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1. INTRODUCTION

Growing health disparities exist in the United States between
persons with high socioeconomic position (SEP) and people of
color who are of lower socioeconomic position. These disparities
translate into higher rates for mortality, morbidity, and disability
for the lower SEP groups and people of color.2 Although these
health disparities are frequently attributed to individual health
behaviors such as smoking, individual factors account for only a
fraction of the overall inequalities between these groups.3 As
such, social epidemiology research has focused on the effects of
SEP on many health outcomes, differential access to health and
social services,4 and neighborhood or community characteristics
that may promote or adversely affect health.5 Researchers and
policy makers concerned about environmental justice also in-
vestigate whether disadvantaged groups experience higher en-
vironmental exposures. These studies generally report that areas
with a greater portion of nonwhite, low-income, and poor resi-
dents face higher single and cumulative environmental expo-
sures.2,6,7 Environmental justice researchers argue that socially
disadvantaged groups bear a greater environmental exposure
burden and are more susceptible to the effects of these exposures
due to factors such as psychosocial stressors, underlying health

conditions, and occupational exposures.8 These disparities in
environmental exposures are increasingly recognized as potential
determinants of health inequities.9,10

These health inequities have led researchers to recognize the
need for knowledge about the cumulative health effects of
multiple environmental hazards such as exposure to multiple
air pollutants11 and the potential vulnerability of people in poor
communities who suffer from their toxic effects.11,12 As a result,
environmental justice advocates have urged regulators to develop
scientifically valid indicators from a multipollutant approach to
examine environmental health inequities and guide decision
making.13,14 Developing such measures is complicated due to
issues of comparison and high levels of correlation among some
pollutants. For example, the highly intercorrelated nature of air
pollutants makes it difficult to examine their combined effects
on health-related outcomes and measures of deprivation.15

As such, epidemiological studies have traditionally focused on
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ABSTRACT: Recently, concerns have centered on how to expand knowledge on the limited
science related to the cumulative impact of multiple air pollution exposures and the potential
vulnerability of poor communities to their toxic effects. The highly intercorrelated nature of
exposures makes application of standard regression-based methods to these questions
problematic due to well-known issues related to multicollinearity. Our paper addresses these
problems by using, as its basic unit of inference, a profile consisting of a pattern of exposure
values. These profiles are grouped into clusters and associated with a deprivation outcome.
Specifically, we examine how profiles of NO2-, PM2.5-, and diesel- (road and off-road) based
exposures are associated with the number of individuals living under poverty in census tracts
(CT’s) in Los Angeles County. Results indicate that higher levels of pollutants are generally
associated with higher poverty counts, though the association is complex and nonlinear. Our
approach is set in the Bayesian framework, and as such the entire model can be fit as a unit
using modern Bayesian multilevel modeling techniques via the freely available WinBUGS
software package,1 though we have used custom-written C++ code (validated with WinBUGS) to improve computational speed. The
modeling approach proposed thus goes beyond single-pollutant models in that it allows us to determine the association between entire
multipollutant profiles of exposures with poverty levels in small geographic areas in Los Angeles County.
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single-pollutant models that use regression-based techniques to
examine the marginal association between a pollutant and an
outcome. Pollutants, however, occur in complex mixtures con-
sisting of highly correlated combinations of individual exposures.
For example, evidence for synergy among pollutants in causing
health effects has been recently reviewed by Mauderly and
Samet.16 Several studies have confirmed that synergisms exist
between O3 and other pollutants in laboratory studies involving
humans and animals.17 Thus, the highly correlated nature of air
pollution exposures and the potential for synergies raise ques-
tions about the adequacy of marginal, single-pollutant models.

In this paper, we propose a Bayesian statistical approach that
examines association between several components of air pollu-
tion exposures and poverty. Our approach addresses these
problems by using, as its basic unit of inference, a profile
consisting of a sequence of exposure values. These profiles are
grouped into clusters and associated with poverty levels in small
geographic areas in Los Angeles County.

