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Gauge-invariant implementation of the Abelian Higgs model on optical lattices

A. Bazavov!?, Y. Meurice!, S.-W. Tsai?, J. Unmuth-Yockey!, and Jin Zhang?

Y Department of Physics and Astronomy, The University of Towa, Towa City, Towa 52242, USA and

2 Department of Physics and Astronomy, University of California, Riverside, CA 92521, USA
(Dated: March 31, 2015)

We present a gauge-invariant effective action for the Abelian Higgs model (scalar electrodynamics)
with a chemical potential 4 on a 141 dimensional lattice. This formulation provides an expansion
in the hopping parameter x which we test with Monte Carlo simulations for a broad range of the
inverse gauge coupling 3, and small values of the scalar self-coupling A. In the opposite limit of
infinitely large A, the partition function can be written as a traced product of local tensors which
allows us to write exact blocking formulas. Their numerical implementation requires truncations
but there is no sign problem for arbitrary values of u. We show that the time continuum limit of
the blocked transfer matrix can be obtained numerically and, in the limit of infinite 5, and with
a spin-1 truncation, the small volume energy spectrum is identical to the low energy spectrum of a
two-species Bose-Hubbard model in the limit of large onsite repulsion. We extend this procedure for
finite Bp; and derive a spin-1 approximation of the Hamiltonian. It involves new terms corresponding
to transitions among the two species in the Bose-Hubbard model. We propose an optical lattice

implementation involving a ladder structure.

PACS numbers: 05.10.Cc,05.50.4q,11.10.Hi,11.15.Ha,64.60.De,75.10.Hk

I. INTRODUCTION

The lattice formulation of quantum chromodynamics
has provided successful treatments of nonperturbative
problems involving strongly interacting particles in the
context of particle and nuclear physics. However, nu-
merical computations at finite density and real time have
remained a major challenge. For this reason, there has
been a lot of interest in the possibility of building quan-
tum simulators for lattice gauge theory (LGT) using op-
tical lattices (for recent reviews see Refs. [T}, 2]).

When physical degrees of freedom - individual cold
atoms or condensates trapped in the optical lattice - play
the role of the gauge fields, one needs to make sure that
the physical observables are gauge invariant. One way
to achieve this goal is to impose Gauss’s law at least in
some approximation. This question is discussed in the
context of Abelian gauge theories in Refs. [3HJ]. An-
other approach that has been advocated [I0, 1] is to
work directly with a gauge invariant formulation.

A simple example is the correspondence between the
Fermi-Hubbard model and a SU(2) gauge theory with
one fermion [I2]. At strong gauge coupling and small
hopping parameter, the quadratic part of the gauge-
invariant effective Hamiltonian in one spatial dimension
reads

Hepp o< Y [MiMiyy +2(BI By + Bl By, (1)
3

where M; and B; are the gauge invariant operators cor-
responding to mesons and SU(2)-baryons. A similar
effective Hamiltonian can be obtained at second order
in degenerate perturbation theory of the Fermi-Hubbard

model with strong onsite repulsion.
Effective actions for mesons and baryons can be con-
structed for SU(N) gauge groups with similar approxi-
mations [I3]. The computation of the corrections due to

the plaquette interactions is rather involved [I4]. Vari-
ous related techniques have been developed to approach
chiral symmetry breaking at strong coupling [15, [16] and
can accommodate a chemical potential [I7]. Despite this
progress, testing the validity of the approximations with
numerical methods has remained challenging which sug-
gests to consider simpler examples.

For the Bose-Hubbard model with one species of parti-
cle, there is a remarkable level of quantitative agreement
[18] between state of the art quantum Monte Carlo (MC)
calculations and their experimental optical lattice imple-
mentations. It would be highly desirable to provide a
similar proof of principle for a simple LGT model where
calculations at finite density and real time are possible.

