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Abstract

Electron energy loss spectroscopy (EELS) and X-ray absorption spectroscopy
(XAS) provide detailed information about bonding, distributions and locations
of atoms, and their coordination numbers and oxidation states. However, analysis
of XAS/EELS data often relies on matching an unknown experimental sample
to a series of simulated or experimental standard samples. This limits analysis
throughput and the ability to extract quantitative information from a sample.
In this work, we have trained a random forest model capable of predicting the
oxidation state of copper based on its L-edge spectrum. Our model attains an R2

score of 0.85 and a root mean square valence error of 0.24 on simulated data. It
has also successfully predicted experimental L-edge EELS spectra taken in this
work and XAS spectra extracted from the literature. We further demonstrate the
utility of this model by predicting simulated and experimental spectra of mixed
valence samples generated by this work. This model can be integrated into a real
time EELS/XAS analysis pipeline on mixtures of copper containing materials of
unknown composition and oxidation state. By expanding the training data, this
methodology can be extended to data-driven spectral analysis of a broad range
of materials.

Keywords: Machine Learning, EELS, XAS, Cu, Spectral Analysis
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Introduction

Due to their wide range of accessible oxidation states and materials applications, the
ability to determine the oxidation state of third row transition metals is essential to
a wide variety of applications. These include the development of catalysts [1], photo-
voltaic devices [2], and biotechnology [3]. Core level spectroscopy is often used to probe
transition metal oxidation states, and two main types are electron energy loss spec-
troscopy (EELS) and X-ray absorption spectroscopy (XAS). EELS provides detailed
atomic scale information, such as oxidation state, coordination number and local sym-
metry of a nanomaterial [4, 5]. When probing nanomaterials, EELS is often combined
with scanning transmission electron microscopy (STEM). In STEM-EELS, an elec-
tron beam is scanned over an area of a sample and a full spectrum is acquired and
stored at each probe position. This technique is particularly valuable in the study of
nanomaterials due to its combination of high spatial and high energy resolution. [6–8].
Like EELS, XAS has also attained wide usage in determining oxidation state and local
environment in nanomaterials [9–11]. XAS, however, is typically limited to a spatial
resolution of a few nanometers [12], rather than the sub angstrom spatial resolution
possible with STEM-EELS [13]. The main advantages of XAS compared to EELS for
core-loss spectroscopy are the ability to attain higher signal to noise ratios (SNR) and
higher energy resolution, particularly at higher excitation energies [14], and function-
ality on thicker samples for hard x-ray excitation [15]. Due to the myriad use cases for
both techniques, they are commonly applied to the nanoscale study of materials con-
taining third row transition metals. However, since EELS and XAS spectra encode the
electronic properties of the sample in an abstract way, extracting physical descriptors
is a non-trivial task in spectral analysis.

Therefore, quantitative spectral analysis is often the rate limiting step in materials
characterization, and can typically only be conducted by trained experts. This is
especially true of L-edge spectra of transition metals, where variations in oxidation
state can manifest in small shifts in edge location, L2/L3 ratio and peak width that are
not immediately obvious to a non expert, particularly for samples containing multiple
oxidation states [16]. Oxidation state assignment is typically done by mapping the
unknown spectrum to known experimental or simulated standards, a process which can
be time intensive and requires significant domain knowledge. Particularly challenging
to analyze are mixed valence materials, which are often interpreted as combinations of
spectra of integer valence structures [17]. The prevailing solution to this problem is to
fit integer valence spectra to the unknown spectrum using least squares. This allows a
user to input known standards and determine the coefficients of a linear combination
of the standard spectra that reproduce the experimental spectrum [17–20].

Least squares fitting has allowed quantitative oxidation state analysis of mixed
valence samples and is widely implemented as the state-of-the-art procedure for
quantitative analysis of unlabeled XAS/EELS L-edge data. However, in the case of
experimental standards, it has a few serious limitations. First, this procedure requires
fresh standards to be taken for each instrument, and often each day, as changes in
detector setup and alignment can lead to non trivial changes in the spectra. Second,
this procedure is highly sensitive to experimental variation in the acquisition of the
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standard samples. Contamination with materials of other oxidation state, surface oxi-
dation and beam damage can have a significant impact on the shape of the standard
spectrum, and therefore interfere with the fitting of the unknown sample. Additionally,
inconsistencies in standard spectrum processing, such as baseline subtraction or the
incomplete deconvolution of multiple scattering from the standard sample, can have
a similar impact. Third, the presence of any oxidation state or coordination environ-
ment unaccounted for by the standards will not only be missed by the prediction of
the makeup of the material, potentially missing an important fundamental discovery,
but will also lead to an inaccurate representation of the oxidation state as the stan-
dard components are forced to represent a signal not originating from any of them. In
a similar vein, experimental standards must be taken for every material expected to
be present in order to perform the oxidation state analysis. For example, a standard
for CuO may not be suitable for an experiment involving CuS due to non trivial dif-
ferences between the spectra, although they are both a Cu(II) oxidation state [21, 22].
Simulated standards suffer from fewer experimental limitations, but instead are lim-
ited by the level of approximations used in the theory and often can not perfectly
reproduce experimental spectra. This can cause systematic errors leading to significant
misidentifications, particularly when applied to noisy experimental spectra or exper-
imental spectra more challenging to simulate. It is rare for simulated standards for
L-edge transition metal spectra to be quantitatively accurate enough to fit an unknown
experimental spectrum using least squares fitting [23]. Instead, these are used to qual-
itatively match components of an unknown spectrum. Therefore, there is a need for
a procedure that can determine oxidation state from XAS/EELS L-edge data that is
more robust than the least squares fitting of a handful of standard spectra.

