.760 -0.561
(0.189) (0.327) (0.278) (0.138) (0.271) (0.294)

First-stage F-statistic 36.58 80.92 58.71 46.83 60.26 59.93
Controls Y Y Y Y Y Y

Notes : The sample consists of 18,360 state-by-month observations. First-stage F-statistics
for P2SLS and FEIV are obtained from the regression of each endogenous regressor on the
exogenous regressors and the instruments. The calculation of the first-stage F-statistics for
the PCIV was done using Hotelling’s T-squared test. State-clustered standard errors appear
in parentheses.

19We present first-stage coefficient estimates in Table D.3 in Appendix D. We estimate the model with
year and month-fixed effects and find similar results in Table D.4.
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We first note that the log of state gasoline taxes is generally strongly predictive of at-the-

pump prices across specifications. The F-statistics range from 36.58 (PCIV without volume

weights) to 80.92 (FEIV without volume weights).

The estimates of the elasticity of gasoline demand are consistent in sign, though the

magnitudes of the estimated elasticities range meaningfully across estimators, and in some

instances, across specifications within estimators. FEIV provides the largest point estimates

in magnitude, estimating elasticities of -0.929 (unweighted and without covariates) to -0.760

(weighted and with covariates) with standard errors of 0.415 and 0.271 respectively. These

FEIV estimates are double the prevailing estimates in the energy economics literature. The

P2SLS estimator using first differences is most efficient, with standard errors often less than

half the size of those for FEIV, yet is the most sensitive to including weights for sales

volume. While the unweighted P2SLS elasticity estimate is large at -0.724, the weighted

P2SLS estimate ranges from -0.463 to -0.512 (depending on the inclusion of covariates),

making the FEIV estimate around 40 percent larger than those from P2SLS. The PCIV

estimates of the elasticity of gasoline demand fall between those two with point estimates

ranging tightly from -0.543 to -0.561 across all specifications. The standard errors associated

with the PCIV estimates range from 0.227 to 0.294.

5.4 Examination of identifying variation

It is natural to ask which estimates are preferable according to the context and econometric

theory. We take multiple approaches to shed light on this question. First, we consider

the weighting employed by all three estimators. We examine whether the implicit weighting

used in FEIV and P2SLS mimics the weights by sales volume and find significant divergence.

Second, we follow Coglianese et al. (2017) and explore whether anticipatory behavior drives

the results. Third, we inspect whether there appears to be a relationship between the first-

stage variation and the estimated elasticities—an apparent violation of the key condition
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for the consistency of P2SLS and FEIV. We then explore the heterogeneity in the first- and

second-stage relationships between gasoline taxes, prices, and sales volume. In sum, these

examinations of the data lead us to prefer the weighted PCIV approach as our decision to

model such heterogeneity is borne out by the data. This rich accounting of the identifying

variation in the data reveals four states for which the log of gasoline taxes does poorly in

predicting changes in prices. As a result, we also estimate a LATE, a weighted average of

the state-specific elasticities for the 46 states in which the instrument is strong.

Our population of interest is all gasoline sales within the United States. If there are

heterogeneous elasticities across states, we must afford each state weight according to its

relevance in the market. In this context, it turns out that the PCIV point estimates are

very similar when we do and do not use weights for sales volume, though a priori, that

result was not obvious. As shown in Murtazashvili and Wooldridge (2008) and discussed in

Section 2 above, P2SLS and FEIV each implicitly apply additional weight to state-specific

coefficients where there is relatively more first-stage variation. We examine the agreement

between the two weighting schemes in Figure 2. On the left, we report the negative of the

relative first-stage variation in each state from FEIV estimation. Functionally, this is the

sum of the products of demeaned and detrended x and z for each state divided by the sum

of those state totals. The share of total gasoline sales that occur in the state over the panel

is on the right.

Figure 2 shows vast disagreement between the two weighting schemes. The explicit

weights we employ are intuitive, with larger gasoline-consuming states receiving influence

commensurate with their relevance in the market. California has the highest sales volume,

consuming 11.3 percent of the gasoline in the country. The District of Columbia has the

lowest sales volume with just 0.1 percent of the national market.

The FEIV weighting scheme also affords California the highest weight, though it is 63

percent higher than the weights based on sales volume. Texas consumes the second most
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gasoline in the country (9.5 percent) yet is twenty-second in first-stage variation (1.3 per-

cent). On the other end, there are notable exceptions. With only 1.1 percent of gasoline

sales, standard FEIV estimation affords Connecticut the fifth largest weight. As a further

complication for FEIV estimation in this context, both Hawaii and Minnesota receive nega-

tive weight in this exercise.

Might using weights with FEIV rectify the mismatch of its implicit weights? Not gener-

ally. First, even with the addition of volume weights, FEIV will continue to overweight states

for which the instrument is strong. Secondly, as shown in Solon et al. (2015), weighted least

squares estimation in the presence of heterogeneous effects generally does not consistently

estimate the PAE, nor does it always dominate unweighted least squares.

Coglianese et al. (2017) remark that anticipatory behavior biases the estimates of Davis

and Kilian (2011). In Appendix E, we examine the issue theoretically and empirically. The

anticipatory behavior is primarily a concern only for the P2SLS estimator as it is persistently

inconsistent with such violations to strict exogeneity. In contrast, while PCIV and FEIV are

inconsistent with fixed T, the inconsistency from this source in FEIV and PCIV shrinks to

zero as the number of time periods grows large. Consistent with theory, Figure E.1 shows

the robustness of PCIV and FEIV to the inclusion of additional lags and leads of log prices

and log taxes whereas the P2SLS estimator is sensitive to this violation of strict exogeneity.

We additionally provide a replication of Davis and Kilian (2011) and Coglianese et al. (2017)

in Appendix F.

One advantage of the PCIV estimator is revealing the heterogeneity in first- and second-

stage estimates across clusters. We observe significant heterogeneity in the location-specific

elasticities and tax pass-through rates. Figure 3 reveals this variation.20 The right-hand

side of Figure 3 shows the state-specific tax pass-through rates from the first-stage regres-

sion of logged prices on logged state taxes. The results reveal significant heterogeneity in

20For detailed state-specific estimates, see Table D.5 in Appendix D.
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coefficients.21 In the District of Columbia and Washington State, the pass-through rates

are double the average at 0.61 and 0.47, respectively. On the other end, Georgia, Hawaii,

Michigan, and Indiana each have estimated first-stage coefficients of 0.08 and lower, with

the estimated effect in Georgia defying the average sign. Unsurprisingly, the F-statistics on

the log of taxes in these states are each less than 10, failing to surpass the weak instru-

ments rule of thumb from Stock and Yogo (2005). There is sufficient noise in the District

of Columbia estimate to also drive its F-statistic below 10. As a result, we should interpret

the second-stage estimates from these locations with caution.

