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Sequencing Illumina libraries at high accuracy
on the ONT MinION using R2C2

Alexander Zee,1,4 Dori Z.Q. Deng,2,4 Matthew Adams,2,4 Kayla D. Schimke,1,4

Russell Corbett-Detig,1 Shelbi L. Russell,2 Xuan Zhang,3 Robert J. Schmitz,3

and Christopher Vollmers1
1Department of Biomolecular Engineering, 2Department of Molecular, Cellular, and Developmental Biology, University of California
Santa Cruz, Santa Cruz, California 95064, USA; 3Department of Genetics, University of Georgia, Athens, Georgia 30602, USA

High-throughput short-read sequencing has taken on a central role in research and diagnostics. Hundreds of different assays

take advantage of Illumina short-read sequencers, the predominant short-read sequencing technology available today.

Although other short-read sequencing technologies exist, the ubiquity of Illumina sequencers in sequencing core facilities

and the high capital costs of these technologies have limited their adoption. Among a new generation of sequencing tech-

nologies, Oxford Nanopore Technologies (ONT) holds a unique position because the ONTMinION, an error-prone long-

read sequencer, is associated with little to no capital cost. Here we show that we can make short-read Illumina libraries com-

patible with the ONTMinION by using the rolling circle to concatemeric consensus (R2C2) method to circularize and am-

plify the short library molecules. This results in longer DNA molecules containing tandem repeats of the original short

library molecules. This longer DNA is ideally suited for the ONT MinION, and after sequencing, the tandem repeats in

the resulting raw reads can be converted into high-accuracy consensus reads with similar error rates to that of the

Illumina MiSeq. We highlight this capability by producing and benchmarking RNA-seq, ChIP-seq, and regular and tar-

get-enriched Tn5 libraries. We also explore the use of this approach for rapid evaluation of sequencing library metrics

by implementing a real-time analysis workflow.

[Supplemental material is available for this article.]

Over the past 15 years, high-throughput short-read sequencing
technology has revolutionized biological, biomedical, and clinical
research. Hundreds of sequencing-based methods exist today to
query gene expression (RNA-seq) (Mortazavi et al. 2008), chroma-
tin state (chromatin immunoprecipitation [ChIP]-seq and
ATAC-seq) (Barski et al. 2007; Buenrostro et al. 2013), protein
abundance (Stoeckius et al. 2017) and, of course, to aid the assem-
bly of genomes (Burton et al. 2013)—among many other applica-
tions. All of these methods produce a final sequencing library that
contains ∼200- to 600-bp double-stranded DNA molecules with
ends of a known sequence. In the vast majority of cases, these
ends are Illumina sequencing adapters.

Despite the existence of other sequencing technologies,
Illumina has been the dominating short-read sequencing technol-
ogy over the past decade. However, because of the high capital cost
of Illumina short-read instruments, all but the most well equipped
laboratories outsource their Illumina sequencing to core facilities.
Although this provides access to the most recent sequencing tech-
nology, this outsourcing can lead to long delays between running
an experiment and receiving results. Therefore, placing a benchtop
sequencer with capabilities comparable to an Illumina sequencer
in most molecular biology and diagnostic laboratories could be
truly transformative by accelerating as well as fully integrating ge-
nomics assays into standard laboratory workflows. In a molecular
biology laboratory, it would speed up developing or establishing
new types of sequencing libraries. In a diagnostic laboratory, it

could enable fast sample turn-around aswell as encourage the tran-
sition away from diagnostic methods like fluorescence in situ hy-
bridization (FISH), which is still routinely used for the detection
of gene fusions in certain cancers despite having a >20% false-neg-
ative rate and the availability of more accurate sequencing-based
replacements (Ali et al. 2016; Nohr et al. 2019).

Over the past few years Oxford Nanopore Technologies
(ONT) sequencers have rapidly matured. Currently, the ONT
MinION sequencer’s base throughput (up to 30 Gb per flowcell)
can exceed that of the Illumina MiSeq sequencer (18 Gb for a
2 × 300-bp run). Additionally, this throughput comeswith tunable
read length, so a successful MinION run can in theory produce 10
million 3-kb reads or 5 million 6-kb reads. Further, the MinION
sequencer is only a fraction of the cost of other high-throughput
sequencers. However, standard per-base sequencing accuracy of
the newest base-calling software guppy5 is only ∼96% and is dom-
inated by insertion and deletion errors, which are almost absent in
Illumina data. Furthermore, ONT MinION’s sequencing accuracy
declines with shorter reads (Thirunavukarasu et al. 2021).

Here, we implemented a simple workflow that converts al-
most any Illumina sequencing library intoDNAof lengths optimal
for the ONTMinION and generates data at similar cost and accura-
cy as the Illumina MiSeq. We made this possible by using the pre-
viously published and optimized rolling circle to concatemeric
consensus (R2C2) method (Volden et al. 2018; Byrne et al. 2019;
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Adams et al. 2020; Cole et al. 2020; Vollmers et al. 2021; Volden
and Vollmers 2022). R2C2 circularizes dsDNA libraries and ampli-
fies those circles using rolling circle amplification to create long
molecules withmultiple tandem repeats of the original molecule’s
sequence. These long molecules can then be sequenced on ONT
instruments to generate long raw reads, which are then computa-
tionally processed into accurate consensus reads. In previous stud-
ies focused on full-length cDNA molecules, we have achieved
median read accuracies of 99.5% with this method (Vollmers
et al. 2021). Because Illumina libraries are shorter than full-length
cDNA, we modified the R2C2 protocol to generate a large number
of shorterMinION raw reads while maintaining consensus accura-
cy levels on par with the Illumina MiSeq sequencer.

We benchmark this extension of the R2C2 method by con-
verting and sequencing RNA-seq and ChIP-seq, as well as regular
and target-enriched genomic DNA Tn5 Illumina libraries. We im-
plemented a computational workflow for demultiplexing Illumina
library indexes from R2C2 data and have, where possible, relied on
established analysis workflows for downstream analysis originally
developed for Illumina data. If R2C2 and Illumina data required
different computational approaches, that is, assembly and variant
calling, we chose the optimal tool for either data type.

To take advantage of the real-time data generation of ONT
sequencers, we also developed Processing Live Nanopore Experi-
ments (PLNK), for monitoring and rapid evaluation of sequencing
runs. PLNK uses several tools to base-call, demultiplex, and map
reads as they are generated. PLNK then reports, in real-time, run
features like what percentages of reads belong to each library in a
library pool, what percentages of reads in each library map to a
list of target regions, and what the read coverage of these target re-
gions is for each library.

This work was performed with the aim of evaluating whether
R2C2 and the associated computational methods C3POa and
PLNK could be used to replace and potentially even improve on
dedicated Illumina sequencers for the analysis of short-read
libraries.

Results

To generate R2C2 data for a diverse selection of Illumina libraries,
we processed and sequenced (1) Illumina RNA-seq libraries of the
human A549 cancer cell line, (2) Illumina ChIP-seq and input li-
braries of soybean samples, (3) Illumina Tn5-based genomic

DNA libraries of a Wolbachia-containing Drosophila melanogaster
cell line, and (4) Illumina Tn5-based genomic DNA libraries gener-
ated from the lung cancer cell lines NCI-H1650 and NCI-H1975,
which we enriched for the protein-coding regions of approximate-
ly 100 cancer-relevant genes (Fig. 1).

To convert these Illumina libraries into R2C2 libraries, we cir-
cularized themusingGibson assembly (NEBuilder/NEB)withDNA
splints compatible with Illumina p5 and p7 sequences (Supple-
mental Table S1). After the DNA circles are amplified with rolling
circle amplification using Phi29 polymerase, we fragmented and
size-selected the resulting high-molecular-weight DNA. We then
sequenced this DNA on the ONT MinION using the LSK-110 liga-
tion chemistry and 9.4.1 flowcells. We generated between 4 and
9.5 million raw reads per MinION flowcell (Table 1). All data
were then base-called with the guppy5 dna_r9.4.1_450bps_sup.cfg
model and consensus called using C3POa (v.2.2.3; https://github
.com/rvolden/C3POa).

To benchmark the R2C2 data for the Illumina libraries, we se-
quenced the same libraries with regular ONT 1D reads and on dif-
ferent Illumina sequencers. We then compared the metrics most
relevant to the different library types.

