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ABSTRACT OF THE THESIS

I Always Feel Like Somebody’s Sensing Me!

A Framework to Detect, Identify, and Localize Clandestine Wireless Sensors

by

Akash Deep Singh

Master of Science in Electrical and Computer Engineering

University of California, Los Angeles, 2020

Professor Mani B. Srivastava, Chair

The increasing ubiquity of low-cost wireless sensors in smart homes and buildings has enabled

users to easily deploy systems to remotely monitor and control their environments. However,

this raises privacy concerns for third-party occupants, such as a hotel room guest who may

be unaware of deployed clandestine sensors. Previous methods focused on specific modalities

such as detecting cameras, but do not provide a generalizable and comprehensive method

to capture arbitrary sensors which may be “spying” on a user. In this work, we seek to

determine whether one can walk in a room and detect any wireless sensor monitoring an

individual. As such, we propose SnoopDog , a framework to not only detect wireless sensors

that are actively monitoring a user, but also classify and localize each device. SnoopDog

works by establishing causality between patterns in observable wireless traffic and a trusted

sensor in the same space, e.g., an inertial measurement unit (IMU) that captures a user’s

movement. Once causality is established, SnoopDog performs packet inspection to inform

the user about the monitoring device. Finally, SnoopDog localizes the clandestine device in

a 2D plane using a novel trial-based localization technique. We evaluated SnoopDog across

several devices and various modalities, and were able to detect causality 96.6% percent of

the time, classify suspicious devices with 100% accuracy, and localize devices to a sufficiently

reduced sub-space.
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CHAPTER 1

Introduction

The explosion of internet-of-things devices in smart homes, buildings, and cities [37] can be

partly attributed to the proliferation of low-cost wireless sensors in tandem with advance-

ments in embedded device battery technology [12]. Affordable sensors, including cameras

and motion sensors, have facilitated deployments to monitor and control these environments.

Although there are profound positive impacts that ubiquitous sensor-rich environments can

have on society, there is an inherent risk in enabling users access to such pervasive sensing

– particularly when these environments host occupants oblivious to the presence of these

sensors.

A person’s physical privacy in these contexts is entirely at the discretion of the owner

who deploys these sensors. Regulation is unclear in more informal settings, such as a guest

residing in a home or a homestay lodging. Although these environments may be enhanced

with a legitimate set of sensors and actuators to provide security, surveillance, comfort,

and convenience, there have been several instances where a hosting owner has attempted to

spy on the occupants in homestay settings [7], motel lodgings [15], and rooms aboard cruise

ships [36]. There are even instances in well-established hotel chains and mall restrooms when

a malicious employee or customer has bugged several rooms [31]. In [35], Southworthreport

that such sensors are also used for ‘intimate partner stalking’, which may enable domestic

abusers.

The prevalent method to detect bugs involves an RF receiver that senses if the received

power in a particular frequency range is above a certain threshold. However, since bug de-

tectors work on the principle of sensing surrounding RF signals, they can easily be falsely
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triggered by legitimate RF devices such as mobile phones, radios, and other devices such as

smart TV and smart doorbell in the vicinity. This lack of reliability limits the practicality of

these detectors. Furthermore, they provide no semantic information regarding device infor-

mation, location, or whether the device is actually monitoring a user. An alternate method

has emerged to detect the presence of IoT devices based on network traffic statistics [14];

however, such an approach still fails to capture information about device location or active

monitoring region.

More sophisticated solutions have recently been proposed to specifically detect wireless

cameras. The general approach is to correlate known semantic information about the en-

vironment with network traffic patterns. For instance, Wampler [43] showed that changing

lighting conditions causes notable variations to appear in a wireless camera’s video traffic;

that is, video encoding leaks sensitive environmental information. This discourse was lever-

aged to detect a camera by flickering a light source for a short period of time and correlating

it to changes in network traffic [23,28]. Similarly, an approach has been presented that cor-

relates the traffic patterns of a trusted camera with traffic patterns of other hidden cameras

on a network to detect whether they are simultaneously observing the same space [47]. But

each of these camera-specific approaches, which correlate simultaneous observations between

trusted cameras and hidden cameras, fail to generalize across modalities. For example, vary-

ing lighting conditions would be ineffective for detecting a hidden microphone or an RF

sensor. More interestingly, there has been a preliminary effort that used human motion

as to detect and coarsely localize hidden cameras [4]. Human motion is an example of an

event that can be generalized across many modalities if the event is formalized correctly.

Furthermore, human activity serves as the ideal reference event for determining whether a

clandestine sensor is monitoring a human.

In this paper, we propose , a generalized framework to detect clandestine wireless sensors

that are monitoring a user in a private space. SnoopDog leverages the notion of causality

to determine if the values of a trusted sensor cause patterns in traffic stemming from other

devices. In particular, SnoopDog works by having the user perturb the trusted sensor val-
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ues to observe if there is a causal pattern in the traffic for a different device. For instance, if

a wireless camera is monitoring a user who is wearing an inertial measurement unit (IMU),

the IMU values indicate a causal relationship with the camera’s traffic. SnoopDog utilizes

encoding scheme models of different wireless sensing modalities to classify the sensor type,

and then cross-references packet inspection with publicly available information of manufac-

turers to identify the specific device model. We further introduce a novel approach that

leverages sensor coverage techniques to provide fine-grained localization of a detected sen-

sor. We implemented SnoopDog utilizing a trusted set of sensors on a user’s mobile phone

as well as a packet sniffer to observe traffic patterns. In the future, we envision SnoopDog

to be implemented as an app on either a smartwatch or a smartphone, both of which have

sufficient sensing capabilities (with improvements in their cards that would allow them to

hop channels in monitor mode) to make it easily accessible to non-technical users.

SnoopDog operates in three phases. Assuming the trusted set of sensors is on the

user (e.g., a wearable device or smartphone), SnoopDog is first in a passive monitoring

(background) phase, searching for suspicious causal patterns between the wireless traffic and

the user’s normal activity. If a device is flagged as potentially monitoring the user, an active

phase is engaged, and the user is instructed to perform a series of specific actions to detect the

sensor with high fidelity. Finally, if the sensor is unable to be spotted through a preliminary

search, a localization phase engages for accurate ascertainment of clandestine placement.

The user can either skip the background or the active phase per their convenience.

We evaluate SnoopDog over a representative set of wireless sensors following a taxonomy

of popular sensing devices that may be used for surveillance. The framework had a detection

rate of 96.6% and a device classification rate of 100% when the injected multi-modal event

was human motion. We show that the location of the bug can be narrowed down to a

sufficiently reduced region that facilitates the user’s search for the device. This feature is a

vast improvement over state-of-the-art approaches that localize devices as either indoors or

outdoors. While SnoopDog cannot detect any wireless sensor monitoring the user (chapter

8), it can detect a broad set of commonly used wireless sensors. We further formalize the

3



challenges and limitations across different modalities.

Contributions: Our contributions are summarized as follows:

• We propose SnoopDog , a generalized framework to detect arbitrary hidden clandes-

tine sensors by leveraging the cause-effect relationship between a trusted set of sensor

values observing an injected event and traffic patterns.

• We present a novel technique that leverages the notion of directional sensor coverage

to provide state-of-the-art localization for clandestine devices.