The estimates of state-specific gasoline demand elasticities on the left-hand side of Figure

3 also show significant variation. Montana, Arizona, Idaho, Nevada, and Wyoming have the

most inelastic gasoline demand (elasticities at or smaller than -0.32). Perhaps inelastic

gasoline demand makes sense in these rural states, which are not densely populated and

mostly lack robust public transportation substitutes. In contrast, 12 states have estimated

elasticities that are larger than -0.64 and Pennsylvania has an estimated elasticities of -0.98.

Estimating the state-specific second-stage slopes also allows us to examine the key con-

dition for the consistency of FEIV estimation, namely, whether there is any relationship

between effect heterogeneity and first-stage variation. We show the relationship between the

relative elasticities and the relative first-stage variation in Figure 4. The PCIV estimates of

bi provide a natural way to examine heterogeneous elasticities. We present these estimates

relative to the mean along the x-axis. We measure the relative first-stage variation similar to

the measure used in Figure 2, scaled to the mean, which we present along the y-axis. Each

circle represents a state with the size scaled by the state’s relevance to the gasoline market.

Figure 4 reveals a strong upwards slope as the two statistics have a correlation of 0.14

across states. In general, this means that states with relatively more exploitable variation

21We also uncover significant variation in estimated elasticities employing PCIV across each of the seven
EIA Petroleum Administration for Defense Districts. These estimates range from -0.845 to -1.160. However,
these results assume no heterogeneity in effects within each region and may suffer from some of the same
issues as FEIV. We report the results in Table D.6 in Appendix D.
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in the first stage also have larger estimated elasticities. This is consistent with the idea

that states with less developed public transportation infrastructure (and less elastic gasoline

demand) raise gasoline taxes less frequently. This relationship would lead to an upwards

bias in the elasticity estimate from FEIV. Indeed, the FEIV elasticity estimates of the PAE

are 35 to 90 percent larger in magnitude than the PCIV estimates of the same parameter.

CRC models that place no restrictions on the correlations between effect heterogeneity

and first-stage variation require sufficient first-stage variation within each cluster to allow

PAEs to reflect all clusters. However, we find that the predictive power of the instrument

is weak in Hawaii (F-stat = 2.57), Indiana (2.92), Georgia (5.16), Michigan (0.64), and

Washington D.C. (7.81). As a result, we redo the analysis on the 46 states in which the first-

stage F-statistic is above ten, following the rule of thumb proposed by Staiger and Stock

(1997) and justified in Stock and Yogo (2005). Though we acknowledge this parameter may

not be relevant for the entire population, this exercise provides us with an estimate of the

average price elasticity of gasoline demand on a specified and well-defined group of compliers,

namely, states in which the F-statistic of the instrument is above ten.

We report the results from weighted and unweighted PCIV on this population of compliers

in Table 3. For comparison, we also apply FEIV and P2SLS to the same data. Among states

for which the instrument is strong, the PCIV estimates are -0.551 to -0.554, with their

standard errors of 0.227 and 0.240 depending on weighting. Despite the reduction in sample

size, the standard errors here are modestly smaller than those in Table 2 using the entire

sample, as those states with weak first stages had relatively extreme second-stage estimates.

The P2SLS and FEIV are larger when estimated on this restricted sample. Recall that the

apparent violation of the key condition may prohibit P2SLS and FEIV from consistently

estimating even a LATE. Indeed, the relationship between estimated elasticities and first-

stage variation is just as strong if not stronger within the states in which the instrument is

strong.
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Table 3: Estimated elasticities among states in which the instrument is strong (LATE)

Without volume weights Volume weighted
P2SLS FEIV PCIV P2SLS FEIV PCIV

Log price -0.724 -0.929 -0.551 -0.463 -0.873 -0.555
(0.193) (0.415) (0.227) (0.154) (0.394) (0.240)

First-stage F-statistic 36.66 79.71 58.35 47.47 63.70 61.16

Notes : Sample composed of all states with first-stage F-statistics above 10, excluding Alaska,
Hawaii, Indiana, Georgia, and the District of Columbia. Regressions condition on time-by-
month fixed effects. State-clustered standard errors appear in parentheses.

6 Concluding Remarks
Whether the purpose of empirical work is to inform and evaluate theory, uncover and

explain phenomena, or inform practitioners of best practices, population average effects

are generally of high interest. We propose per-cluster instrumental variables estimation to

provide both population average estimates and effect heterogeneity in correlated random

coefficient models when key variables may be endogenous. Given the vast unobserved differ-

ences between people and the heterogeneity of their behavior, we believe such environments

are widespread, as is the applicability of this approach.

We present the conditions under which PCIV is consistent in estimating such generally

representative parameters and show that it has robustness properties beyond more standard

approaches such as pooled two-stage least squares and fixed effects instrumental variables,

specifically in the presence of heterogeneous responsiveness to treatment. We develop the

theory behind this and demonstrate the performance of PCIV in simulation.

Our use of PCIV adds rigor to the investigation of the price elasticity of demand for

gasoline. Our cumulative evidence suggests a price elasticity for the demand for gasoline in

the United States to fall between -0.5 and -0.55, keeping in mind that the confidence intervals

are wide. These estimates imply that consumers are more sensitive to price hikes than would
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be implied by Coglianese et al. (2017), Hughes et al. (2008), and Levin et al. (2017), which

find elasticities ranging from -.37 to -.03. However, only Coglianese et al. (2017) address

the endogeneity issue in prices. We find that the small estimates there are due to the use

of P2SLS applied to first differences, which is particularly afflicted by anticipatory behavior

and is only identified off short-run (first month) responses.

These high elasticity estimates may also reflect that price increases due to tax increases

are more permanent and salient to consumers than most other gasoline price increases.

Indeed, Davis and Kilian (2011); Scott (2012); Baranzini and Weber (2013); Li et al. (2014);

and Coglianese et al. (2017) each make this argument, with Li et al. (2014) in particular

demonstrating both points. As a result, these estimates of the price elasticity of gasoline

demand pertain to permanent changes in prices for relatively informed consumers. However,

the responsiveness to permanent and salient price changes is often the parameter of interest

in modeling gasoline-dependent industries and many policy discussions.