Evaluating R2C2 for the sequencing of Illumina

RNA-seq libraries

First, we benchmarked theONT-based R2C2method for the gener-
ation of RNA-seq data from Illumina libraries. We prepared four
technical replicate libraries from a single RNA sample in the
form of dual indexed paired-end Illumina libraries using the
NEBNext Ultra II directional RNA kit with RNA of the human
lung carcinoma cell line A549. We pooled and sequenced these li-
braries with the ONT MinION both directly (1D) and after R2C2
conversion (R2C2), as well as with the Illumina MiSeq.

To establish the effect of R2C2 conversion on the throughput
of the ONTMinION when sequencing short Illumina libraries, we
processed the raw reads generated by both 1D and R2C2 sequenc-
ing runs. Raw read numbers for 1D and R2C2 runs generated from
one ONT MinION flowcell were similar at around 11.8 million
reads. However, 1D reads were less likely than R2C2 reads to (1)
pass filter during base-calling, (2) contain both p5 and p7
Illumina adapter sequences, and (3) be successfully demultiplexed.
After preprocessing, only 2.5 million 1D reads (21%) remained
compared with around 8 million R2C2 reads (Table 2).

Figure 1. Experiment overview. Illumina RNA-seq, ChIP-seq, and Tn5-based genomic libraries (regular and enriched) were generated fromdifferent sam-
ples. The Illumina libraries were then circularized and amplified using rolling circle amplification (RCA). The resulting DNA, containing tandem repeats of
Illumina library molecules, was then prepared for sequencing on the ONT MinION sequencer.

Sequencing short-read libraries on ONT sequencers
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The 1D read numbers we generated for the RNA-seq libraries
are similar to published 1D read numbers generated for libraries of
similar lengths. A recent large-scale studyonGTEx samples (Glinos
et al. 2022) sequenced ∼600-nt-long cDNA molecules across
dozens of flowcells and generated about 6 million reads per
MinION flowcell. The Long-read RNA-seq Genome Annotation
Assessment Project (LRGASP) Consortium (Pardo-Palacios et al.
2021) sequenced ∼520-nt-long cDNA molecules and generated
about 18 million reads per flowcell. Even the most productive
1D run in these studies, potentially generating up to 20 million
raw reads for molecules of this length (Pardo-Palacios et al.
2021), would still generate fewer demultiplexed reads (21% of 20
million or fewer than 5 million) than the R2C2 run we performed
here.

To validate the demultiplexing of Illumina library pools from
R2C2 data, we compared the ratio of reads assigned to each library
in Illumina MiSeq, R2C2, and ONT 1D data based on their combi-
nation of i5 and i7 indexes. For all three methods, three technical
replicate libraries were pooled at a 4:2:1 ratio. The Illumina MiSeq
produced a 4:2.03:1.58 read ratio after demultiplexing. R2C2 pro-
duced a 4:1.91:1.34 ratio, andONT 1D produced a 4:2.5:1.82 ratio.
With these results being quite similar, the differences are likely ow-
ing to pipetting variability when pooling the libraries for the dif-
ferent sequencing methods. Further, to evaluate our ability to
quantitatively pool libraries at different points in the R2C2 work-
flow, we processed a fourth replicate in parallel and added it at a
specific ratio after rolling circle amplification. The fourth replicate
represented 40.5% of the R2C2 data, which is slightly more than
the 30% of R2C2 DNA it represented in the MinION sequencing
run. Finally, 9.71% of the R2C2 reads were not assigned to any in-
dex combination and 1.7% of the R2C2 reads were assigned to in-
dex combinations not present in the pool, implying only 0.0289%
(1.7%×1.7%) of the R2C2 reads were assigned to the wrong index
combination owing to index hopping.

Next, we established the effect of R2C2 conversion on read ac-
curacy compared with ONT 1D and Illumina MiSeq data sets. We
aligned all complete p5- and p7-containing and demultiplexed
R2C2 (8,066,704) and 1D reads (2,530,950) as well as Illumina
MiSeq reads (20,830,560 2×300-bp paired-end reads) generated
from these RNA-seq libraries using minimap2. We then calculated
the median read accuracy, accuracy per base, and read position–
dependent accuracy per base (Table 3).

Althoughmedian read accuracy is a useful and often reported
metric to compare error-prone long-read sequencing technologies,
it becomes less useful in this study. The sequencing readswe aim to
compare are very short—either owing to the short length of the
molecules sequenced (1D and R2C2) (Fig. 2A) or to technology
limitations (Illumina MiSeq)—and often accurate enough to be
unlikely to contain errors at that length, causing many individual
sequencing reads to be 100% accurate. This is obvious with read 1
of the Illumina MiSeq having a median accuracy of 100%, which
contains little information on the real Illumina MiSeq error rate.
Accuracy per base (%), that is, (correct bases of all reads/all bases
of all reads) × 100, is amore usefulmetric to compare accurate short
reads. Using this metric, we see that 1D reads are the least accurate
with an accuracy per base of 96.59%. R2C2 falls between Illumina
MiSeq read 1 (99.47%) and read 2 (98.57%) with an accuracy per
base of 98.87%. Further, although R2C2 reads contained more
deletion and insertion errors, they contained fewer mismatch er-
rors than both Illumina MiSeq read 1 and read 2.

Read position–dependent accuracy of 1D, R2C2, and Illumina
MiSeq read 1 and read 2 adds further detail to this comparison. In
contrast to 1D and R2C2 data, Illumina MiSeq base accuracy de-
creased with increasing read cycles, particularly in read 2, with
R2C2 surpassing Illumina MiSeq accuracy for read 2 lengths over
∼175 bp (Fig. 2B,D). To ensure that our Illumina MiSeq run was
not an outlier in terms of accuracy typical of Illumina benchtop se-
quencers, we performed the same position-dependent accuracy
analysis on publicly available Illumina MiSeq, iSeq, and MiniSeq
data, which showed the same overall trends (Supplemental Fig.
S1).

Next, we aimed to establish whether R2C2 RNA-seq and ONT
1Ddata could be analyzedusing computational tools designed and
established for Illumina RNA-seq data. To quantify gene expres-
sion levels, we aligned and evaluated the entire demultiplexed
R2C2 (8,066,704 reads) and ONT 1D (2,530,950 reads) data sets
as well as our IlluminaMiSeq data set (20,830,560 read pairs) using
the STAR aligner (Dobin et al. 2013) (STARlong executable for
R2C2 and ONT1D data), which is routinely used for standard
Illumina RNA-seq analysis; 7,365,398 R2C2 reads (91.66%),
1,834,065 ONT 1D reads (72.48%), and 18,649,031 Illumina
MiSeq reads (90.08%) mapped uniquely to the human genome.
The STAR log files indicated that compared with R2C2 (1) the
low overall accuracy of ONT 1D reads and (2) the declining quality

Table 1. R2C2 sequencing run characteristics

Library type Organism
Raw reads
(pass filter)

Raw read
median
length

R2C2
reads

Demultiplexed
reads

Subreads/
R2C2 read

Median per-read
accuracy

RNA-seq Homo sapiens 9,500,956 2288 8,992,882 8,066,704 3.14 99.52%
ChIP-seq Glycine max (soybean) 4,518,775 3360 4,191,438 4,023,935 3.93 99.12%
Tn5 Drosophila melanogaster/Wolbachia 5,188,771 2447 3,339,161 N/A 4.88/4.68 98.8%/99.61%
Enriched Tn5 Homo sapiens 4,062,736 3377 3,825,657 3,078,913 4.85 99.38%

For consistency, median per read accuracy is calculated for R2C2 reads before demultiplexing.

Table 2. R2C2 and 1D read numbers throughout processing steps

Library type Raw reads Pass filter Consensus reads p5/p7 adapters present Demultiplexed

R2C2 (ONT MinION) 11,789,059 9,500,956 9,132,280 8,992,882 8,066,704
1D (ONT MinION) 11,839,886 7,578,968 N/A 3,469,357 2,530,950
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of MiSeq reads means STAR aligner is less likely to align them.
Although more forgiving aligners like minimap2 exist, they are
not intended for spliced short-read alignments and therefore not
optimized for this use-case.