An avenue for a more broadly applicable automated analysis procedure is machine
learning (ML). Despite some recent advancements in automated L-edge XAS/EELS
analysis of transition metals using ML approaches [24], overall, the transition metal
K-edge has received more focus from the ML community [25–27]. Numerical analysis
of L-edge transition metal XAS/EELS data has mainly been performed using prin-
ciple component analysis (PCA) to reduce the dimensionality of the spectrum. This
field has been well developed, comprising numerous applications of PCA on L-edge
XAS/EELS data [28–31]. Additionally, PCA dimensionality reduction procedures have
been used to successfully de-noise low SNR core loss EELS data [32–34]. PCA has
also been extended into analysis of oxidation states. Applying component analysis to a
mixed valence XAS/EELS spectrum can result in components that mimic the unique
oxidation states present. This can be used as a qualitative estimation of the differ-
ent oxidation states present in a sample, however, it is difficult to ensure each of the
resulting components match the pure form of an oxidation state. Therefore, the lack
of rigorous physical interpretation of the components makes any quantitative analysis
challenging [35].

Supervised machine learning approaches have found success predicting oxidation
states in manganese and iron samples, using neural networks and support vector
machines [36–38]. However, these models were trained on a small subset of materials
and, with the exception of [37] on Mn spectra, only focused on integer valence states.
Therefore, the more complicated question of L-edge spectra oxidation state regression
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of an arbitrary Cu material containing a wide range of oxidation states has not been
thoroughly explored. The lack of focus on mixed valence structures generally is espe-
cially notable, as such a model is necessary to analyze an in-situ experiment where
1000s of spectra are generated quickly with minor variations in oxidation state.

This work has developed a supervised ML model capable of conducting a regression
task on an unlabeled Cu L2,3-edge XAS/EELS spectrum and predicting the average
oxidation state. An outline of this model is shown in Figure 1. The L2,3-edge was
selected as the focus due to the prohibitively high energy of the transition metal K-
edge for electron detectors. We utilized the simulated L-edge XAS spectra of transition
metals stored in the Materials Project [39, 40] as a seed to construct our training set.
Despite the differing physical origins of XAS vs EELS, with XAS caused by excitation
from a photon and EELS by an electron, under the long wave-length limit and dipole
approximation, both spectroscopic methods involve evaluating the same transition
matrix element. Therefore, a model trained on XAS data is able to effectively predict
EELS data [41, 42] for features where the quadrupole contribution is not significant.

Cu was selected as the focus of this work due to the myriad applications of Cu nano-
materials. Specifically, Cu nanoparticles (CuNPs) are used in antimicrobial agents [43],
catalysts [44] and renewable energy devices, particularly the electrochemical reduc-
tion of CO2 [45]. Examining the oxidation state of Cu nanomaterials is critical to
their function, as CuNP preparation procedures can lead to unintended surface oxi-
dation that disrupts many of their applications [43]. Additionally, the major trends
in Cu L-edge spectra can be captured accurately in Cu metal, Cu2O and CuO using
the multiple scattering 1 method implemented in the FEFF9 code [39, 46]. Figure
S1a-c shows good agreement in the L2-L3 spacing and well preserved intensity ratios
between the L2 and L3 peaks. Fine detail such as the splitting of the L3 peak in Figure
S1a is demonstrated as well. The limitations of this method include the treatment of
the partially filled 3d bands in Cu(II), where the many-body effects, such as multiplet
effects, require higher levels of theory beyond the mean-field level [23, 46]. This can
produce some spurious artifacts in the simulations, such as the L3 shoulder in the CuO
simulation (Figure S1c) which is not present in the experimental sample. Although
the quadrupole contribution can play an important role in pre-edge features, distinct
spectral features in the main edge regions are found to be sensitive to the oxidation
state from feature importance analysis. Therefore, neglecting the quadrupole contri-
bution will not have a significant impact in this analysis. The overall success of FEFF9
in producing Cu L-edge spectra allows Cu materials to serve as a model system for
this type of automated analysis procedure. In this work we present a framework for
predicting the Cu oxidation state that can be readily extended to other transition
metals by acquiring a volume of corresponding simulated XAS data.