Our application shows that the flexibility of PCIV estimation provides more transparency

about the underlying data. For instance, we can view whether the implicit weighting of

standard estimators corresponds to the appropriate population weights and whether there

appears to be a near-zero correlation between the strength of the instrument and heteroge-

neous effects, which may inhibit the estimation of population average effects with standard

estimators. PCIV also reveals heterogeneity within the first stage including whether mono-

tonicity holds at the cluster level. Many of these may be estimated even without large

numbers of observations per cluster. Finally, in cases where there appears to be insufficient

first-stage variation within a subset of clusters to produce a reliable cluster-specific estimate,

PCIV allows for the estimation of a local average effect in a defined population of clusters

in which the instrument is strongly predictive.
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Figure 1: Simulation results across cluster sizes

(a) Bias for coefficient β of xij (b) Root mean square error for coefficient β̂1 of xij

(c) Mean standard errors over estimates’ standard deviations (d) Standard error coverage rates

Notes: P2SLS = Pooled Two-Stage Least Squares; FEIV= Fixed Effects Instrumental Variables; PCIV=Per-Cluster Instru-
mental Variables. Each point represents the results from 500 repetitions. Within each panel, figures on the left are when the
uncorrelated covariance assumption holds, and figures on the right are when it is violated. The ratio of mean standard errors
(SEs) divided by standard deviations (SDs) of the estimates. The horizontal line in (c) denotes a ratio of one. The horizontal
line in (d) is to denote the exact 95 percent coverage rate. In many instances, FEIV total overlaps with P2SLS, though this is
an artifact of the specific DPG in this simulation.
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Figure 2: Weighting under FEIV and PCIV approaches

Notes: On the left we report the negative of the relative first-stage variation for FEIV
estimation, as measured by the sum of the products of demeaned and detrended logprice
and logtax for each state divided by the sum of those state totals. On the right, we report
the share of total gasoline sales that occur in the state over the panel.

Figure 3: State-specific first- and second-stage coefficients

Notes: On the left, we report PCIV state-specific elasticity estimates. We report state-
specific first-stage tax pass-through estimates on the right. The standard deviation of the
state-specific elasticities is 0.204 or 38% of the mean. The standard deviation of the state-
specific pass-through rates is 0.115 or 42% of the mean.
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Figure 4: Heterogeneous elasticities and first-stage variation

Notes: We present elasticity estimates relative to the mean along the x-axis. Along the
y-axis is relative first-stage variation as measured by the sum of the products of demeaned
and detrended logprice and logtax for each state divided by the mean of those state totals.
The fitted line has a slope coefficient of 2.000 and a standard error of 1.663.
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A Proof of Theorem 1

β̂PCIV is consistent if and only if lim
n,T→∞

MSE(β̂PCIV ) → 0. We will show both asymptotic

bias and variance will converge to zero asymptotically.

Define Pi = HZi
+ MZi

X2i(X
′
2iMZi

X2i)
−1X′2iMZi

, where HZi
= Zi(Z

′
iZi)

−1Z′i and MZi
=

IT − HZi
. Given the model as yi = X1ibi + X2iδ + ei and the estimated δ̂, per-cluster

estimator b̂i can be written as follows as derived in Section 2.2:

b̂i = (X′1iPiX1i)
−1X′1iPi(yi −X2iδ̂)

= (X′1iPiX1i)
−1X′1iPi(X1ibi + ei)

= bi + (X′1iPiX1i)
−1X′1iPiei

Then our estimator of main interest, β̂PCIV can be written as follows:

β̂PCIV =
n∑

i=1

wib̂i

=
n∑

i=1

wi(β + di + (X′1iPiX1i)
−1X′1iPiei)

= β +
n∑

i=1

widi +
n∑

i=1

wi(X
′
1iPiX1i)

−1X′1iPiei

As MSE(β̂PCIV ) = (Bias(β̂PCIV ))2 + V (β̂PCIV ), we will show each term converges to

zero asymptotically. Note that the weight, wi, is known and satisfies the condition as in

Assumption (A6).

Bias(β̂PCIV ) = E[β̂PCIV − β]

= E

[
n∑

i=1

wi(b̂i − β)

]
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= E

[
n∑

i=1

wi(bi − β) +
n∑

i=1

wi(b̂i − bi)

]

=
n∑

i=1

wiE[di] +
n∑

i=1

wiE[b̂i − bi]

From the last equality, E[widi] = wiE[di] can hold because wi’s are known constants, which

are not correlated with di’s. As E[di] = 0 by Assumption (A2), we will simplify E[b̂i − bi].

By Continuous Mapping Theorem (CMT),

E[b̂i − bi] = E
[
(X′1iPiX1i)

−1X′1iPiei

]
= (E[X′1iPiX1i])

−1E [X′1iPiei]

Note that X1i = Ziγi + X2iη + ui as in equation 1. Then, both terms in the denominator

and the numerator can be written as follows:

E[X′1iPiX1i] = E [(Ziγi + X2iη + ui)
′Pi(Ziγi + X2iη + ui)]

= E[γ ′iZ
′
iPiZiγi] + E[η′X′2iPiZiγi] + E[u′iPiZiγi] + E[γ ′iZ

′
iPiX2iη]

+ E[η′X′2iPiX2iη] + E[u′iPiX2iη] + E[γ ′iZ
′
iPiui] + E[η′X′2iPiui] + E[u′iPiui]

Note that PiZi = HZi
Zi + MZi

X2i(X
′
2iMZi

X2i)
−1X′2iMZi

Zi = Zi, and X′2iPiX2i = X′2iX2i.

Also, E[u′iPiZiγi] = 0, E[u′iPiX2iη] = 0, E[γ ′iZ
′
iPiui] = 0, and E[η′X′2iPiui] = 0 by As-

sumption (A2). Also, as rank(Pi) = L+H, we get E[u′iPiui] = (L+H) · σ2
u. Then,

E [X′1iPiX1i] = γ ′iZ
′
iZiγi + η′X′2iZiγi + γ ′iZ

′
iX2iη + η′X′2iX2iη + (L+H) · σ2

u.

By WLLN, as 1
T
Z′iZi

p→ E[Z′iZi] ≡ QZZ , the first term γ ′iZ
′
iZiγi = Op(T ). Likewise, the

second, third, and the fourth terms follow the order of T . Next, the numerator in E[b̂i−bi]

can be simplified as follows. With MZi
Zi = 0 and (A2), the first and second terms become

zero.
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E[X′1iPiei] = E [(Ziγi + X2iη + ui)
′Piei]

= E[γ ′iZ
′
iPiei] + E[η′X′2iPiei] + E[u′iPiei]

= (L+H) · σu,e

We write

E[b̂i − bi] =
(L+H) · σu,e

γ ′iZ
′
iZiγi + η′X′2iZiγi + γ ′iZ

′
iX2iη + η′X′2iX2iη + (L+H) · σ2

u

= Op(T
−1).

(8)

Then, Bias(β̂PCIV ) = Op(T
−1).

