
UC San Diego
UC San Diego Previously Published Works

Title
The effects of damage accumulation in optimizing a piezoelectric energy harvester 
configuration

Permalink
https://escholarship.org/uc/item/49d716js

Authors
Kjolsing, Eric J
Todd, Michael D

Publication Date
2018-03-27

DOI
10.1117/12.2283053
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/49d716js
https://escholarship.org
http://www.cdlib.org/


The effects of damage accumulation in optimizing a piezoelectric 
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aStructural Integrity Associates, Inc., 9710 Scranton Road, San Diego, CA, USA, 92121; bDept. of 

Structural Engineering, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, USA, 

92093 

ABSTRACT 

Bimorph piezoelectric elements are often used to harvest energy for low-power structural health monitoring systems.  

When these piezoelectric elements are deployed for extended periods of time and operate under near-resonant conditions, 

the resulting high amplitude cycling can lead to degradation of the piezoelectric element, resulting in a shift in the design 

fundamental frequency.  For scenarios in which the piezoelectric harvester is subject to slowly-varying time-dependent 

frequency inputs, the natural frequency shift due to degradation may cause the piezoelectric harvester to detune from 

resonance, subsequently affecting the harvester’s power output.  The current study seeks to understand how the 

accumulation of damage shifts the optimal tip mass and resistive load in a bimorph piezoelectric energy harvester.  A 

cantilever piezoelectric element is modeled utilizing coupled electromechanical equations in a distributed system.  The 

piezoelectric is subject to ground accelerations; the resulting power output is recorded for a range of tip masses and 

resistive loads. A rainflow analysis is then performed to calculate the piezoelectric element’s tip displacement amplitude 

and the corresponding cycle count.  A damage accumulation model based on a weighted form of Miner’s rule is then 

used to degrade the harvester’s flexural rigidity, piezoelectric capacitance, and piezoelectric strain constant.  The 

piezoelectric is again loaded and the process repeated.   The resulting power output contours reveal how the optimal 

realization of tip mass and resistive load changes as damage accumulates in the piezoelectric element.  Apparent trends 

in the power output contours are explained.  Approved for publication, LA-UR-18-20075. 

Keywords: piezoelectric energy harvesting, damage accumulation, rainflow analysis, structural health monitoring 

 

1. BACKGROUND 

The hydrocarbon industry has a stated interest in developing energy harvesting and storage systems for downhole 

deployment to supplement currently utilized power sources.  Several investigations were previously performed to 

forward this objective [1]-[4].  Since long deployment cycles are desirable, the selection of an optimal harvester 

configuration must account for long-term effects, specifically the accumulation of damage.  “Optimal” in the present 

discussion refers to a maximization of power output over a specific duration.   

The objective of the current study is to observe how damage accumulation affects the selection of optimal tip mass and 

resistive load in a piezoelectric bimorph. To achieve this objective, this manuscript presents four analytical cases with 

varying damage scenarios and compares the dynamic characteristics and power output between them. 

2. PIEZOELECTRIC MODEL 

A single piezoelectric bimorph is modeled utilizing coupled electromechanical equations for a distributed system.  The 

model’s derivation is provided by Erturk and Inman [5] with the final result presented here.  The model has been 

experimentally validated and is discussed by others [6, 7]. The same modeling approach has been applied to a unimorph 

piezoelectric element [6, 8]; for additional details, the reader is referred to Erturk and Inman [5]. 