• We show how SnoopDog can be extended to identify the model of a device based on

packet inspection and publicly available information of device manufacturers.

• We evaluate SnoopDog with a mobile phone and a packet sniffer on a representative

set of clandestine sensors and show a detection rate of 96.6% and a device classification

rate of 100% when the injected multi-modal event is human motion.
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CHAPTER 2

Background and System Model

The general approach to detecting wireless sensors relies on the notion that the device’s

wireless communication leaks information in some domain. This aspect has been exploited

for the development of wireless bug1 detectors which can sense the presence of wireless

transmitters in a space [32, 42]. Bug detectors are RF receivers that look for signals in

a frequency range with a received power above a certain threshold. The received power

threshold and frequency range can be set according to a target set of wireless devices. For

instance, to detect sensors that communicate over , a device would scan frequency ranges

around 2.4 GHz or 5 GHz. Similarly, the range can be set accordingly for other wireless

technologies like Bluetooth [27] and Z-wave [6]. In tuning the received power threshold,

there is a direct trade-off between detection accuracy and false positives [32]. If the threshold

is too low, one may falsely attribute wireless signals from other devices in the space, like

mobile phones, to bugs. On the other hand, a high threshold risks ignoring wireless bugs

that are not within close proximity of the detector. As these detectors provide no semantic

information about the detected signals, it is difficult to assume whether or not the observed

signal is truly originating from a hidden bug [42].

As wireless sensors transmit their information via packets, another technique to detect

them uses packet sniffing. Approaches like DewiCam [4] sniff wireless packets and use their

characteristics to train a classifier to identify whether or not a particular device is a camera.

However, even if the type of device is determined, it may or may not be monitoring the user.

If there is a camera monitoring the door of a house, it does not pose the same threat to a

1A bug in this context refers to a hidden device spying on the user.
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user’s privacy as a camera that is monitoring the bedroom. Hence, even if we are able to

detect what type of device is present in the space, it is difficult to characterize if its intention

is adversarial. A direct way to identify whether a device poses a potential privacy threat is

to determine whether or not it is actively monitoring the user.

Detecting sensors monitoring a physical space. If a wireless sensor is monitoring

someone in a physical space, the data that it captures is a function of the person’s interaction

with the space. For example, if someone moves into a space monitored by a motion detector,

the sensor’s control mechanism may be triggered and begin uploading relevant information

to the cloud to be processed and forwarded (e.g., an alert to the device owner or downstream

actuation). Similarly, the information recorded by a video camera captures variation as a

result of motion within the scene that it is capturing. If another sensor can observe and

measure the interaction of the user with their surroundings, we can identify whether the

user’s actions indicate a causal relationship with the wireless traffic of the sensor. If such

a relationship is found, then the sensor must be monitoring the user. To generalize our

approach, we provide a system and an adversary model.

2.1 System Model

We consider a system model for SnoopDog where a user has access to a laptop or smart-

phone device with a network card that can enter monitor mode to sniff wireless packets over

the same channel as one or more clandestine sensors. The system should further be equipped

with a trusted set of ground truth sensors to establish causality between the sensor values and

the associated patterns from the clandestine wireless sensor(s)2. These capabilities require

a set of certain assumptions.

sniffing assumptions. We assume that the sniffer on the user’s device can monitor the

encrypted traffic streaming from the clandestine device. SnoopDog does not require any

2We assume there may be additional, non-clandestine sensors that are monitoring the user. Such super-
fluous information is still informative, as the goal of this work is to detect all wireless sensors monitoring a
user.
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form of granted access to a particular network, i.e., SnoopDog should be able to sniff the

device regardless of whether or not the network is closed or hidden. Unlike previous solutions,

this implies that the user does not need to know the SSID or password of the network.

Causality assumptions. We assume that the user has a sufficient set of trusted ground

truth sensors whose modalities are sensing any of the user’s activities that would exhibit a

causality with the encoding patterns of any clandestine wireless sensors. We formalize the

notion of sufficient causality in chapter 4.

2.2 Adversary Model

The adversary’s goal is to remotely spy on a third-party occupant of a private space in real-

time. We assume the adversary uses an arbitrary set of wireless, commercial-off-the-shelf

(COTS) sensors that are tailored for clandestine placement. The communication between the

attacker and sensor may be encrypted and placed on an arbitrary wireless frequency band.

We further assume the adversary has deployed these clandestine sensors in a manner that is

not apparently visible to the user within the space. We focus on an attacker utilizing devices

that communicate over , as this is the most prevalent method of wireless communication for

remote monitoring using commercial and consumer equipment3.

3Although SnoopDog focuses on -connected devices, we discuss in chapter 8 how such a system could
be generalized to other wireless communication standards and protocols.
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Figure 2.1: Overview of SnoopDog framework. The SnoopDog framework first identifies

if a user is being monitored based on the cause-effect relationship between the values of a

trusted sensor, e.g., an IMU, and traffic patterns. It then inspects the associated packets and

identifies the possible devices based on the physical (MAC) address. Finally, SnoopDog

localizes each device relative to the user based on the received signal strength indicator

(RSSI) values.
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CHAPTER 3

SnoopDog Overview

The goal of SnoopDog is to identify and localize clandestine wireless sensors within an arbi-

trary space. As depicted in Figure 2.1, SnoopDog can detect and localize a wireless sensor

given it has access to a trusted sensor that can measure and quantify the ground truth in

the modality that we are trying to detect. SnoopDog works in three phases. When a user

first enters a new space, SnoopDog operates in a background mode to determine whether a

user is being monitored based on the cause-effect relationship between the values of a trusted

sensor (e.g., an on-body IMU) and traffic patterns. If the user wants to clear a room im-

mediately, the background phase may be optionally skipped; alternatively, the background

phase offers a low-overhead solution to bug detection. If a clandestine sensor is discovered,

SnoopDog enters its second phase and asks the user to perform a unique perturbation in

the space to further ascertain the presence of a snooping sensor. The associated packets

are then inspected to identify the possible device type based on the physical (MAC) ad-

dress. Finally, in the third phase, SnoopDog utilizes a trial-based localization technique to

identify the specific placement of the monitoring device. With the appropriate selection of

ground truth sensor, that is, a device which can semantically capture at least a subset of the

events captured by the snooping device, SnoopDog can detect clandestine wireless sensors

of arbitrary modality.

The objectives for a solution which can detect hidden devices in space should have the

following characteristics:

• The solution must work for arbitrary sensing modality.

• The user must be able to generate events in the space that will establish causality

9



between a sufficient set of ground truth sensors and any clandestine sensors.

• The solution must work equally well in indoor and outdoor conditions.

• The solution must be reasonably compact enough for a user to easily transport from

room to room.

• The solution must work for all configurations.

• The solution should not be affected by encryption.

Given these challenges, we present our design for clandestine wireless sensor detection,

identification, and localization.
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CHAPTER 4

Detecting and Identifying Snooping Wireless Sensors

This chapter outlines the ability of SnoopDog to detect whether a clandestine sensor is

actively snooping on a user. We describe the search space for wireless sensors, how to estab-

lish causality, how to generalize across modalities, and how to understand various sensors’

wireless transmission.