Now, we will look at the variance of β̂PCIV . By Assumption (A1),

V (β̂PCIV − β) = V

(
n∑

i=1

widi +
n∑

i=1

wi(b̂i − bi)

)

=
n∑

i=1

w2
i V (di) +

n∑
i=1

w2
i V (b̂i − bi)

First, V (di) = 1
n

∑n
i=1 did

′
i ≡ σ2

dIK . Second,

V (b̂i − bi) = V ((X′1iPiX1i)
−1X′1iPiei)

= E[(X′1iPiX1i)
−1X′1iPieie

′
iPiX1i(X

′
1iPiX1i)

−1].

We will break down by each component of the variance.

X′1iPiX1i = X′1iHZi
X1i + X′1iMZi

X2i(X
′
2iMZi

X2i)
−1X′2iMZi

X1i

= X′1iZi(Z
′
iZi)

−1Z′iX1i + X′1i(IN − Zi(Z
′
iZi)

−1Z′i)X2i(X
′
2i(IN − Zi(Z

′
iZi)

−1Z′i)X2i)
−1

×X′2i(IN − Zi(Z
′
iZi)

−1Z′i)X1i
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By WLLN, 1
T
X′1iZi

p→ E[X′1iZi] ≡ Q1Z . Likewise, we define QZ1 ≡ E[Z′iX1i], QZZ ≡

E[Z′iZi], QZ2 ≡ E[Z′iX2i], Q2Z ≡ E[X′2iZi], Q22 ≡ E[X′2iX2i], Q12 ≡ E[X′1iX2i], and Q21 ≡

E[X′2iX1i]. Then, we write 1
T
X′1iPiX1i = Q1ZQPQZ1 asymptotically, where QP = Q−1ZZ +

(Q12−Q1ZQ
−1
ZZQZ2)(Q22−Q2ZQ

−1
ZZQZ2)

−1(Q21−Q2ZQ
−1
ZZQZ1). Next, the second component

of the variance is written as below.

X′1iPieie
′
iPiX1i = X′1iHZi

eie
′
iHZi

X1i + X′1iMZi
X2i(X

′
2iMZi

X2i)
−1X′2iMZi

eie
′
iMZi

X2i

× (X′2iMZi
X2i)

−1X′2iMZi
X1i.

By WLLN, we define 1
T
Z′ieie

′
iZi

p→ E[Z′ieie
′
iZi] ≡ QZe. Then, we write X′1iPieie

′
iPiX1i =

Q1ZQPΩZeQPQZ1. By CMT,

V (b̂i − bi) =
1

T
(Q1ZQPQZ1)

−1(Q1ZQPΩZeQPQZ1)(Q1ZQPQZ1)
−1 = Op(T

−1)

Then, we have V (β̂PCIV ) = Op(1/n) +Op(1/nT ) = Op(1/n). To summarize,

MSE(β̂PCIV ) = (Bias(β̂PCIV ))2 + V (β̂PCIV )

= Op(1/T
2) +Op(1/n).

As we assume Assumption (A5), we can show that lim
n,T→∞

MSE(β̂PCIV )
p→ 0. As n, T →∞,

β̂PCIV

p→ β.
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B Proof of Theorem 2
First, we will show the consistency of an estimated variance.

V̂ (β̂PCIV − β) = V̂

(
n∑

i=1

widi +
n∑

i=1

wi(X
′
1iPiX1i)

−1X′1iPiei

)

By using Assumptions (A1) and (A2),

V̂ (β̂PCIV − β) =
n∑

i=1

w2
i V̂ (di) +

n∑
i=1

w2
i V ((X′1iPiX1i)

−1X′1iPiêi)

First, we will show V̂ (di)→ V (di).

V̂ (di) =
1

n

n∑
i=1

d̂id̂
′
i =

1

n

n∑
i=1

(d̂i − di + di)(d̂i − di + di)
′

=
1

n

n∑
i=1

did
′
i +

1

n

n∑
i=1

(d̂i − di)(d̂i − di)
′

By WLLN, it is easy to show that 1
n

∑n
i=1 did

′
i

p→ σ2
dIK as E[di] = 0. Also, as d̂i

p→ di as

n → ∞, the second term then converges to zero asymptotically. Therefore, we can show

V̂ (di)→ σ2
dIK ≡ V (di) asymptotically. Next, let’s show the convergence of the second term

of the sample variance.

V ((X′1iPiX1i)
−1X′1iPiêi) = E[(X′1iPiX1i)

−1X′1iPiêiê
′
iPiX

′
1i(X

′
1iPiX1i)

−1]

Given that Pi = HZi
+ MZi

X2i(X
′
2iMZi

X2i)
−1X′2iMZi

, we will show that 1
T
Z′iêiê

′
iZi

p→

E[Z′ieie
′
iZi] ≡ ΩZe.

Next, let’s show the convergence of the second term in equation 10. Using the above

expression, we will show the convergence of the below inequality.

∥∥∥∥ 1

T
Z′i(êi − ei)(êi − ei)

′Zi

∥∥∥∥ ≤ 1

T
‖Zi‖2‖êi − ei‖2 (9)
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Using X̂1i = Ziγ̂i + X2iη̂, we write êi = yi − X̂1ib̂i −X2iδ̂ = ei − Zi(γ̂i − γi)(b̂i − bi) −

X2i(η̂−η)(b̂i−bi)−Zi(γ̂i−γi)bi−X2i(η̂−η)bi−Ziγi(b̂i−bi)−X2iη(b̂i−bi)−X2i(δ̂−δ).

Then, we write equation 9 as follows.

