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Abstract 

Sequential learning (SL) refers to the ability to learn the 
temporal and ordinal patterns of one’s environment. Whereas 
research on the learning of ordinal patterns is common, the 
learning of temporal patterns within sequential events has 
been far less studied.  The current study examines the effects 
of synchronous and asynchronous temporal patterns on visual 
sequential learning. We hypothesize that entrainment (i.e. 
exposure to a regular rhythmic pattern) allows for better 
processing of the ordinal structure of sequential events. 
Twenty healthy adult participants (11 females, 18–34 years 
old) performed two versions of a visual sequential learning 
paradigm while event-related potentials (ERPs) were 
recorded. The SL task involved the visual presentation of 
colored circles, wherein a target circle was embedded that 
was partially predictable based on preceding predictor 
stimuli. One version of the task incorporated synchronous 
temporal presentation of the stimuli whereas the other version 
involved asynchronous presentation of stimuli using a 
randomized ISI on every trial. Reaction time data 
demonstrated that learning occurred in both temporal 
conditions. On the other hand, the mean ERP amplitudes 
between 350 and 750ms post-predictor onset in the posterior 
regions of interest revealed that learning of the statistical 
contingencies between stimuli was disrupted for the 
asynchronous temporal condition but intact for the 
synchronous condition. These neurophysiological data 
suggest that the brain processes regular and irregular timing 
events differently, with statistical learning of ordinal visual 
patterns being improved by a synchronous temporal structure, 
possibly a result of heightened attention to the stimuli due to 
entrainment.  

Keywords: Sequential learning; statistical learning; temporal 
processing; entrainment; ERPs 

Introduction  
An important question in cognitive science is what 
facilitates learning of structured events under different 
contexts. When events are not fully random but contain a 
degree of temporal or ordinal regularity, our brain is able to 
extract these regularities to facilitate processing using 
predictive mechanisms, that is, by learning to predict future 
stimuli in the sequence (Selchenkova et al., 2014). In this 
manner, we are able to generate expectancies about future 
events, an ability that that allows us to improve our 
responses and execution of actions (Rohenkohl et al., 2012). 

Sequential learning (SL) is the ability to learn incidentally 
the ordinal patterns of one’s environment (i.e., sequences of 
items that unfold in time, such as a melody or a gymnastics 
routine). Surprisingly, whereas SL studies of the ordinal 
structure of sequences are common, research on SL of 

temporal patterns is scare. Most SL studies focus on 
learning sequences of stimuli with identical durations and 
identical inter-stimuli intervals (e.g. Conway & 
Christiansen, 2005; Jost et al., 2015).  However, SL of 
sequences containing temporal irregularity, that is with 
stimuli of varying durations or with different inter-stimuli 
intervals, is of fundamental importance to human cognition 
because these types of sequences are frequent in our 
environment. We often process irregular temporal patterns 
that help us make decisions and influence our future 
behavior, including when we perform motor movement 
coordination, and when we process language or music 
(Brandon et al., 2012). 

To understand the human ability to process statistical 
sequential information better, one must examine both the 
ordinal and temporal information available in any given 
context. The Dynamic Attending Theory (DAT) proposes 
that events with a regular pattern are processed easier than 
events with an irregular temporal pattern. This theory 
assumes that the brain creates internal oscillations, or 
attending rhythms, that entrain to external rhythms, creating 
a type of attention to future events, which facilitates 
learning (Jones & Boltz, 1989). The internal oscillations of 
the DAT are thus adaptive, allowing for enhanced 
processing of regular temporal structures. Therefore, the 
DAT implies that attention to individual items of a sequence 
is stimulus-driven (Jones et al., 2002). In this respect the 
temporal structure of a sequence becomes useful or salient 
to the attender. 

SL can be observed behaviorally (response times) as well 
as indexed neurophysiologically with event-related 
potentials (ERPs, for a recent review, see Daltrozzo & 
Conway, 2014). The ERP technique has been used to study 
SL using variations of the classic auditory oddball sequence 
task, the serial reaction time task (SRT) and with artificial 
grammar learning (AGL) paradigms (Brandon et al., 2012; 
Karabanov & Ullen, 2008; Schmidt-Kassow et al., 2009; 
Schwartze et al., 2011; Selchenkova et al., 2014; 
Selchenkova, Jones & Tillman, 2014). The ERP technique 
has the advantage of a high temporal resolution at the 
millisecond scale, allowing for the exploration of neural 
events with precise timing. Thus, ERPs are particularly well 
suited for examining temporal cognition, including SL of 
temporal and ordinal regularities.  