4.1 Searching for Wireless Sensors

The adversary can create a network and connect the snooping device to it. As a result,

the hidden device can be present in any of the possible channels. Even though SnoopDog

does not need access to these networks, it still needs to scan all frequencies and look for any

devices transmitting on them. 2.4 GHz and 5 GHz are the most popular bands for networks,

and as such, we focus on those particular bands, even though the SnoopDog scan region

can be easily extended to include other ranges. During discovery, the Network Interface Card

(NIC) scans through all channels sequentially to find available access points (APs) [13, 46].

Similarly, SnoopDog also scans through all the channels in monitor mode, but instead of

looking for available APs, it looks for transmissions in those channels and creates a list of

devices using the MAC address present in packet headers. As a result, SnoopDog does

not need to be connected to any specific AP to operate. Even if a network is hidden, its

transmissions can still be observed by monitoring the channel. Thus SnoopDog can detect

devices on any network. Because devices may transmit data intermittently, SnoopDog

continuously scans all channels and actively maintains an aggregate set of traffic data. Once

the list of devices has been populated, SnoopDog then seeks to detect causality between
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user activity and data being transmitted from each device.

4.2 Detecting Causality with User Activity

Detecting the cause-effect relationship between the action of a user in a space and the data

captured by a clandestine, wireless sensor requires access to two essential components: 1) a

ground truth sensor to capture information about the user in the space and 2) a represen-

tation of the data collected by the clandestine sensor. While data packets transmitted by

wireless sensors may be encrypted, the header information is not. This header information

provides us with the MAC address and payload size of each transmitted packet. This data

can be grouped and aggregated for all the packets within a time window and provide infor-

mation as to how much data was transmitted by each device within that period. Given a

ground truth sensor, one can then identify causality between the ground truth sensor values

and the patterns in the volume of data transmitted by each device in the space. In contrast

to machine learning techniques, a causality approach allows SnoopDog to find the cause-

effect relationship of arbitrary modality across any device that is transmitting causal data.

One such method to find this cause-effect relationship is Granger Causality.

Granger Causality. A popular method to study causal relationships between two series is

Granger Causality [9]. According to Granger Causality, if a series X Granger-causes series

Y , then past values of X should contain information that helps predict Y above and beyond

the information contained in past values of Y alone. Formally, if we have a series Y as:

yt = a0 + a1 ∗ yt−1 + a2 ∗ yt−2 + .... + an ∗ yt−n, (4.1)

and we augment this series with the series X as follows:

yt = a0 + a1 ∗ yt−1 + .... + an ∗ yt−n + b1 ∗ xt−1 + .... + bm ∗ xt−m, (4.2)

then X Granger-causes Y if and only if Equation 4.2 gives a better prediction of yt than

Equation 4.1. Here, yt−k are called lags of y and xt−k are called lags of x where k ∈ [1, n].
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4.3 Characterizing a Representative Set of Snooping Sensors

In order to choose a set of ground truth sensors that can capture causality across any

modality, we focus on generalizing across a representative set, including cameras, RF, and

arbitrary sensors that report inferred (as opposed to raw) events.

Visual sensors. Wireless cameras are typically encoded with a codec that recognizes un-

derlying patterns in the frames of the video and utilizes this information for compression.

One such codec is H.264 [44]. An encoder first encodes the video using the standard, and a

decoder then reconstructs the original video with minor information loss.

Standard temporal compression algorithms compress the video with 3 key frame-types,

denoted I, P, and B frames–as shown in Figure 4.1. I frames (Intra-coded picture) hold

complete image information, whereas P and B frames contain fractional image information,

i.e., scene differences. As I frames are a complete image, they do not require any other

frames to be decoded. P frames (Predicted picture) only contain changes in the image from

previous frames. The information in a P frame is combined with the information of the

I frame preceding it to obtain the resulting image. B (Bi-directionally predicted pictures)

frames can construct the image from either direction. They can be coded with changes from

the I or P frames before them, changes from I and P frames after them, or interpolation

between the I/P frames before and after them. B frames are most compressible, followed by

P frames, and finally, I frames.

Hence, with increasing motion in the scene recorded by an IP camera, there will be an

increase in the data that must be transmitted due to the increase in the number of P and

B frames sent. Camera traffic will increase as the number of pixels being perturbed in the

scene increases; similarly, traffic will decrease if the scene transitions to a stationary one. As

such, if a human subject were to perform some motion in the scene, stop for enough time

to let the camera video settle down, and then move again, it will result in a unique camera

traffic pattern that corresponds to the user’s motion. This cause-effect relationship between

human motion and camera traffic can then be used to discover if a wireless IP camera is
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Figure 4.1: I-P-B Frames [41]
present in an occupied space. If there is no relationship between the camera traffic and user

motion, then the camera is not monitoring the user.

RF sensors. Low cost, off-the-shelf millimeter-wave (mmWave) RF sensors are available

that record the scene in the form of point-clouds. Recent works [34, 50] have shown that

these point clouds can be used to infer human activity. However, unlike a camera, a radar

device is a point scatterer, thus at any given time, only certain points in the scene reflect

back. Hence, with motion in the scene, the number of points captured in every frame by the

sensor (radar) vary considerably. In an empty scene, the number of points captured by these

sensors is fairly constant but varies as subjects move about the space. The sensor also collects

the velocity and intensity of the power received. This data helps the sensor in inferring fine-

grained information about the space. If such a sensor live-streams point-cloud data over ,

the payload size will vary over time with changes in the number of points captured in the

scene by the sensor. Hence, the network traffic will fluctuate with the number of points that

are being captured in the frame. As such, there exists a cause-effect relationship between

the subject’s motion and the device’s traffic.

Acoustic sensors. Another common type of bug used to snoop on people is microphones.

With the growth in personal home assistant devices such as the Google Home or Amazon

Alexa [18], it is trivial for someone to buy and install such listening devices in their homes.

Although they are typically triggered by a keyphrase such as “Okay Google” or “Alexa”,

there are “Drop In” features that facilitate remote snooping. An adversary can also change

the wake word of these devices to enable recording conversations of interest. Due to their

compact form factor, they can be easily hidden. In such cases, this device will also work

like an event-based clandestine sensor. Hence, services like SnoopDog that monitor traffic
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for change in network patterns and either correlate them with another sensor recording of

the same modality or find a cause-effect relationship with the ground-truth can detect their

presence using network sniffing [17,45]. Here, instead of the IMU, we use the microphone on

the user’s smartphone as the trusted ground-truth sensor. In chapter 8-Q6, we discuss why

it is challenging to detect and localize acoustic sensors that are continuously streaming.

Wireless sensors that encode inferred events. Motion sensors do not transmit a

continuous stream of information. Most off-the-shelf motion sensors are passive infrared

(PIR) based. They measure the infrared (IR) light from objects in their field of view. Any

change in this incoming IR light is inferred as motion. Instead of continuously transmitting,

they occasionally send data to their cloud service for processing once triggered by motion.

Additionally, a camera can be programmed to continuously record video but only upload

when a certain event occurs in the scene. These cameras behave like motion sensors and

hence can be treated similarly. Virtual assistants also wait for trigger words to transmit a

request to the associated cloud service, e.g., a user stating the device name to activate it [18].

Figure 6.7 shows the wireless traffic captured from an ordinary off-the-shelf motion sensor.