Consider a driving harmonic base motion of the form  

 𝑤𝑏 = 𝑊̅𝐵𝑒
𝑖𝜔𝑡,  (1) 

where 𝑊̅𝐵 is the translation amplitude and 𝜔 is the excitation frequency.  It can be shown that the steady state output 

voltage (𝜐) can be related to the base acceleration (𝑤̈𝐵) through a frequency response function (𝛼) as 



 𝜐 = 𝛼𝑤̈𝐵. (2) 

The frequency response function (FRF) has been shown to be  
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where the variables include the mode number (𝑟), the modal electromechancial coupling term (Θ𝑟), the modal damping 

ratio (𝜁𝑟), the undamped natural frequency (𝜔𝑟), the equivalent capacitance for the piezoelectric bimorph (𝐶𝑝
𝑒𝑞

), and the 

circuits resistive load (𝑅).  The forcing function coefficient (𝜎𝑟) is written as  

 𝜎𝑟 = −𝑚∫ 𝜙𝑟𝑑𝑥
𝐿

0
−𝑀𝑡𝜙𝑟(𝐿), (4) 

where the variables include the piezoelectric beam mass per unit length (𝑚), eigenfunction (𝜙𝑟), and tip mass (𝑀𝑡).  

Similarly, a FRF relating the relative displacement (𝑤𝑅) to the base acceleration can be written as  

 𝑤𝑅 = 𝛽𝑤̈𝐵, (5) 

where  
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The model can be expanded to account for periodic loading using a Fourier series approximation of the driving motion 

[5].  This leads to   
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where |𝛼(2𝜋𝑛/𝑇)| and Φ(2𝜋𝑛/𝑇) are the modulus and phase angle of the FRF 𝛼, 𝑎𝑛 and 𝑏𝑛 are Fourier series 

coefficients, and 𝑇 is the signal length.  Similarly, the relative displacement response can be found as 
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The instantaneous power output is written as 

 𝑃𝑖𝑛𝑠𝑡(𝑡) =
𝜐(𝑡)2

𝑅
. (9) 

The average power output is then  

 𝑃𝑎𝑣𝑔 =
1

𝑇
∫ 𝑃𝑖𝑛𝑠𝑡(𝑡)𝑑𝑡
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0
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3. DAMAGE ACCUMULATION MODEL 

System properties are known to degrade when the system is subjected to repeated load cycles.  For example, the 

accumulation of microcracking in the bimorph will cause a decrease in its flexural rigidity.  This will lead to a change in 

the system’s natural frequency and may result in detuning from resonance, directly impacting the power output. To 

account for such changes, a damage metric and a damage model are needed. 

One common damage metric is stress: a representative element is cycled at a constant stress level until failure with 

element properties (e.g. effective flexural rigidity) observed throughout the course of testing.  The results are often 

plotted as property vs. cycles and for multiple tests, stress vs. cycles to failure. This metric becomes difficult to 

incorporate in conjunction with the utilized piezoelectric model as the relative displacement output from the model (𝑤𝑅) 

is based on a spatially uniform (or average) flexural rigidity.  While the beam curvature (and subsequently a stress term) 

can be calculated from this output, the output cannot account for any local damage (i.e., amplified curvature) that might 

be occurring - this is analogous to a linear analysis failing to capture localized curvature in the plastic hinge of a column.   



An alternative metric is the relative tip displacement of the beam (𝑤𝑅(𝑥 = 𝐿)): rather than cycling a test element to a 

specified stress level, the element can be cycled to a specified displacement amplitude.  As before, element properties 

can be observed throughout the course of testing and plotted as property vs. cycles and for multiple tests, amplitude vs. 

cycles to failure.   

Consider the testing of 𝑄 identical piezoelectric bimorphs with each bimorph subject to a harmonic base acceleration 

resulting in a relative tip displacement amplitude 𝐴𝑘 (𝑘 = 1: 𝑄).  After 𝑛 cycles the cyclic loading is stopped and the 

relevant properties (𝑉𝑎, 𝑉𝑏, etc.) of each bimorph measured.  The 𝑄 bimorphs are again cyclically loaded and the 

process repeated until a property of interest degrades to failure after 𝑁 cycles.  Since the cycles to failure may differ 

between each amplitude 𝐴𝑘, the reader may find 𝑁𝑘 a preferable notation.  A graphic depicting this process is shown in 

Figure 1. 

