UC Merced
Proceedings of the Annual Meeting of the Cognitive Science
Society

Title
The Disruptive Potential of Immediate Feedback

Permalink
https://escholarship.org/uc/item/49m8k0x9

Journal
Proceedings of the Annual Meeting of the Cognitive Science Society, 12(0)

Authors

Schooler, Lael J.
Anderson, John R.

Publication Date
1990

Peer reviewed

eScholarship.org Powered by the California Diqgital Library

University of California

https://escholarship.org/uc/item/49m8k0x9
https://escholarship.org
http://www.cdlib.org/

The Disruptive Potential of Immediate Feedback

Lael J. Schooler

John R. Anderson

Carnegie-Mellon University

Abstract

Three experiments investigate the influence of feedback
timing on skill acquisition in the context of learning LISP. In
experiment 1 subjects receiving immediate feedback went
through the training material in 40% less time than did those
receiving delayed feedback, but leaming was not impaired. A
second experiment involved the use of an improved editor and
less supportive testing conditions. Though subjects in the
immediate condition went through the training problems 18%
faster than did those in the delay condition, they were slower on
the test problems and made twice as many errors. The results of
experiment 3, a partial replication of the first two experiments,
indicated a general advantage for delayed feedback in terms of
errors, time on task, and the percentage of errors that subjects
self-corrected. A protocol analysis suggests that immediate
feedback competes for working memory resources, forcing out
information necessary for operator compilation. In addition, more
delayed feedback appears to foster the development of secondary
skills such as error detection and self-correction, skills necessary
for successful performance once feedback has been withdrawn
(Schmidt, Young, Swinnen, & Shapiro, 1989).

Introduction

The timing of feedback is an important issue in skill
acquisition. ~ Schmidt, Young, Swinnen, and Shapiro
(1989) conducted a study on the timing of feedback with
respect to motor skills. They found that shorter feedback
latencies improved acquisiion and performance while
feedback was there, but that delayed feedback resulted in
improved subsequent performance once feedback had been
withdrawn. Schmidt et al (1989) explain these results in
terms of the Guidance Hypothesis. In this view, during the
initial stages of skill acquisition immediate feedback
guides the behavior of the learner, leading to superior
initial performance. This guidance, however, can lead to a
dependence on the feedback by obscuring the need to learn
secondary skills necessary to perform the task without
feedback. The abilities to detect and self-correct errors
exemplify such secondary skills.

702

The results of Lewis and Anderson (1985) are consistent
with the predictions of the guidance hypothesis. Within
the context of an adventure game, they assessed the effects
of immediate and delayed feedback on subsequent
performance. Subjects receiving immediate feedback were
more likely to select appropriate operators, but those that
received delayed feedback were better able to detect errors.
Somewhat different results were obtained by Anderson,
Conrad, and Corbett (1989). They assessed the effects of
immediate and delayed feedback within the context of the
GRAPES LISP Tutor. Subjects in the immediate condition
moved through the material more quickly than did those in
the delay condition, but there were no statistically
significant differences in test performance.

This paper will further consider the effects of immediate
versus delayed feedback in the context of leaming LISP.

Experiment 1

This experiment investigates the effects that various
levels of guidance have on complex skill acquisition.
Guidance was indirectly manipulated by crossing feedback
timing (immediate or delayed) and its focus (directive or
nondirective).Directive feedback focuses on the function,
or variable, that the student should have used, guiding the
subject along a correct solution path. In contrast,
nondirective feedback focuses on the function they used
incorrectly, but offers no guidance. Immediate feedback
provides more guidance than does delayed feedback, by
preventing the subject from exploring incorrect solution
paths. In this framework, immediate directive feedback
provides the most guidance and delayed nondirective the
least. These dimensions were integrated into the feedback
given to subjects as they solved LISP problems.

Method

Subjects Subjects were members of the Camegie-
Mellon University community with no previous experience
with LISP.

Design: The feedback dimensions of timing (immediate
or delayed), and focus (directive or nondirective) were
crossed, generating 4 cells, with 7 to 9 subjects in each
cell. Subjects within a given condition received a single
form of feedback throughout the tutoring session. Subjects
were matched for math SAT’s between the immediate and
delayed conditions.

Procedure: Subjects first filled out a background
questionnaire about their previous programming
experience and their SAT’s. Subjects then read materials
that familiarized them with both the tutor and the basics of
LISP evaluation. Next they solved 4 practice problems
involving easily understood arithmetic functions, such as
plus and difference.