In this article, we explain how to establish an ap-
proximate quantitative correspondence between the well-
known Abelian Higgs model (scalar electrodynamics)
[19, 20] with a chemical potential ;4 on a 1+1 dimen-
sional lattice and specific many-body theories that can
in principle be realized experimentally on optical lat-
tices. The model describes a charged complex scalar
field and an Abelian gauge field. Its formulation is re-
viewed in Sec. [l The model can be studied numeri-
cally by various numerical methods in various regions of
the parameter space and a first important step is to con-
nect the standard isotropic space-time calculations to the
Hamiltonian approach obtained by taking the time con-
tinuum limit first and then connecting this Hamiltonian
with the Hamiltonian of cold atoms trapped in optical
lattices. Our first goal is to achieve some calibration in
the gapped, confining phase corresponding to the Mott
insulator phase of the cold atom system.

The exact form of the gauge-invariant effective action
for the mesons is derived in Sec. [[IT] by integrating over
the gauge fields. The absence of fermions permits in-
expensive MC simulations at Euclidean time and zero



chemical potential. This allows us to test the expansion
of the effective action in the hopping parameter for a
broad range of the inverse gauge coupling /3,; and small
values of the scalar self-coupling A. Good agreement with
MC is shown in Sec. [Vl

In Sec. [V] we consider the opposite limit of arbitrarily
large A\ where the amplitude of the scalar field is frozen
to unity. In this limit, all the remaining variables in-
volved in the basic formulation are compact and we can
use recently developed Tensor Renormalization Group
(TRG) methods [21H24] to write the partition function
as a traced product of local tensors with discrete indices.
This reformulation allows us to write exact blocking for-
mulas which can be used for numerical purposes. The
practical implementation requires truncations but in con-
trast to the MC approach there is no sign problem for
arbitrary values of u. We then write the transfer matrix
as a product of tensors along a time slice.

The time continuum limit of the blocked transfer ma-
trix can be obtained numerically. In the limit of infinite
Bpi and with a spin-1 truncation (inspired by gauge mag-
net or gauge link constructions [25] 26]), the small volume
energy spectrum is identical to the low energy spectrum
of a two-species Bose-Hubbard model in the limit of large
onsite repulsion [27] 28]. We calculate numerically the
energy spectrum in this limit in Sec. [V

In Sec. [VII, we extend this procedure for finite 3,; and
derive a spin-1 approximation of the Hamiltonian. It in-
volves new terms corresponding to transitions among the
two species in the Bose-Hubbard model which we discuss
in Sec. [VITI] We then propose an optical lattice imple-
mentation involving a ladder structure and discuss fur-
ther plans to obtain a good correspondence between con-
ventional MC calculations and optical lattice measure-
ments.

II. THE ABELIAN HIGGS MODEL

In this section, we briefly remind the reader of the
action for the Abelian Higgs model on a 141 space-time
lattice of size Ny x N, and introduce the notations used
later. We use z, y etc. for space-time vectors, i, j etc.
for the one-dimensional spatial sites and o= § or 7 for
the unit vectors in space and time, respectively. The
gauge fields U, » = expiA, ; are attached to the links.
We denote the product of U’s around a plaquette Uy
where x is the lower left corner of the plaquette in space-
time coordinates. We use the notation 3, = 1/e* for
the inverse gauge coupling and x, (k,) for the hopping
coefficient in the space (time) direction. For the potential
for the complex scalar field ¢, = |¢.|exp(if,), we follow
the convention of Ref. [29]. The action reads:

S =8, + Sh+ S, 2)

where the gauge part is

Sg = —Bpi Z Re [UPZJ] ) (3)

the hopping
1=~ Y [0#61Unstusr + 06U 0]

s > [0 56015 + 011 UL o0 4)

T

and the self-interaction
2
Sx=AY (¢ldr — 1)+ ¢los. (5)
The partition function can then be written as

Z= / D¢ DpDUe™5. (6)

In the hopping part of the action S}, we can separate the
compact and non-compact variables

Sp = = 267 |¢z || Pz 7] Z co8(0p 7 — Op + Az 7 —ip)

— 24| bal@rrs] D coS(Onss — Oz + Aps).  (7)

This equation makes clear that the chemical potential is a
constant imaginary gauge field in the time direction and
that the Nambu-Goldstone fields 6, can be eliminated by
a gauge transformation

Aa:,f/ — Am,f/ - 91+f/ + 01:7 (8)

which leaves the plaquette terms unchanged.