1In this case multiple scattering refers to the interference of multiple scattering paths, not to be confused
with sequential inelastic events originating from the same excitation source.
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Results

Performance on Simulated Spectra

Our RF model shows a high level of accuracy on a test set of simulated data. Figure
2a shows the R2 plot of the predictions of this test set, which contains roughly 2400
spectra. The R2 for this model is 0.85, and shows a visible high degree of correlation
across all the well represented oxidation states. The largest errors come from integer
valence misprediction, most commonly when a Cu(0) or Cu(I) spectrum is predicted
as mixed valence. However, as shown in Figure 2a, these mispredictions can often be
differentiated from the accurate predictions by using the prediction standard deviation
(described in the methods section). The feature importance plot from Figure 2c offers
insights into the origin of these errors. The model takes a small amount of information
from the pre-edge and then bases its prediction mostly on the location and shape of
the L3 peak. As Cu(0) and Cu(I) have L3 peaks at almost exactly the same energy,
these are harder to differentiate than Cu(II), which is red shifted by roughly 3 eV.
Despite this difficulty, Cu(0) and Cu(I) are accurately identified far more often than
they are mispredicted, as shown in Figure 2a. As can be seen from Figure 2b, a full
integer miss, i.e. a Cu(0) spectrum incorrectly called a Cu(I) spectrum, essentially
never occurs. Additionally, as shown in Figure 2a and 2b, the simulated mixture
samples are frequently predicted with a high degree of accuracy, showing this model
has significant potential in predicting mixed valence samples.

Model Uncertainty Metric

In this work we have developed a method for quantifying the uncertainty in our RF
model’s prediction. This is done by examining the predictions of each of the 500 deci-
sion trees which comprise the random forest as well as the averaged value used as the
final prediction. This uncertainty analysis is visualized by generating a prediction his-
togram, as shown in Figure 1 (IV) and Figure 3d-3f. Beyond the qualitative spread
of predictions shown in the prediction histograms, the uncertainty can be understood
quantitatively by calculating the standard deviation of these predictions. This is indi-
cated by the horizontal green line in the prediction histogram plots shown in Figures
1 and 3, and is used here as the RF model’s internal uncertainty measurement. To
leverage this quantitative uncertainty, the standard deviation can be used to filter out
predictions that are highly uncertain, and therefore presumably less accurate. Figure
S2 illustrates this concept, where a standard deviation threshold was imposed, and
all predictions with a standard deviation higher than this value were discarded due to
their high uncertainty. The standard deviation can be used as a powerful tool in deter-
mining significantly inaccurate predictions on simulated data, as can be seen when the
threshold is set at 0.35 (red rectangle in Figure S2a and S2b). When this threshold is
used, 15% of the predictions of our test set are higher than the threshold and discarded
(Figure S2a). However, imposing this threshold causes the RMSE of the remaining
85% of our test set to decrease 8% from the full test set value of 0.24 to 0.22 (Figure
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S2b). Therefore, the 15% of the test set discarded by this method is comprised of pre-
dictions less accurate than average, showcasing the utility of this uncertainty metric
in informing the accuracy of the model’s predictions for unknown samples.

Validation Using Experimental Spectra

To test the RF model’s validity when applied to experiments, we used it to predict a
set of metallic Cu and Cu oxide EELS standards taken with our home instrument as
well as a series of XAS spectra extracted from the literature. The simulated spectra
corresponding to the EELS standards were left out of both the training and test
sets previously discussed, to simulate a situation where the model is being applied to
previously unseen materials. These standards were smoothed using a Savitzy-Golay
filter with a window size of 1.5 eV and a polynomial order of 3. From Figure S3 it
can be seen that the level of smoothing does not impact prediction accuracy. The
smoothing window of 1.5 eV was selected as the default method due to qualitative
observations that it removed the vast majority of the noise but also preserved the
overall shape of the spectrum (Figure S4). From Figure 3e and 3f it can be seen that
the model has a high degree of accuracy when predicting Cu(I) and Cu(II), rendering
essentially perfect predictions for each of these standards, regardless of whether the
mean or the median of the decision tree ensemble is used as the prediction. However,
Figure 3d shows the Cu(0) standard appears to be slightly over estimated, with the
mean prediction rendering a larger overestimate than the median, as the two predict
0.3 and 0.05, respectively.

There are likely two factors responsible for the overprediction of Cu valence for
metallic absorbers. First, as has been discussed above, random forest models average
predictions across individual decision trees, in this case 500. Therefore, it will always be
more challenging for this model to predict Cu(0) as exactly zero, as all Cu atoms in our
training data have non-negative valence. Consequently, any spread in the predictions
will result in an overestimate. It is also worth noting that Figure 3d shows that the
mode of our prediction histogram contains Cu(0) by a factor of four over the next
highest bar, and that the median is much closer to a prediction of Cu(0). A second
factor may also partially explain this overestimate, which is that our Cu(0) likely
experienced some surface oxidation. Therefore, it may be assumed that this material
no longer had a true oxidation state of zero at the time of measurement. This is
reflected in the spectrum, which can be seen to have visibly taken on some additional
Cu(I) character relative to simulated Cu(0) and Cu(0) observed in XAS studies taken
from the literature (Figure S5, [21]). Specifically, our Cu(0) spectrum shows a drop in
intensity of the two higher energy peaks in the L3 edge and an increase in intensity in
the lowest energy peak, which are characteristic of surface oxidation leading to more
visible Cu(I) character. This, combined with the logistics surrounding the attainment
of our Cu(0) sample, the sample was not shipped in vacuum sealed vial, and the fact
that we were unable to reduce the sample in the microscope, supports the supposition
that our Cu(0) EELS sample has undergone some surface oxidation. Therefore, we
believe that this prediction of a mixed valence material closer to Cu(0) than Cu(I)
matches our experimental realities and a detailed examination of the experimental
spectrum.
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However, it is also important to note that an XAS spectrum of Cu(0) extracted
from the literature (Figure 4d) is also overestimated by our model. This is unlikely
to be a result of surface oxidation, both from an instrumental perspective and a
qualitative examination of the spectrum, which shows a much more characteristic
Cu(0) sample than our experimental EELS sample due to the relatively equal heights
of the three L3 edge peaks and the L3 being lower in intensity than the L2 edge (Figure
S1, S5). We attribute the overestimation of the literature Cu(0) mainly to the fact that
our model does not allow for non-positive predictions, which causes any uncertainty
in the prediction of Cu(0) to result in an overestimate, as discussed above.