Motion events in the scene trigger network activity. These events are a result of a subject

moving in front of the device. Thus if a user moves around the room, stops, and moves again,

there will be a unique cause-effect relationship between user motion and device traffic.

4.4 Device Identification via MAC Address

A MAC address is a universally unique ID assigned to the Network Interface Controller

(NIC) for every networked device. It consists of 48 bits which are typically represented as

12 hexadecimal characters, i.e., xx:xx:xx:xx:xx:xx. The first 24 bits are the OUI (Orga-

nizationally Unique Identifier), which can uniquely identify a manufacturer or a vendor.

The MAC address of the sender and the receiver are contained within each exchanged

packet. More importantly, this information is not encrypted. As a result, SnoopDog

can easily obtain the MAC address to look up the device vendor. While we acknowledge
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that the MAC address can be spoofed, this technique can still prove useful in the many

cases where the adversary is a non-expert and thus has not spoofed the MAC. SnoopDog

contains a database with names and MAC addresses of known vendors that manufacture

surveillance devices. As SnoopDog detects more sensors, we add them to the available

database1. Traffic fingerprinting techniques [2,5,8,25,26,30,51] can also be used to overcome

the shortcomings of MAC-based identification.

1The link has been hidden in order to make the paper anonymous.
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CHAPTER 5

Snooping Sensor Localization

Algorithm 1 details the trial-based localization used by SnoopDog to infer sensor loca-

tion. In the case of multiple active sensors, this process can be repeated for each device.

Setup. Localization requires two input parameters: a region-of-interest to search over, and

the snooping sensor’s MAC address. To define the region-of-interest, we leverage Dead Reck-

oning [3, 21] for indoor user localization. For instance, a dead reckoning mobile application

on a user’s phone can instruct the user to walk the perimeter and capture the region bound-

ary. Aside from identifying granger causality in traffic patterns, the MAC address is also

used to ensure an appropriate trial method for localization (e.g., via techniques discussed in

chapter 4.4 and [14]).

5.1 Identifying Sensor Coverage

Although the malicious sensor is known to monitor somewhere within the region-of-interest,

it is unlikely to cover the entire region. Lines (1)-(8) narrow down the full search space

into a bounding box BBox of the sensor’s field-of-view. To begin, a user is instructed to

traverse the region (line 2). At regular time intervals, the user’s location is captured, and the

snooping sensor’s traffic is monitored for causality. Using the Granger Causality technique

described in chapter 4, a particular location is identified as either within or outside sensor

coverage. This process continues until the bounding box is determined to have sufficient

density for performing trial-based localization, depending on the coverage area size.

The remainder of Algorithm 1 (lines 9-18) reduces the BBox scope of sensor coverage via

directional elimination. Repeated trials are performed to specifically target high-probability
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Algorithm 1: Localize identifies the location of a particular snooping sensor in a

defined region-of-interest

Input: The sensor’s MAC address

The region of interest

Output: The sensor’s location within the region

1 BBox← ∅

2 traversing ← BeginTraversingRegion(region)

3 while traversing do

4 userloc← DeadReckoningLocation()

5 inV iew ← GrangerCausality(MAC)

6 if inView then

7 BBox← BBox ∪ {userloc}

8 traversing ← SparseBBox(BBox)

9 Loop

10 MLE ←MostLikelySensorLocation(region,BBox)

11 if SufficientBBox(region, BBox) then

12 return (BBox,MLE)

13 trialRegion = GenerateTrial(MLE,BBox)

14 inV iew = PerformTrial(trialRegion)

15 if inView then

16 BBox← trialRegion

17 else

18 BBox← BBox \ trialRegion
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origins in order to either identify or eliminate likely sensor locations. Each round begins by

solving for the most likely origin MLE for the sensor (line 10). While this process could

be performed randomly, utilizing physical information about the current bounding box can

significantly reduce the number of necessary trial rounds. For example, if the bounding box

shape can be reasonably fitted to a triangle, then the sensor is likely horizontal-facing and

placed on a wall. On the other hand, an ellipsoid coverage area likely indicates a sensor

placed on the ceiling or floor.

An iterative process then proceeds to reduce the area of possible sensor locations to a

pre-defined threshold (e.g., 10% of the region), upon which the bounding box and MLE

are returned (line 11). In each iteration, a directional trial is conducted. GenerateTrial

identifies a suitable position and heading for the trial by selecting a point near the center of

the bounding box and facing the MPE (line 12). In our evaluation, we found distances of

approximately 3 meters to be the maximum applicable distance for a trial. The trial takes

one of many forms; for an inertial sensor, a user faces the designated direction and waves an

object (e.g., hand or shoe) closely in front of their chest while shielding this activity with

their body from any sensor present behind them. To trigger a camera sensor, a laptop plays

a video clip that randomly flashes the screen with different colors. For audio, a trigger sound

is played, and so on. If the trial results increased the device traffic, the bounding box is

reduced to areas within visible range (line 16); otherwise, those areas are removed (line 18),

and the next iteration begins.

5.2 Ensuring Sufficiently Reduced Region

In order to provide a guarantee that this localization method will always result in a minimal

bounding box that is sufficiently small (e.g., 10% of the search region), a key assumption

must be made: for any arbitrary bounding box, a trial can be identified which will eliminate

a proper subset of the bounding box. In the case of Algorithm 1, this assumption can be

reformed such that one can always construct a trial that eliminates at least a single point

contained within the bounding box set. Due to the directional nature of each trial, this
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can be achieved simply by conducting a trial that is positioned directly between two points

within the bounding box, and facing directly towards one of the two points such that the

other is obstructed. In the case of two points with large intermediate distances, a two-phase

trial must be performed facing towards (and away from) each point, respectively.

Given the assumption that every trial can eliminate at least a single point from the

bounding box set, guaranteeing that Algorithm 1 will always reduce the region to a certain

size is trivial. In the worst case, for a bounding box of n points, n-1 trials must be per-

formed. In practice, each trial can eliminate many points contained within the bounding

box. Furthermore, by leveraging the most likely sensor location, one can reduce the search

space significantly and with relatively few trials.
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CHAPTER 6

Implementation

This chapter presents an overview of our SnoopDog framework implementation by instru-

menting readily available tools that are likely to be in a user’s possession. We rely upon the

following commonplace hardware and software.

6.1 Experimental Setup

Packet Sniffing: A laptop (Lenovo Thinkpad) is used to run the Wireshark network sniffing

utility. The laptop’s network card enters monitor mode and begins capturing all transmitted

packets in the frequency band to aggregate traffic statistics for analysis. As it is not necessary

to connect to a specific wireless network to monitor traffic, SnoopDog can capture and

identify clandestine wireless sensors across all traffic, even if they reside on a closed or hidden

network. A smartphone can also be used instead of a laptop, but requires a rooted [39] phone.

Collecting User’s Motion Data: User’s motion data is collected via the IMU present

on the smartphone (Google Pixel 3). The smartphone is placed either in the user’s hand

or inside the user’s pocket. 50 Hz accelerometer data is collected and used to study the

cause-effect relationship between motion and sensor traffic. We collect along each of the 3

axes and use them separately as if motion is present in only one direction, the other 2 axes

contribute minimally to the analysis, and may instead serve as noise. The smartphone is also

used to collect audio and localize the user in his/her surroundings, which aids in localization.
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6.2 Overview

SnoopDog sniffs the wireless traffic and aggregates the statistics over time, while user

motion is captured using the IMU. This data is used to detect hidden sensors monitoring

the user by measuring the cause-effect relationship between user motion and device traffic.