Once they had finished the practice problems they were
given a second pamphlet describing lists and symbols in
LISP and definiions of functions related to their
manipulation. After they finished studying the pamphlet,
the experimenter started them on the main problems. The
solutions to these involved the construction of LISP
expressions composed of functions that combine and
manipulate lists and symbols. When they made an error,
subjects received feedback according to the specifications
of their cell.

The general procedure for the second day was similar to
the first. However, subjects did not receive any direct
feedback from the tutor, though it continued to follow their
solutions and record errors. From the subjects’ point of
view, the tutor acted largely as task master, editor and
interpreter; presenting problems and evaluating completed
LISP expressions. During both sessions, the subjects
received the standard (cryptic) error messages from the
LISP interpreter, along with the results of evaluation.

Materials: The subjects learned a modified subset of the
LISP extractor and combiner functions (car, cdr, last,
reverse, cons, append & list). The modifications included
changes to the names of some functions such that they
were of approximately equal mnemonic value (e.g, car to
head). Other modifications involved restricting the
number of arguments that the functions could take.
Whereas in standard LISP certain combiner functions.
such as append and list, take a variable number of
arguments, our version required that all combiners take
two,

The problems were blocked according to difficulty.
Within each block, problems were presented randomly.
Each of the first seven problems required the use of one of
the seven functions and each function was used once

703

within the block. The second block required the use of
two functons. Each of the seven was used twice within
the block; paired with a different function each time it was
used. The third block of problems involved solutions
requiring the use of between 3 and 7 functions. In these
problems, some functions were used more often than
others,

Two problem sets, composed of unique problems, were
generated to these specifications. The relative frequency of
any given function was comparable in each set.

Tutor Design

Interface: The problem description is displayed in the
top portion of the screen (see figure 1). It specifies the
initial state, which amounts to the initial variable bindings,
and the goal state, the result that the completed expression
should return. The subject edits her solution in the space
directly below the problem description. Functions and
variables that can be used to form the solution are
displayed continually. A student selects a solution
component, a function or variable, by pressing the key
corresponding to the first letter of its name. In figure 1, the
student has already entered the function /ist into the editor
by pressing the [1]-key. The cursor, here signified by bold
brackets, indicates where the component selected next will
be entered into the solution. The cursor can be moved to
the left and right with the [-]-key and the [+]-key
respectively. The editor automatically expands the [isr
expression, prompting the student to fill in its first
argument, <expr-I1>. The student’s solution continues in
figure 2.

Construct and expression such that

ifx=(hijb)
y=(almn) then <expression> retumns (a b)

(list [<expr-1>] <expr-2>)

functions: head tail end reverse list insert append
variables: x y

Help Messages

Figure 1: A screen from the solution to the lhlir problem.

Suppose the student wants to make a list whose first
element is the first element of the variable y. She
accomplishes this by first entering the function head, with
the [h]-key (step 2). The system expands the head
expression, and she enters the variable y (step 3). The
system then prompts her to fill in the second argument of

the list expression. Her decision to use the function rail
(step 4) results in an error.

At this point, since our subject is in the immediate
feedback condition, the tutor automatically places the
cursor at the point at which the error was detected, and
provides feedback (figure 3). She next deletes the
offending function (step 5), before successfully completing
the problem (step 8). The system then sends the completed
expression to the LISP interpreter. and returns the result
directly below the subject’s expression.

Subject Input Result
[<function>]
1 (list [<expr-1>] <expr-2>)
h (list (head [<expr-1>]) <expr-2>))
y (list (head y) [<expr-2>])
t (list (head y) ([tail] <expr-1>))
[Feedback |
del (list (head y) [<expr-2>])
h (list (head y) (head [<expr-1>1]))
e (list (head y) (head (end [<expr-1>]))
x (list (head y) (head (end x)))

returns: (a b)

Figure 2: A subjects solution to the Lhhr problem, with error.

Directive Feedback

Help Messages====== =
The system expected to find head at the

current cursor POSi“OI‘I.

If x =(h1jk) then (head x)
retumns: h

Nondirective Feedback

Help Messages
The system did not expect to find tail at
the current cursor position.

If x = (b g h) then (tail x)
returns: (g h)

Figure 3: Alternate forms of feedback,

704

Error Detection: The system detects errors by matching
the subject’s soludon against legal solution templates.
When it detects a discrepancy between the subject’s
solution and a legal solution template, it creates a
candidate error. Only if all templates fail to match does
the system consider an error to be made. When this
happens the system must select one of the candidate errors
as the basis for generating feedback. It chooses the
candidate error associated with the template that most
closely matches the student’s solution.