1

T
‖Zi‖2‖êi − ei‖2

≤ 1

T
‖b̂i − bi‖2‖γ̂i − γi‖2‖Zi‖4 +

1

T
‖b̂i − bi‖2‖η̂ − η‖2‖X2i‖2‖Zi‖2 +

1

T
‖bi‖2‖γ̂i − γi‖2‖Zi‖4

+
1

T
‖bi‖2‖η̂ − η‖2‖X2i‖2‖Zi‖2 +

1

T
‖b̂i − bi‖2‖γi‖2‖Zi‖2 +

1

T
‖b̂i − bi‖2‖η‖2‖X2i‖2‖Zi‖2

+
1

T
‖δ̂ − δ‖2‖X2i‖2‖Zi‖2 + 2

1

T
‖b̂i − bi‖2‖γ̂i − γi‖‖Zi‖3‖X2i‖‖η̂ − η‖

+ 2
1

T
‖b̂i − bi‖‖γ̂i − γi‖2‖Zi‖4‖bi‖+ 2

1

T
‖b̂i − bi‖‖γ̂i − γi‖‖Zi‖3‖X2i‖‖η̂ − η‖‖bi‖

+ 2
1

T
‖b̂i − bi‖2‖γ̂i − γi‖‖Zi‖4 + 2

1

T
‖b̂i − bi‖2‖γ̂i − γi‖‖Zi‖3‖X2i‖‖η‖‖b̂i − bi‖

+ 2
1

T
‖b̂i − bi‖‖γ̂i − γi‖‖Zi‖3‖X2i‖‖δ̂ − δ‖+ 2

1

T
‖b̂i − bi‖‖η̂ − η‖‖X2i‖‖Zi‖3‖γ̂i − γi‖‖bi‖

+ 2
1

T
‖b̂i − bi‖‖η̂ − η‖2‖X2i‖2‖Zi‖2‖bi‖+ 2

1

T
‖b̂i − bi‖2‖η̂ − η‖‖X2i‖‖Zi‖3‖γi‖

+ 2
1

T
‖b̂i − bi‖2‖η̂ − η‖‖Zi‖2‖X2i‖2‖η‖+ 2

1

T
‖b̂i − bi‖‖η̂ − η‖‖X2i‖‖Zi‖3‖δ̂ − δ‖‖bi‖

+ 2
1

T
‖bi‖2‖γ̂i − γi‖‖Zi‖3‖X2i‖‖η̂ − η‖+ 2

1

T
‖bi‖‖γ̂i − γi‖‖Zi‖2‖γi‖‖b̂i − bi‖

+ 2
1

T
‖bi‖‖γ̂i − γi‖‖Zi‖3‖X2i‖‖η‖‖b̂i − bi‖+ 2

1

T
‖bi‖‖γ̂i − γi‖‖Zi‖3‖X2i‖‖δ̂ − δ‖

+ 2
1

T
‖bi‖‖η̂ − η‖‖X2i‖‖Zi‖3‖γi‖‖b̂i − bi‖+ 2

1

T
‖bi‖‖η̂ − η‖‖Zi‖2‖X2i‖2‖η‖‖b̂i − bi‖

+ 2
1

T
‖bi‖‖η̂ − η‖‖Zi‖2‖X2i‖2‖δ̂ − δ‖+ 2

1

T
‖b̂i − bi‖2‖γi‖‖Zi‖3‖X2i‖‖η‖

+ 2
1

T
‖b̂i − bi‖‖γi‖‖Zi‖3‖X2i‖‖δ̂ − δ‖+ 2

1

T
‖b̂i − bi‖‖η‖‖Zi‖2‖X2i‖2‖δ̂ − δ‖

The convergence of the above inequality can be shown by the consistency of the three esti-

mators respectively: 1) η̂ p→ η, 2) γ̂i

p→ γi, and 3) δ̂ p→ δ. In addition, using the Hölder’s

inequality, we can easily show E[‖Zi‖3‖X2i‖] ≤
(

E[(‖Zi‖3)
4
3 ]
) 3

4
(E[(‖X2i‖)4])

1
4 < ∞ under

Assumption (A4).
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First, η̂ = η + (
∑n

i=1 X′2iMZi
X2i)

−1
(
∑n

i=1 X′2iMZi
ui). By Assumption (A3),

plim
n,T→∞

η̂ = η + (Q2ZQ
−1
ZZQZ2)

−1Q2ZQ
−1
ZZ plim

n,T→∞

1

nT

n∑
i=1

Z′iui = η

Next, γ̂i = γi + (Z′iZi)
−1Z′iui + (Z′iZi)

−1Z′iX2i(η̂ − η). Under Assumption (A3) and the

consistency of η,

plim
n,T→∞

γ̂i = γi +Q−1ZZ plim
n,T→∞

1

T
Z′iui +Q−1ZZQZ2 plim

N,T→∞
(η̂ − η) = γi

Lastly, δ̂ = δ+
(∑n

i=1 X′2iMX̂1i
X2i

)−1 (∑n
i=1 X′2iMX̂1i

ei

)
, where MX̂1i

= IT−X̂1i(X̂
′
1iX̂1i)

−1X̂′1i =

IT−PiX1i(X
′
1iPiX1i)

−1X′1iP
′
i. DefineQP = Q−1ZZ+(Q12−Q1ZQ

−1
ZZQZ2)(Q22−Q2ZQ

−1
ZZQZ2)

−1(Q21−

Q2ZQ
−1
ZZQZ1).

plim
n,T→∞

δ̂ = δ +
(
Q22 −Q2ZQPQZ1(Q1ZQPQZ1)

−1Q1ZQPQZ2

)−1
×

[
plim
n,T→∞

1

nT

n∑
i=1

X′2iei +Q2ZQPQZ1(Q1ZQPQZ1)
−1Q1ZQP plim

n,T→∞

1

nT

n∑
i=1

Ziei

]

= δ,

By WLLN, 1
T
Z′ieie

′
iZi

p→ E[Z′ieie
′
iZi] ≡ ΩZe. As n, T →∞, and n/T → c where 0 < c <∞,

V̂ (β̂PCIV )
p→ V (β̂PCIV ).

Now, we show the asymptotic normality of β̂PCIV .

1

T
Z′iêiê

′
iZi =

1

T
Z′ieie

′
iZi +

1

T
Z′i(êi − ei)(êi − ei)

′Zi (10)

Using the Cauchy-Schwarz inequality, we can show that ΩZe is finite by Assumptions (A2)

and (A3). Note that (E[e4ij])
1
4 = (E[(yij − x1ijbi − x2ijδ)4])

1
4 ≤ (E[y4ij])

1
4 + ‖bi‖(E[x4

2ij])
1
4 +
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‖δ‖(E[x4
2ij])

1
4 <∞ by Assumption (A4). Then,

‖ΩZe‖ ≤ E
[
‖Zi‖2 ‖ei‖2

]
≤
(
E[‖Zi‖4]

) 1
2
(
E[‖ei‖4]

) 1
2 <∞.

. We then have 1
T
Z′iei

d→ N(0,ΩZe).

√
n(β̂PCIV − β) =

√
n

n∑
i=1

widi︸ ︷︷ ︸
=Op(1)

+
√
n

n∑
i=1

wi(X
′
1iPiX1i)

−1X′1iPiei︸ ︷︷ ︸
=Op

(√
n√
T

)
d→ N(0, V (β̂)),

where V (β̂) = λ(σ2
dIK + (Q1ZQPQZ1)

−1Q1ZQPΩZeQPQZ1(Q1ZQPQZ1)
−1), and λ = Op(1).
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C Additional Simulation Results
Here, we present additional summaries of the simulations, performance evaluation of the

estimators with finite numbers of clusters, and performance evaluation of the estimators with

heterogeneous first-stage coefficients. Figure C.1 provides a summary of the main simulation

results. It shows the kernel density plot of the bias over each simulation, maintaining the

uncorrelated covariance assumption on the left and violating it on the right. Further, we

show these density plots first with 250 clusters and 250 observations per cluster at the top,

then with only the number of clusters reduced to 10, and finally with 250 clusters and 10

observations per cluster at the bottom. Table C.1 summarizes point estimates from the

simulations.