2. MATERIALS AND METHODS

Our overall approach is to cluster joint patterns of air pollution
exposures, denoted as an air pollution profile, and relate these
clusters to measure of deprivation. The multipollutant profile
approach developed will be applied to estimates of air pollution
concentrations for NO2, PM2.5, diesel (road), and diesel (off-
road) exposures obtained using a recently published paper.18

Briefly, NO2 estimates were obtained via a land-use regression.
The variables used for NO2 model selection included land-use
information (e.g., commercial and industrial), road network,
traffic, population distribution, physical properties, and remote
sensing-derived greenness and soil brightness. We used a land-
use regression model to estimate NO2 (ppb) levels. Methods are
described in detail elsewhere.15 In brief, the model was based on
field measurements at 201 locations in Los Angeles. The
measurements were obtained in summer for 2006 and winter
for 2007, each for a 2-week period closest to the seasonal mean.
These measurements were averaged to represent the annual
mean. Somemonitors were stolen or vandalized, leaving 181 sites
for the analysis. Sixteen measurements were chosen at random to
use as cross-validation sites. The measurements from the remain-
ing 167 sites then were used as the dependent variables in a
spatial land-use regression model with traffic, land use, popula-
tion, and physical geography as predictors of pollution levels. The
model was highly predictive; the R2 between the field-measured
and the predicted pollutant level was 86% with similar perfor-
mance at the out-of-sample cross-validation sites predictions. To
estimate PM2.5 exposure, we interpolated from 23 state and local
district monitoring stations in the Los Angeles basin for year
2000 with a universal kriging algorithm.19

On-road and off-road diesel exposures were estimated through
the Assessment System for Population Exposure Nationwide
(ASPEN) with a Gaussian dispersion that accounted for meteo-
rological conditions, wind speed, and atmospheric chemistry.20

Exposure concentrations were obtained at the CT level, andmea-
sures of deprivation such as the number of people living under
the poverty level and number of people of color were obtained
for each CT from the US Census Bureau for year 2000.

The methods developed utilize recently developed Bayesian
dimension-reduction and clustering techniques that will char-
acterize the pollutant patterns. This overall approach has been
used in a recent paper,21 which profiles health-related variables

associated with measures of mental health in children. The
multipollutant profile approach adopts a global point of view,
where inference is based on the joint pattern of pollution
exposures. The methodology consists of the following two key
components discussed in detail in the following sections. First, an
exposure profile assignment submodel assigns individual multi-
pollutant profiles to clusters via a normal mixture model. Clusters
consist of exposures patterns that are similar to each other and
are consistent with cluster-specific parameters, such as cluster
means that help identify the kind of profiles that reside within
each group. Second, a response submodel links clusters of
exposure profiles to measures of deprivation via a regression
model. The model is formulated in a Bayesian context, and as
such all components of the modeling framework will be fitted
jointly using Markov chain Monte Carlo methods.22 Though the
models can be fit using the freely available software WinBUGS,23

we have written custom C++ code to speed up computations.
The models were run for a total of 100 000 iterations with 20 000
iterations discarded for burn in. Visual inspection of MCMC
output revealed that the model mixed well, and shorter runs gave
very similar results, indicating that convergence was not a problem.
Exposure Profile Assignment Submodel. Our basic data

structure consists of, for eachCT, i, a covariate profile, xi = (x1, x2, ...,
xP), where each covariate, xP, p = 1, ..., P, within each multi-
pollutant profile denotes a measure of exposure for pollutant p in
area i. We first construct an allocation submodel of the prob-
ability that an individual area is assigned to a particular cluster.
The basic model we use to cluster profiles is a standard multi-
variate normal mixture model, which is described by Jain
and Neal24 and Neal.25 Our mixture model incorporates a
Dirichlet process prior to the mixing distribution. For further
background information regarding mixture models with Dirichlet
process priors, see Green and Richardson.26 Profiles of areas are
grouped into clusters, and an allocation variable, Zi = C, indicates
the Cth cluster to which area, i, belongs. Our assignment
submodel is then

f ðxiÞ ¼ ∑
C

c¼ 1
ψc f ðxijμc,ΣcÞ ð1Þ

where f(xi|μi,Σc) denotes a multivariate normal distribution with
location parameters μc = μc