Based on these read alignments, STAR determined normal-
ized gene counts for the Illumina MiSeq, R2C2, and ONT 1D
data sets. Illumina MiSeq gene counts showed Pearson’s r-values
of 0.995 and 0.987 compared with R2C2 (Fig. 2C) andONT 1D, re-
spectively. Additionally, STAR also determined normalized splice
junction counts for the three data sets, which provide a higher-res-
olution view of the transcriptome. Illumina MiSeq splice junction
counts showed Pearson’s r-values of 0.974 and 0.929 compared
with R2C2 (Fig. 2C) and ONT 1D. Finally, we also tested whether
ultrafast pseudoalignment-based tools will generate reliable gene
expression levels based on R2C2 and ONT 1D reads that feature
more insertion and deletion rates compared with standard
Illumina data. We used one such tool, kallisto (Bray et al. 2016),
and found that gene expression values as determined for
Illumina MiSeq had Pearson’s r-values of 0.985 and 0.973 com-
pared with R2C2 (Fig. 2C) and ONT 1D.

Overall, this comparison showed that using R2C2we can con-
vert Illumina RNA-seq libraries into DNA ideally suited for the
ONT MinION. Not only does R2C2 generate more reads than reg-
ular ONT 1D ligation protocols, but R2C2 reads are also much
more accurate. Because they are more accurate, R2C2 reads are
also more efficiently demultiplexed and aligned than ONT 1D
reads. Further, because they are similar in accuracy to Illumina
reads, standard Illumina tools, like STAR and kallisto, can be
used to analyze them. The gene expression and splice junction val-
ues generated by R2C2 are highly similar to those generated by
Illumina MiSeq data from the same libraries.

Evaluating R2C2 for the sequencing of Illumina ChIP-seq libraries

Next, we tested the ability of R2C2 for the quality control of
Illumina ChIP-seq libraries. To do this, we converted a previously
generated ChIP-seq library targeting the H3K4me3 histone modi-
fication in a Glycine max (soybean) sample. The H3K4me3 library
and its corresponding control Input library have previously been
sequenced on an Illumina NovaSeq 6000 to a depth of 8,413,865
and 32,377,813 2×150-bp paired-end reads, respectively (Table
4). Based on their alignment, the sequenced molecule libraries
had an insert length of 390 bp (H3K4me3) and 312 bp (Input)
(Table 4).

Because the H3K4me3 and Input libraries were prepared with
only a single index distinguishing them,we converted the libraries
separately with R2C2 using distinct DNA splints that contained
unique index sequences. This added an extra level of indexing to
minimize concerns of potential index cross talk. We splint-in-
dexed and pooled the H3K4me3 and Input ChIP-seq Illumina li-
braries and sequenced the pool on a single ONT MinION

flowcell. We then demultiplexed the resulting R2C2 reads, assign-
ing 2,493,021 and 1,530,914 reads (1.6:1) to the H3K4me3 and
Input libraries (Table 4), respectively, a ratio that corresponded
well with the 1.35:1 ratio at which they were pooled before se-
quencing. Importantly, the demultiplexing script scored only
163,489 (3.9%) reads as “undetermined” and assigned only 4014
(0.1%) reads to a combination of indexes not present in the library.
This indicated that the extra level of indexing was highly success-
ful in minimizing index hopping.

The demultiplexed R2C2 reads showedmedian read accuracy
of 99.23% (H3K4me3) and 98.8% (Input) as well as median read
length of 556 bp (H3K4me3) and 459 bp (Input) (Table 4).
Molecules sequenced by R2C2 were therefore longer than mole-
cules sequenced by the Illumina NovaSeq 6000 (Fig. 3A). The dif-
ference between the technologies is likely owing to the bias of
the Illumina NovaSeq toward shorter molecules.

To test whether R2C2 reads could replace the same number of
Illumina reads, we subsampled the Illumina sequencing data to
the depth of the R2C2 data for both samples. We then aligned
both Illumina NovaSeq 6000, subsampled Illumina NovaSeq
6000, and R2C2 reads to the G. max genome (Gmax_508_v4.0)
(Valliyodan et al. 2019). For alignment, we chose the short-read
preset of the minimap2 (Li 2018) aligner for both the Illumina
and R2C2 data. We then called peaks on the full H3K4me3
Illumina NovaSeq 6000 data set using MACS2 and tested whether
both the subsampled IlluminaNovaSeq 6000 and R2C2 data could
be used to evaluate the success of a ChIP experiment. Visual in-
spectionof the data using the Phytozome JBrowse genomebrowser
(Goodstein et al. 2012) and our own tools (Fig. 3D) showed that the
subsampled Illumina NovaSeq 6000 and R2C2 data both showed
the same enrichment patterns as the full Illumina NovaSeq 6000
data. A systematic analysis showed that 84% of the R2C2 reads
and 69% of the subsampled Illumina reads overlap with an
H3K4me3 peak identified on the full Illumina data, whereas
only 18% and 11% of the respective Input reads do so (Fig. 3B).

To investigate this discrepancy in percentage of reads overlap-
ping with H3K4me3 peaks, especially for the H3K4me3 library, we
focused ondifferences between the R2C2 and Illumina sequencing
reads. The most obvious difference is the read length with the
Illumina reads originating frommuch shortermolecules (or library
inserts). Indeed, when we recalculated this read percentage for
Illumina reads originating from inserts >450 nt, it increased to
76%. Next, we analyzed the GC content of Illumina and R2C2
reads and found that—in contrast to all other experiments in
this paper (Supplemental Fig. S2)—Illumina reads had a lower
GC content than R2C2 reads (39% vs. 42%). To see whether the
difference in insert length andGC content together would explain
the discrepancy in percentage of reads overlapping with
H3K4me3, we again recalculated this read percentage only for
Illumina reads originating from inserts >450 nt andwith aGC con-
tent >39%, that is, reads derived from long andGC-richmolecules.

Table 3. Sequencing error rates of different methods based on minimap2 alignments of all demultiplex reads

Sequencing method

Median read
accuracy

(%)

Accuracy
per base

(%)

Mismatch rate
per base

(%)

Insertion rate
per base

(%)

Deletion rate
per base

(%)

R2C2 (ONT MinION) 99.56 98.87 0.31 0.26 0.55
1D (ONT MinION) 97.2 96.59 1.16 0.81 1.44
Read 1 (Illumina MiSeq) 100 99.47 0.45 0.04 0.04
Read 2 (Illumina MiSeq) 99.54 98.57 1.33 0.05 0.05

Sequencing short-read libraries on ONT sequencers
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Here, we found that this read percentage increased to 83.2%, virtu-
allymatching the R2C2percentage.Ultimately, this suggested that
R2C2 sampled longer and slightly more GC-rich molecules from
the ChIP-seq libraries. Although it is not clear why the longermol-
ecules aremore likely to overlap with H3K4me3 peaks, these peaks

happen to be more GC-rich than the rest of the genome (40% vs.
30%), explaining why more GC-rich molecules are more likely to
overlap with H3K4me3 peaks.

To compare whether the R2C2 and subsampled Illumina
NovaSeq 6000 data sets are also similar quantitatively, we counted

A

C

D

B

Figure 2. Sequencing Illumina RNA-seq libraries on the ONTMinION after R2C2 conversion. Insert length distribution (A) and read position–dependent
identity to the reference genome (B) of R2C2 and Illumina MiSeq reads generated from the same Illumina library. (C) Comparisons of R2C2 and Illumina
MiSeq read-based gene expression and splice junction usage quantification by STAR and kallisto are shown as scatter plots withmarginal distributions (log2
normalized) shown as histograms. (D) Genome browser-style visualization of read alignments to the Actb locus. Mismatches aremarked by lines colored by
the read base (A, orange; T, green; C, blue; G, purple). Insertions are shown as gaps in the alignments, and deletions are shown as black lines.

Table 4. ChIP-seq read characteristics

Sample Illumina NovaSeq Reads Median insert length R2C2 reads Median insert length

H3K4me3 8,413,865 390 2,493,021 556
Input 32,377,813 312 1,530,914 459

Zee et al.
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how many reads for each of the data sets fell into each H3K4me3
peak we identified using the full Illumina NovaSeq 6000 data set
and MACS2. We found that the peak depths are correlated
(Pearson’s r=0.776) (Fig. 3C). This correlation is increased to r=
0.866 when this analysis was performed with the longer/more
GC-rich subsample of Illumina reads but remained lower than
what we observed with the RNA-seq data. This means that al-
though R2C2 can be used to evaluate whether a ChIP-seq experi-
ment successfully enriched targeted chromatin, in this particular
experiment, R2C2 sampled a different population of molecules
than the Illumina NovaSeq 6000, thereby complicating quantita-
tive comparisons.