III. A GAUGE-INVARIANT EFFECTIVE
ACTION

As explained in the introduction, unlike other ap-
proaches [2, [4H7, O BOH32] we will not try to implement
the gauge field on the optical lattice, but rather try to
implement a gauge-invariant effective action obtained by
integrating over the gauge fields. In this section, we
will show that this effective action is a function of the
composite, gauge-invariant, meson field which we denote
M, = ¢l ¢, in order to emphasize the analogy with Eq.
. In other words,

Z = /D¢TD¢DUe—S = /DMe‘Seff(M)_S*(M). (9)

For this purpose, we use the Fourier expansion of the
Boltzmann weights in terms of the modified Bessel func-
tions I,,, for instance,

exp[26+| Pz ||Ppts| cOS(Opys — O + Ay s —ipt)] (10)
- Z In(2/€‘r|¢)z”¢z++|) exp[in(9x+? - 9:6 + Am,f' - ’L‘LL)},



and similar expressions for the space hopping and the
plaquette interactions. We can then collect all the expo-
nentials involving a given A, and perform the integra-
tion over A, p. This results in Kronecker deltas relating
the various Fourier modes. The final result is

{mo}

xfnw,%<2nf|¢z|¢m++|>exp<unm,+>)], (1)

T 1o TL (1. 2ol

O T

with specific rules to express the link indices n,  in terms
of the plaquette indices mp that we now proceed to ex-
plain. Given that for z real, I,,(x) = I_,(z) there are
several equivalent ways to label the contributions. We
use the convention where time is along the vertical axis.
Starting from the lower left corner of the plaquette and
moving counterclockwise, the gauge fields in the expo-
nentials come with a plus sign for the first two links and
a minus sign for the last two links. For the hopping terms,
the gauge fields always come with a positive sign. This
results in the rules

Ng,5 = Mpelow — Mabove (12)

Ny 7 = Myight — Mieft (13)

where the subscripts such as “below” refers to the pla-
quette location with respect to the link. This completely
fixes the link indices in terms of the plaquette indices
and it is easy to check that Eqs. guarantee that
the link indices automatically satisfy the current conser-
vation imposed by the integration of the 6, variables. In
other words, the mg are the dual variables [19].

Equations (12{13) have simple electromagnetic
analogs. First, n,; can be interpreted as a charge

and m, as an electric field in the spatial direction.
With this Minkowskian interpretation, Eq. enforces
Gauss’s law. Second, ng; can be interpreted as a
two-dimensional current and m, as a magnetic field
normal to the two-dimensional plane. In this Euclidean
interpretation, Eqgs. (12H13) express the current as the
curl of the magnetic field. A right hand rule can be
obtained for the following index ordering: time, space,
normal direction. A discrete version of Gauss’s theorem
guarantees that the sum of the charges on a time slice is
the last m on the right minus the first m on the left.

At the lowest order of the strong-coupling expansion
we have 3, = 0 and from I,,(0) = 0 for n # 0, we see that
all the indices must be zeros. The effect of the plaquette
can be restored perturbatively. This can be organized in
an expansion in the hopping parameter. In the isotropic
case Kr = Ky = K we obtain:

1
Sy = X (MM, + 3 0008)2) (1)
(wy)
gt 11(Bpt)

M, M, M, M, + O(x°
To(Bp0) v (=)

O(zyzw)
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FIG. 1. Ly at B = 20 for A = 0.05 and A = 0.1 as function of
x compared with the hopping expansion at 8, = oo at O(fi3)
and O(x®).

IV. MONTE CARLO CALCULATIONS

Consider the action for the isotropic case k, =
ks = k. We start with the 3, — oo limit when all gauge
variables are frozen to unity, U, = 1. In this limit the
expectation value of the hopping term

Ly = (Re{¢ Uz 00y} (15)

can be calculated with the hopping parameter expansion,
for small . It has been derived up to O(x®) in Ref. [29].
This result can be generalized to 8 < oo by including the
appropriate factors of I1(8)/Iy(8) for the diagrams that
involve plaquettes [33].