1, ..., μc
P and covariance matrix Σc. The

mixture weights ψc, c = 1, ..., C, are given a “stick-breaking
prior”27 with clustering parameter R. Since we have little a priori
information regarding the specification of R, we assign it a vague
exponential prior. As is often done in the Dirichlet process
literature, we impose a finite maximum number of clusters;
however, since clusters can be empty, the submodel provides
flexibility in terms of the number of clusters actually required and
used for the data set at hand. This is important as it incorporates
cluster uncertainty into the modeling process both in terms of
assignment of individual areas to clusters and in terms of number
of clusters used. This flexibility also frees the analyst from
prespecifying a fixed number of clusters based on an ad-hoc
decision rule. Note that for all analyses in this paper, we set the
maximum number of clusters allowed at C = 20, which we found
to be sufficiently large for our applications.
Because it is possible that clusters will be empty, we cannot

assign noninformative, “flat”, priors to cluster parameters. There-
fore, we adopt an empirical Bayes approach and assign a prior for
the mean of each pollutant across clusters as μc

p ≈ N(vp,ϕp),
where each vp is set to the observed empirical average, xp, but
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each ϕp is set equal to the square of the empirical range squared as
suggested in Richardson and Green.28 Similarly, we assign a
Wishart prior for the precision matrices as Σc

�1 ≈ Wish(FR,F),
where F = P. Since under this formulation the mean of the
Wishart distribution is E(Σc

�1) = R�1, we set R to the empirical
variance, namely, R = Σ̂. Note in our model formulation cluster
hyperparameters are assumed to come from distributions cen-
tered on empirical averages. Thus cluster-specific parameters are
used to represent subgroups that deviate from a single empirically
derived population.
Deprivation Submodel. This submodel uses the allocation

variables defined for the exposure profile submodel above,
namely, for each CT, i, zi = c,c = 1, ..., C, indicates the cluster
to which individual i belongs. However, in this submodel, the cth
cluster is assigned a random-effect parameter that measures the
cluster’s influence on the outcome (on the logistic scale) denoted
as θc. Since it is possible for a particular θc to be associated with an
empty cluster, these parameters must be assigned a proper prior.
Therefore, we assign to each θc a proper t density function with
7 degrees of freedom and scale 2.5 as a prior, as discussed by
Gelman et al.,29 which corresponds to the baseline case of one-
half of a success and one-half of a failure for a single binomial trial
with probability p = logit�1(θc). Our response model, which
links the clusters with poverty counts, yi for CT, i, is simply yi ≈
Bin (ni,pi) with

logitðpiÞ ¼ θzi þ εi ð2Þ
where εi≈N (0,σ2) represents unexplained CT-level variation in
the outcome not explained by air pollution exposures, ni indicates
the number of individuals in CT, i, and pi indicates that
probability that a randomly chosen individual in CT, i, is living
under the poverty line.
At each iteration of the sampler, we define Vθ = Var(θzi ) and

Vε = Var(εi) across all regions so we can then obtain a posterior
distribution for the overall amount of variation in deprivation
explained by air pollution clusters versus unexplained residual
error defined as

F ¼ Vθ=ðVθ þ V εÞ ð3Þ
Note that the posterior distribution for F is not based on an
optimal clustering referred to above but rather represents the
ratio obtained by model averaging through the entire MCMC
output, thus properly taking into account uncertainty regarding
cluster assignment and the number of clusters used.
At each iteration of our algorithm CTs are grouped into a

relatively small number of clusters with a set of parameters
associated with each cluster. However, as cluster membership
and the number of clusters used changes from iteration to
iteration, the iterative process will create, for each CT, a unique
posterior distribution for each parameter of interest, such as air
pollution risk and modeled exposure parameters (NO2, PM2.5,
road and off-road diesel). This feature of using shared cluster
parameters estimated at each iteration of the model fitting
process to form unique posterior distributions at the “individual”
level is well known as Bayesian partition models. For an overview
of these models, see Denison et al.30