Results and Discussion

Training: Two measures of errors were collected,
Detected errors are those that the system gives feedback
on, or those that cause errors when the final solution is
evaluated in LISP. Total errors are all the errors that a
subject made; the difference between the two indicates the
number errors that were self-corrected. The entire solution
cannot always be fully analyzed, since once a function has
been marked as an error, it is difficult, if not impossible, to
determine whether or not its arguments are in error. The
status of these arguments are marked as unknown. The
total error count provides a conservative estmate of the
total number of errors in the solution. As subjects worked
on problems until they arrived at correct solutions, it was
possible for them to make multiple errors on each problem.

A two way ANOVA was performed on the subjects’
total errors, detected errors, and time on task during
training. The factors were feedback timing (immediate or
delay) and focus (nondirective or directive). There was a
main effect of feedback focus on errors. Subjects
receiving directive feedback made fewer detected errors
than those receiving nondirective feedback, with means of
22 and 35 errors respectively, F(1,22)= 6.37, p < 02",
Considering that the repair of an error was stated in the
directive feedback, this does not come as a surpnse.
Though subjects receiving nondirective feedback made
more errors than did those receiving directive feedback,
there was not a significant difference in the time they spent
completing the problems, F(1,22)= .53, p < 47.

Feedback timing had no discemible effect on the total
number of errors, F(1,22) =.09, p <.76, nor on the number
of detected errors, F(1,22)= .24, p < .62. The onset of
feedback did, however, have a statistically significant
effect on time on task, with subjects in the immediate
condition finishing the problems about 40% faster than
those working with delayed feedback, F(1,21) = 13.78, p
<.002. This could be an artifact of the editor. Since the
arguments to a function are deleted along with a function,
a subject receiving delayed feedback might have to retype
part of her solution when correcting an error. For example,
in order to replace list in the expression (list (head x) v))

"Though the subjects’ math SAT scores were used as covariates in the
analysis, the unadjusted means are reported.

with append, the subject would have to delete list, yiclding
<function>. Next she would have to add append and
retype the arguments.

Test: As there were no lasting effects of feedback on
the second day, this experiment replicates Anderson et al
(1989). Subjects in the immediate feedback condition
worked through the material in less time than did subjects
receiving delayed feedback, yet did not appear to suffer
any ill effects.

Experiment 2

There were a number of problems with Experiment 1
that were rectified in Experiment 2. In the delayed
condition of Experiment 1 feedback and the results of
evaluation were provided automatically as soon as a LISP
expression was complete. Once an expression had been
filled, the delay condition degenerated into an immediate
feedback condition. To prevent this in Experiment 2,
feedback and the results of evaluation were provided only
after an expression had been filled and the subject hit
return as an explicit indication of completing their
solution. Though a seemingly minor difference, this gave
subjects some control over when feedback was provided,
perhaps facilitating self-correction.

The apparent advantage of immediate feedback could
have derived from difficulties subjects in the delay
condition had with the editor. Moreover, they were only
able to self-correct 7% of their errors, before receiving
feedback. If, as the guidance hypothesis suggests, one of
the principal advantages of delayed feedback results from
leaming secondary skills such as error detection, such
skills should be encouraged by the interface. In
Experiment | simplicity of use was emphasized in the
design of the interface, so that the subjects could focus on
leaming LISP. Though conceptually simple, it was
somewhat cumbersome to wuse an interface that
simultaneously deletes a function and its arguments.
Subjects in the delay condition were sometimes forced to
delete potentially correct parts of their solution. The
interface used in Experiment 2 allowed functions within an
expression to be replaced.

Method

Subjects: The thirty-two subjects were comparable to
those in Experiment 1.

Design: The feedback dimensions of timing (immediate
or delayed), focus (directive or nondirective) were crossed,
generating 4 cells, with 8 subjects each. All cells were
matched for math sats.

Procedure: From the subjects’ point of view the
procedure was identical to that of experiment 1.

705

Results and Discussion

Training: Subjects in the delay condition received
feedback on fewer detected errors than did those in the
immediate condition, respectively making 17.3 and 36.1
errors, F(1,23)= 16.2, p < .0005. As in Experiment I,
subjects receiving directive feedback made fewer total
(and detected) errors than did subjects receiving
nondirective feedback, F(1,23)= 12.13, p < .002. Subjects
in the delayed condition self-corrected 37% of their total
errors. By definition subjects in the immediate condition
did not have an opportunity to self-correct.