SnoopDog also captures device MAC addresses to infer the manufacturer via an available

database we have created. After detection, the trial-based algorithm is used to localize these

sensors.

6.3 Aggregation of Traffic Statistics

Each device’s traffic is grouped by MAC address, windowed, and processed to compute device

traffic volume and variation. SnoopDog monitors packet sequence number in the WLAN

layer to isolate and remove duplicate or redundant packets. As large images are sent over

multiple fixed-length packets, a sufficiently large window size must be used. We chose a 100

ms window to group all packets with the same image within one interval. Cameras require a

frame rate higher than 10 Hz to satisfy the flicker fusion (i.e., persistence of vision) threshold

of the human eye [10,23].

For camera encodings, we discard I-frames, as they do not encode differences in a scene

and require higher bandwidth, thereby adversely affecting the causality analysis. To discover

these frames, we first identify the camera frame rate by converting the time domain traffic to

the frequency domain using a Fast Fourier Transform (FFT). The frame rate is the peak of

the FFT, as shown in Figure 6.1. We then change the aggregation window size to correspond

to this frame rate, calculate the data rate of the camera, as shown in Figure 6.3, and smooth

variations with sliding window aggregates.
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Figure 6.1: Detecting frame rate of the camera. In this case, the frame rate of the camera is

25 Hz which is where the peak is.

6.4 Detecting the Cause-Effect Relationship between User Motion

and Hidden Devices

While sniffing the network, SnoopDog classifies the networked devices present into two

categories: devices that transmit data continuously, and devices that have periodic or event-

based transmission.

6.4.1 Wireless Sensors that Encode Raw Data

Some representative sensors that continuously transmit variably encoded raw data include

camera and RF sensors.

Camera: When a camera is monitoring a static scene, the traffic is fairly constant, as shown

in Figure 6.2. As the scene is perturbed by human motion, the wireless traffic changes rapidly.

However, it is yet unclear whether human motion causes this variation. As soon as the user

enters a new space, he or she can turn on , which works in the background to correlate IMU

data with traffic of the transmitting devices. As users walk in a space, the starting and

stopping patterns of their motion are unique. This unique pattern creates a fingerprint for

the camera traffic. Once SnoopDog is able to determine a cause-effect relationship between

device traffic and user’s motion, it alerts the user. To definitively ascertain the presence of a
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camera, SnoopDog enters phase two, where the user is asked to perform a stop-start-stop-

start-stop (S5) motion as follows: 1) the user stays stationary for some time to allow the

device traffic to stabilize. 2) The user performs jumping jacks at the current position. 3)

The user stops again and waits for the camera traffic to settle. 4) The user performs jumping

jacks again. 5) The user stops. This motions causes a pattern to appear in the traffic as

shown in figure 6.3.

The entire detection phase requires 35 − 45 seconds. While the user is performing the

above S5 motion, SnoopDog sniffs the packets on the network and records the user’s IMU

acceleration. Figure 6.3 plots the camera traffic after I-frame suppression and user accelerom-

eter data while performing the S5 motion. We observe that camera traffic is a function of

human motion. When the human is static, the traffic is small, but when the human be-

gins performing jumping jacks, the traffic rate increases. To prove that the accelerometer

series indeed has an effect on the camera traffic, we leverage Granger Causality using the

statsmodel package in Python. The null hypothesis of the Granger Causality Test is that

the IMU series does not granger-causes the camera traffic series. Hence, if the p-value of our

test is below a certain threshold of 0.08, we can reject the null hypothesis and claim that

the IMU series granger-causes the camera traffic series.

RF sensor: the detection process remains the same for RF as that of a camera. We use

an off-the-shelf mmWave RF sensor from Texas Instruments, as shown in [34]. We model

the information obtained from the sensor as traffic. The modeled traffic from the RF sensor

due to human motion is shown in Figure 6.4. Unlike a camera, RF sensors respond to either

motion or other sources of RF in the space.

As soon as motion occurs within the space, the traffic changes rapidly in response. This

is because the points captured by the RF sensor vary with motion. If the traffic of some

device which was static when there was no motion but changes rapidly when there is motion

and goes back to being static when motion stops, it is a clear indicator that the device is

monitoring user movement. To detect such devices, SnoopDog first monitors the traffic

when the scene is static. It then asks the user to perform the S5 motion in the space while
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Figure 6.2: traffic captured from a camera over a static scene and a scene where a human is

walking around.

SnoopDog monitors the traffic. As soon as the user is finished, the user should leave the

space so that SnoopDog can monitor the traffic again and conclude the presence or absence

of an RF sensor.

6.4.2 Wireless Sensors that Encode Inferred Events

Sensors that encode inferred events may transmit information periodically or upon event

detection. By simply examining network traffic, it is difficult to ascertain if the device is

transmitting periodic data, like a temperature sensor, or transmitting inferred events like a

motion sensor.

Motion Sensor: Typical off-the-shelf motion sensors have a timeout to prevent continuous

alerts. After the sensor detects a motion event, it stops inferring motion events for some

time. If a human walks into the room, the motion sensor sends that information to a cloud

server, which in turn sends an alert to the snooping user’s smartphone or performs an action

like turning on lights. After sending an alert, the sensor waits for the timeout period before

it looks for more events. Most motion sensors have a timeout period between 30 seconds

and 3 minutes. Similarly, there can be other sensors in the scene that have a timeout period
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Figure 6.3: traffic of a camera and its comparison with IMU data of the user who was being

monitored in the scene.

between uploading events. To discover a device’s timeout period, SnoopDog correlates

user movements with device traffic. If SnoopDog detects two events in the traffic series

of a device and the user was in motion during the time between the two events, this time

is noted as the timeout period. SnoopDog uses its active phase to further improve the

timeout estimation by asking the user to move around the space until two events are detected

in the device’s network traffic. If the user wants even higher confidence in the detection,

SnoopDog asks the user to move around the space, leave the space for the timeout period,

and then move around the space again. After that, the user moves out from the space and

then waits for the timeout period to end. If SnoopDog detects traffic by the device around

the same time the user moved and none when the user is not moving, we can conclude

that the traffic of the device is caused by user movement. This process can be repeated

to increase the confidence of detection. A room can also be equipped with a camera that

transmits motion events in the form of alerts. Such a camera can similarly be detected.

In Figure 6.7, we move around the room (denoted by red dotted lines) and notice that the

traffic from the motion sensor responds to these motion events.

Audio snooping: SnoopDog records user conversations in the background and correlates
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Figure 6.4: Modeled traffic for an RF sensor in a static scene and one where a user performs

our detection trial.

it with the traffic of the devices on the network. If the occurrence of a certain phrase or a

word cause the traffic of a device to change, SnoopDog asks the user to repeat those phrases

until it can establish a cause-effect relationship between the occurrence of that phrase and

the traffic of the device. Once SnoopDog knows the “wake word” for the acoustic home-

assistant device, it repeats the recording several times while monitoring the device traffic to

increase the confidence level of detection.