To check the range of validity of the expansion we per-
form Monte Carlo simulations at several values of 3, k
and A on a 162 lattice. To test the 3 — oo limit we
set 8 = 20 and for A = 0.05 and 0.1 scan the range of
k € [0.05,0.30]. The results for L, are shown in Fig.
The lines represent the expansion at two orders. The ex-
pansion starts to break down around x = 0.15 at O(k?)
and k = 0.2 at O(k®). At the present, exploratory, stage
we use the updating algorithm of Ref. [34] that is appli-
cable at small self-coupling A. Monte Carlo tests of the
model at large A are left for the future.

To study the dependence on [ we focus on the k €
[0.08,0.16] range at A = 0.1 and perform calculations at
Bpr = 20, 2, 0.2 and 0.02. The results for Ly are shown
in Fig. 2

To understand the dependence on f,; better we also
calculate Ly for several values of 3, at fixed x = 0.15.
The results together with the hopping expansion are
shown in Fig.

V. THE LARGE )\ LIMIT

We now turn to the limit where A becomes arbitrar-
ily large. In this limit, M, is frozen to 1, or in other
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FIG. 2. Ly at By = 20, 2, 0.2 and 0.02 for A = 0.1 as func-
tion of K compared with the hopping expansion with included
dependence on B, up to O(k°).
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FIG. 3. Ly at fixed k = 0.15 as function of 8, for A = 0.1
compared with the hopping expansion with included depen-
dence on B up to O(k%).

words, the Brout-Englert-Higgs mode becomes infinitely
massive. We are then left with compact variables of inte-
gration in the original formulation (6, and A, ;) and the
Fourier expansions described before lead to expressions
of the partition function in terms of discrete sums.

As explained in Ref. [22], these sums can be formulated
in a compact way using tensorial notations. In order to
simplify the equations below we define

- I,(2)
Io(z)
These normalized Bessel functions have useful properties.

For instance t,,(0) = J,, 0. For z non-zero and finite, we
have

tn(2)

(16)

1 =to(z) > t1(2) > ta(z) > --- > 0. (17)
In addition, for sufficiently large z,
2

ta(z) ~1— — (18)

2z

B A B
A AG)
B AT B

FIG. 4. The basic B and A tensors (in brown and green, re-
spectively, colors online). The A®) are associated with the
vertical tensors, and the horizontal (spatial) links of the lat-
tice. The A are associated with the horizontal tensors, and
the vertical (temporal) links of the lattice.

Following the general principles of the construction [22],
we attach a B2 tensor to every plaquette

O
B s (19)
_Jtmg (Bpt), if m1 =mg =mg=m4 =mp
0, otherwise,
a A®) tensor to the horizontal links
Ag}ilbommbelow = tlmbelow_mabove|(2ns)’ (20)

and a A(™ tensor to the vertical links

Ag':l)eftmrigh,t = tlmleft_mw'ight|(2HT) e(mrignt=micse)i,
(21)
The partition function can now be written as
Z = (Io(Bp)To(26:)To(26-))" x (22)
s T O
Tr H Agnlboucmbclow Agnz)cftmrighthnl)mzmsm4
h,v,

The traces are performed by contracting the vertical and
horizontal indices as shown in Fig. |4l Note that the ten-
sor A®) associated with a horizontal space link is repre-
sented by a vertical line orthogonal to the link and the
tensor A7) associated with a vertical time link is repre-
sented by a horizontal line orthogonal to the link.