Subjects took longer to finish the problems under
nondirective as compared to directive feedback, with
respective means of 1824 and 1265 seconds, F(1,23)=
12.13, p < .002. The advantage for immediate over
delayed feedback in experiment 1 was attenuated in this
experiment, though it did not disappear completely.
Subjects in the immediate condition took less time to
complete the problems than did those receiving delayed
feedback, taking respectively 1390 and 1699 seconds,
F(1,23)= 2.35, p <.13; subjects in the immediate condition
still finished the training problems 18% faster than did
those in the delay condition.

Test: Overall subjects in the delay condition made
fewer total errors then subjects in the immediate condition
with means of 22.0 and 45.3 total errors respectively,
F(1,23)= 9.86, p <.005. Analogous effects were found for
time on task. Subjects in the delayed condition spent 1156
seconds on the problems, whereas subjects in the
immediate condition took an average of 1727 seconds to
complete them, F(1,23) = 10.35, p < .004. Other dependent
measures also showed an advantage of delayed feedback.
The total number of steps required to solve the problems,
the time required to add a correct step, and the number of
errors per correct step were all statistically significant at
the .05 level or better.

The guidance hypothesis predicts delayed feedback
should foster the development of secondary skills such as
self-correction. Consistent with this prediction, subjects in
the delay and immediate conditions self-corrected 45% and
30% of their errors respectively, though this difference was
not statistically significant.

Experiment 3

The first two experiments yielded somewhat different
results. In Experiment [, the delay and immediate
conditions were relatively similar to each other, there were
no differences between the delayed (23 total errors & 17%
self correction) and immediate (21 & 13%) conditions. In
contrast to Experiment 1, where the testing conditions
provided little support, the performance of subjects trained
in the delay condition of experiment 2 (22 & 45%) was
markedly better than that of those trained in the immediate

condition (45 & 30%). These contrasts should be
approached with some caution, not only because the
comparisons are across experiments, but because of
differences in the conditions during testing. We have no
indication, for example, of how subjects trained under the
delay conditions of Experiment 1 would perform under the
testing conditions of Experiment 2.

The primary goal of experiment 3 was to replicate parts
of experiments 1 and 2, in particular to determine whether
differences in the interface could account for the differing
results.

Method

Subjects: The thirty-two subjects were comparable to
those in Experiments 1 and 2.

Design: In comparison to the first tutor, the second
editor was easier to use and its feedback was more
delayed. Though these were the major differences
between the tutors used in the first and second
experiments, numerous other, seemingly minor, changes
were also made. If we were to compare the original
conditions of experiment 1 with those of experiment 2 we
could only attribute subsequent differences in performance
to differences between the tutors as whole. The two
versions of the tutor were re-implemented within the same
general architecture, so that we can localize the cause of
any differences in subjects’ performance by systematically
manipulating the relevant dimensions.

Subjects were trained in one of four conditions,
corresponding to the delayed and immediate conditions of
the previous two experiments. They were then tested under
either the test conditions of experiment 1 or those of
experiment 2. This design generated a total of 8 cells, with
4 subjects per cell. For example, their were 8 subjects
trained under the delay conditions of experiment 2. Half of
these subjects were tested under the delay conditions of
experiment 1 and the other half under delay conditions of
experiment 2. As the immediate feedback conditions of
experiment 1 and 2 were practically identical, these
conditions were collapsed together for the analysis.

Results

Training: The first day results are relatively
straightforward. Subjects receiving immediate feedback
were somewhat faster than those working in the delayed
feedback conditions of either experiment 1 or 2,
respectively taking 1713, 2239 and 1795 seconds. F(1.27)=
2,13, p < .14. Since all subjects received directive
feedback, there was relatively little floundering in any of
the conditions. Subjects in the immediate condition, and
the delay conditions of experiments | and 2 wmade
respectively, 21, 24 and 25 errors, F(1,27)=.5, p < .61.

Test: One subject in the delay condition, who was 2.98

706

standard deviations slower than the mean, was dropped
from the analysis. No other subject was over 2 SD’s from
the mean on this measure.