For a given property 𝑉 with initial value 𝑉𝑖 a representative output is enlarged in Figure 2.  The degradation to property 

𝑉 after 𝑛 cycles at amplitude 𝐴𝑘 is ∆𝑉𝑘.  Assume the cyclic degradation is linearly additive such that 

 ∆𝑉1 + ∆𝑉2 + ∆𝑉𝑄 = ∑ ∆𝑉𝑘
𝑄
𝑘=1 = 𝐶 ∗ 𝑉𝑖, (11) 

where 𝐶 is a damage index representing the percent accumulated degradation of variable 𝑉.  Eq. (11) can be rewritten as  

 ∑
∆𝑉𝑘

𝑉𝑖

𝑄
𝑘=1 = 𝐶 ≤ 1, (12) 

which is seen to be a weighted form of Miner’s rule [9].  The value of property 𝑉 after accumulating damage 𝐶 is written 

as 

 𝑉𝑑𝑎𝑚𝑎𝑔𝑒𝑑 = (1 − 𝐶)𝑉𝑖.  (13) 

4. RAINFLOW ANALYSIS 

For non-harmonic motion, a rainflow analysis is performed to determine the amplitude/cycle count necessary to 

implement the damage model from Section 3.  Utilizing a relative tip displacement time history, the rainflow analysis 

counts the number of equivalent cycles for a range of amplitudes.  The test amplitudes (i.e. the 𝐴𝑘’s) are used to silo the 

rainflow output and the cycles falling within each amplitude bin are counted. These cycle counts are then added to the 

cumulative cycle counts from all previous loading enabling property degradation per Section 3.  This process is depicted 

in Figure 3.  The rainflow analysis is performed with the MATLAB toolbox RAINFLOW [10]-[11] for the current 

investigation. 

5. DEMONSTRATION CASES 

A piezoelectric configuration is analyzed to determine the optimal tip mass and resistive load over 0.9 years of 

deployment.  The model loading schedule and inputs are shown in Table 1 and Table 2, respectively.  The configuration 

is first analyzed without accounting for damage to develop a baseline result.  The configuration is then analyzed 

accounting for damage to the (i) mechanical terms, (ii) the piezoelectric terms, and (iii) both the mechanical and 

piezoelectric terms.  Apparent trends in the power output contours are explained.   

 

Table 1. Loading schedule. 

 

Start Time 

(year) 

Loading 

Regime 

Loading 

Amplitude 

(𝑚 𝑠2⁄ ) 

Loading 

Frequency (𝐻𝑧) 

Loading 

Frequency 

(𝑟𝑎𝑑 𝑠⁄ ) 

End Time 

(year) 

0 1 
2 

20 125.66 0.3 
0.3 2 30 188.50 0.6 
0.6 3 25 157.08 0.9 

 

 

 



 

Table 2. Inputs. 

 

Length 𝐿, (𝑚) 0.030 

Width 𝑏, (𝑚) 0.005 

Distance to Neutral Axis 
ℎ𝑝̃+ℎ𝑠̃

2
, (𝑚) 1𝑒 − 4 

Modes Considered 1 

Damping Ratio 0.010 

Tip Mass 𝑀𝑡, (𝑘𝑔) Optimized Variable 

Tip Mass Density 𝜌𝑡 (𝑘𝑔/𝑚
3) 6000 

Tip Inertia 𝐼𝑡, (𝑘𝑔𝑚
2) Varies, 𝐼𝑡 =

5

12

𝑀𝑡
2

𝜌𝑡𝑏
 

Damage Index 𝐶 Varies 

Beam Mass 𝑚, (𝑘𝑔 𝑚⁄ ) 0.02 

Operating Temperature (℃) Constant Temp. 