In our implementation, we used an Amazon Echo whose wake word was “Alexa”. In

Figure 6.7, we say the phrase “Alexa, what’s the time right now?” four times and plot the

device traffic. It is clear that these distinct peaks are a direct response to the trigger phrase.

In 20 trials with different phrases, SnoopDog was able to detect causality 100% of the time.

6.4.3 Device ID via MAC Address Lookup

SnoopDog checks its database for a match of OUI in the device’s MAC address. If present,

SnoopDog can inform the user with higher confidence that the device is indeed a surveil-

lance device. Otherwise, it is added to the database and identified as a clandestine sensor.
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Figure 6.6:

Figure 6.7: (a) traffic of a motion sensor. The red-dotted line signifies a motion event. (b)

traffic of an Alexa device for the user repeating the same phrase 4 times.
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6.5 Device Localization

SnoopDog uses dead reckoning and asks the user to walk around the perimeter of the room

to obtain a rough map of the room. Next, the user is asked to perform a detection trial at

various locations within the room. More trials lead to better localization. At every location,

SnoopDog tries to establish a cause-effect relationship with the device traffic. Regions with

no cause-effect relationship are eliminated. This process is repeated to further reduce the

search space for each clandestine device.

IP Camera: The traffic generated by a camera monitoring a scene will increase when the

scene is dynamic. To exploit this, we first monitor the traffic of the device identified as a

camera for 30 seconds over a static scene. Each trial consists of standing in a particular

location (e.g., the middle of the scene), pointing a laptop in a particular direction, and

playing a video that rapidly changes the colors on the screen of the laptop for 30 seconds.

This process is then repeated in different directions. If the camera is able to monitor the

laptop screen, its data rate during that period will be higher. On the other hand, if the

laptop screen is not visible, the camera’s traffic rate will be similar to the static scene. We

can eliminate a fraction of the space where no activity is detected and repeat the process

for the remaining region. In this way, we narrow down the possible region where a camera

is located. We give a step by step walk-through of this process in chapter 7.

RF sensor: RF sensor localization is similar to that of a camera. However, since RF sensors

cannot detect the flickering screen of the laptop, we use human movement. SnoopDog asks

the user to stand in the middle of the space and wave their arm up and down rapidly in

front of them while shielding this motion from the other side of the space with their back.

If the RF device traffic does not respond to these stimuli when performed on one side but

responds to it on the other side, we can eliminate that space.

Motion Sensor: Motion sensors are triggered by motion in front of them. SnoopDog first

identifies the motion detector timeout (refer chapter 6.4.2), and then asks the user to stand

in the middle of the room before the timeout expires. After timeout expiry, they are asked
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to move their hand in front of them while shielding it from the other side with their body.

Acoustic (Audio) sensors: SnoopDog records the wake word of the device and asks the

user to move around the room while this sound is repeatedly played from the smartphone

app. If the user walks around the room but does not find any place where there the traffic of

the device changes, we increase the volume and repeat the experiment. On the other hand,

if the sound played at every point in the room causes the traffic of the device to vary, we

decrease the volume and repeat the experiment. Finally, we identify areas where the sound

causes network response and areas where it does not. We continue to reduce the volume of

the device until the search space has been sufficiently reduced1.

1A walk-through of this process is provided in chapter A of the Appendix.
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CHAPTER 7

Evaluation

For evaluating SnoopDog , we used 4 cameras, 1 motion sensor, 1 Amazon Echo and 1 RF

sensor. We selected off-the-shelf IP cameras at different price points to evaluate if we can

achieve similar performance despite device heterogeneity.

7.1 Wireless sensors that encode raw data

Wireless IP Cameras. For Granger causality analysis, we lag the first series by one

element at a time and observe what value of the lag results in the lowest p-value. Cameras

have a delay between when the scene changes and when the data is visible to the adversary.

We found that this delay can vary between a few milliseconds to up to 4 seconds. If the

adversary is using a tape delay in transmission, we can perform this analysis over a longer

delay period. In this time, the camera captures the video, encodes it, and sends it to its

cloud server, which then forwards it to the receiving display. Assuming symmetrical delay,

SnoopDog sniffs the packets during the first half of the transmission; we choose a lag value

of 2 seconds.

The p-value threshold below which SnoopDog claims a successful detection is set at 0.08.

We selected this using the results obtained from the first camera. However, we evaluate our

detection with all the other cameras and show that this p-value threshold is optimal for all

the cameras.

We evaluated our detection for 4 cameras – Foscam ($49.99), Kamtron ($39.99), Victure
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Camera Trials Successful Accuracy

Foscam 15 15 100%

Wansview 30 29 96.6%

Kamtron 25 21 84%

Victure 26 26 100%

Total 96 91 94.7%

Table 7.1: Evaluation results for camera detection

($35.99), and Wansview ($29.99). We performed 80 trials on 2 different users1 to evaluate

the detection accuracy. The results of our experiments are presented in table 7.1. To improve

the detection accuracy and confidence of detection, a user can perform the detection trial

several times and take a majority vote. The detection works well even when a portion of the

human body is occluded by objects such as a table.

RF sensors. We use a TI mmWave IWR1443BOOST to evaluate the performance of

SnoopDog for detecting RF sensors. We first monitored the traffic with no motion in the

space and then asked the subject to move in and perform the detection trial. If the traffic

of a device rapidly changes during movement but becomes stable if there is no activity,

we conclude there is a cause-effect relationship between user motion and the device. In 20

experiments, SnoopDog was able to detect RF sensor presence every time.

7.2 Wireless sensors encoding inferred events

For sensors that encode inferred events, it is not possible to perform pure time-series Granger

causality analysis to ascertain if there is a cause-effect relationship present between the sensor

because their network traffic is discrete. Instead, we perform an activity and track network

response. To detect the presence of an event-based sensor, we ask the user to move around

1The data is collected from the authors and hence does not require IRB approval.
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the room, wait for the timeout period, and move around again. SnoopDog scans all device

traffic within a period of 5 seconds after the motion to determine which device responds

to user motion. If the device has traffic activity after the user moved, then the device is

inferring events from the user motion. We evaluated this with an off-the-shelf motion sensor

from Kangaroo Security. We performed 15 trials, and SnoopDog was able to detect this

device every time.

7.3 Localization

We evaluated SnoopDog for 4 different spaces with different sensor placements. The accu-

racy of localization in all of these cases depends on the user’s requirements. The user can

perform more trials to reduce the probable region where the sensor is placed. We use an

example to demonstrate how the SnoopDog localization algorithm works. To perform our

localization, we chose a room as shown in Figure 7.1. The camera is placed at a corner of

the room. We begin by performing our S5 detection trials in different parts of the room.

The location and results of our trials are shown. Based on these observations, we know that

the camera is present somewhere in the square region of the room and hence, we eliminate

the other part and start our trial-based localization.

- Causality not found

- Causality found

3.04 m

3.04 m

1.3 m

2 m

Figure 7.1: Lab dimensions and results of the detection trials.

We stand in the middle of the probable space and hold a laptop such that the screen is

pointing in one direction. Then we turn to the other side and repeat the same experiment.