Figure C.2 shows the average bias, the RMSE, the ratio of standard errors to standard

deviation of estimates across simulations, and the 95 percent coverage rates in the three

estimators with T fixed at 250 as n increases, again both maintaining and violating the key

assumption.

The primary advantage of PCIV over P2SLS and FEIV is its robustness to possible

correlations between heterogeneous slopes (bi) and first-stage variation (z̈itẍit). One way

in which z̈itẍit may vary across clusters is through heterogeneous first-stage coefficients,

though it is certainly not the only way. Here, we demonstrate the performance of PCIV with

heterogeneous first-stage coefficients.

The data-generating process we employ here is similar to that used in Section 4 in the

main text except for a few changes. First, whereas in the main text γ = 1, here γi ∼ N(1, 0.1)

varies by cluster. Second, to demonstrate how the performance of the estimators change as

the correlation between bi and z̈itẍit grows we generate bi, xit, and zit so that we can vary

the correlation between them according to weight, κ, that varies between 0 and 1. Thus,

b1 = 1 + di and di = κ × dbi + (1 − κ)dai. We introduce si ∼ N(0, 0.25) and construct

zij ∼ N(0, exp(κdbi+(1−κ)si). We introduce qi ∼ N(0, 0.25) and construct the idiosyncratic

error component of xit, εij ∼ N(0, exp(κdbi + (1− κ)qi).
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The simulation results appear in figure C.3. The bias and RMSE of FEIV and P2SLS

rise smoothly as the correlation between the heterogeneous slopes (bi) and the first-stage

variation (z̈itẍit) rises, while both remain flat for PCIV. Likewise, the coverage rates of

FEIV and P2SLS fall, while for PCIV they remain quite close to 0.95.

Table C.1: Comparison of Estimates for β̂[xij] with Simulated Data

Uncorrelated Covariance Correlated Covariance
Method Bias SD RMSE MeanSE

SD
CR Bias SD RMSE MeanSE

SD
CR

n = 250, T = 250
P2SLS -0.001 0.020 0.028 0.981 0.952 0.126 0.021 0.129 1.017 0.000
FEIV 0.000 0.020 0.028 0.954 0.946 0.126 0.021 0.130 0.991 0.000
PCIV -0.001 0.017 0.024 0.985 0.960 0.001 0.017 0.023 1.033 0.956
n = 10, T = 250
P2SLS 0.000 0.089 0.126 0.920 0.912 0.111 0.102 0.182 0.786 0.672
FEIV 0.000 0.090 0.127 0.899 0.890 0.111 0.101 0.180 0.784 0.678
PCIV 0.000 0.083 0.118 0.939 0.912 0.005 0.083 0.117 0.932 0.924
n = 250, T = 10
P2SLS -0.001 0.035 0.049 1.179 0.968 0.125 0.039 0.137 1.167 0.178
FEIV -0.002 0.038 0.054 0.950 0.930 0.125 0.041 0.137 0.917 0.108
PCIV -0.017 0.048 0.070 0.902 0.904 -0.016 0.049 0.071 0.878 0.908

Note: Both bias and RMSE are multiplied by 100. P2SLS=Pooled Two-Stage Least
Squares; FEIV=Fixed Effects Instrumental Variable; PCIV=Per-Cluster Instrumental Vari-
able; RMSE= Root Mean Squared Error; MeanSE

SD
=Ratio of the mean of standard errors

divided by standard deviations; CR=Coverage Rate.
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Figure C.1: Kernel Density Plots of Estimation Errors, β̂ − β

Notes : β̂ is the coefficient of xij across replications for all methods. The left panels are when
the uncorrelated covariance assumption holds, and the right panels are when it is violated.
P2SLS = Two-Stage Least Squares; FEIV = Fixed Effects Instrumental Variable; PCIV =
per-cluster instrumental variables.
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Figure C.2: Simulation results across number of clusters

(a) Bias for coefficient β̂ of xij (b) Root mean square error for coefficient β̂ of xij

(c) Mean standard errors over estimates’ standard deviations (d) Standard error coverage rates

Notes: P2SLS = Pooled Two-Stage Least Squares; FEIV= Fixed Effects Instrumental Variables; PCIV=Per-Cluster Instrumental Variables. Each
point represents the results from 500 repetitions. Within each panel, figures on the left are when the uncorrelated covariance assumption holds, and
figures on the right are when it is violated. The ratio of mean standard errors (SEs) divided by standard deviations (SDs) of the estimates. The
horizontal line in (c) denotes a ratio of one. The horizontal line in (d) is to denote the exact 95 percent coverage rate. In many instances, FEIV total
overlaps with P2SLS, though this is an artifact of the specific DGP in this simulation.

50



Figure C.3: Simulation results across correlations between first-stage variation and effect-heterogeneity with heterogeneous
first-stage coefficients

(a) Bias for coefficient β̂ of xij (b) Root mean square error for coefficient β̂ of xij

(c) Mean standard errors over estimates’ standard deviations (d) Standard error coverage rates

Notes: P2SLS = Pooled Two-Stage Least Squares; FEIV= Fixed Effects Instrumental Variables; PCIV=Per-Cluster Instrumental Variables. Each
point represents the results from 500 repetitions. Within each panel, figures on the left are when the uncorrelated covariance assumption holds, and
figures on the right are when it is violated. The ratio of mean standard errors (SEs) divided by standard deviations (SDs) of the estimates. The
horizontal line in (c) denotes a ratio of one. The horizontal line in (d) is to denote the exact 95 percent coverage rate. In many instances, FEIV
totally overlaps with P2SLS, though this is an artifact of the specific DGP in this simulation.
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D Supplementary tables and figures

Figure D.1: Relationship between tax changes and public transportation

Notes : We relate the log population share that used public transportation in 1980 to the log
of the cumulative gas tax changes in the state. By using a measure of public transportation
that predates our tax changes, we hope to avoid the simultaneity of ridership responding
to the tax changes. Each point represents a state and the regression is over 50 states plus
Washington D.C.
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Table D.2: Summary Statistics

Mean SD p25 Median p75
After-tax price (1999 USD) 2.69 0.93 1.97 2.34 3.25
State taxes (1999 USD) 0.52 0.09 0.45 0.52 0.58
Unemployment rate 5.54 1.86 4.20 5.20 6.60
Real per-capita income (1999 USD thousands) 39.37 20.42 21.47 35.80 54.19
Population (in millions) 5.88 6.43 1.77 4.13 6.73
Licensed drivers (in millions) 4.05 4.16 1.28 2.85 4.94
Road miles (in thousands) 49.02 55.70 0.37 34.10 88.75
Minimum temperature (degrees F) 40.99 17.05 28.70 41.40 54.70
Average temperature (degrees F) 52.12 17.82 38.90 53.35 66.90
Maximum temperature (degrees F) 63.25 18.80 49.10 65.30 79.00
Rainfall (inches) 3.16 2.03 1.61 2.89 4.34
Sales volume (millions of gallons) 6.96 7.55 1.94 5.22 8.55
Observations 18360

Notes : The data on gasoline prices, taxes, and sales volumes come from the U.S. Depart-
ment of Energy, Energy Information Administration (EIA). We supplement the price data
after 2011 from gasbuddy.com. Population and average income come from the Bureau of
Economic Analysis (BEA). The count of licensed drivers and road miles comes from the
Federal Highway Administration’s Highway Statistics. Precipitation and rainfall data come
from National Centers for Environmental Information, National Oceanic and Atmospheric
Administration.