Flexural Rigidity 𝑌𝐼, (𝑁𝑚2) 1.090𝑒 − 3 & Varies 

Piezoelectric Elastic Modulus 𝑐11
𝐸 , (𝑁 𝑚2⁄ ) 61𝑒9 

Piezoelectric Constant 𝑑31, (𝑚 𝑉⁄ ) −171𝑒 − 12 & Varies 

Piezoelectric Capacitance 𝐶𝑝, (𝐹) 1.33𝑒 − 8 & Varies 

Piezoelectric Configuration Series 

Resistive Load 𝑅, (Ω) Optimized Variable 

 

5.1 Optimal realization for undamaged configuration 

Damage is not included in this baseline case (i.e. 𝐶 = 0 for all realizations).  For each loading regime the maximum 

relative tip displacement (MRTD) and average power output are calculated over a range of tip masses and resistive loads.  

The results are presented in Figure 4 and Figure 5. 

For low resistive loads (i.e. 𝑅 ≈ 0Ω, short-circuit condition) the MRTD approaches that of the electromechanically 

uncoupled system where a maximum response is seen as the undamped natural frequency (𝜔𝑟) and the loading frequency 

converge.  As the resistive load is increased, the system shifts from a short-circuit to open-circuit condition, leading to a 

shift in the system’s resonant frequency.  The introduction of a resistive load results in piezoelectric power generation 

and power dissipation in the resistor due to Joule heating [5].  Unlike viscous damping, the observed frequency shift, 

which is due to the changing electrical boundary condition (i.e. an increased resistive load), causes an upward frequency 

shift.  For the current scenario (where the loading frequency is specified), as the systems resonant frequency increases 

due to changing resistance the tip mass that maximizes the displacement response must increase (thereby lowering the 

resonant frequency) such that the resonant frequency and loading frequency coincide. This upwards shift in optimal tip 

mass is apparent in each plot of Figure 4.   

To determine the optimal tip mass and resistive load that maximizes the average power output over all three loading 

regimes (i.e. from year 0 to 0.9), the average power output from each realization for each loading regime (given in 

Figure 5) is integrated over the regimes duration resulting in a scalar value that can be used as an optimization metric.  

The resulting metric is plotted in Figure 6.  The total average power output is found to be maximized when 𝑀𝑡 =
0.0066𝑘𝑔, 𝑅 = 5𝑒6Ω and results in an average power output of 1.14𝑚𝑊, 1.14𝜇𝑊, and 5.56𝜇𝑊 for loading regime 

one, two, and three, respectively.  Note that this realization produces over 99% of its total average power output during 

the first loading regime due to resonant behavior.  The corresponding MRTDs are 2.64𝑚𝑚, 0.08𝑚𝑚, and 0.18𝑚𝑚.   

5.2 Optimal realization for damaged configuration 

The analysis is repeated while including the linear cumulative damage model described in Section 3. The loading 

schedule and inputs from Table 1 and Table 2 are unchanged.  Since damage accumulation is dependent on load cycles 

which accumulate over time, the analysis must be discretized in time: the time discretization used in this analysis is 

0.05𝑦𝑟 (although results are often given in coarser increments due to manuscript length restrictions).  The mechanical 



and electrical terms are first investigated separately to demonstrate their individual effects.  Following this, their 

combined effects are demonstrated as an optimal tip mass and resistive load are selected. 

5.2.1 Degradation of flexural rigidity during the first loading regime 

The degradation of flexural rigidity is based on load cycling data shown in Figure 7; arbitrary values have been used.  

The piezoelectric terms are held constant and are assumed not to degrade. 

The MRTD and the cumulative damage to the flexural stiffness are plotted in Figure 8 for various tip masses and 

resistive loads.  As damage accumulates, the flexural stiffness of the system is reduced.  This results in a decrease in the 

systems resonant frequency.  Since the driving frequency is fixed (20𝐻𝑧 in the first loading regime) the tip mass 

maximizing the MRTD (i.e. the tip mass corresponding to the largest MRTD) must be reduced as damage is 

accumulated, thereby offsetting the reduction in system stiffness.  This trend is visible in Figure 8 where the tip mass 

maximizing the MRTD is seen to shift downwards over time (or more accurately, as cyclic damage accumulates).  Since 

the maximum MRTD now occurs for a new (and smaller) tip mass realization, damage will accumulate to a greater 

degree at the new tip mass realization during the next loading cycle.  This can be seen in the damage contours of Figure 8 

where damage is seen to accumulate for smaller tip masses in each subsequent time increment. 