Evaluating R2C2 for the sequencing of size-selected Illumina Tn5

libraries

In contrast to the other parts of the paper, which represent head-
to-head comparisons between R2C2- and Illumina-based sequenc-
ing of the same short-read libraries, here, we tested whether the
ability of R2C2 to sequence “medium-length” molecules >600 nt
could aid in small genome assembly tasks. Illumina library prepa-
ration methods like Tn5-based tagmentation can generate library
molecules >600 nt, which are too long to be sequenced efficiently
by Illumina sequencers but can be efficiently processed and se-
quenced using R2C2. To generate thesemedium-lengthmolecules

for the purpose of genome assembly, we chose to size-select a Tn5-
based Illumina library for molecules between 800 and 1200 bp in
length, corresponding to genomic DNA inserts of ∼600–1000 bp.
We then R2C2-converted and sequenced this size-selected library
on the ONT MinION.

For this test, we chose to sequence the 1.2-Mb genome of the
Wolbachia bacterial endosymbiont of D. melanogaster and pre-
pared Tn5 libraries from DNA extracted fromWolbachia-contain-
ing D. melanogaster S2 cells. We generated a total of 3,338,280
R2C2 consensus reads with a median length of 680 bp. Out of
these reads, we assembled 879,303 reads that did not align to
the D. melanogaster genome. We used miniasm (Li 2016) for
this assembly task and polished the resulting assembly using
Medaka (v.1.4.4; https://github.com/nanoporetech/medaka).
The resulting assembly contained 95 contigs, which covered
97.2% of the Wolbachia genome (Fig. 4A,B), and had a NGA50
of 29,963 bp and 8.5/5.6 mismatches/indels per 100 kb of
sequence.

We also generated an assembly from Illumina NextSeq 2×
150 bp reads from a non-size-selected Tn5 library of the same
cell line. From 2,552,018 2×150-bp Illumina reads, we extracted
779,206 reads that did not align to the D. melanogaster genome
and assembled those reads using Meraculous (Chapman et al.
2011). The resulting assembly contained 136 contigs that covered
91.6% of the Wolbachia genome (Fig. 4) and had a NGA50 of
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Figure 3. Sequencing ChIP-seq libraries on the ONT MinION after R2C2 conversion. (A) Insert length distribution of R2C2 and Illumina NovaSeq 6000
reads generated from the same Illumina library. (B) Percentage of reads in the R2C2, subsampled Illumina, and full Illumina data sets overlapping with
H3K4me3 peaks generated from the full Illumina H3K4me3 data set using MACS2. (C) The comparison of the number of R2C2 and subsampled
Illumina reads overlapping with H3K4me3 peaks is shown as scatter plots with marginal distributions shown as histograms. Pearson’s r is shown at the
bottom right. (D) Genome annotation, H3K4me3 peak areas, and read coverage histograms are shown for a section of the Gmax genome.
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23,217 bp and 0.5/0.6 mismatches/indels per 100 kb of sequence.
Neither assembly had misassemblies as determined by QUAST
(Gurevich et al. 2013).

Comparing Illumina and R2C2 assemblies of theWolbachia ge-
nome (NC_002978.6) showed R2C2 can generate more contiguous
and complete assemblies from the same library type (Fig. 4A,B).
However, systematic errors produced by the ONT MinION cannot
be fully removed by the R2C2 consensus process or Medaka polish-
ing. The assembly we generated, therefore, does have more mis-
matches and indel errors than its Illumina counterpart. This
ultimately suggests that when limited to a single Tn5 library owing
to sample constraints, R2C2 can be a valuable addition to an assem-
bly effort, but depending on use-case, further polishing with
Illumina datamight be required to achieve the desired base accuracy.

Evaluating R2C2 for the sequencing of target-enriched Illumina

Tn5 libraries

We tested the ability of R2C2 to evaluate target-enriched Tn5 li-
braries and benchmark our ability to detect germline variants in
the resulting data. To this end, we generated dual-indexed Tn5 li-
braries from genomic DNA of two cancer cell lines (NCI-H1650
and NCI-H1975) with known mutations in the EGFR gene. We
pooled these libraries and enriched the pool for a panel of cancer
genes based on the Stanford solid tumor STAMP panel (Newman
et al. 2014) using a Twist Bioscience oligos panel and reagents
(Supplemental Table S2). We performed this enrichment experi-
ment once, without optimization, and using custom blocking oli-
gos, therefore expecting enrichment to be far from optimal. To
compare R2C2 and Illumina MiSeq, we sequenced these enriched
Tn5 libraries on (1) a multiplexed Illumina MiSeq 2×300-bp
paired-end run and (2) an ONT MinION after R2C2 conversion.

The multiplexed MiSeq run generated 7,430,624 read pairs
for the NCI-H1650 library and 1,142,187 read pairs for the NCI-
H1975 library. The ONT MinION run generated 3,825,657 R2C2
reads after C3POa processing. Demultiplexing then assigned
2,057,155 (53.7%) R2C2 reads to the NCI-H1650 library and
1,021,758 (26.7%) R2C2 reads to NCI-H1975. Although 537,997

(14.1%) R2C2 reads were not assigned to any sample, only 5.4%
of reads were assigned to one of the two combinations of
Illumina indexes not included in the pool, implying that only
0.29% (5.4%×5.4%) of reads were assigned to the wrong sample
in our dual indexed library.

After demultiplexing, we compared the insert length and tar-
get enrichment across samples and methods. We did so by merg-
ing the Illumina MiSeq read pairs using bbmerge (Bushnell et al.
2017). As with the ChIP-seq experiment, R2C2 data showed longer
insert lengths than the Illumina MiSeq data, with the R2C2 insert
length more closely resembling the actual length of the input li-
brary (Fig. 5A,D; Supplemental Fig. S3).We aligned the reads of dif-
ferent samples and methods to the human genome using the
short-read preset of minimap2 and determined the percentage of
reads overlapped with a target region and the coverage for each re-
gion. For NCI-H1650, 15.8% of R2C2 reads and 14.4% of Illumina
MiSeq reads overlapped with a target region, producing a median
coverage of 128 (fifth percentile: 28; 95th percentile: 310) for
R2C2 and 558 (fifth percentile: 134; 95th percentile: 1220) for
Illumina MiSeq. For NCI-H1975, 18.5% of R2C2 reads and
16.8% of Illumina MiSeq reads overlapped with a target region
with amedian coverage of 69 (fifth percentile: 13; 95th percentile:
166) for R2C2 and 110 (fifth percentile: 23; 95th percentile: 225)
for Illumina MiSeq. The per-base coverage of the R2C2 and
Illumina MiSeq data sets was very well correlated within samples,
with NCI-H1650 showing a Pearson’s r= 0.91 and NCI-H1975
showing a Pearson’s r= 0.89 (Fig. 5B,E).

Next, we used the read alignments to determine per-base
accuracy levels for all samples and method combinations. The
NCI-H1975 sample, which also produced fewer reads than expect-
ed on the Illumina MiSeq, produced reads at a lower-than-expect-
ed accuracy. Read alignments suggested that the average per-base
accuracies for read 1 and read 2 in NCI-H1975 were 96.81% and
98.26% comparedwith 98.37% and 97.88% forNCI-H1650. As ex-
pected, the per-base accuracy was highly position dependent and
declined with increasing sequencing cycle number (Fig. 5C,F).
Furthermore, the actual accuracy of the MiSeq reads is likely
even lower owing to alignments not being extended once the

A B

Figure 4. Comparing R2C2 and Illumina based assemblies of a small genome. Illumina 2 ×150 reads were assembled in 134 contigs using Meraculous.
R2C2 readswere assembled usingminiasm into 95 contigs. The alignments of the contigs of both assemblies—(A) Illumina and (B) R2C2—are shown as dot
plots generated by MUMmer (Kurtz et al. 2004). Both approaches failed to assemble a section of theWolbachia genome that contains pseudogenes and a
transposable element near coordinate 500,000.
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read and genome are too dissimilar. The accuracy of the R2C2 reads
in both NCI-H1975 and NCI-H1650 was similar and stable
throughout the reads at 98.40% and 98.28%, meaning that, in
this case, the R2C2 reads had a higher per-base accuracy than
the combined MiSeq reads.