Table D.3: First-Stage Estimation Results

Without volume weights Volume weighted
P2SLS FEIV PCIV P2SLS FEIV PCIV

Log tax 0.204 0.248 0.282 0.204 0.311 0.253
(0.034) (0.028) (0.066) (0.030) (0.039) (0.070)

First-stage F-statistic 36.66 79.71 58.35 47.47 63.70 61.16
Controls N N N N N N

Log tax 0.204 0.241 0.280 0.205 0.298 0.278
(0.034) (0.027) (0.050) (0.030) (0.038) (0.053)

First-stage F-statistic 36.58 80.92 58.71 46.83 60.26 59.93
Controls Y Y Y Y Y Y

Notes: Standard errors are clustered by state. The calculated first-stage F-statistics for P2SLS and
FEIV are obtained from the regression of each endogenous regressor on the exogenous regressors
and the instruments. The calculation of the first-stage F-statistics for the PCIV was done using
Hotelling’s T-squared test.
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Table D.4: Estimated elasticities using month and year fixed effect

Without volume weights Volume weighted
P2SLS FEIV PCIV P2SLS FEIV PCIV

Log price -1.080 -0.884 -0.542 -0.749 -0.843 -0.546
(0.204) (0.389) (0.246) (0.168) (0.373) (0.260)

First-stage F-statistic 65.66 88.16 97.29 21.74 71.79 110.53
Controls N N N N N N

Notes: All regressions include month and year-fixed effects instead of month-by-year fixed effects.
The calculated first-stage F-statistics for P2SLS and FEIV are obtained from the regression of
each endogenous regressor on the exogenous regressors and the instruments. The calculation of the
first-stage F-statistics for the PCIV was done using Hotelling’s T-squared test.
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Table D.5: State-Specific Statistics

State First-stage First-stage Second-Stage State First-stage First-stage Second-Stage
Coefficient F-stat Coefficient Coefficient F-stat Coefficient

AK 0.32 721.94 -0.61 MT 0.40 66.90 -0.15
AL 0.26 13.92 -0.57 NE 0.27 910.25 -0.64
AZ 0.34 182.59 -0.25 NV 0.25 35.76 -0.31
AR 0.38 22.83 -0.66 NH 0.34 806.14 -0.44
CA 0.26 96.98 -0.55 NJ 0.29 65.23 -0.66
CO 0.39 925.73 -0.44 NM 0.36 1,067.34 -0.56
CT 0.26 1,684.51 -0.60 NY 0.16 350.58 -0.59
DE 0.19 553.34 -0.62 NC 0.27 542.76 -0.51
DC* 0.61 7.81 -1.55 ND 0.35 148.33 -0.48
FL 0.11 65.81 -0.49 OH 0.30 321.95 -0.68
GA* -0.03 5.16 -0.49 OK 0.17 48.56 -0.60
HI* 0.08 2.57 -0.34 OR 0.27 160.17 -0.56
ID 0.40 63.60 -0.28 PA 0.30 645.35 -0.98
IL 0.26 585.79 -0.61 RI 0.33 852.93 -0.62
IN* 0.03 2.92 -0.57 SC 0.26 352.31 -0.38
IA 0.17 202.26 -0.78 SD 0.38 565.64 -0.56
KS 0.30 378.40 -0.57 TN 0.30 854.90 -0.67
KY 0.22 353.23 -0.64 TX 0.31 985.06 -0.40
LA 0.32 1,000.56 -0.46 UT 0.30 149.98 -0.42
ME 0.44 276.81 -0.74 VT 0.22 188.52 -0.33
MD 0.25 1,037.18 -0.54 VA 0.30 1,249.75 -0.59
MA 0.27 654.83 -0.66 WA 0.47 33.15 -0.52
MI* 0.01 0.64 -0.64 WV 0.33 626.07 -0.34
MN 0.43 457.88 -0.58 WI 0.35 572.51 -0.51
MS 0.36 1,207.74 -0.45 WY 0.23 67.84 -0.32
MO 0.24 311.03 -0.60

Notes : All estimates are from PCIV estimation without covariates. “*” denotes states with
first-stage F-statistics lower than 10.
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Table D.6: Analysis by Petroleum Administration For Defense District (PADD)

PADD New Central Lower Midwest Gulf Rocky West
England Atlantic Atlantic Coast Mountains Coast

log price -0.970 -1.160 -0.889 -1.011 -0.977 -0.845 -0.866
(0.369) (0.369) (0.369) (0.369) (0.369) (0.369) (0.369)

F-statistic 1.83 1.83 1.83 1.83 1.83 1.83 1.83
Number of states 6 6 6 15 6 5 7
Observations 2,160 2,160 2,160 5,400 2,160 1,800 2,520

Notes : All regressions include state FEs, control for local unemployment rates, and detrended
data. State-clustered standard errors appear in parentheses.

E Anticipatory behavior
The difference in estimates between P2SLS applied to first differences and FEIV may

imply a violation of the strict exogeneity assumption of the instrument. Indeed in revisiting

the analysis of Davis and Kilian (2011), Coglianese et al. (2017) note evidence of anticipatory

behavior providing one such violation. This violation is particularly important when using

first differences in taxes, prices, and quantities, as in Davis and Kilian (2011). Coglianese

et al. (2017) accordingly use leads and lags of prices and taxes to address the anticipatory

behavior of large consumers on their estimated price elasticity of demand for gasoline.

However, as long as the dependence between lag or lead values of the instrument is only

weakly related to the error term, the inconsistency in FEIV from this dependence converges

to zero as T grows large (Wooldridge, 2010). In contrast, P2SLS on first differences does not

enjoy this same result.22 Given that we are flexibly detrending the data, strong dependence

seems unlikely. We investigate this possible dependence by running reduced form regression

of volume purchases on the log of taxes and a lead of log taxes. Significant coefficient

estimates on the lead of log taxes would indicate strong dependence.