In addition to the experimental spectra predicted in Figures 3 and 4, 8 other spectra
extracted from the literature were predicted using this model (Figure S6, S7)[47–49].
7 of these 8 spectra were materials with a Cu(I) oxidation state and all are predicted
to within 0.1 of Cu(I) when the edge alignment is correct, and most retain their
accuracy when the edge is misaligned by 0.5 eV in either direction (Figure S7). The
one Cu(II) material, CuS, is predicted as roughly 1.5. However, our model’s prediction
is likely inaccurate due to this spectrum’s high intensity post the L3 region (Figure
S8). As the Cu(II) L3 edge is roughly 2eV lower in energy than Cu(I) and Cu(0),
this increased intensity is likely mimicking a mixed valent spectrum, with this extra
intensity appearing to come from absorption from a Cu(I) material. XAS is impacted
by multiple photon scattering in very thick samples, which produces artificially high
intensity in the tail of the L2,3 edge spectrum. Therefore, we believe that this was
simply a spectrum of a very thick sample, leading to multiple scattering induced
changes to the spectrum that the model is unable to account for.

Energy Axis Misalignment

Given that we have performed a manual edge alignment correction to our training
data, we also examine the impact of energy axis misalignment on our predictions
of experimental spectra. To explore this, we created a set of experimental spectra
where the onset energy was shifted by controlled amounts and tracked how this shift
impacted the oxidation state prediction (Figure 4). From Figure 4a we see that the
energy misalignment has the greatest impact on the Cu(0) sample, and an offset of
-0.4 eV or greater causes an inflection point where the prediction jumps from 0.3
to nearly 0.5. Misalignment in the positive direction has a far less dramatic impact,
and an energy shift of +0.5 eV produces essentially no change in the prediction. The
Cu(I) sample, shown in Figure 4b, is more stable, with a shift of nearly 1 eV in either
direction resulting in a change of less than 0.2 in the oxidation state prediction. In
Figure 4c, we see that Cu(II)’s prediction is virtually independent of shift plus/minus
1 eV, which is likely explained by the greater than 2 eV gap between the onset energy
of Cu(II) vs Cu(I) and Cu(0).

To further examine the utility of our model when applied to experimental spectra,
and to further study the impact of absolute energy shift, an additional experimental
validation was done using an extracted set of XAS spectra of Cu oxides [21]. This
set of spectra has been measured to be shifted from the experimental spectra used
to validate this model by -1.0 eV for the Cu metal spectrum and -1.2 eV for the
Cu2O and CuO spectra (Figure S1, S5), and provides a test case for how the model
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will respond to spectra with their energy axes significantly misaligned. From Figure
4d-f, we can see that our ML model produces excellent results for the XAS spectra
when they are correctly aligned to our training data (red line in Figure 4d-f) and
the results are robust even when the raw spectra are predicted, which are severely
misaligned (black line in Figure 4d-f). When such a misalignment has occurred, the
Cu(I) and Cu(II) spectra are predicted with near perfect accuracy, while the Cu(0)
spectrum appears to be slightly over estimated, returning a prediction of around 0.5
when the correct alignment prediction is 0.28. It is worth reflecting that this prediction
is still an overestimate, although closer to zero than our experimental EELS spectrum
shown in Figure 3d, reflecting this model’s propensity to overestimate Cu(0). With
these observations, it is clear that the ML model trained on properly aligned spectra
can achieve highly accurate results on spectra with significant energy misalignment.
Additionally, a potential avenue to determine the true alignment location is to vary
the energy axis and seek out regions of consistent stability and low prediction standard
deviation, as these regions are often associated with more accurate predictions for our
experimental data.