Visualizing Illumina MiSeq and the R2C2 read alignments
showed that both methods successfully enriched for (Fig. 5G)
and detected the 15-bp heterozygous deletion in the EGFR gene
in the NCI-H1650 cell line and the C-to-T heterozygous variants
in the EGFR gene in the NCI-H1975 cell line (Fig. 5H). To
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Figure 5. Evaluating target-enriched Tn5 libraries with R2C2. (A,D) Insert length of library molecules sequenced by Illumina or R2C2 approaches. (B,E)
Comparison of per-base coverage in the Illumina and R2C2 data sets. Marginal distributions are log2 normalized. (C,F ) Alignment-based read position–
dependent accuracy shown for the indicated sequencing reads and methods. (G,H) Sequencing coverage plot of the target-enriched Tn5 libraries for
R2C2 and Illumina results at Chromosome 7: 55,134,584–55,211,629, which covers a part of the EGFR gene. Top panel shows the annotation of one
EGFR isoform. The x-axis of the coverage plot is the base pair position, and the y-axis is the total number of reads at each position. The dotted lines indicate
zoomed-in views of exons that contain the 15-bp deletion in NCI-H1650 (left) and the C-to-T and T-to-G point mutations in NCI-H1975 (right). Both sam-
ples’ Illumina reads and the R2C2 read alignments of the selected regions are shown. The mismatches are colored based on the read base (A, orange; T,
green; C, blue; G, purple).
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systematically evaluate the germline variant detection ability of
Illumina MiSeq and R2C2 reads, we used DeepVariant (Poplin
et al. 2018) for calling germline variants based on the Illumina
MiSeq data and used PEPPER-Margin-DeepVariant (Shafin et al.
2021), a variant caller designed for ONT data sets, for calling germ-
line variants in the R2C2 sequencing results. Because of the poor
sequencing performance of the Illumina MiSeq for the NCI-
H1975 library, we only performed this analysis on NCI-H1650.
For NCI-H1650, Illumina/DeepVariant detected 119 variants in
the enriched genomic regions when using a QUAL cut-off of
33.3 or more. R2C2/PEPPER-Margin-DeepVariant detected 122
variants in the enriched genomic regions when using a QUAL
score of 3.8 or more, including 117 of the 119 Illumina/
DeepVariant calls. When we used Illumina/DeepVariant variants
as a ground truth, the R2C2/PEPPER-Margin-DeepVariant method
achieved 95.9% precision and 98.3% recall.

Whenwe visualized the reads onwhich the false-positive and
false-negative R2C2/PEPPER-Margin-DeepVariant variant calls
were made (Supplemental Fig. S4), we found that the false-positive
variants were supported by fewer than half of the R2C2 reads.
Moreover, when we colored the reads based on the direction of
their raw reads, we found that false-positive variants were support-
ed only by reads originating from one raw read direction. We hy-
pothesized that if we oriented reads using the direction of their
raw reads—instead of using the p5 and p7 adapters on their ends
—before variant calling, it would more closely resemble regular
ONT reads and provide more useful information to PEPPER-
Margin-DeepVariant. Indeed, when reanalyzing the reoriented
reads and using a QUAL score of nine or more, PEPPER-Margin-
DeepVariant detected 116 variants that were all present in the
Illumina/DeepVariant calls. This means that reorienting the reads
before variant calling eliminated all false positives in the R2C2/
PEPPER-Margin-DeepVariant variant calls. Reflecting known sys-
tematic errors of ONT sequencers, two of the three false negatives
missing from the R2C2/PEPPER-Margin-DeepVariant variant calls
were a deletion (TA→T) next to a 13-nt A homopolymer at Chr 17:
7,667,260 and a variant (G→C) next to an 8-nt C homopolymer at
Chr 12: 120,994,314. The thirdmissing variant, a G→A call at Chr
5: 112,839,666, had a 46% frequency in both Illumina and R2C2
reads and was initially identified as a candidate by PEPPER-
Margin-DeepVariant but was ultimately scored as a “RefCall,”
not a variant. Overall, reorienting the reads by raw read direction
before running PEPPER-Margin-DeepVariant increased precision
to 100% while achieving a recall of 97.4%.

This showed that R2C2 can accurately quantify what percent-
age ofmolecules in an enrichedTn5 Illumina library overlapwith a
target region. Despite showing longer insert lengths than the
Illumina MiSeq data set, the R2C2 data set showed per-base cover-
age that was highly correlated with the Illumina MiSeq data. In
this experiment, R2C2 actually showed a higher average per-base
accuracy than the Illumina MiSeq. After reorienting R2C2 reads,
variants called based on the R2C2 and Illumina MiSeq data were
very similar. This shows the promise of variant calling based on
ONT data but also highlights that extra care has to be taken
when preparing data for use in neural network–based variant call-
ers like DeepVariant.

Real-time analysis of Illumina library metrics using PLNK

To enable the real-time monitoring of sequencing runs and the
rapid evaluation of metrics of libraries sequenced in those runs,
we created the computational pipeline Processing Live

Nanopore Experiments (PLNK). PLNK controls real-time base-
calling, raw read processing into R2C2 consensus reads, demulti-
plexing of R2C2 reads, and the alignment of demultiplexed R2C2
reads to a genome. Based on the resulting alignments and the
user-defined regions of interest, PLNK then determines the on-
target percentage and resulting target coverage for each demulti-
plexed sample. PLNK runs alongside a MinION sequencing run,
tracking the creation of new FAST5 files and processing them in-
dividually in the order they are generated. To do this, PLNK con-
trols several external tools: guppy5 for base-calling, C3POa for
R2C2 consensus generation, a separate Python script for demul-
tiplexing (based on splint sequences and Illumina indexes),
and mappy (minimap2 Python library) for aligning reads to a
provided genome (Fig. 6A).

To test whether our pipeline could keep up with ONT
MinION data generation and provide real-time analysis, we simu-
lated ONT MinION runs using FAST5 files from previously com-
pleted sequencing experiments, our Tn5, ChIP-seq, and RNA-seq
data. We used the FAST5 files’ metadata to determine the time in-
tervals at which files were generated by theMinKnow software and
copied the FAST5 files to a new output directory at those intervals.
We then started PLNK to monitor the generation and control the
processing of FAST5 files in this new output directory. First, we
simulated the real-time analysis of the target-enriched Tn5 data.
Using a desktop computer and limiting PLNK to the use of eight
CPU threads and two Nvidia RTX2070 GPUs, the pipeline pro-
cessed sequencing data at the same rate that a single MinION pro-
duced FAST5 files. Importantly, both the library composition
(percentage of demultiplexed reads assigned to either sample;
NCI-H1650 and NCI-1975), as well as the percentage of reads on-
target, stabilized after less than an hour and agreed very well
with the numbers generated from the whole data set (Fig. 6B).
Additionally, throughout the run, PLNK reported the overall cov-
erage of target regions in real-time.

When we simulated the analysis of ChIP-seq and RNA-seq
experiments, PLNK kept up with ChIP-seq but not with the
RNA-seq experiment (Fig. 6C,D). Because the RNA-seq experi-
ment produced the largest amount of data in the study, this
was not unexpected. In both cases, however, library composition
and on-target percent both stabilized within the first hour of se-
quencing and reflected the number derived from the complete
data set. This means that the library composition and quality of
target-enriched Tn5 libraries (as measured by reads overlapping
target areas), ChIP-seq libraries (asmeasured by reads overlapping
with peak areas, promoters, or gene bodies—depending on target-
ed histone mark), and RNA-seq libraries (as measured by reads
overlapping with exons) can be determined with minimal se-
quencing time.

The bottleneck for analysis in our desktop computer setup
seemed to be the guppy5-based base-calling using the slower yet
most accurate “sup” base-calling configuration. Although we
could use a faster, less accurate setting to keep up with even the
fastest data-producing experiments, using the most accurate mod-
el means the data can be used for in-depth analysis once the run
has completed and PLNK has processed all the files, without the
need to re-base-call the raw data.

Overall, this suggests that PLNK can be used to monitor ONT
sequencing runs in real-time. This makes it possible to stop ONT
sequencing runs when the goal of an experiment is achieved. For
the rapid evaluation of library pools, this could be 1 h into a run
once library composition and quality metrics have stabilized. For
run monitoring, this could be several hours into a run once a
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specific coverage of defined target regions is reached. In both cases,
a run can be stopped, allowing the ONT MinION flowcell to be
flushed, stored, and ultimately reused.

Discussion

The capabilities of the dominant Illumina sequencing technology
—producingmassive numbers of short reads—have shaped the de-
velopment of sequencing-based assays more than any other single
factor.