The traces can also be expressed in terms of a trans-
fer matrix T which can be constructed in the following
way. First, we define a matrix B as the product of the
plaquette tensors on a time slice alternating with the
link tensor corresponding to the vertical links in between



the plaquettes. There are two natural ways to impose
boundary conditions. The first is to connect the last A
tensor with the first B tensor (periodic boundary condi-
tions), the second is to impose m = 0 for the first and
last B tensor (open boundary conditions). However, in
both cases, the total charge on the interval has to be
zero. A more general option is to allow arbitrary m’s at
each end. This would allow us to consider appropriately
selected charge sectors. In the following we will focus on
the open boundary conditions and define

IB2’(ml,mg,.umNS)(m’l,771/2‘..m'1\,5) = tm1 (2"37)5m1,m’1tm1 (ﬁpl) X
tIM1—m2|(2“T)5m2,m/2tmz (Bpl)t\mz—m3|(2“T) s
T, (5pl)tmzvs (2K7). (23)

Note that with this choice of open boundary conditions,
the chemical potential has completely disappeared. If
we had chosen different m’s at the end allowing a total
charge @ inside the interval, we would have an additional
factor exp(u@). We next define a matrix A as the prod-
uct

A(ml,mz,.“mNs)(m’l,mfz...mj\,s) = (24)
t\ml—mll ‘ (QI{S)t|m2_m/2| (2/&8) [N t|mNs _m/NS ‘ (2/63).

With these notations we can construct a symmetric
transfer matrix T. Since B is diagonal, real and positive,
we can define its square root in an obvious way and write
the transfer matrix as

T = VBAVB. (25)

With this definition, the partition function can be written
as

Z = (Io(Bp)Io(265)10(26,)) Tr [TN"]. (26)

Alternatively, we could diagonalize the symmetric matrix
A and define the (dual) transfer matrix

T = VABVA. (27)

The A and B matrices can be constructed by a recur-
sive blocking methods similar to those discussed in Ref.
[22]. We can construct a new B tensor, called B’, by
contracting two B tensors on both sides of a A(™) tensor.
This process can be iterated and is illustrated in Fig.
Using tensorial notation we write

! —
BmgmsM(ml,mz)M’(m’l,m/Z) -
Z Bm3m4m1m'1A%LnsBmsmezm'g7

my, M5

(28)

where the notation M (m,mz) stands for the product
state, M = mj ®msy. One can continue blocking horizon-
tally as above until the desired spatial size is achieved re-
sulting in the matrix B. By their very nature the B’s en-
force that this object is diagonal in the collective product-
state indices of the upper and lower tensor legs. For prac-
tical reasons, truncation methods need to be introduced
at the beginning and after each blocking [21], [35].

m mlh

ms3 my ms mg

my ma

FIG. 5. Part of the construction of the blocked B’ tensor.
This shows the contraction of the B and A(™) tensors. The
dashed lines are the links of the original lattice.

mj | mh |

my ma

FIG. 6. Graphical representation of the blocking of the A
tensors. The vertical tensors are the A®) and the dashed
lines are the links of the original lattice.

Now consider the A®) matrices which correspond to
the horizontal links of the original lattice as in Fig. [6
If one takes their outer product and collects the upper
indices into a single product-state index, and does the
same for the lower indices, one has another matrix built
out of the vertical A(®) tensors. Once again in tensorial
notation this can be written as
A(S)

mom}°

_A®

myim}

4

M (mama) M () (29)
One can continue taking the product of A®) matrices
until the desired spatial size has been reached resulting
in the matrix A.

VI. THE LIMIT 3, — oo

In this section, we discuss the case where both A and
Bpr are infinite. In this limit, the correspondence be-
tween the classical lattice model and a two-species Hub-
bard model has been outlined in Ref. [27] and we will
show that the method discussed in Sec. [V] allows us to
match the spectra at small volume with very good accu-
racy. This section is a warm-up for the more complicated
situations discussed in Secs. [VII| and [VIIIl

In the limit where 3, becomes arbitrarily large, we
need to maximize ReUy; . This is accomplished when
A, » is a gauge transform of 0. In other words, we can
set Az, = 0 and the gauge equivalent configurations
are taken into account by integrating over the Nambu-
Goldstone modes 6,. We recover the familiar O(2) model.
As explained in Ref. [36H38§], the time continuum limit



can be achieved by taking the limit x, — oo while keep-
ing the product k,ks constant. This leads to a Hamil-
tonian for quantum rotors located at each spatial site
and having quantized angular momentum running over
positive and negative integers. In order to realize this
Hamiltonian on optical lattices, we considered [27] a spin-
1 truncation where the angular momentum at each site
is restricted to the values 0 and 1. This truncation has
very small effects on the phase diagram provided that
the hopping parameter and the chemical potential are
not too large.