Overall, subjects trained in delay conditions (1260 sec)
completed the test problems more quickly than did those
trained with immediate feedback (1666 sec), F(1,28)=
2.87, p < .10. Further, subjects in the delay conditions (18
total errors) made fewer mistakes than did subjects in the
immediate condition (34 total errors), F(1,28)= 6.05, p <
.02. Subjects in the delay conditions self-corrected 34% of
their errors, while subjects in the immediate condition self-
corrected only 14% of theirs, F(1,28)= 6.37, p < .015.

training testing time total self-
errors corrects
Expl 1689 33.8 10%
Imd
Exp2 1648 34.5 18%
Expl 1244 18 27%
Expl
Exp2 1462 12 58%
Expl 1166 20.7 30%
Exp2
Exp2 1138 22.5 18%

Table 1. Testing results of experiment 3.

As for the replications, subjects trained in the delayed
condition of experiment 2 and then tested under the test
conditions of experiment 2 performed better than did
subjects trained with immediate feedback and tested under
these same conditions. Because of the small n, these
differences were not significant. The results of the
experiment 1 replication were not consistent with those of
experiment 1. Subjects trained in the delay condition of
experiment | performed better than subjects trained with
immediate feedback and tested under identical conditions.
Both replications suggest an advantage for delayed over
immediate feedback.

It could be argued that the differences between the
immediate and delayed feedback conditions result solely
from the difficulty that subjects trained with immediate
feedback bave with the interface. To control for this, we
can look at subjects’ performance on the first step of their
solutions, where the advantages that the delay subjects
have working with the interface should be diminished. In
contrast to the overall result, subjects in the delay (425 sec)
condition take longer to make their first moves than do

subjects in the immediate (345 sec) condition, F(1,28)=
455, p < .04, Subjects in the delay (4.3 errors) condition
make somewhat fewer mistakes then do those in the
immediate (6.3) conditon, F(1,28)= 2.77, p < .11. This
result is consistent with the hypothesis that subjects in the
delay condition are spending more time planning their
solutions than do subjects who had received immediate
feedback during training. In experiments with the
geometry tutor, good subjects demonstrated similar
behavior (Koedinger & Anderson, 1990).

To summarize Experiment 3, though the subjects in the
immediate conditions went through the training problems
18% faster than did those in the delay conditions, they
made twice as many errors on the test problems. The
results are consistent with experiment 2. This experiment
suggests that differences in the interfaces alone do not
fully account for the differences in the results between the
first and second experiment.

General Discussion

Within the ACT* framework, in order for an appropriate
production, or operator, to be compiled, all of the relevant
information needs to be in working memory. Whereas
Lewis and Anderson (1985) found an advantage for
immediate feedback, Anderson et al (1989) did not.
Anderson et al (1989) attnbute the differences between
their results and those of Lewis and Anderson (1985) to
differences in the working memory requirements of the
two tasks. They suggest that Lewis and Anderson (1985)

was a situation where the total correct solution was
never laid out before subjects and they had to integrate
in memory a sequence of moves. In contrast, in the
LISP domain students have at the end a working LISP
function in front of them to study. (Anderson et 1989)

This interpretation suggests that not only forgetting, but
any processing that forces relevant information out of
working memory could disrupt production compilation,
impairing learning. For example, Sweller (1988) suggests
that leaming may be hindered by problem solving, since
they both rely on the same, limited, cognitive processing
capacity. Like problem solving, the processing of feedback
could also compete for limited cognitive resources. When
a subject is provided with feedback, the feedback
necessitates that they set new goals to process it. When
they re-emerge from the feedback episode. the previous
goals may have been lost, increasing the likelihood that the
subject would rely on the feedback. In contrast. if the
feedback processing were somewhat less disruptive, then
they might retum from the feedback episode with their
goals intact, A protocol of a subject RM illustrates these
costs and some benefits of immediate feedback.

At this point in the protocol, RM’s current goal is to get
the second element of the list (q a r s), which is bound to

707

the variable y. This can be accomplished by first taking the
tail (cdr) of the list and then the head (car) of the result.
Since the LISP interpreter evaluates expressions from the
inside out, the arguments to a function are evaluated before
the function. This necessitates implementing plans in the
reverse order in which they are generated.