Prediction of Experimental Mixed Valence Samples

Post successful proof of concept for our model on standard experimental samples,
we turn our attention to a more valuable, but also more challenging, experimental
case, the prediction of samples of mixtures of different oxidation states. As shown in
Figure 2a, our model has already demonstrated a high degree of accuracy on simulated
mixed valence samples. Additionally, we show how smooth variance in simulated mixed
valence materials excluded from the training data is captured by our model by showing
simulated mixtures of Cu(0), Cu(I) and Cu(II) in Figure S9. The important test
for the utility of this model in experimental spectra is how well this process works
on experimental mixtures of oxidation states. Due to the difficulty in engineering a
system with smoothly varying mixed valence states, and inherent uncertainties in
quantifying such a system, we have generated mixed valence experimental spectra
through linear combinations of our standard samples. The labeled value for these
experimental mixtures is determined by multiplying their formal oxidation state by
their contribution to the final mixture spectrum, as was done with the labeling for the
simulated mixtures. For example, a mixture of 40% Cu(0) standard and 60% Cu2O
standard would be calculated as follows:

0.00 ∗ 0.4 + 1.00 ∗ 0.6 + 2.00 ∗ 0.0 = 0.6 (1)

The results are shown in Figure 5. From Figure 5a-b, both plots contain regions
of high accuracy, particularly for mixtures of Cu(I) and Cu(II) (Figure 5b). Mixtures
of Cu(I) and Cu(II) are accurately predicted to within less than 0.1 in close to half
of the mixture samples. However, there are also sections of low accuracy, particularly
at inflection points where the prediction changes quickly. This is particularly true for
mixtures of Cu(0) and Cu(I) (Figure 5a), where the inflection region drives the predic-
tion into a region of significant overestimation which is not recovered until the mixture
becomes entirely Cu(I). However, in most cases the overall trend of the prediction is
correct, as in both Figure 5a and b the higher valence sample is frequently identified
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as such until a pure sample is predicted, regardless of any absolute inaccuracies in the
prediction.

Both mixed valence cases tend to overestimate the oxidation state when the higher
oxidation state sample comprises greater than 50% of the mixture. We believe this to
be a feature of the higher maximum intensity and sharper peaks of higher oxidation
state spectra. This can be seen in Figure 3a-c, where the edge intensity relative to the
tail of each spectrum is shown. This is also noticeable in the cumulative spectrum,
which is the actual input into the model, (inset in Figure 3a-c) where the lower intensity
in the Cu(0) peak results in an almost linear cumulative spectrum, while the higher
intensity of Cu(I) and Cu(II) are very noticeable as a sharply increasing region in
the L3 edge region of the cumulative spectrum. The higher intensity of the higher
oxidation state may make the fine features of Cu(0) difficult to detect at low mixture
fractions, as Cu2O and Cu(0) have their onset edges and L3 peaks at essentially the
same energy. Additionally, The slight red shift in Cu(II) spectra yields an immediately
noticeable feature for model identification, and a sample which is 75% Cu(II) and 25%
Cu(I) may simply be predicted as a Cu(II) with a shoulder or other unusual transition,
which is relatively common in the simulated data.

We have also predicted random experimental mixtures of Cu(0), Cu2O, and CuO.
This was done using mixtures of the literature XAS spectra and our experimental
EELS data. The results are shown in Figure S10a and c, respectively. They contain a
characteristic overestimation as seen in the smoothly varying mixed valent binary mix-
tures, which inspired the creation of an empirical correction to random mixed valent
spectra. The literature XAS predictions were used to train a linear regression model
to predict the true oxidation state based on the prediction of the unknown spectrum.
This was done using the mean, median and standard deviation of the decision trees
as input. The model was trained and validated using the random mixtures of the lit-
erature XAS data and tested on the predictions of the random mixtures of EELS
data. Figure S10a-b shows the predictions on the training data, the literature XAS
sample, and how the empirical correction improves the predictions. Upon generation
of this empirical model, it was used to correct the predictions of mixtures of Cu(0),
Cu2O, and CuO experimental EELS spectra. The results of applying this correction
are shown in Figure S10c-d. The generation of this empirical model shows that, despite
the challenges of predicting a pure Cu(II) in the empirical model’s predictions, the
overall trend of the mixed valent overestimation can be captured and corrected.

Comparison of Prediction Methods

As Figure 3d clearly shows that the median/mode of the decision trees yields a pre-
diction much closer to Cu(0) for our experimental EELS Cu(0) sample, and Figure
5 shows a characteristic overestimation in both types of experimental mixtures, it is
worth exploring whether using the median or the mode as the prediction, rather than
the mean, is more accurate overall. This idea is explored in detail in Figure S11, which
shows the full prediction histogram for various mixtures of Cu(0) and Cu2O (Figure
S11a-f) and compares the median, mean and mode predictions directly (Figure S11g-
i). From Figure S11 we see that, although the median is more accurate for pure Cu(0),
it quickly begins to overestimate the oxidation state by a margin significantly greater
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than the prediction using the mean of the decision trees. The mode prediction is even
more extreme, returning exclusively integer oxidation state predictions, regardless of
mixture composition. Therefore, for predictions of mixtures of oxidation states, the
mean prediction is more likely to be accurate, and median/mode statistics can be help-
ful in instances where a pure oxidation state is assumed, particularly if the material
is expected to be metallic.