 
The Current Study 
The current study uses a probabilistic visual serial learning 
task (Jost et al., 2015) with a manipulation of the temporal 

740



synchronicity as a way to explore the effects of temporal 
regularity on SL.  Whereas the literature on the relationship 
between SL and temporal processing is scarce, there is some 
evidence that temporal regularity modulates SL. The main 
conclusions of this research is that a regular temporal 
pattern allows for better processing of the sequence, with 
faster reaction times and a larger peak amplitude and shorter 
latency onset of a P3-like component (Rohenkohl et al., 
2012; Schmidt-Kassow et al., 2009). However, because 
most of the studies exploring the effect of the temporal 
regularities on SL have been conducted in the auditory 
domain, it is important to test this relationship in the visual 
domain (Rohenkohl et al., 2012). The results of previous SL 
literature have shown that perceptual modality (i.e., visual 
vs. auditory patterns) influences SL (Conway & 
Christiansen, 2005). Thus, it is important to explore whether 
entrainment to a temporal structure can facilitate SL 
independently of the modality of the to-be-learned 
sequence, that is not only in the auditory but also in the 
visual domain.   
     We hypothesize that: (1) Reaction time data will show 
better learning in the synchronous condition compared to 
the asynchronous condition; (2) ERP data will show that the 
synchronous sequences yield larger peak amplitudes of the 
P300 than asynchronous sequences, suggesting a facilitative 
effect for processing statistical regularities in temporally 
regular events.  

Method 
Participants  
Twenty adult participants (11 females, 18 right-handed, 18-
34 years old, average age = 20.5) without reported language, 
cognitive, neurological, or psychological deficits and who 
were native English speakers participated in this 
experiment.  Participants were recruited through Georgia 
State University’s SONA system, receiving course credit for 
their participation. All participants provided written 
informed consent, which was approved by the Institutional 
Review Board of Georgia State University. Participants 
were asked to fill out a brief demographic questionnaire and 
the Edinburgh Handedness Inventory (Oldfield, 1971). 

 
Procedure  
The SL paradigm, based on Jost et al. (2015), involved the 
presentation of a sequence of colored circles (brown, blue, 
grey, pink, orange, red, purple, yellow, green, white) in the 
center of a computer screen with a black background 
(Figure 1). Participants were asked to press a button 
whenever they saw a circle of a specific color (the “target”). 
Each trial consisted of one to five “filler” circles, followed 
by one of the three predictor circles (high, low, and zero 
predictor-target probability, chosen randomly on each trial). 
Depending on which predictor stimulus was presented, the 
next stimulus was either the target circle or the filler circle. 
The target circle followed the “high predictor” on 80% of 
the trials, with a filler circle following 20% of the time. The 
target circle followed the “low predictor” 20% of the time, 

with a filler circle following 80% of the time.  The target 
circle never followed the “zero predictor” circle. After the 
target or final filler was presented at the end of the trial, the 
sequence repeated itself by starting off again with one to 
five filler circles and then the randomly chosen predictor 
stimulus.  The color assigned to the target, predictors, and 
filler circles was randomly chosen for each participant at the 
beginning of the task and the selection of colors for each 
stimulus type remained constant throughout the task for 
each participant. In the synchronous temporal condition, the 
stimuli appeared on the screen for 500ms with a 1000ms 
(black screen) ISI.  In the asynchronous temporal condition, 
stimuli appeared on the screen for 500ms, with a 
randomized ISI, ranging between 600ms and 1400ms so that 
on average across trials the ISI remained the same as in the 
synchronous condition (1000ms). 

 
 
Figure 1: Visual SL task layout [high probability, HP; low 
probability, LP; zero probability, Z]. In this  example, three 
filler circles precede the predictor  stimuli, but this number 
could range from one to five. After the appearance of either 
a target or filler at the end of the trial, a new sequence 
begins. In this example, the target stimuli are green, but in 
reality the colors of the standard, predictors and target 
stimuli were randomly assigned for each participant. 

 
 

The experimental conditions were separated into two 
separate tasks, synchronous and asynchronous. The 
assignment of set colors as well as order of each task were 
counterbalanced across participants, so that each participant 
received a different set of colors for each task. Each task 
lasted approximately 25 minutes, and included the 
presentation of 180 trials through 6 blocks of 30 trials each. 
Compared to the Jost et al. (2015) paradigm that included 
the presentation of 150 trails, the overall number of trials 
was increased to 180 trials to increase the signal to noise 
ratio, allowing us to better compare ERP effects between the 
first and second half of the SL task. After participants 
completed both sequential learning tasks, they completed a 
pattern consciousness inventory, a measure that tested the 
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overall level of consciousness of the probabilistic structure 
of the sequence. 
 