A second visible trend in Figure 8 is the reduction in the maximum MRTD as the tip mass decreases.  This trend is 

explained by Figure 9 which plots FRFs for the relative tip displacement (assuming constant stiffness).  Note that: (1) for 

a fixed resistive load the magnitude of the displacement FRF decreases with decreasing tip mass, (2) as the tip mass 

decreases the resonant frequency of the system increases, and (3) as the resistive load increases the resonant frequency of 

the system increases. 

The average power output is shown in Figure 10 where the trends seen in the MRTD contours of Figure 8 are visible.  

The downward shift in tip mass corresponding to the maximum average power output can again be attributed to damage 

accumulation. As damage is accumulated, the flexural stiffness of the system is reduced.  This results in a decrease in the 

systems resonant frequencies.  Since the driving frequency is fixed (20𝐻𝑧 in the first loading regime) the tip mass 

maximizing the average power output must be reduced as damage is accumulated, thereby offsetting the reduction in 

system stiffness.    

5.2.2 Degradation of piezoelectric terms during the first loading regime 

The degradation of the piezoelectric terms (𝑑31 and 𝐶𝑝) are based on load cycling data shown in Figure 7; arbitrary 

values have been used.  The flexural rigidity is held constant and assumed not to degrade.   

The MRTD is plotted in Figure 11 for various tip masses and resistive loads.  The cumulative damage to each 

piezoelectric term is plotted in Figure 12.  As noted by the relatively unchanging optimal tip mass in Figure 11, the 

degradation of the piezoelectric terms is seen to have a significantly smaller impact on the shift of resonance frequency 

as compared to the degradation of flexural rigidity.  This leads to damage being concentrated in those realizations with 

high relative MRTD.  In other words, damage to the piezoelectric terms is localized where the MRTD is high and the 

realizations for which the MRTD are high are relatively constant.   

As previously noted, for low resistive loads the MRTD approaches that of the electromechanically uncoupled system 

where a maximum response is seen as the undamped natural frequency and the loading frequency converge.  Under the 

short-circuit condition, then, degradation of the piezoelectric terms has a small impact on the MRTD as the system is 

dominated by the governing mechanical equations.  For high resistive loads (e.g. open-circuit condition), the shift in 

resonance frequency is due to the inclusion of the governing electrical equations.  When the piezoelectric terms degrade, 

the induced shift in the resonant frequency will once again shift (back towards a mechanically governed system) causing 

a change in the optimal tip mass.  These trends can be seen in Figure 11: the MRTD is relatively constant for low 

resistive loads while for high resistive loads, damage to the piezoelectric terms results in a slight downward shift in the 

tip mass maximizing the MRTD. 

The average power output is also shown in Figure 11.  Note that damage to the piezoelectric terms is based on the 

MRTD and, for the investigated cases, the realizations with high MRTD do not overlap with realizations with high 

average power output.  This means that realizations with significant damage do not coincide with realizations with high 

average power output (compare Figure 11 and Figure 12).  This results in the average power output appearing relatively 

constant through each time increment. 



 

5.2.3 Combined degradation over all three loading regimes 

All three degradation models (Figure 7) are included in a final analysis covering all three loading regimes (recall Table 

1).  The resulting MRTD and average power contours are shown in Figure 13.  The trends identified in 5.2.1 and Section 

5.2.2 are apparent in all three loading regimes.  The downward shift of tip mass (corresponding to maximum response) 

between each loading regime is due to the changing loading frequency between each regime: as the loading frequency 

changes (20𝐻𝑧, 30𝐻𝑧, 25𝐻𝑧) the tip mass corresponding to resonant behavior changes. 