Although long-read sequencers by Pacific Biosciences
(PacBio) and ONT have now superseded Illumina instruments as
the gold standard technology for genome assembly, producing li-
braries for these long-read sequencers requires relatively large
amounts of high-quality DNA material. In many cases, both
DNA input amount and/or quality of a sample may not match

these requirements, leaving amplification-based short-read se-
quencing as the only option to extract large amounts of sequenc-
ing data from that sample.

Beyond the sequencing and assembly of genomes, there are
hundreds of assays adapted for short reads. These assays are highly
diverse and require different levels of read numbers and accuracy,
and many, like standard RNA-seq, ChIP-seq, or targeted sequenc-
ing of PCR amplified genomic DNA, are unlikely to ever take ad-
vantage of the raw read length ONT and PacBio sequencers
provide. However, there have been several studies to take advan-
tage of long-read sequencing instruments in sequencing shorter
molecules. Some assays (OCEAN, MAS-Iso-Seq) work by either
concatenating (Al’Khafaji et al. 2021; Thirunavukarasu et al.
2021) or otherwise preparing (Baslan et al. 2021) short molecules
for sequencing on the PacBio or ONT instrument. Although these
assays can generate more short reads, they have to contend either
with the high cost of the PacBio Sequel IIe sequencer or with the
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Figure 6. Real-time characterization of Illumina sequencing libraries. (A) Diagram of PLNK functionality; FAST5 files processed in the order they are pro-
duced. PLNK controls guppy5 for base-calling, C3POa for consensus calling, and mappy for alignment, as well as calculates metrics based on those align-
ments. (B–D) Simulation of real-time analysis for enriched Tn5 (B), ChIP-seq (C), and RNA-seq (D) libraries. For each time point, panels from top to bottom
show (1) the number of FAST5 files that are produced and processed, (2) the number of demultiplexed reads produced by guppy5/C3POa/demultiplexing,
(3) the percentage of reads associated with each library in the sequenced pool, (4) the percentage of reads overlapping with target regions, and (5) the
median read coverage of bases in the target regions.
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lowper-base accuracy of rawONT reads, which evenwith the latest
guppy5 algorithm is only 96% in our hands. Even at 96%, this
ONT raw accuracy is likely sufficient for certain applications like
ChIP-seq, where reads simply have to be aligned to a genome
and counted. For these applications, preparing and sequencing
short-read libraries directly on an ONT sequencer is a straightfor-
ward option. This approach would also allow the usage of native
ONT barcoding strategies, which are more robust at low accuracy.
However, sequencing short-read libraries directly on ONT se-
quencers has the downside that these sequencers have reduced
output when sequencing short molecules <1 kb. Specifically,
when sequencingmolecules that are ∼500 nt in length, the overall
base-output of an ONTMinION flowcells seems to vary between 3
Gb (Glinos et al. 2022), 4 Gb (this study), and 9 Gb (Pardo-Palacios
et al. 2021)—far below the 30 Gbmaximumoutput these flowcells
can achieve when sequencing longer molecules. There is therefore
room to optimize ONT library preparations for short-read
sequencing.

Taking inspiration from the highly accurate but throughput-
limited PacBio Iso-Seq and HiFi workflows, circularizing-based
(R2C2, INC-seq, and HiFRe) (Li et al. 2016; Volden et al. 2018;
Wilson et al. 2019) methods have been developed to trade
throughput for accuracy on ONT MinION and PromethION se-
quencers. Using a modified R2C2 method we present here, we
show that we can convert any Illumina sequencing library with
double-stranded adapters—PCR-free “crocodile adapter”–style li-
braries will not work—into an R2C2 library that is several kilobases
long and therefore takes full advantage of the ONT MinION’s
throughput. The close to optimal base-output of up to 24 Gb
(9.5million raw reads × 2.5-kb average read length) when sequenc-
ing R2C2 libraries allowed us to produce not only more accurate
reads but also a higher number of total reads than regular ONT
1D libraries of the same short-insert Illumina libraries. In fact,
the throughput and accuracy of R2C2 were comparable to
Illumina MiSeq 2×300-bp runs.

By generating up to 8.99 million reads (8.1 million demulti-
plexed) with a per-base accuracy of 98.87% (Illumina MiSeq read
1: 99.47%; read 2: 98.57%) from a single ONT MinION flowcell,
this approach can compete with the Illumina MiSeq and other
benchtop Illumina sequencers on accuracy and cost—even with-
out taking instrument cost into account (Supplemental Table
S3). Improved consensus tools (Silvestre-Ryan and Holmes 2021),
the consistently improving ONT sequencing chemistry and base-
callers, and the imminent release of a much cheaper ONT
PromethION variant (P2Solo) all have the potential to further
skew both accuracy and throughput comparison in R2C2’s favor
in the near future. Not only might improving ONT sequencing
chemistry improve throughput, but it might alsomitigate the con-
siderable variability in throughput we see in R2C2 read output (4
to 9 million reads).

We have shown the capabilities and limitations of this ap-
proach here by evaluating the conversion of RNA-seq, ChIP-seq,
genomic Tn5, and target-enriched genomic Tn5 libraries. The
R2C2 data were more than accurate enough to demultiplex
Illumina libraries based on their i5 and i7 indexes. Furthermore,
RNA-seq data produced with R2C2 were almost entirely inter-
changeable with data produced by the Illumina MiSeq. Library
metrics derived from R2C2 data generated from ChIP-seq and tar-
get-enriched Tn5 libraries showed library metrics very similar to
those determined from data generated by Illumina sequencers.
One notable exception to this were insert length distributions of
Illumina libraries, where R2C2 produced longer insert distribu-

tions than Illumina sequencers, which are known to prefer shorter
molecules enough to affect analysis outcomes (Gohl et al. 2019).
For the ChIP-seq experiment, but no other experiment in this pa-
per (Supplemental Fig. S3), R2C2 reads also had a slightly higher
GC content, which made the Illumina/R2C2 comparison less
quantitative than it was, for example, in the RNA-seq experiment.
For germline variant calling, R2C2 reads analyzed with PEPPER-
Margin-DeepVariant produced variant calls highly similar to
Illumina/DeepVariant variant calls, with no false positives (preci-
sion 100%) and only three false negatives (recall 97.4%), two of
which were next to homopolymers, which are known to be a chal-
lenge for ONT sequencers.

Taken together, we have established that R2C2 can be used
as a drop-in replacement for many sequencing-based applica-
tions that would usually demand a dedicated short-read
Illumina sequencer. One important thing to note is that R2C2
adds complexity to an ONT experiment. Sequencing a short-
read library using regular 1D ONT sequencing at most requires
the library to be PCR amplified to reach the 1 μg input require-
ment of ONT library preparations. In contrast, R2C2 is a multi-
step protocol that, while requiring little hands-on time, is
composed of circularization (1 h), linear DNA removal (1–6 h),
rolling circle amplification (overnight), and debranching (2 h)
followed by size-selection (1 h). However, R2C2 uses only off-
the-shelf reagents and requires no special equipment, meaning
that performing a pilot experiment to establish whether R2C2
would be superior to 1D reads and a good replacement for any
particular short-read assay should be possible for the vast major-
ity of molecular biology laboratories.

Pilot experiments might be required for new library types
because converting short-read libraries with R2C2 and sequencing
them on an ONT sequencer may change what molecules in a pool
will be sequenced. This is a consequence of R2C2 requiring several
processing steps and ONT sequencers featuring a unique underly-
ing technology that is totally distinct from Illumina or any other
short-read sequencing technology. For example, in some experi-
ments, R2C2/ONT sampled longer molecules than Illumina se-
quencers. Further, in the ChIP-seq experiment alone, those
longer reads were also more GC-rich. Additionally, applications
in which very high read and/or consensus accuracy is required,
for example, somatic variant calling, will pose a challenge for
R2C2. In essence, before R2C2 is used for a short-read experiment,
the requirements for this experiment should be carefully
considered.

In addition to Illumina libraries, the R2C2method can also be
easily adapted to libraries generated for one of several other se-
quencing instruments now entering the market, simply by modi-
fying the splint used to circularize the library. As part of our
C3POa tool, we now provide a script that designs splints and the
oligos needed to make them for any amplified sequencing library
based on the primers used to amplify it.