Following Refs. [27, 28] with the replacements 3, —
2k,,, the Hamiltonian for the spin-1 approximation of the
O(2) model reads:

=53 (1) (30)

I
_“ZL(i) 1 > (Lg)L(iJrl) + L(i)Lerl)) ;

K3

with the now dimensionful quantities

1
2,0

2K,

U T

Il
Il
SHRS

;B pat (31)
and a the time lattice spacing. If we use open boundary
conditions, the sums run over all spatial sites in the first
two sums and all but the last in the third sum. This
approximate Hamiltonian can be matched [27), 28] with
the effective Hamiltonian of a Bose-Hubbard model dis-
cussed in sec. [VIII] that, we expect, can be implemented
on optical lattices.

The first step is to understand the matching in the
simple situation where U is large compared to fi and J.
In this case, U sets the scale of the mass gap and i and
J introduce small splittings. We now use energy units
where U=1. The time continuum limit can be obtained
numerically as we keep blocking the transfer matrix in
the space direction as discussed in Sec. [V} The spectra
in blocks of size 2, 4 and 8 in the spin-1 approximation are
shown in Fig. |7 for J=0.1, it = 0. A nonzero chemical
potential would split the charge conjugated states and
make the graph difficult to read. An example will be
shown for L = 2 in Sec. [VIIIl

VII. THE TIME CONTINUUM LIMIT AND
THE ENERGY SPECTRUM

In this section, we construct the time continuum limit
of the transfer matrix T defined by Eq. starting
now with the more general situation where 3,; is finite.
In order to obtain Hamiltonians corresponding to Bose-
Hubbard models, a guiding strategy is to assume that
the spatial hopping kg is proportional to some hopping
energy. In the limit ks = 0, the inside matrix A becomes
the identity and the transfer matrix T = vVBAVB be-
comes B which is diagonal. In this limit, the only way

Spectra for L=2, 4 and 8; J/0=0.1; ﬂ:O

FIG. 7. O(2) spectra in U units for L=2, 4, and 8, with
J=0.1, i = 0. Some higher energy states are not shown on
the figure.

to obtain a time continuum limit, in other words to have
T close to the identity, is to require that both k. and B,
become large. At leading order in the inverse of these
large parameters, the eigenvalues of T are

)‘(m,l,mQ,...mNs) = (32)
1.1
L= Sl(g-mi+ms + - mi) +
2 Bpl i
1

(m%—l—(mg—ml)z—i—...

2K,
o+ (my, —my,—1)% + miy)]

There are two limiting situations: 1 << fp << k, and
1 << Ky << PBpi- In the first case, 1/, is the largest
coefficient and the low energy states are those with a
few m; nonzero and consequently only a few differences
of m’s are nonzero and the second term in Eq. is
a perturbation. In the second case, 1/k, is the largest
coefficient and we could guess that to minimize its con-
tribution, we need to take most of the m’s to be equal
and just create a few charges. For a large volume, this
can cause the first term of Eq. to dominate, which
signals an infrared instability. In electrostatic terms, cre-
ating one charge also creates a constant electric field over
the entire volume. The linear potential is responsible for
the confinement and trying to treat the interaction per-
turbatively results in infrared problems.

For this reason, in the following, we will only consider
the case 1 << fp << K, and set the scale with the

(large) gap energy

1
aﬁpl .