Recording Technique 
The electroencephalograph (EEG) was measured from 256 
scalp sensors using an Electrical Geodesic Inc. (EGI) EEG 
net (Figure 2).  Net Station Version 4.3.1 tools were used to 
process the EEGs. Active electrode impedances were kept 
below 50 kΩ. Recordings were made with a 0.1 to 30 Hz 
bandpass filter and digitized at 250 Hz. The EEG was 
segmented into epochs -200 to +1000ms with respect to the 
predictor onset.  An artifact detection operation removed 
trials containing noise from eye blinks and other 
movements. Separate ERPs were computed for each 
participant, experimental condition, electrode and block. All 
experimental sessions were conducted in a 132 square foot 
double-walled, sound-deadened acoustic chamber. 
 
Statistical Analysis 
Statistical calculations were performed on the individual 
mean amplitude ERPs within the time-window of interest 
(350-750ms post predictor onset), estimated from previous 
research and visual inspection (Jost et al., 2015)), using Net 
Station Version 4.3.1. To analyze the effect of cortical 
topography, nine regions of interest were defined (ROIs, 
Figure 2): left (LAn), middle (FRz), and right anterior 
(RAn); left (LCn), middle (CNz), and right central (RCn); 
and left (LPo), middle (POz) and right posterior (RPo) 
regions. Based on previous research, we expected the ERP 
effects of learning to be focused in the posterior central 
(POz) region (Jost, et al., 2015). Visual inspection of the 
grand averages confirmed an SL effect in both the left 
posterior (LPo) and central posterior (POz) regions, and so 
all analyses were conducted on these two combined regions 
(posterior medial-left). Repeated-measure ANOVAs on the 
individual mean amplitudes were conducted with the 
following within-participant factors: Predictor (“high 
predictor” or HP, “low predictor” or LP, and “zero 
predictor” or Z), temporal regularity (synchronous, 
asynchronous) and block (first three blocks vs. last three 
blocks). One participant was excluded from the ERP 
statistical calculations due to a high percentage (over 60%) 
of trials containing artifacts (Synchronous, 94%; 
Asynchronous, 82%).  

Response times to target stimuli were analyzed with 
repeated-measure ANOVAs with predictor, temporal 
regularity, and block as within-participant factors. One 
participant was also excluded from response time 
calculations, due to a computer error. 

All statistical analyses were conducted with SPSS (PAWS 
Statistics 18 – Release 18.0.3 September 9, 2010). All 
reported p-values were adjusted with the Greenhouse–
Geisser correction for non-sphericity, when appropriate. 
Partial eta-squared is reported as a measure of effect size for 
all ANOVAs (Cohen, 1988; Olejnik & Algina, 2003). 
Reported p-values of the posthoc tests were Šidák corrected.  

 

 
 

Figure 2: 256 sensors EEG net with the highlighted nine 
 regions of interest. 

Results 
 

Table 1 displays the mean reaction time data for both the 
synchronous and asynchronous tasks, separated by the first 
half and second half of each in order to observe effects of 
learning that might be present following a certain amount of 
exposure to the patterns. A 2x2x2 repeated measures 
ANOVA revealed a significant main effect of Predictability 
[F(1,18) =  11.79; p = .003, 𝜂!! = .40]  and a main effect of 
Block [F(1,18) = 6.63; p = .02, 𝜂!! = .27], but no significant 
interactions. These data indicate that the HP condition was 
responded to significantly faster than the LP condition 
across both halves of both tasks. The main effect of block 
also suggests that participants improved on their 
performance of the task in the second part of the tasks, 
regardless of predictor type and task synchronicity. Overall, 
these results suggest that participants showed facilitation 
with responding to targets when the HP stimulus was 
present, indicating learning of the ordinal structure in both 
the synchronous and asynchronous versions of the task. 
Note that numerically the synchronous condition displayed 
improved RTs for the HP condition from the 1st half to 2nd 
half of the task (379.9 vs. 357.1 ms); although the 
asynchronous condition also showed a similar facilitation, 
the effect was smaller (387.2 vs. 372.0 ms). However, this 
difference in effects was non-significant, likely due to lack 
of statistical power [F(1,18) = .112; p =.74, 𝜂!! = .006]. 
 
Table 1: Mean (SD) reaction time scores by timing 
condition, predictor and block. 