Impact of Noise on Simulated Data

To test the impact of noise on the simulated data, random Poisson noise was added
to each simulated spectrum in the test set to produce a test set augmented by noise.
To ensure that this process echoed our approach on experimental spectra as much
as possible, the simulated spectra, which are on a 0.1 eV resolution, were re-sampled
using scipy’s 1d interpolation function with a higher resolution of 0.03 eV, matching
that of our experimental samples. Noise was then added to the interpolated spectra,
and these spectra were then smoothed in the same method as the experimental spectra
and integrated to produce a cumulative spectrum (Figure S4). These spectra were
then predicted by the model to test its accuracy on noisy data.

As shown in Figure 6a, the simulated data are relatively sensitive to noise aug-
mentation, and the addition of a small amount of Poisson noise resulted in an increase
in RMSE from 0.24 to 0.3 as compared to results from the noiseless spectra. Fur-
ther increase in noise led to an even larger RMSE, however the decline in accuracy
becomes less sharp than the initial slope. A similar trend is seen in Figure 6b for R2,
where a drop in R2 is observed after adding a small amount of noise, however this
decline is less sharp than the increase in RMSE, and adding additional noise has a
more pronounced decline on R2 than subsequent noise does on RMSE. Despite this
observation, our experimental spectra, which have a higher volume of noise than the
simulated low noise case, do not appear to be as affected by noise as the simulated
noisy spectra (Figure 3). An examination of the quantitative noise level of the exper-
imental spectra can be found in Figure S12, which shows that the noise STD for the
experimental EELS spectra is between 0.03 and 0.05. Additionally, the selection of
the random seed for the addition of noise appears to have a significant impact on the
overall accuracy of the noisy test set. This is shown with the error bars in Figure 6a
and 6b, which represent the standard deviation across 100 different random noise seed
states. The presented RMSEs and R2s are the average values across these 100 ran-
dom states. A detailed examination of the noise profiles for these higher error random
states shows that in these spectra the region around the baseline experiences noise
spikes that mimic features around the baseline region, similar to how an inaccurate
power law subtraction of an EELS spectrum baseline appears. This observation further
enforces that the accuracy of this model relies heavily on the accurate identification
and subtraction of the baseline.

Discussion

In this work, we have built a random forest model trained on simulated L-edge XAS
spectra which is capable of predicting the oxidation state of copper based on its L-edge
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XAS/EELS spectrum. We have also developed a database of Cu XAS spectra contain-
ing 3500 unique materials that have been accurately aligned to experimental spectra,
and augmented this database with 6000 simulated mixture spectra. Our random for-
est model attains an R2 of 0.85 on simulated data with an RMSE of 0.24 and has
been shown to accurately predict experimental spectra taken from our home institu-
tion and from the literature. Additionally, this model has proven successful predicting
mixed valence samples, showing its applicability to track Cu oxidation state in in-situ
experiments where oxidation state is changing fluidly as a reaction occurs. Beyond this
model’s utility to Cu materials, we have also developed a broader methodology which
can be extended to the analysis of other materials by acquiring a spectral database of
accurate simulated L-edge spectra for the corresponding material.

Methods

Training Set Generation

In this work, simulated FEFF9 XAS spectra of Cu materials were extracted from the
Materials Project. This initial extraction produced a dataset of site averaged spec-
tra for 1533 materials, which contains the 59 materials shown in Figure 1I labeled as
neither predicted stable nor synthesized [39]. To increase the volume of our training
data, an additional 2000 structures were selected by searching the Materials Project
for all Cu containing materials that had either been previously synthesized or were
predicted to be stable by theory [40]. This choice screens a broad material space that
is likely accessible to experiments. We computed 2000 site averaged spectra using the
Lightshow workflow [50] and FEFF9 [46]. The combination of this augmentation step
and the initial extraction of L-edge spectra already generated by the Materials Project
provided 1199 materials that both have been experimentally synthesized and are pre-
dicted to be stable (Figure 1I). For each structure, unique Cu sites are determined by
the space group symmetry. Then site specific spectra were calculated using FEFF9.
The L2 and L3 spectra for each site were combined into the L2,3 spectrum by summing
the L2 and L3 spectra, after first interpolating onto the same energy grid (Figure S13).
The site averaged spectrum is calculated from the weighted sum of site-specific spec-
tra based on the multiplicity of the unique sites in the unit cell. The oxidation states
of the site averaged spectra were determined using the Materials Project’s “average
oxidation states” function [40]. Despite this averaging procedure, greater than 93%
of the site averaged spectra retained integer valence. When FEFF9 failed to converge
for some, but not all, of the sites in a material, converged site spectra were averaged
leaving out the failed spectra.

To prepare our training set of 3500 site averaged spectra, several additional steps
were performed. This workflow is summarized in Figure 1. First, spectra were interpo-
lated to ensure they were all on a 0.1 eV energy resolution. Second, the non uniformity
in the energy range of the L3 edge, specifically at the starting point, was addressed
by fitting a 6th order polynomial to connect the lowest energy point to [925, 0] (i.e.,
vanishing intensity at 925 eV) for every spectrum (see Figure S14). The spectra were
then aligned to ensure their onset edges were in the same general energy range as
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those seen in experimental EELS Cu materials, as it was observed that FEFF9 was
producing a systematic misalignment in the absolute energy of the L2,3 edge.