Finding Clustering That Best Fits the Data. One important
aspect of our flexible Bayesian modeling framework is that our
model implementation allows the number of air pollution
exposure clusters to change from iteration to iteration of the
MCMC sampler, and this added flexibility leads to a rich output

that requires careful interpretation. The goal is to find the
“typical” or “best” way in which the algorithm groups profiles
into clusters and then process this best partition using modern
Bayesian model-averaging techniques that utilize the entire out-
put from the MCMC sampler. Consistent clustering throughout
the sampling process will be associated with greater certainty
regarding subgroup parameter estimates, such as disease risk,
leading to narrower posterior credible intervals. This is important
because while even noisy data will exhibit a “best” clustering, the
Bayesian model-averaging techniques will reveal little confidence
in the clustering of the best partition of the noisy data as it will not
generally coincide with the way individual observations are
clustered at each iteration from the sampler.
To determine this optimal clustering, we construct a correla-

tionmatrix with cells that correspond to the percentage ofMCMC
iterations in which two CTs are assigned to the same cluster and
then find a single clustering that best represents this final matrix
(see Molitor et al.31 and Dahl et al.32 for details). Despite the fact
that a single “best” clustering is computed, uncertainty regarding
cluster parameters is still determined by model averaging
through all the different clustering found throughout the entire
run. This model-averaging approach will generally produce
smaller posterior errors for cluster parameters when the cluster-
ing is consistent from iteration to iteration and reveal larger
errors in the presence of “noisy” data that produce inconsistent,
haphazard clustering.

3. RESULTS

Since we are interested in the joint distribution of exposures
we examine the optimal clustering obtained using the profile-
based Bayesian modeling approach with the number of indivi-
duals living under the poverty line per CT as the outcome. The
optimal partition is displayed in Figure 1, with mean values and
posterior credible intervals listed in Table 1 and graphically
displayed in Figure 3. In Table 1, clusters are sorted according to
poverty risk. Note that in Table 1 we highlight at the top the value
of F = Vθ/(Vθ + Vε), denoted in eq 3, which indicates the
proportion of variance explained by the air pollution clusters
relative to the residual error. CT clusters with statistically
significant air pollution effects are displayed in Figure 2.

In Table 1 the value of F = 0.79 (0.47, 0.97) reveals that
variation in air pollution exposures throughout Los Angeles
County coincide with variation in poverty levels. If we examine
the clusters significantly associated with poverty in Figure 2, we
see that populations living in the port neighborhoods of Los
Angeles and Long Beach mainly suffer from nonroad diesel
impacts, probably from goods movement vessels (Cluster 9).
Further, the roadways (Cluster 7) exhibit higher than average
levels of NO2, PM2.5, and road diesel, while the high-traffic area
of downtown Los Angeles (Cluster 10) exhibits higher than
average levels of all pollutants. These results reveal that people
who live in the port neighborhoods of Los Angeles and Long
Beach, the main artery closeby, the Los Angeles downtown core,
and the central areas not only suffer from poverty but also face
significant pollution impacts from multiple air pollutants.

In general, the results depicted in Table 1 and Figure 3 reveal
that areas with higher levels of air pollution exposures are
associated with higher levels of poverty. However, the association
between air pollutants and poverty is not entirely linear. For
example, Cluster 9 (L.A. ports) is more deprived than Cluster 7
(roads) as it has a higher poverty risk, 0.28 (0.24, 0.32) versus
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0.23 (0.22, 0.25). While the marginal C.I.’s for cluster risks just
barely overlap, the joint probability that the risk for Cluster 9 is
greater than Cluster 7 is significant as Pr (p9 > p7) = 0.99. As one
might expect, the more-deprived Cluster 9 has much higher
levels of off-road diesel emissions, 7.91 (6.53, 9.27), compared to
the less-deprived Cluster 7, 1.29 (1.26, 1.33). However, the
more-deprived Cluster 9 has lower levels of NO2, PM2.5, and
road diesel, with exposure values of 20.64 (19.42, 21.84), 16.67
(16.07, 17.30), and 0.90 (0.74, 1.08) compared to exposure
values for Cluster 7 of 26.69 (26.22, 27.14), 21.68 (21.55, 21.81),
and 1.21 (1.15, 1.26). Thus, what is different between Clusters 9
and 7 cannot be summarized by an additive effect of all pollutants
but is instead related to a contrast between off-road diesel and
other pollutants. Similar remarks can be made for other clusters.
For example, the relatively more-deprived Cluster 10 (downtown)
has higher levels of NO2 and road and off-road diesel emissions,
32.60 (30.42, 34.18), 2.49 (2.10, 2.89), and 1.80 (1.60, 2.03),
compared with lower emission levels corresponding to the
relatively less-deprived Cluster 8 (central Los Angeles, off-roads),
24.18 (23.90, 24.47), 0.72 (0.70, 0.74), and 1.42 (1.39, 1.46). The
levels of PM2.5 however are nearly the same and not statistically
different with values of 21.94 (21.58, 22.31) for Cluster 10 versus
21.70 (21.63, 21.77) for Cluster 8, despite differences in poverty
levels. Therefore, while it might be generally true that increased
poverty is associated with increased air pollution exposures, the
nature of these associations in Los Angeles County is complex
and nonlinear.