Up = (33)

It is important to distinguish this scale from the U in-
troduced in Sec. Up is associated with the plaquette



quantum number m (the energy to create a flux tube
across one lattice spacing between the opposite charges),
while U in Sec. is associated with the quantum num-
ber n (the energy to create a single charge). In addition,
we define the (small) energy scales

1 Bpl o
= U 34
260 2K, P (34)

which plays the same role as U in Sec. and the space
hopping parameter

Y

X = \/iﬂpllﬁsﬁp. (35)

We are now in position to derive an expression for the
Hamiltonian in the spin-1 approximation where the pla-
quette quantum number m takes values £1 and 0 only.
The effect of k5 can be studied by linearization. In the
case of two spins, we find that

OT/Oks|s.—=0 = \/5@?1) + E&)) (36)

We use the notation Efl)

the spin-1 rotation algebra at the site (1). The notation
L is used to emphasize that the spin is related to the m
quantum numbers attached to the plaquettes in contrast
to the spin-1 generators L in Sec. having a spin related
to the charges n attached to the time links. The final
form of the Hamiltonian H for 1 << Bpr << Ky is

to denote the first generator of

ST
XZL< )

where Y7 is a short notation to include the single terms
at the two ends as in Eq. , i.e. besides (L)) — Lf,))?,
(Ll = Ly)* - L,y
contains (L'(Zl)) and (L(N ))2.

The process outlined in this paper can in principle be
generalized for non-Abelian gauge groups in 141 and
higher spatial dimensions. Tensor formulations and ex-
act blocking procedures have already been worked out for
non-Abelian gauge groups in Ref. [22]. These questions
are under active consideration.

Y ! Tz Tz
52 (L — Liisn)?

K2

- EfNS))z terms this sum

VIII. A TWO-SPECIES BOSE-HUBBARD

MODEL IMPLEMENTATION

In Refs. [27], 28], we have proposed to match the Hamil-
tonian of the O(2) model given in Eq. with the two-
species Bose-Hubbard Hamiltonian on a square optical
lattice

H=— Z(tual‘taj + tbbl’tbj + ]’LC) - Z(Mu-&-b + Aa)n?

(ig) o

+ Z %nf‘(nf - +W Z ninf + Z Vaning (38)
i i (if)e

with @ = a, b indicating two different species and with
ny = a;[ai and n? = b}Lbi. In this expression, the chem-
ical potential .45 is associated with the conservation
of n® 4+ n® and should not be confused with the chem-
ical potential introduced in the previous section which
couples to n® — n® and breaks the charge conjugation
symmetry. In the limit where U, = U, = U and W and
tatv = (3/2)U are much larger than any other energy
scale, we have the condition n¢ + n? = 2 for the low en-
ergy sector. The three states |2,0), |1,1) and |0, 2) satisfy
this condition and correspond to the three states of the
spin-1 projection considered above.

Using degenerate perturbation theory [39, [40], we
found [27, 28] that

V., 2V,
Hopr=[—2—242_"0 L?L7
11 (2 o, T2 U0>Z i

_tatb
0

+ SLFLy + L7 L) + (Uo — W) Y (L7)?

(i) i

p(n+ 1)tz 2
) - (G

A, - ”th)}ZL (39)

+ Kana+Aa -

where p is the number of neighbors and n is the occupa-
tion (p = 2, n = 2 in the case under consideration). L
is the angular momentum operator in the representation
n/2. The effective hamiltonian without the last term
has been studied in [41] and shows a rich phase diagram.

In order to match with the O(2) model, we need to tune
the hopping amplitude as t, = /V,U/2 and have J =
ANV Vp, U=2U-W),and i = —(Ag = Vo) +(Ap—V3).
The matching is illustrated in Fig. for J/U = 0.1 and
large U. In the limit U — oo, the matching is excellent.
As we lower U, high energy states get a lower energy and
can mix with the low energy states. These states may
be related to the modes that become infinitely massive
when A — oo.

The optical lattice implementation is discussed in Ref.
[27] for a 8"Rb and 'K Bose-Bose mixture where an in-
terspecies Feshbach resonance is accessible. The inter-
species interaction (W) can therefore be controlled by an
external magnetic field. The extended interaction, V,,
is present and small when we consider Wannier gaussian
wave functions sitting on nearby lattice sites [42].