To accomplish this alignment, two systematic errors were corrected. First, a high
degree of onset energy variability was observed across zero valence materials, which
would be expected to all have similar onset energies. Second, the absolute energy of
the simulated spectra were several eV off from experimental standards. Both of these
issues were fixed simultaneously by our automated alignment procedure. Below is a
brief summary of our edge alignment procedure following the ∆SCF method [51, 52],
as shown in equation (2):

Ealign = Eraw + (ϵcore − ϵFermi) + (ϵXCH − ϵGS) + ∆ (2)

where Eraw and Ealign are the excitation energies before and after alignment. In
order to correct the inaccuracy in the calculated excitation energy, we scale the raw
spectrum by the difference between the Fermi energy (ϵFermi) and Cu 2p core level
(ϵCore) and by the total energy difference between the core-hole excited state (ϵXCH)
and the ground state (ϵGS). In the core-hole excited state, the core electron is placed
at the bottom of the conduction band, known as the excited core-hole (XCH) method.
After this alignment, there is a single empirical constant (∆) calibrated on a reference
system to account for the residual discrepancy between theory and experiment. In
our study, ϵFermi is taken from the FEFF9 output corresponding to k=0, where k is
the photoelectron wave number. ϵCore is set to -916.8226 eV, which is determined by
the VASP estimation of the energy of a 2p core hole in Cu[52, 53]. (ϵXCH - ϵGS) was
computed using the VASP code base, and the values are -650.888 eV, -650.748 eV and
-651.945 eV for Cu, Cu2O and CuO, respectively [53]. In principle, one should perform
VASP calculations for all the systems in the database. However, this will lead to a very
high computational cost, which is impractical for the scope of this study. Therefore,
we treated (ϵXCH - ϵGS) as constant for each oxidation state, using the Cu, Cu2O and
CuO values listed above for Cu(0), Cu(I) and Cu(II) spectra respectively. This resulted
in a simplification of equation (2), where (ϵXCH - ϵGS) + ∆ is treated as a constant,
δox, with different values for each oxidation state. These are: 1849.06 eV, 1849.33eV
and 1846.87 eV for Cu with oxidation state of 0, +1 and +2, respectively, which aligns
simulated Cu, Cu2O and CuO spectra to their corresponding EELS experimental
spectrum. For the small subset of materials that were classified as mixed valence, they
were aligned based on whichever integer oxidation state they were closest to.

It is important to note that this alignment procedure is not aligning the edge to
the exact location of the Cu/Cu2O/CuO edges for all Cu 0, +1 and +2 spectra (i.e.
forcing every Cu(II) spectrum to start at 930.2 eV, where the CuO edge is located).
This alignment procedure computes a correction based on FEFF9’s Fermi energy
prediction and then uses the energy gap between the simulated spectrum of either Cu
metal, Cu2O and CuO, post Fermi correction, and the corresponding experimental
spectrum to scale all spectra with that oxidation state. For example, not every Cu(II)
spectrum is at the same edge energy, and many of them are quite different based on
their initial location post Fermi energy correction. The relative energy alignment from
FEFF9 within an oxidation state is often preserved, particularly for Cu(I) and Cu(II)
materials, and this scaling using the experimental spectra is done to bring the energy
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axis to experimental relevance. Without this correction, the energy axis for the FEFF9
spectra is misaligned by multiple eV and any experimental prediction is impossible.
An example of this alignment procedure is shown in Figure S15.

Our spectral dataset was then augmented by generating simulated mixed valence
samples (see step III in Figure 1, Figure S16). To accomplish this, 300 random sets
of spectra were drawn from the integer dataset, each draw taking a random Cu(0),
Cu(I) and Cu(II) site averaged spectrum. Each of these 300 sets of 3 integer spectra
were then linearly combined to mimic mixed valence structures. For each set of three
spectra, 20 random fractions of each material were combined to produce a simulated
mixed valence spectrum. To ensure an even spread of mixed valences, 100 sets were
combinations of Cu(0) and Cu(I), 100 were combinations of Cu(I) and Cu(II), and 100
were combinations of Cu(0), Cu(I) and Cu(II). This mixture produced a final dataset
of roughly 9500 spectra with data well distributed from Cu(0) to Cu(II) (step III in
Figure 1, Figure S16). Our training and test sets were generated by separating classes
of mixtures, rather than a random 75/25 split across the full 9500 spectra dataset. To
accomplish this, we tracked the compositions of each random mixture, and ensured
each composition was fully placed in either the training or test set. For example, an
arbitrary mixture of Cu(0), Cu(I) and Cu(II) would have 20 random proportions of
each material in our full dataset, and our train/test split ensured all 20 of these were
either in training or test. This ensures the model is not biased by seeing a 0.3 0.3 0.4
mixture of the above materials in training and then tested on a mixture of 0.2 0.3 0.5
of the above compounds, which results in a very similar spectrum.