Two interesting results are seen in the damage contours shown in Figure 14 and Figure 15.  First, since the degredation 

of flexural rigidity causes a noticeable shift in the tip mass corresponding to maximum response, degradation of the 

piezoelectric terms is seen to spread to other tip mass realizations to a greater degree (unlike the concentrated damage 

shown in Figure 12).  Second, damage accumulation is stratified and, for the inputs considered, shows little overlap 

between each loading regime.  As a physical example consider two different tip mass realizations: the first corresponds 

to a resonant frequency around 20𝐻𝑧 (e.g. 𝑀𝑡 ≈ 0.0062𝑘𝑔) while the second corresponds to a resonant frequency 

around 30𝐻𝑧 (e.g. 𝑀𝑡 ≈ 0.003𝑘𝑔).  During the first loading regime the first realization is excited near resonance, 

resulting in relatively significant damage accumulation, while the second realization is not near resonance, resulting in 

relatively little damage accumulation.  During the second loading regime the shift in loading frequency results in the 

second realization being excited near resonance while the first realization is no longer excited near resonance.  Thus, 

during the second loading regime the additive damage to the first realization is small while the additive damage to the 

second realization is large.  This explains the stratified nature of the damage and its evolution over time/cyclic loading. 

To determine the tip mass and resistive load that maximizes the average power output over all three loading regimes (i.e. 

from year 0 to 0.9), the average power output from each realization is integrated over each time step and summed, 

resulting in a scalar value that can be used as an optimization metric.  The resulting metric is plotted in Figure 16.  The 

total average power output is found to be maximized when 𝑀𝑡 = 0.0062𝑘𝑔, 𝑅 = 1𝑒6Ω.  The average power output and 

corresponding MRTD are shown in Figure 17.  For comparison purposes, Figure 17 also includes the average power 

output and corresponding MRTD for (1) the maximized result found in the undamaged case (𝑀𝑡 = 0.0066𝑘𝑔, 𝑅 =
5𝑒6Ω) and (2) the same realization (𝑀𝑡 = 0.0066𝑘𝑔, 𝑅 = 5𝑒6Ω) but when damage is incorporated.  When degradation 

is included in the analysis the power output from the originally optimal realization (𝑀𝑡 = 0.0066𝑘𝑔, 𝑅 = 5𝑒6Ω) drops 

off rapidly due to a shift in the resonance frequency (i.e. the large initial MRTD leads to significant damage during the 

first time step which leads to a larger frequency shift in the next time step).  The new optimal realization (𝑀𝑡 =
0.0062𝑘𝑔, 𝑅 = 1𝑒6Ω) is seen to accumulate less damage (note the smaller initial MRTD) resulting in a smaller shift of 

the resonant frequency away from the loading frequency.  This allows for a moderate power output over a greater 

duration compared to the large output over a short duration from the originally optimal realization. 

6. CONCLUSIONS 

The long-term deployment of a piezoelectric energy harvester, operating in near-resonant conditions, may lead to 

accumulated damage in the harvester.  Subsequent shifts in the natural frequency may detune the harvester, affecting the 

harvester’s power output.  An investigation was performed to observe how damage accumulation affects the selection of 

tip mass and resistive load which maximize the power output of a piezoelectric bimorph.  For the inputs considered, the 

following trends are noted: 

• Degradation of the flexural rigidity leads to a reduction in the resonant frequency across all resistive loads.  The 

reduced flexural rigidity results in a reduced optimal tip mass (for an unchanging input motion) and, since the 

power output is dependent on the tip mass, a reduced power output. 