Beyond simply competing with benchtop sequencers like the
IlluminaMiSeq, R2C2 can be used for a newgroup of assays around
“medium-length” 600- to 2000-nt reads. Libraries with insert
lengths of this size can be size-selected from standard Illumina li-
brary preparations, and R2C2 is easily adapted to libraries with dif-
ferent insert lengths by modifying the size-selection of its rolling
circle amplification product to include only molecules bigger
than three to four times the original library size. We provided
one example of the resulting “medium-length” R2C2 reads by an-
alyzing size-selected Tn5 libraries.We showed that these reads can,
for example, provide an advantage for the sequencing of small
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genomes. Among many other potential applications, “medium-
length” reads could be applied to standard fragmentation-based
RNA-seq libraries to providemore contiguous splicing information
for very long transcripts (>15 kb) where full-length cDNA-based
approaches fail.

One of the unique strengths of ONT-based sequencingmeth-
ods is that, beyond the standard approach of analyzing sequencing
runs once they are completed, many librarymetrics can be derived
in real-time. This is starting to get exploited in clinical andmetage-
nomics assays with tools like SURPIrt (Gu et al. 2021) or withmore
powerful tools like MinoTour (Munro et al. 2021). The PLNK tool
we developed here is therefore a powerful tool tomonitor sequenc-
ing runs and can be used for the rapid evaluation of librarymetrics.
This makes it possible to stop a run once a predetermined target
coverage is reached or once it is clear whether a library construc-
tion and pooling was successful. For example, using PLNK, we
showed that key metrics of the RNA-seq, ChIP-seq, and enriched
Tn5 libraries can be evaluated in under 1 h of sequencing, making
it possible to flush, store, and reuse the flowcells used for these
experiments.

In summary, we have shown that, using R2C2, the ONT
MinION can—with some limitations—be used as an accurate
short-read sequencer with several advantages over dedicated
short-read sequencers. Because theONTMinION comeswithmin-
imal instrument cost, R2C2 allows standard short-read genomic as-
says to be performed in any laboratory immediately after a library
is produced. The use-cases for this, just as the many use-cases for
Illumina benchtop sequencers, will vary from laboratory to labora-
tory. For laboratories performing small-scale experiments—like
RNA-seq of a few samples—the R2C2/ONT MinION combination
should be entirely sufficient. For laboratories performing large-
scale experiments—like ChIP-seq of dozens of samples—the
R2C2/ONTMinION combination should be useful to rapidly eval-
uate library pool compositions and metrics before committing to
the cost and turnaround time that deeply sequencing a library
pool at a core facility on an Illumina HiSeq or NovaSeq 6000
requires.

In either case, the presence of a capable short-read sequencer
in most molecular biology or clinical laboratories could be truly
disruptive by eliminating long turnaround times and therefore ac-
celerating experiments.

Methods

Library preparation

RNA-seq

Four RNA-seq libraries were prepared with the NEBNext Ultra II
directional RNA library prep kit for Illumina (NEB E7760) follow-
ing themanufacturer’s protocol. For each library, 100 ng of poly(A)
selected RNA from the human lung carcinoma cell line A549
(Takara 636141) was used as input. The RNA fragmentation step
was performed for 5min at 94°C. PCR enrichment of adaptor ligat-
ed DNA was performed for nine cycles using the NEBNext multi-
plex oligos for Illumina (NEB E7600S) kit to add Illumina dual
index sequences. Three libraries were pooled at a 4 ng, 2 ng, and
1 ng before sequencing on an Illumina MiSeq instrument for
paired-end 2×300-bp sequencing. The same three RNA-seq librar-
ies were pooled again at the same ratio for further R2C2 library
preparation. For the 1D and R2C2 runs, the fourth RNA-seq library
was prepared and added right before ONT library preparation.

ChIP-seq

ChIP was performed following the detailed protocol of Ricci et al.
(2020) with minor modification. In brief, approximately 30 devel-
oping seeds at the cotyledon stage were used for chromatin extrac-
tion. Immediately after harvesting, the tissue was crosslinked as
described in the referenced protocol and immediately flash-frozen
in liquid nitrogen. To make antibody-coated beads, 25 μL
Dynabeads Protein A (Thermo Fisher Scientific 10002D) were
washedwithChIP dilutionbuffer and then incubatedwith 2 μg an-
tibodies (anti-H3K4me3,Millipore-Sigma 07-473) for at least 3 h at
4°C. After the nuclei extraction, the lysed nuclei suspension was
sonicated to 200–500 bp on aDiagenode Bioruptor on the high set-
ting for 30min. Tubeswere centrifuged at 12,000g for 5min at 4°C,
and the supernatant was transferred to new tubes. At this point, 10
μL of ChIP input aliquots was collected. Sonicated chromatin was
diluted 10-fold in the ChIP dilution buffer to bring the SDS buffer
concentration down to 0.1%. The diluted chromatin was incubat-
ed with antibody-coated beads overnight at 4°C, washed, and re-
verse-crosslinked. The library was prepared in accordance with
the referenced protocol.

Tn5

Genomic DNA from a Wolbachia-containing D. melanogaster cell
line was extracted using a lysis-buffer plus SPRI-bead purification.
The Tn5 reaction was then performed using 1 μL (22 ng) of this ge-
nomic DNA, 1 μL of the loaded Tn5-AR, 1 μL of the loaded Tn5-BR,
13 μL of H2O, and 4 μL of 5× TAPS-PEG buffer and incubated for 8
min at 55°C (Supplemental Table S1). The Tn5 reaction was inac-
tivated by cooling down to 4°C and the addition of 5 µL of 0.2%
sodiumdodecyl sulfate and then incubated for 10min. Fivemicro-
liters of the resulting product was nick-translated for 5min at 72°C
and further amplified using KAPA Hifi Polymerase (KAPA) using
Nextera Index primers with an incubation for 30 sec of 98°C, fol-
lowed by 16 cycles of (20 sec at 98°C, 15 sec at 65°C, 30 sec at
72°C) with a final extension of 5min at 72°C. Before R2C2 conver-
sion, the resulting Tn5 library was size-selected for molecules be-
tween 800 and 1200 bp on a 1% low-melt agarose gel.

Target-enriched Tn5

The Tn5 library was prepared using genomic DNA from cell lines
NCI-H1650 (ATCC CRL-5883D) and NCI-H1975 (ATCC CRL-
5908DQ). A total of 100 ng genomicDNAof each samplewas treat-
edwith Tn5 enzyme loadedwith Tn5ME-A/R and Tn5ME-B/R. The
Tn5 reaction was performed using 1 μL of the gDNA, 1 μL of the
loaded Tn5-AR, 1 μL of the loaded Tn5-BR, 13 μL of H2O, and 4
μL of 5× TAPS-PEG buffer and incubated for 8 min at 55°C. The
Tn5 reaction was inactivated by cooling down to 4°C and the ad-
dition of 5 µL of 0.2% sodium dodecyl sulfate and then incubated
for 10min. Fivemicroliters of the resulting product was nick-trans-
lated for 5 min at 72°C and further amplified using KAPA Hifi
Polymerase (KAPA) using Nextera_Primer_B_Universal and
Nextera_Primer_A_Universal (Smart-seq2) with an incubation for
30 sec at 98°C, followed by 16 cycles of (20 sec at 98°C, 15 sec at
65°C, 30 sec at 72°C) with a final extension of 5 min at 72°C.

The resulting Tn5 library was then enriched with Twist fast
hybridization reagents and customized oligo panels that were de-
signed based on the Stanford STAMP panel. The hybridization re-
action of the panel and the Tn5 libraries was performed using 294
ng of NCI-H1975 Tn5 library, 360 ng of NCI-H1650 Tn5 library, 8
μL of blocking oligo pool (100 μM), 8 μL of universal blockers, 5 μL
of blocker solution, and 4 μL of the custom panel. The mix was
dehydrated using a SpeedVac and was resuspended in 20 μL fast
hybridization mix at 65°C. After the addition of 30 μL of
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hybridization enhancer, the mixture was incubated for 5 min at
95°C and for 4 h at 60°C. After hybridization, the reaction mix
was incubated with prewashed streptavidin binding beads and
washed using the fast wash buffer one and fast wash buffer two
for six times. The streptavidin beads and the DNA mixture were
used directly for reamplification with universal primers and
Equinox library amp mix. The mixture was incubated for 45 sec
at 98°C, followed by 16 cycles of (15 sec at 98°C, 30 sec at 65°C,
30 sec at 72°C) with a final extension of 1 min at 72°C. The final
enriched Tn5 library DNA product was cleaned up using SPRI
beads at 1.8:1 (beads:sample) ratio.