In statement 3 he appears to have the components of a
successful plan, including the order in which the functions
need to be applied. He forgets, however, about the manner
in which LISP evaluates its arguments. The system
responds with directive interrogative feedback, suggesting
the use of head. In statement 4, he proceeds to include
head in his solution, without understanding why. In
statement 5, he wants to manipulate the list, though it
would be appropriate to use rail, he doesn’t think to do
this, even though previously it had been a component in
his plans; presumably, the plan has been pushed out of
working memory. In statement 8 the system has just
suggested tail, which he does not recognize as part of his
original plan. In statement 9, once the components of the
solution are largely in place, he reflects on the solution,
and leams how to get the second element of a list; he has
several more opportunities to do this in the problems,
which he does without error.

Rm Protocol

I RM: .(um).so I want to manipulate y with some
functions. So I'll say ..(ah)..(ah)

2 E: What'’s your reasoning here?

3 RM: I'm thinking maybe I would want to use the head
function. No the tail function.
edit: (list (tail <expr-1>) <expr-2>)
error: The system expected to find head at
the current cursor postion.
‘What does (head (h i j)) return?

{RM answers question |

4 RM: And so that right here. The system expected to find
head. I'm not sure why but I will go along with it and say
list head.

edit: (list (head <expr-1>) <expr-2>)

5 RM: And I would want to head theoh well maybe I'll
say ..(um)..(ah)..I don’t want (o use reverse no. I don’t only
want to say y T don’t think. (ah) head...

6 E: What arc you thinking?

7 RM: (um) Trying to think how I can rearrange the order
.. of the y list q a r s without changing a ..without reversing
it. Let’s see list head ...(um)..(ah)..] would want to say
(um)...(hm) I wish I could use something other than head
here, but (ah) the system want’s it, so its going to get
(ah)..(ah)..I guess I could ...(sh).(um).(um). I'll try list
again, see if ah.

edit: (list (head (list <expr-1> <expr-2>)) <expr-2>)
error: The system expected to find tail at the current
cursor position.
What does (tail (w f)) return?

{RM answers question)

8 RM: So since it wants tail, I’ll give it tail. List head tail
and I don’t know where the computer is going with this.

edit: (list (head (tail <expr-1>)) <expr-2>)

9 RM:(um) What are we tailing?. We are tailing y...So that
means. Oh I get it, I feel so stupid now. Now 1 get it
because, if you tail g ars, you get ar s and you head that
and you get a which 1s all I wanted in the first place, so I'll
Jjust say y here

edit: (list (head (tail y)) <expr-2>)

Figure 4. Verbal Protocol of RM working with immediate
feedback.

From this protocol it can be seen that even relatively
primitive feedback can provide the basis for quality self-
generated explanation (statement 9). Second, that
feedback can disrupt working memory, forcing out
relevant information (statement 3). Third, it is not difficult
to see that if RM had not paused to reflect on his solution,
he could have very easily finished the problem, relying on
the feedback. R.C. Anderson, Kulhavy & Andre (1972)
found (hat copying feedback such as this impaired
leaming.

There are clearly advantages to immediate feedback.
First, it increases the probability that relevant information
will be in working memory (Anderson et al, 1989).
Second, it decreases the time spent floundering, focusing
the subjects attention on relevant information and
decreasing time on task. Along with these benefits,
however, are the potential costs. First, subjects can grow
dependent on the feedback, so that secondary skills such as
error detection and self correction do not develop (Schmidt
et al, 1989). Second, immediate feedback may compete
for the resources of working memory, impairing leaming.
Perhaps, a form of feedback can be found in which these
benefits and costs are optimally balanced.

708

References

Anderson, R.C. Kulhavy, R W., & Andre, T. (1972).
Conditions under which feedback facilitates learning from

programmed lessons. Journal of Educational Psychology,
63, 186-188.

Anderson, J.R., Conrad, C.G, Corbett, A.T. (in press).
Skill Acquisition and the LISP Tutor. Cognitive
Science,13,467-505.

Koedinger, R., & Anderson, J. R. (1990). Knowledge-
Based Environments for Learning and Teaching. Working
notes of the AAAI Spring Symposium Series.

Lewis, M.W., & Anderson, J.R. (1985). Discrimination
of Operator Schemata in Problem Solving: Leaming from
Examples. Cognitive Psychology, 17, 26-65.

Schmidt, R.A., Young, D.E., Swinnen, S., & Shapiro,
D.C. (1989). Summary Knowledge of Results for Skill
Acquisition: Support for the Guidance Hypothesis. Journal
of Experimental Psychology: Learning, Memory, and
Cognition,15(2), 352-359.

Sweller, J. (1988). Cognitive Load During Problem
Solving: Effects on Leaming. Cognitive
Science,12,257-285.

	cogsci_1990_702-708