Synchronous  Asynchronous 
          

 1st Half         2nd Half                   1st Half      2nd Half 
 

HP      379.9 (59.4)     357.1 (66.0) 387.2 (43.1)    372.0 (63.0) 
 

LP      385.7 (45.9)     379.9 (50.7) 406.7 (40.9)    389.3 (46.8) 
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The ERP data, however, presents a more nuanced picture. 
Figure 3 displays the grand averaged ERPs for each task 
across all participants, time-locked to the three predictors 
(HP, LP, & Z) at the posterior medial-left regions of interest 
used for topographic analyses during both the first and 
second half of the task. Visual inspection suggests a larger 
positivity between about 350ms and 750ms for the HP 
predictor compared to the LP and Z predictors in the second 
half of the task for the synchronous but not asynchronous 
conditions. 

 

 

 
Figure 3: Grand average ERPs observed in the posterior 
medial and left regions of interest in response to the high 
probability condition (HP, red line), low probability 
condition (LP, blue line), and zero probability condition (Z, 
green line) (vertical axis: electrical potential in 𝜇𝑉, 
positivity upward; horizontal axis: time in milliseconds) in 
the first and last three blocks of each task. The synchronous 
task is shown in the upper panels and the asynchronous task 
in the lower panels. 
 

Figure 4 shows the means for the posterior medial-left 
region for each of the three predictors in the first three 
blocks of the task versus the last three blocks of the task in 
both timing conditions. From visual inspection, it is very 
clear that the timing condition appears to be affecting the 

ERPs elicited by each predictor type in different ways. 
Specifically, whereas in the first half of both tasks, the ERP 
effects do not appear to differ, they do differ in the second 
half for the synchronous but not the asynchronous task, 
presumably reflecting differences in participants’ learning 
of the varying predictor-target probabilities.  
 

 

 
Figure 4: Line graph depicting the means in microvolts  

(𝜇𝑉) for the posterior medial-left region for each of the 
three predictors in the first half versus the second half of the 
task 350-750ms post-predictor onset. 
 

A 2x2x3 repeated measures ANOVA confirmed that there 
was an interaction between Timing and Predictability 350ms 
to 750ms poststimulus onset [F(2,36) = 6.01; p = .006, 𝜂!! = 
.25] indicating a significant difference between HP and Z in 
the synchronous condition but not the asynchronous 
condition (p = .009). There was also a significant Block and 
Predictability interaction [F(2,36) = 4.13; p = .040, 𝜂!! = .19] 
350ms to 750ms poststimulus onset, indicating that the 
difference between HP and LP (p = .03) and HP and Z (p = 
.02) was larger in the second half of the experiment, 
regardless of timing condition. 

While there was no significant three-way interaction 
between Predictability, Timing and Block, two 2x3 repeated 
measures ANOVAs indicate an effect only in the 
synchronous condition. We found a significant Block and 
Predictability interaction in the synchronous condition 
[F(2,36) = 5.77; p = <.001, 𝜂!! = .24], indicating differences 
between means from the first to the second half of the task. 
Posthoc tests revealed significant differences between HP 
and LP from the first half to the second half (p = .013) as 
well as significant differences between HP and Z from the 
first half to the second half (p = .01). A repeated measures 
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ANOVA found no significant interaction between Block 
and Predictability in the asynchronous condition. 

The consciousness inventory produced an average rating 
per participant, for each temporal condition. A paired-
sample t-test revealed no significant differences between 
timing groups (t(18)= -.304, p =.77). However, the 
consciousness scores were significantly correlated with the 
mean ERP amplitudes for each predictor condition in the 
second half of the synchronous task: HP (r=.608, p=.006), 
LP (r=.614, p=.005) and Z (r=.603, p =.006 ) from 350-
750ms post-predictor. This suggests that for the 
synchronous condition, in the second half of the task, there 
was a positive relationship between one’s level of 
consciousness of the probabilistic patterns and the ERP 
amplitudes. 

Discussion 
 

This study explored the effects of temporal regularity on the 
neural correlates of visual SL using neurophysiological 
evidence (ERPs). The main findings of this research are that 
(1) reaction time data showed that the target was responded 
to faster following the presentation of the high predictor 
compared to the low predictor, regardless of temporal 
condition, indicating learning for both conditions; (2) under 
the synchronous temporal conditions only, the ERPs 
indicated a significant effect of predictor type in the last 3 
blocks of the task, with greater P300-like amplitudes for the 
HP condition. 