4. DISCUSSION

There has been increased interest in the air pollution literature
in the examination of the combined effect of air pollution and
poverty. In this paper, we examined the joint effects of air
pollution mixtures to help identify vulnerable populations in
Los Angeles County. The results showed a general relationship
between elevated levels of air pollution exposures and poverty.
The results also revealed that the relationship is complex in that
poverty levels do not increase linearly with increased levels of
exposure, as is assumed when such relationships are examined
using linear additive regression models. The approach employed
here examined the combined effects of several air pollutants on
poverty, revealing vulnerable populations were not always sub-
ject to elevated levels of different exposures uniformly but rather
different combinations of exposure levels were associated with
different subgroups of poverty populations as explained in the
Results section.

The approach used here clusters exposure profiles into risk
groups that were then associated with poverty. The flexible
MCMC-based parameter estimation techniques allowed the
assignment of exposure profiles to risk groups and the number
of risk groups to vary throughout the run of the sampler. The
results displayed exploratory “best” clustering of profiles along
with more robust results obtained from the model averaging
through the clustering patterns obtained from the sampler. The
approach identifies cumulative environmental hazard inequalities

Figure 1. Optimal clusters as defined in Materials and Methods section.
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within a region at theCT level. It further extends the framework that
identified cumulative environmental risks at the regional level.18

Not surprisingly, the results often display a decidedly non-
linear pattern, as some clusters display extremely high values for
one pollutant but average or below average values for other
pollutants. Unlike a conventional linear model approach, the
clustering approach applied here allows one to examine the
manner in which pollutants vary together.

The empirical results we observed here are broadly consistent
with the literature on environmental hazard inequalities in the
United States (see Morello-Frosch, Zuk et al.33 for a recent
review). Substantial evidence now suggests that numerous en-
vironmental hazards, including air pollution, are worse in poor
neighborhoods and places with high proportions of racial or
ethnic minority groups. In an international context, the findings
from this study fit within a fairly consistent pattern, suggesting

Table 1. Modeled Values for Air Pollution/Poverty Clustersa

percentage of poverty explained by air pollution clusters F = 0.79 (0.47, 0.97)

cluster NO2 (x = 22.33) PM2.5 (x = 20.25) road diesel (x = 0.77) off-road diesel (x = 1.36) risk ( = 0.17)

1 (n = 192) 15.50 (14.94, 16.13) 17.00 (16.63, 17.39) 0.45 (0.43, 0.49) 1.12 (1.04, 1.20) 0.05 (0.04, 0.06)

2 ((n = 12) 22.08 (19.70, 24.19) 19.33 (18.16, 20.34) 1.37 (0.96, 1.81) 1.82 (1.22, 3.06) 0.08 (0.05, 0.13)

3 (n = 203) 22.18 (21.40, 22.90) 20.18 (19.89, 20.45) 0.96 (0.90, 1.01) 1.09 (1.04, 1.16) 0.10 (0.10, 0.11)

4 (n = 543) 21.82 (21.55, 22.09) 21.22 (21.10, 21.33) 0.60 (0.59, 0.62) 1.08 (1.06, 1.10) 0.11 (0.10, 0.11)