For the Hamiltonian H in Eq. corresponding to
1 << Bpr << K, we need to introduce a new interaction
to represent the L* effects that interchange the m = 0
states with the m = 41 states. This can be achieved by
adding the piece

_lab t t
AH = —7;(aibi+biai) : (40)

The matching between the two models can be achieved by
imposing t =0, V, =V, = —Y/2 and tq = X. Energy



0(2) and BH Spectra for L=2; J/U=0.1; (i=0.02

BH model

0(2) and BH Spectra for L=4; J/U=0.1; i=0

BH model

U=20000

FIG. 8. O(2) with J/U = 0.1 and Bose-Hubbard spectra for
L =2 with 1 = 0.02 (top) and L =4 with i = 0 (bottom).

levels obtained numerically with this method have a good
matching shown in Fig. 0] Note that if an interspecies
nearest neighbor interaction Vj; is introduced, it can be
incorporated in H.ry by making the substitution V, +
Vo = Vo + Vi, — 2V, in the first term of Eq. .

This is a very different realization than for the O(2)
limit. The presence in the Hamiltonian of the additional
term that interchanges the species index, Eq. (37), rules
out implementing this Hamiltonian using mixtures of two
different types of atoms, and it also makes it difficult to
realize it using two hyperfine states of the same atomic
species. It could be realized with a single atomic species
on a ladder structure with a and b corresponding to the
two legs of the ladder. Ladder systems have been real-
ized experimentally by using lattices of double wells [43-
47]. The hopping amplitudes can be tuned such that the
hopping in the direction along the ladder is negligible,
but finite along the rungs, thus exchanging a, b species
index at the same rung. An attractive intraspecies in-
teraction (V, = V, = —Y/2) is also needed, favoring
having two atoms in neighboring sides on the same leg
of the ladder. This acts as a nearest-neighbor ferromag-
netic coupling in the effective one-dimensional spin chain
Hamiltonian. For the experimental implementation, an
attractive nearest neighbor interaction can be obtained
by using cold dipolar atoms or molecules, with dipole mo-

Abelian-Higgs and BH Spectra for L=2; )?/D,,:\?/[/,,:on

08 -

03 -

-02

Abelian-Higgs and BH Spectra for L=4; )?/[Ipz;/f/ﬁoﬂ

FIG. 9. Abelian-Higgs model with X/U = 0.1, Y/U = 0.1
and the corresponding Bose-Hubbard spectra for L = 2 (top)
and L =4 (bottom).

ments aligned along the ladder and with inter-rung dis-
tance such that the rapidly decaying dipole-dipole inter-
action between next-nearest-neighbors can be neglected.
With this alignment of the moments, the inter-species in-
teraction in the same rung (W) is repulsive. Experiments
with ultra cold dipolar quantum gases have been per-
formed with chromium [48], erbium [49] [50], and dyspro-
sium [5IH53], which have magnetic moments 6up, 7up
and 10up, respectively, and with polar molecules, such
as 19K 8"Rb and 2*Na 49K [54H56].

IX. CONCLUSIONS

With the remarkable experimental progress in the field
of Atomic, Molecular and Optical physics, particularly
the loading of trapped ultra-cold atoms onto optical lat-
tices, and the unprecedented levels of control and tunabil-
ity of their interactions, a wide range of quantum many-
body lattice Hamiltonians can be realized and studied.

We have proposed a two-species Bose-Hubbard model
that may be used as a quantum simulator for lattice
gauge theories. The gauge invariance is built-in and
thus does not need to be achieved via fine-tuning, and
the correspondence between the proposed Bose-Hubbard



Hamiltonian and the Abelian Higgs model can be checked
quantitatively.

On the experimental side, various multi-species Bose-
Hubbard systems can be created with current cold atom
technology. Various possible realizations for the two
species that are needed can be explored. On the the-
ory side, the Bose-Hubbard Hamiltonian is amenable
to Quantum Monte Carlo calculations and the Abelian
Higgs model can be treated with the TRG (and the time-
continuum limit obtained) as well as Monte Carlo calcu-
lations. The full spectra can be calculated, at least for
small systems. The TRG formulation can very naturally
provide time-dependent correlation functions. Therefore,
beside the ultimate goal of quantum simulating lattice
gauge theories using cold atoms on optical lattices, the

correspondence we report here may also provide a way of
studying the dynamics of the cold atom system such as
response to sudden quenches.
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