R2C2 conversion

Pooled Illumina librarieswere first circularized byGibson assembly
with a DNA splint containing end sequences complementary to
ends of Illumina libraries (Supplemental Table S1). Illumina librar-
ies and DNA splint were mixed at a 1:1 ng ratio using NEBuilder
HiFi DNA assembly master mix (NEB E2621). Any noncircularized
DNA was digested overnight using ExoI, ExoIII, and Lambda exo-
nuclease (all NEB). The reaction was then cleaned up using SPRI
beads at a 0.85:1 (bead:sample) ratio. The circularized library was
then used for an overnight RCA reaction using Phi29 (NEB) with
random hexamer primers. The RCA product was debranched
with T7 endonuclease (NEB) for 2 h at 37°C and then cleaned using
a Zymo DNA Clean and Concentrator column-5 (Zymo D4013).
The cleanedRCAproductwas digested usingNEBNext dsDNA frag-
mentase (NEBM0348) following themanufacturer’s protocol with
a 10-min incubation. For the regular Tn5 library, digested RCA
productwas cleaned using SPRI beads. For all other libraries, the di-
gested RCA product was size-selected using a 1% low-melt agarose
gel: DNA between 2 and 10 kb was excised from the gel, whichwas
thendigested usingNEB beta-agarase.DNAwas then cleaned using
SPRI beads.

ONT sequencing

ONT libraries were prepared from R2C2 DNA or directly from
Illumina libraries using the ONT ligation sequencing kit (ONT
SQK-LSK110) following the manufacturer’s protocol and then se-
quenced on an ONT MinION flowcell (R9.4.1). When preparing
ONT libraries from Illumina libraries, SPRI bead purifications
throughout the protocol were adjusted to accommodate for their
short length. Additional librarywas loaded on the same flowcell af-
ter nuclease flush.

Illumina sequencing

Library pools were sequenced either on the IlluminaMiSeq using 2
×300 (RNA-seq and target enriched Tn5 libraries), the Illumina
NextSeq 500 2×150 (Tn5 library), or the Illumina NovaSeq 6000
(ChIP-seq).

Analysis

R2C2 and 1D

Raw nanopore sequencing data in the FAST5 file format were base-
called using the “sup” setting of guppy5 to generate FASTQ files.
R2C2 raw reads in FASTQ format were then processed by C3POa
(v.2.2.3; https://github.com/rvolden/C3POa) to generate accurate
consensus reads. R2C2 consensus reads and ONT 1D reads were
further processed with C3POa (C3POa_postprocessing.py), using
the ‐‐trim setting and the following p5/p7 adapter sequences:

>3Prime_adapter
CAAGCAGAAGACGGCATACG
>5Prime_adapter

AATGATACGGCGACCACCGAGATCT
Custom scripts (available at https://github.com/kschimke/

PLNK) were used to demultiplex reads based on the sequences of
their DNA splints and Illumina indexes and to trim the rest of
the Illumina sequencing adapters.

RNA-seq

To determine accuracy levels R2C2, 1D, IlluminaMiSeq reads were
aligned to the human genome reference (hg38) using minimap2
(v2.18-r1015) (Li 2018).

minimap2 -ax splice ‐‐cs=long ‐‐MD ‐‐secondary=no
Position-dependent accuracy was determined after convert-

ing SAM files with the sam2pairwise tool (v.1.0.0; https://zenodo
.org/record/11377).

Illumina reads were adapter-trimmed using cutadapt (v3.2)
(Martin 2011).

cutadapt -m 30 -j 50 -a AGATCGGAAGAGC -A AGATCGGAA
GAGC

Illumina and R2C2 reads were aligned to the human genome
(hg38) using STAR and STARlong (v2.7.3a) (Dobin et al. 2013).

STAR ‐‐quantMode GeneCounts ‐‐outSAMattributes NH HI NM
MD AS nM jM jI XS

To determine insert length, Illumina read pairs were merged
using bbmerge (v38.92) with default settings.

ChIP-seq

Illumina reads were subsampled using a custom script (https://
github.com/alexanderkzee/BWN) to match the total reads from
the corresponding R2C2 library.

Illumina and R2C2 reads were aligned to the G. max genome
(Gmax_508_v4.0) using minimap2 (v2.18-r1015) (Li 2018).

minimap2 -ax sr ‐‐cs=long ‐‐MD ‐‐secondary=no
Peaks in H3K4me3 Illumina data were called using MACS2

(Zhang et al. 2008).
macs2 callpeak -t K4.bam -c INPUT.bam -f BAM -n K4_Illumina

‐‐nomodel ‐‐extsize 200

Tn5

R2C2 reads were aligned to the D. melanogaster genome (dm6) us-
ing minimap2 (v2.18-r1015).

minimap2 -ax sr ‐‐cs=long ‐‐MD ‐‐secondary=no
R2C2 reads that did not align to the Drosophila genome were

then assembled using miniasm.
minimap2 -x ava-ont [dehosted r2c2 file] [dehosted r2c2 file] >

[ava paf file]
miniasm -f [dehosted r2c2 file] [ava paf file] -m 450 -s 250 > [gfa

raw assembly]
We aligned Illumina reads to the D. melanogaster genome

(dm6) using BWA-MEM (Li 2013) under default parameters. We
then extracted the sample IDs for reads that did not map to the
host genome and extract that set from the raw FASTQ files.

Illumina reads that did not align to the Drosophila genome
were then assembled usingMeraculous, setting theminimumcon-
tig depth to 10, expected genome size to 0.013, and using a k-mer
of 51 and otherwise default parameters.

Target-enriched Tn5

Illumina reads were adapter trimmed using cutadapt (v3.2).
cutadapt -m 30 -j 50 -a AGATCGGAAGAGC -A

AGATCGGAAGAGC
Trimmed Illumina and R2C2 reads were aligned to the hu-

man genome (hg38) using minimap2 (v2.18-r1015).
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minimap2 -ax sr ‐‐cs=long ‐‐MD ‐‐secondary=no
Germline variants in Illumina data of NCI-H1650 were called

using DeepVariant (Poplin et al. 2018). Germline variant in R2C2
data of NCI-H1650 were called using PEPPER-Margin-DeepVariant
(Shafin et al. 2021).

Real-time analysis with PLNK

RNA-seq, ChIP-seq, and Enriched Tn5MinION runs were simulat-
ed by reading themtimemetadata entry of FAST5 files in the output
folder of the completed runs and then calculating the time inter-
vals at which files were created by the MinKNOW software. Files
created during the first 48 h or until the first library reload were
then copied into a new folder at those intervals. PLNK (https
://github.com/kschimke/PLNK) was started after the simulation
and was given key information about the run (splint and
Illumina indexes in the format of a sample sheet, target regions
in BED format, genome sequence in FASTA format) and a config
file containing paths to tools used by PLNK.

Analysis of public MiniSeq, iSeq, and MiSeq data

Sequencing runs of genomic Escherichia coli DNA were download-
ed from the NCBI Sequence Read Archive (SRA; https://www.ncbi
.nlm.nih.gov/sra). We selected three runs each for MiniSeq
(SRR20643069, SRR20643071, SRR20643072; generated by the
GenomeTrakr project), iSeq (SRR14617007, SRR14617041,
SRR14617075) (Mitchell et al. 2022), and MiSeq (SRR19575967,
SRR19575968, SRR19575973; generated by the National
Microbiology Laboratory).

To generate accuracy-by-position data, reads for each run
were processed separately. First reads were aligned to an E. coli ref-
erence genome (CP014314; downloaded from the NCBI GenBank
database [https://www.ncbi.nlm.nih.gov/genbank/]) using mini-
map2. Then the genome was polished using these alignments
with Pilon (Walker et al. 2014). Reads were then realigned to the
polished genome using minimap2, and position-dependent accu-
racy was calculated after converting the resulting SAM files using
the sam2pairwise tool.

General analysis

SAMtools (v1.11-18-gc17e914) (Li et al. 2009)was used extensively
during analysis for SAM file processing. Python (Oliphant 2007),
Matplotlib (Hunter 2007), Numpy (Harris et al. 2020), and SciPy
(Virtanen et al. 2020) were all used to analyze and visualize the
data.

Data access

All raw and processed sequencing data generated in this
study have been submitted to the NCBI BioProject database
(https://www.ncbi.nlm.nih.gov/bioproject/) under accession
number PRJNA775962. All codes used for analysis are available
at GitHub (https://github.com/kschimke/PLNK; https://github
.com/alexanderkzee/BWN; https://github.com/rvolden/C3POa)
and as Supplemental Code.
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