• Degredation of  the piezoelectric terms does not significantly affect the tip mass corresponding to the maximum 

MRTD for low resistive loads but has some impact for high resistive loads.  Degradation of the piezoelectric 

terms is concentrated in those tip mass realizations where the MRTD is high; in this study the realizations where 

the MRTD was high did not correspond to the realizations where the power output was high.  Thus, degradation 

of the piezoelectric terms was not seen to significantly affect the maximum power output. 
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FIGURES 

 

Figure 1. Cyclic testing of 𝑄 bimorphs. 



 
Figure 2. Cyclic degradation of property 𝑉 at specific instant in time. 

 

 

 

Figure 3. Regrouping rainflow output. 

 



 

Figure 4. Maximum relative tip displacement (MRTD) (𝑚𝑚) contours: baseline case.  Loading regime one (top), two 

(middle), and three (bottom) shown. 

 

 



 

Figure 5. Average power (𝑊) contours: baseline case.  Loading regime one (top), two (middle), and three (bottom) shown. 

 



 

Figure 6. Integrated power metric (𝑊𝑦𝑟). 

 

 

 

 

 

 

 

Figure 7. Normalized degradation of flexural and piezoelectric terms from cycling at specified amplitudes.  𝐴1 = 0.5𝑚𝑚 

(blue), 𝐴2 = 1𝑚𝑚 (orange), 𝐴3 = 1.5𝑚𝑚 (yellow), 𝐴4 = 2𝑚𝑚 (purple),  𝐴5 = 3𝑚𝑚 (green), 𝐴6 = 5𝑚𝑚 (cyan), 𝐴7 =
7𝑚𝑚 (red). 



 

Figure 8. Maximum relative tip displacement (MRTD) (𝑚𝑚; left) and cumulative damage (𝐶; right) contours based on 

degradation of flexural rigidity.  Results applicable for 0.05𝑦𝑟 from the initial time indicated. 

 



 

 

Figure 9. Relative tip displacement FRFs for various resistive loads and tip masses.  0.009𝑘𝑔 (blue), 0.008𝑘𝑔 (green), 

0.007𝑘𝑔 (red), 0.006𝑘𝑔 (cyan), 0.005𝑘𝑔 (black). 

 

 



 

Figure 10. Average power (𝑊) contours based on degradation of flexural rigidity.  Results applicable for 0.05𝑦𝑟 from the 

initial time indicated. 

 

 



 

Figure 11. Maximum relative tip displacement (MRTD) (𝑚𝑚; left) and average power (𝑊; right) contours based on 

degradation of piezoelectric terms.  Results applicable for 0.05𝑦𝑟 from the initial time indicated. 

 



 

Figure 12. Cumulative damage (𝐶) contours of 𝑑31 (left) and 𝐶𝑝 (right) based on degradation of piezoelectric terms.  

Results applicable for 0.05𝑦𝑟 from the initial time indicated. 

 

 

 



 

Figure 13. Maximum relative tip displacement (MRTD) (𝑚𝑚; left) and average power (𝑊; right) contours based on full 

degradation model.  Results applicable for 0.05𝑦𝑟 from the initial time indicated. 

 

 

 

 



 

Figure 14. Cumulative damage (𝐶) contours of flexural rigidity based on full degradation model.  Results applicable for 

0.05𝑦𝑟 from the initial time indicated. 

 



 

Figure 15. Cumulative damage (𝐶) contours of 𝑑31 (left) and 𝐶𝑝 (right) based on full degradation model.  Results 

applicable for 0.05𝑦𝑟 from the initial time indicated. 

 

 

 



 

Figure 16. Integrated power metric (𝑊𝑦𝑟). 

 

 

 
Figure 17. Average power output and maximum relative tip displacement (MRTD).  𝑀𝑡 = 0.0066𝑘𝑔, 𝑅 = 5𝑒6Ω with no 

damage (baseline; blue).  𝑀𝑡 = 0.0066𝑘𝑔, 𝑅 = 5𝑒6Ω with damage (green).  𝑀𝑡 = 0.0062𝑘𝑔, 𝑅 = 1𝑒6Ω with damage 

(new optimum; red). 

 