The ERP results of the synchronous condition mirrors 
those of Jost et al. (2015), who also observed a P300-like 
ERP component for the HP predictor, reflecting the learning 
of the probabilistic contingencies between stimuli. The fact 
that this P300 effect was not seen in either the first three or 
the last three blocks of the asynchronous task highlights the 
fact that processing was enhanced during trials that had 
highly regular rhythms. This shows that variability in timing 
may influence the P3b, which is typically seen 300-500ms 
over central and parietal electrode sites (Schmidt-Kassow, 
Schubotz & Kotz; 2009). According to the predictions made 
by the DAT, events with highly regular temporal rhythms 
produce entrainment of oscillatory waves, so that perception 
and encoding are enhanced because stimuli are being 
presented during the highest point in the wave of attention 
(Jones & Boltz, 1989). Our findings fit well within the 
expectation of the DAT that temporal regularity provides an 
opportunity to direct attention to salient information, in this 
case, the onset of the stimuli being presented, which led to 
improved encoding of the statistical regularities.  

Whereas the classic oddball paradigm is used to explore 
the effect of deviant stimuli in a stream of input, the 
modified oddball paradigm that was applied in the present 
study (based on Jost et al., 2015), that includes predictor-
target statistical contingencies, allows for the exploration of 
the extraction of sequential probabilities out of a serial input 
stream. While most of the research conducted on SL and 
temporal processing has been conducted in the auditory 
domain, this study shows that SL of visual stimuli is also 

sensitive to temporal regularities. The P300 may reflect 
expectations about when the target stimulus occurs, and 
therefore stimuli that occur at expected time points are 
processed more efficiently. Since we do not always 
experience events in a regular temporal fashion, 
understanding how we process events structured with a 
varying temporal regularity has important implications for 
human cognition, especially for incidental and implicit 
learning.  

Interestingly, reaction time data showed learning effects 
in both timing conditions in the last 3 blocks of the task, 
which seems to stand in contrast to the ERP findings. One 
interpretation of this discrepancy is that reaction times could 
represent the implicit learning of the patterns, while the ERP 
effects index attention-dependent processes that were 
affected by entrainment. The consciousness scores revealed 
a significant positive correlation with ERP means in the 
synchronous condition in the last half of the experiment, 
suggesting that as one’s awareness of the sequence 
increased, so did their neurophysiological responses. The 
P300 is known to be affected by attentional manipulations 
(Polich, 2007), so taken together, these findings suggest that 
temporal regularity results in increased attentional 
processing of the patterns while leaving implicit learning 
more or less unaffected (for a similar argument that 
sequential learning relies upon both implicit and explicit 
learning processes, see Batterink et al., 2015) On the other 
hand, the means of the reaction times go in the direction that 
would be expected if the synchronous condition led to 
improved learning; thus, there simply may not be enough 
power to detect these effects behaviorally.  

In addition to using larger sample sizes, future studies 
might explore different ways of varying the temporal 
structure of input sequences. For instance, in line with 
previous research (Brandon et al., 2012; Selchenkova et al., 
2014), a metrical framework might be adapted and tested 
using this predictor-target paradigm. Selchenkova et al. 
(2014) manipulated the temporal structure of sequences by 
using both metrical and isochronous structures in an 
artificial grammar-learning paradigm. They found that the 
highly metrical condition showed a larger P300 component 
in the exposure phase and an earlier N2 component in the 
test phase, in comparison to the isochronous condition. 
Studies like these suggest that a complex interplay between 
metricality and temporal regularity can have a dramatic 
effect on SL, and thus it may be advantageous to further 
explore these dimensions.  

Finally, the current research on temporal processing and 
SL is expected to have implications for our understanding of 
certain pathologies. Language, cognitive and motor 
impairments, such as Specific Language Impairment (SLI), 
attention-deficit hyperactivity disorder (ADHD), and 
dyslexia, as well as Parkinson’s Disease and Schizophrenia, 
appear to be associated with temporal and entrainment 
deficits that in turn could lead to difficulties in sequence 
processing (Basu et al., 2010; Hsu & Bishop, 2014; Davalos 
et al., 2011; Harrington et al., 2011; Noreika et al., 2013). 
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For example, SLI is thought to stem from an impairment of 
the procedural memory system, which in turn may affect 
both sequential and temporal processing (Hsu & Bishop, 
2014). Future research ought to explore entrainment and SL 
in typical and atypical participants in order to better 
characterize the nature of the deficits that these individuals 
are experiencing.  One possibility is that SL is impaired in 
these pathological populations because of a lessened ability 
to dynamically attend to stimuli, leading to inefficient 
processing of both auditory and visual stimuli.  This 
research approach is expected to advance our 
comprehension and assessment of several types of cognitive 
impairments affecting language, attention, motor 
coordination, and more generally a wide range of cognitive 
systems. By exploring SL in healthy adults and its 
relationship with temporal processing, this research could 
pave the pathway towards a better understanding of the 
cognitive impairments of these pathological populations. 
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