We observe that there is a significant (>150%) increase in the camera data rate when the

laptop is pointed towards the left side. When pointed to the right, the data rate remains
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Figure 7.2: A walk-through of the trial-based localization algorithm in the laboratory envi-

ronment in Figure 7.1. The arrows represent the direction the laptop screen was facing.

similar to that of an empty room. Thus we eliminate the right portion of the room from the

probable area. We again stand in the middle of the leftover space and repeat the experiments

until we achieve a sufficiently reduced space.

Audio-based localization: A similar elimination-based localization for audio sensors is

described in Appendix A.

7.4 Overhead Analysis

Time: Sensor detection can happen in the background with minimal user intervention.

However, this will take some time. In situations where a user wants to immediately know

if he/she is being spied on by a sensor (such as when entering into a changing room), they

can skip the first phase and directly begin the second phase where they will perform the S5

motion. It takes about 40 seconds to perform active detection. For localization, each trial

can take 30 seconds. Since the localization space reduction is determined by the user, he/she
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can perform the trial any number of times. If the total number of trials is n, the overhead

will be about 30n seconds.

User effort: If the detection occurs in the background, there is no overhead in terms of user

involvement. However, both active and localization phases require user effort. In case the

user is suffering from physical disabilities, he/she may find it hard to follow through these

steps.

7.5 Effects of range on detection

The range of a device plays an important role in its detection. The camera range is the

depth which it can record meaningful information from the scene. If the user stands too far

from the camera, the S5 trial may not produce enough variation in the camera traffic for the

cause-effect relationship. For motion sensors and RF sensors, the range is specified by the

vendor. The motion sensor that we used has a range of 15 feet (4.6 m) and the RF sensor we

used had a range of 4 m. For Amazon Echo, the range is a function of the loudness of sound.

For the camera, we perform our detection trials at different distances to find out what the

range of detection is.

We perform the S5 motion in front of a camera at 1 m and gradually increase the distance.

We find that as we move away from the camera, the changes in its traffic decrease. For the

Wansview camera, the distance at which traffic changes are not enough to establish causality

is the smallest at about 3 m.

7.6 False negatives for background detection

Figure 7.3 shows camera traffic and IMU data for a user walking randomly in a room. As

long as the user stops at some point within the detection period, SnoopDog is able to detect

hidden devices. However, if the user is continuously stationary or continuously in motion,

SnoopDog fails to detect the presence of clandestine sensors.
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CHAPTER 8

Discussion

Q1: What is the usability of ? We envision SnoopDog to be implemented as an app

on either a smartphone or a smartwatch (or a combination of the two). This means an end-

user will not need any prior knowledge about causality and coverage of a device to use it.

SnoopDog will continuously work in the background to look for a cause-effect relationship

between a user’s actions and device traffic. It will then guide a user step-by-step through the

entire localization procedure. Since an adversary can place a sensor at any time (e.g.,when a

user checks in a room, searches for devices, finds none and then leaves for dinner after which

the adversary places the spying device.), SnoopDog will still find it because it continuously

works in the background. This will not cause any overhead in terms of user involvement.

Q2: Can SnoopDog detect any wireless sensor? Although SnoopDog can detect a

wide variety of sensors, it cannot detect any wireless monitoring sensor. For a sensor to be

detectable by , the traffic must be encoded with a Variable Bit Rate (VBR) algorithm and

the data recorded by the sensor must change in response to user perturbation which can be

recorded by a ground truth sensor. That said, most surveillance devices such as cameras,

motion sensors and smart-home assistants today fall into this category, and thus we believe

SnoopDog can serve as a valid defense.

Q3: How can false positives be reduced? For false positive to occur during active

detection, the device’s traffic needs to map directly to the S5 motion during the active

phase and user’s motion during the background phase, which is unlikely. If there happens

to be another camera in an adjacent space monitoring another user who is performing the

detection trial within the same time window as the first user, it will trigger a false detection.
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However, this probability is extremely low. We were unable to identify false positives over

our network evaluation. Nevertheless, it remains a possibility, and mitigating such instances

are highly desirable.

Simple strategies can significantly reduce the chances of false positives. First, during the

initial monitoring phase for wireless devices, any periodic trends in traffic patterns can be

noted; the detector trial should ensure its periods are not synchronous with such periodicity.

Furthermore, the detection process can be done multiple times with varying and erratic

period lengths. This will drastically decrease the chances of a false positive, as a device

would have to coincidentally follow this effectively random traffic pattern. Finally, the entire

process itself can be performed repeatedly; each iteration compounds the decrease in false

positive rate, such that it eventually reduces to a statistical impossibility.

Q4: How can devices fool ? If the adversary suspects that the subject is using , they

can either modify the encoding schemes, turn off the device, use data padding, add random

noise, or vary the resolution of the data being transmitted. We detail these approaches in

Appendix B. However, if the traffic of THE device changes drastically when the detection

trial is performed, this in itself is a form of causation and SnoopDog can detect it.

Q5: Are there alternative approaches to causality?One alternative approach to

detecting snooping sensors is correlation. Correlation measures the size and direction of the

relationship between two variables. If the values of two variables change at the same time

and in the same direction, they are highly correlated. However, correlation does not imply

causation. If we have a sensor that measures the ground truth in the modality we want

to detect, we need to use causality analysis. For example, it takes the camera some time

to process the information and send it over to the server. So if we capture human motion

with an IMU, the camera traffic will lag the IMU time series. This is correctly captured by

causality analysis but not by correlation. However, if instead of using a sensor to measure

the ground truth, we use another sensor that can capture the same modality that we are

trying to detect, we can use correlation because if both the devices are capturing the same

event, their traffic should show similar trends.
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Future work can also explore the efficacy of data-driven approaches such as deep learning

for time series classification.

Q6: Can SnoopDog work for other wireless communication standards like

Bluetooth, Zigbee, and Z-Wave? Although SnoopDog targets -connected devices, we

can generalize the same framework for other popular wireless communication standards. This

framework can be extended to standards like Zigbee [19], Z-Wave [49], and Bluetooth [11,27]

as long as we have the following: 1) A receiver that can scan their probable frequencies and

sniff their packets to find if any devices are transmitting and 2) the ability to find unique

device IDs from packet headers and distinguishing header information from payload size.

Q7: What happens when there are multiple people present? When there are

multiple people present in the space, we need to ask everyone to leave during detection and

localization. In cases where other users are non-cooperative, their motion will affect the

network traffic of these devices and cause false alarms or false negatives.

Q8: Can we detect continuously streaming audio bugs? There are two ways to

encode audio, either constant bit rate (CBR) or variable bit rate (VBR). VBR techniques

make use of similarity in sound, such as prolonged silence, to reduce the amount of data

required for encoding. In contrast, CBR always encodes with the same number of bits.

Many off-the-shelf audio recorders and audio streaming apps use CBR. Since SnoopDog

only has access to the payload size of a packet, there must be variation in the payload to

determine causality. Hence, SnoopDog cannot detect CBR audio bugs.
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CHAPTER 9

Related Work

This chapter presents the most relevant and related works.

Detecting hidden devices using RF signals. A popular tool to detect hidden devices is

called a bug detector [29], which is an RF receiver that can sense if the received power in a

particular frequency range is above a threshold. The problem with such devices is that they

are not reliable, and can produce false alarms when used near other sources of RF signals

such as mobile phones or laptops [32, 42]. Also, they give no additional information about

the type of device and where it is located. After detection, the onus lies completely on the

user to physically find the device and verify if it is a hidden surveillance device or not. The

host may have a wireless device to monitor the power consumption of his property, but to

the bug detector, it would seem similar to an IP camera.