5 (n = 72) 16.77 (15.56, 18.02) 12.02 (10.92, 13.27) 0.33 (0.29, 0.38) 0.62 (0.53, 0.73) 0.13 (0.12, 0.16)

6 (n = 178) 19.95 (19.38, 20.61) 18.46 (18.16, 18.77) 0.59 (0.56, 0.65) 1.54 (1.41, 1.67) 0.16 (0.15, 0.18)

7 (n = 285) 26.69 (26.22, 27.14) 21.68 (21.55, 21.81) 1.21 (1.15, 1.26) 1.29 (1.26, 1.33) 0.23 (0.22, 0.25)

8 (n = 479) 24.18 (23.90, 24.47) 21.70 (21.63, 21.77) 0.72 (0.70, 0.74) 1.42 (1.39, 1.46) 0.25 (0.24, 0.26)

9 (n = 38) 20.64 (19.42, 21.84) 16.67 (16.07, 17.30) 0.90 (0.74, 1.08) 7.91 (6.53, 9.27) 0.28 (0.24, 0.32)

10 (n = 36) 32.60 (30.42, 34.81) 21.94 (21.58, 22.31) 2.49 (2.10, 2.89) 1.80 (1.60, 2.03) 0.34 (0.29, 0.38)
aBold rows indicate clusters with statistically significant poverty risks.

Figure 2. Clusters with statistically significant association with poverty.
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that air pollution and other environmental risks remain unequally
distributed with an inverse social gradient. Even in economically
advanced countries with many income and social equalization
programs, universal access to health care, and some of the highest
life expectancies, air pollution and other environmental risks
remain unequally distributed with an inverse social gradient.
Uunequal distributions of traffic pollution by race and SEP have
been documented, albeit with more mixed results than in the
United States. Pearce et al.34 used atmospheric dispersion
modeling to demonstrate a relationship between traffic pollution
and disadvantaged social groups in New Zealand, finding higher
levels of air pollution in areas of relatively high deprivation. In
England, Brainard et al.35 found that CO and NO2, both markers
of traffic pollution, related strongly to racial and ethnic minority
status and to social deprivation. In Sweden, Chaix et al.36

investigated the distribution of NO2 in relation to young
children. They reported higher levels of NO2 for children living
in poorer housing and neighborhoods. A Canadian study based
on a land-use regression prediction of NO2 in Toronto reported
that lower SEP was related to higher air pollution exposures, but
there were exceptions that contrasted with the U.S. literature.37

For example, racial minority groups tended to be less exposed in
Toronto than other groups, probably due to the city’s role as a
gateway city for highly educated immigrants. Dwelling values also
took an unexpected positive sign, which may have been partly

explained by the dense urban structure of the downtown area and
the relatively high traffic and land rents in this district. Similar
diversions from the pattern were reported in an Italian study.38

These subtle differences highlight the need not only to examine the
specific intricacies of place but also to employ methods used in this
paper, which may elucidate more subtle patterns and relationships.

The profiling method used in this paper can be extended to
examine joint distributions of pollution, SEP, and health. For this
initial demonstration we limited the investigation to exploring
the joint distribution of poverty and several important air
pollutants. In the future, we will extend this to examine health
outcomes, which may reveal complex and subtle interactions
betweenmultiple or cumulative exposures, SEP, and health. Such
investigations will have implications for public health policy
because they may lead to better protection for vulnerable
populations who experience high cumulative exposures, high
susceptibilities, or both. At present, current public health protec-
tions do not take into account these cumulative exposures and
susceptibilities, which may be significant contributing factors to
observed health inequalities that follow social gradients.
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Figure 3. Cluster summaries. Left vertical panel: (a) Risk associated with each cluster, (b) average empirical proportion of individuals living under
poverty averaged over CT’s in the optimal clustering, (c) optimal cluster sizes. Right four vertical panels: (top four) Boxplots corresponding to cluster
means for each pollutant/cluster, (bottom four) boxplots corresponding to cluster standard deviations for each pollutant/cluster.
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