We present the results from these regressions in Table E.1. Indeed, examining the coeffi-

cient estimates of lead taxes on the volume purchased, we see that the lead is only statistically

22See Wooldridge (2010) Chapters 10 and 11 for more complete discussions of the issue.
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Table E.1: Anticipatory behavior and dependence in reduced-form regressions

Without volume weights Volume weighted
P2SLS FEIV PCIV P2SLS FEIV PCIV

Log tax -0.150 -0.157 -0.228 -0.105 -0.154 -0.255
(0.053) (0.047) (0.296) (0.035) (0.030) (0.313)

Lead of log tax 0.070 -0.043 -0.012 0.037 -0.073 0.014
(0.026) (0.066) (0.197) (0.028) (0.064) (0.208)

First-stage F-statistic 18.39 44.11 58.62 40.54 31.88 59.04

Notes : Headings refer to the estimator for which the reduced form estimates appear. Regres-
sions use the entire sample. The calculation of the first-stage F-statistics for the PCIV was
done using Hotelling’s T-squared test. State-clustered standard errors appear in parentheses.

significant with P2SLS applied to the first differences. We find no evidence that additional

gasoline purchases in anticipation of tax increases drive the FEIV (or PCIV) estimates, as

all the coefficients are negative and quantitatively small. This apparent lack of strong depen-

dence leads us to prefer the FEIV estimates over P2SLS applied to first differences. Despite

the small coefficient estimates on the lead of taxes, as a precaution, we follow Coglianese

et al. (2017) in examining the sensitivity of elasticity estimates to the inclusion of leads and

lags. We report the results from this exercise in Figure E.1 in Appendix D, which shows

that the magnitude of FEIV and PCIV estimates are robust to the inclusion of leads and

lags of log prices and log taxes.
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Figure E.1: Sensitivity of elasticity estimates across specifications by estimator

Notes : Specification options include volume-weighted (W), unweighted (UW), leads (LD),
and lags (LG). All elasticity estimates are cumulative as they sum over the contemporaneous
lead and lag coefficient estimates where applicable.
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F Replication of Davis and Kilian (2011) and Coglianese

et al. (2017) with additional estimators
We apply all three methods to the data and modeling of Davis and Kilian (2011) and

Coglianese et al. (2017) here. Davis and Kilian (2011) provides an early example of in-

strumenting for gasoline price changes using changes in state gasoline taxes to account for

the simultaneity issues in studying prices and quantities. The data comes from the Energy

Information Administration and stops in 2008 before the series on state gasoline prices was

discontinued. Davis and Kilian (2011) use pooled OLS applied to first-differences in all

variables to address unobserved, time-invariant, state-level intercepts.

Coglianese et al. (2017) note apparent anticipatory behavior in gasoline sales to state

gasoline taxes changes, violating the strict exogeneity assumption of the instrument. Unlike

FEIV and PCIV, this is particularly problematic for first-difference estimation as the incon-

sistency persists even as the length of the panel grows long (Wooldridge, 2010). As a result,

Coglianese et al. (2017) address the issue by examining how the cumulative effect changes

when they include a lead and a lag of log prices and instrument for them using a lead and

a lag of log taxes. In additional robustness checks, they also include an additional lead and

lag of log taxes for over-identified specifications.

We replicate the results from both studies in Table F.1 exploring how the results change

with using FEIV and PCIV instead of pooled OLS applied to first-differences and when

we apply volume weights with each estimator. The furthest left column provides estimates

that are directly comparable to Davis and Kilian (2011) in Panel A and to Coglianese et al.

(2017) in Panels B and C. As neither Davis and Kilian (2011) and Coglianese et al. (2017)

weight by volume of gasoline sold, we refrain from using volume weights for regressions on

the left and apply volume weights on the right. Panel A of Table F.1 presents the estimates

of contemporaneous deviations in log gasoline prices on log gasoline sales, instrumented by

the contemporaneous deviation in log gasoline taxes. Panel B of Table F.1 accounts for
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anticipatory behavior following Coglianese et al. (2017) by including a lead and lag of log

prices as additional endogenous regressors instrumenting the set with log taxes and well as

the lead and lag of log taxes. The cumulative effect is the sum of all three coefficients. Panel

C is similar to Panel B except that we follow Coglianese et al. (2017) in including two leads

and two lags of taxes used to instrument for the endogenous prices.

The exercise shows a few key points. First, we replicate the results of Davis and Kilian

(2011) and Coglianese et al. (2017) in the first column, which is unsurprising given that Lucas

Davis graciously provides all data and code on his website. Second, consistent with theory,

FEIV and PCIV are less sensitive to the inclusion of leads and lags of log prices than is pooled

2SLS applied to first-differences. Pooled 2SLS applied to first-differences is the most volatile

estimator with both the largest and smallest point estimates depending on the specification.

In fact, when we account for anticipatory behavior and weight by the states’ relevance to

the market, the cumulative effect of log prices on volume sold switches sign showing demand

increasing with an increase in prices. Finally, the PCIV estimates continue to be markedly

smaller (and some would say more plausible) than those from FEIV, insinuating that the

correlation between first-stage variation and heterogeneous slopes is meaningful.
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Table F.1: Replication of Davis and Kilian (2011) and Coglianese et al. (2017)

Without volume weights Volume weighted
P2SLS FEIV PCIV P2SLS FEIV PCIV

Panel A: Contemporaneous log prices, just identified
DK2011

Cumulative Log price -1.135 -0.777 -0.414 -0.714 -0.801 -0.405
(0.250) (0.394) (0.279) (0.209) (0.327) (0.463)

First-stage F-statistic 246.65 82.69 55.64 76.82 28.69 47.99

Panel B: Additional lead and lag of log prices, just identified
CDKS2017

Cumulative Log price -0.360 -0.691 -0.355 0.219 -0.779 -0.348
(0.241) (0.396) (0.356) (0.509) (0.334) (0.591)

First-stage F-statistic 31.21 51.21 54.89 54.84 44.61 48.08

Panel C: Additional lead and lag of log prices, over identified
CDKS2017

Cumulative Log price -0.368 -0.728 -0.367 0.349 -0.781 -0.359
(0.239) (0.402) (0.233) (0.529) (0.335) (0.388)

First-stage F-statistic 52.26 82.99 55.04 73.32 8.49 47.68

Notes : All regressions include month-by-year fixed effects and control for state unemploy-
ment rates. DK2011 corresponds to replications of Davis and Kilian (2011) and CDKS2017
corresponds to Coglianese et al. (2017). Cluster-robust standard errors are in parentheses.
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