Classifying devices on the network using wireless traffic sniffing. While services like

Princeton IoT Inspector [14] collect traffic statistics to identify the types of devices present

on the network, they fail to identify if those devices are indeed spying on the user or not.

Just ascertaining the presence of a surveillance device is not enough. The device may be

present outside the house or it may be monitoring some part of the house which was already

disclosed by the home owner. In cases like this, just identifying such a device exists is not

enough, we also need to determine two important facets – is the device spying on the user and

is it located in an area of the house that has the potential to violate user privacy. Moreover,

tools like this need to have access to the network in order to be effective. If the snooping

devices are placed in a hidden network or on a password protected network, the use cases of

such a tool are limited.
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Other network traffic analysis tools [1, 33] utilize traffic data to find which devices are

consuming high bandwidth. Such techniques can be used to classify audio and video data

streams present in the wireless networks. However, with an increase in streaming services

[20, 38], it is difficult to distinguish camera video and audio flows with those of streaming

services based on just their bandwidth usage.

Detecting cameras on the network using wireless traffic sniffing. In [43], Wampler

et. al. shows that information leakage occurs in camera traffic due to how videos are

encoded. They observe that changing lighting conditions cause noticeable variations in the

network traffic. Several works [23,28] leverage this observation to detect cameras monitoring

an environment. Though these techniques perform well, their performance degrades when

the environment lighting changes naturally. Additionally, while this technique works well

for a camera, it does not generalize to other types of snooping devices, like RF sensors or

motion detectors. Finally, in order to be able to change the lighting conditions of a space,

the user requires either specialized hardware (like an LED board or a bulb) or access to

lighting controls, which is not guaranteed.

Data driven approaches like DewiCam [4] extract features from the intrinsic camera traffic

patterns to train a classifier which can detect cameras. They exploit the correlation between

human motion and camera data flows to determine if the camera is indoors or outdoors.

However, it is unclear if such an approach will hold true over diverse set of cameras with

varying processing speeds and data flows.

In [47], Wu et. al. present another technique to detect hidden streaming cameras through

simultaneous observation. The authors use their own camera to record a scene while simulta-

neously sniffing the network traffic. They compare the data rate and pattern of their trusted

camera with other devices in the network to look for any similarities. If a similarity exists,

there is a high probability that the device is a camera.

Localizing wireless devices using RSSI. Received Signal Strength Indicator (RSSI) is

the estimate of the power received at the receiver from the transmitter. As the distance

between the transmitter and the receiver increases, the power received drops, and so does
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the RSSI. This property is leveraged to localize devices using RSSI [22,24,40,48]. However,

due to phenomenon like multipath and shadowing, the accuracy of RSSI based localization

varies from space to space [16]. As a result, the error is very high (in order of several meters).

For small rooms, such a result will be meaningless, as the snooping device can be effectively

hidden anywhere.

9.1 Conclusion

In this paper, we presented SnoopDog , a framework to detect, identify, and localize any

wireless sensor monitoring a person in an arbitrary space. SnoopDog works by establishing

causality between a set of ground truth sensors monitoring a user and the transmitted

information of wireless devices on a WiFi network. It then uses this causality to perform

trial-based localization. We implement SnoopDog on a set of commonly available devices

such as a smartphone and a laptop and evaluate our solution on a set of representative

clandestine sensors. The framework had a detection rate of 96.6% and a device classification

rate of 100% when the injected multi-modal event was human motion or sound.
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APPENDIX A

Audio-based Localization for Personal Home Assistants

In this chapter, we describe the audio localization technique step-by-step. First, we find

the optimal volume at which when the sound (a phrase containing the wake word of the

device) is placed on some points causes the device traffic to change. Then we go around the

room while SnoopDog repeats that sound continuously and checks them for causality with

device traffic as shown in Figure A.1. Sound played at the points marked as green produces

cause-effect relationship with the device traffic. We eliminate the region where we detect no

causality. Next, we reduce the volume by 1 level and repeat our experiment in the left-over

space till we are left with a region of desirable size.

- Causality not found

- Causality found

3.04 m
3

.0
4

 m

1
.3

 m

2 m

Figure A.1: Trial-based localization for acoustic sensors.
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APPENDIX B

Techniques to fool SnoopDog

B.1 No Encoding or Data Padding

SnoopDog uses the relationship between encoding schemes and ground truth to find out

if there is a device which is monitoring the user. Hence, to fool SnoopDog , the sensors

can either send un-encoded raw data or they can pad the encoded data to make the data

rate constant. Cameras can either pad their traffic or they can send un-encoded images

frames. Since sending images will put a large overhead on the network bandwidth, padding

the traffic [2] is a better idea. We pad the camera traffic wind random payload in Figure B.1.

Since SnoopDog cannot see what’s inside the payload, it can be anything. The device can

even send labels in the payload that help the server decide if this is a valid packet or fake

data generated to fool detection. Also in Figure B.1, we pad the traffic of a motion sensor to

make it appear like a constantly transmitting device with no variation in traffic in response

to user’s motion.

For RF sensors, one can find out the maximum number of points it can output and then

always pad the information so that we are transmitting the maximum number of points

allowed. These extra points could all be zeros which would make it easier to filter them out

on the server side.

Since motion sensors only send information if certain events occur, they can pad their

traffic when no event occurs. As a result, they will have constant traffic for which causality

analysis is not possible.
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Figure B.1: Padding the motion sensor and the camera traffic

B.2 Adding Random Noise to the Data

Another way to fool SnoopDog is by injecting noise into the device’s wireless traffic at

random intervals for some time window. Since SnoopDog utilizes the change in device

traffic to ascertain a cause-effect relationship, the variations caused by injecting random

noise are able to fool the detection.

Devices that do not transmit continuously can randomly send information that creates

a pattern similar to their inferred event traffic. This way they can keep sending their in-

formation which is hidden within random traffic. We add random noise which appears like

regular traffic for a motion sensor in Figure B.2. This noise can be anything, and hence the

server can differentiate it from actual motion events.

B.3 Constantly Vary the Resolution of the Data Being Transmit-

ted

For devices like camera, there are several video resolutions that an adversary can choose.

The higher the resolution, the better the video quality is. However, if an adversary chooses

a scheme where the video resolution is constantly varying, it will cause random changes in

the network traffic. Hence, even if the user’s motion is causing changes to the traffic, it is
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Figure B.2: Injecting noise in the traffic of a motion sensor to fool SnoopDog

overpowered by the changes in network traffic due to a variation in resolution.

For RF sensors, they can vary the number of maximum points that they transmit con-

tinuously to achieve a similar effect.

B.4 Adding a tape/broadcast delay to the transmissions

An adversary can add a tape delay to the sensor transmissions, i.e. intentionally adding a

delay between when something was recorded and when it was transmitted. Since, we are

only looking for causality within a small time window, a high tape delay will be able to fool

SnoopDog . However, given enough storage capacity and time, it is possible for SnoopDog

to scan the entire recording to look for cause-effect relationship with user motion. But for

large tape delays, this is not practical.
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