To achieve the best ML model performance, we have tested different spectral rep-
resentations, including the spectrum itself, its first and second derivative, and the
cumulative integral of the spectrum. We found that the best model performance was
achieved with the cumulative integral with intensity normalized to 1. In addition, using
the cumulative integral, referred to as a cumulative spectrum in this work, as input
feature can ensure consistency in the absolute scale of the EELS spectrum. This rep-
resentation can simplify intensity scaling, as experimental post processing decisions
and noise can create a high degree of variability in spectral intensity. The cumulative
spectrum approach is insensitive to the absolute scale of the spectrum, although it
does require an accurate identification and subtraction of the baseline for experimental
spectra.

Random Forest Modeling

Random forest (RF) models for this work were trained using Scikit-learn’s Random-
ForestRegressor model [54]. The number of trees was fixed at 500, with all features
available and max depth unfixed. The dataset was split into train and test compo-
nents using a 75/25 random train test split function from Scikit-learn. The structure
of this model allows for the input of a raw spectrum of arbitrary min and max energy
and energy scale. The model then takes the input spectrum and interpolates it to a
0.1 eV resolution from 925 to 970 eV to ensure the consistency of the energy grid used
in the training data. Spectral smoothing is then applied using a Savitzy-Golay filter
from scipy [55]. The smoothing step is done before the interpolation provided that
the inputted spectrum is on an evenly spaced energy scale. The cumulative operation

13



on the spectrum is then performed and this spectrum is the input of the model. The
trained RF model is an ensemble of 500 individually trained decision trees, and returns
the predictions of each decision tree. A simple average of inferred valence values from
each tree is taken as the final prediction, although median and mode predictions can
be returned as well. The mode prediction is determined by finding the highest count
on a histogram with bin widths of 0.2. The mode is determined by finding the center
of the highest bin, meaning integer valence predictions will be returned as 0.1 higher
than the integer valence (ie a prediction of Cu(0) will have a mode of 0.1 assigned to it,
as the bin will range from 0.0 to 0.2). The standard deviation of these 500 predictions
can approximate the model’s internal confidence in its prediction, and is visualized
in the prediction histogram in Figures 1, 3 and S4, the last of which illustrates the
entirety of the processing steps performed on an input spectrum.

Experimental EELS

To validate the utility of this model on experimental data, experimental EELS spectra
of standard reference samples were measured, including Cu metal, Cu2O and CuO.
Cu metal was purchased from Sigma-Aldrich with 99.999% purity. Cu2O and CuO
were purchased from Sigma-Aldrich with 99.99% purity. The Cu2O sample was mea-
sured using a vacuum holder to prevent oxidation. However, the Cu metal sample
was not delivered in a vacuum sealed container, and under the assumption that sur-
face oxidation had already occurred, a vacuum holder was not used for this sample.
Using the TEAM I microscope, a double-corrected Thermo Fisher Titan microscope,
we acquired monochromated reference data for these samples at roughly 0.2 meV res-
olution. Data were collected at 300kV with a semi-convergence angle of 17 mrad and
a collection angle of 82 mrad. All data was collected using a Gatan Continuum spec-
trometer equipped with a K3-IS detector operated in electron counting mode. Spectra
were baseline subtracted using the GMS Digital Micrograph software package, and
spectra were taken using dual EELS to dynamically remove shifts in the reference
elastic energy and deconvolved with the simultaneously measured zero-loss region to
mitigate artifacts from electrons experiencing multiple scattering events. The decon-
volution of multiple scattering is essential to ensure the experimental EELS spectra
are comparable to XAS.

Data and Code Availability

The spectral dataset and the code to generate and analyze the random for-
est model presented in this study can be found in the GitHub repository
https://github.com/smglsn12/ML XAS EELS.
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Fig. 1 A flow chart containing the four components of constructing the training data
and random forest model. I, data is extracted from the Materials Project and scaled, aligned
and processed to ensure internal consistency and accuracy to experiments. The colored boxes in I
show how the materials project classifies the materials extracted and simulated by this work. II,
the spectra are labeled by their oxidation state using the Materials Project oxidation state function
“average oxidation states”. III, the dataset is augmented by creating mixture spectra made up of
linear combinations of integer valence spectra. IV, the random forest model is trained and validated
using test simulated data and experimental reference samples [40].

Fig. 2 The performance of the random forest model on the test set of simulated data.
(a) R2 plot, where each spot’s size is proportional to the number of spectra at that point and its
color corresponds to the prediction’s standard deviation. (b) histogram of the absolute errors, with
the vertical green line showing the location of the root mean square error (RMSE) and the vertical
red line showing the location of the mean absolute error (MAE).(c) feature importance of the random
forest model plotted on the same energy axis as the spectra.

Fig. 3 The performance of the random forest model on experimental Cu oxide EELS
standards collected in this work. The top row (a, b, c) shows the raw spectrum with the cumu-
lative spectrum as an insert. The bottom row (d, e, f) shows the prediction histograms for each
spectrum, where the grey bars correspond to the number of decision trees predicting values over that
range. The formal oxidation state is shown by the vertical blue line in each plot, while the predic-
tions generated by the mean and median of the decision tree predictions are shown in red and orange,
respectively. The standard deviation of the decision tree’s predictions is shown as a green horizontal
line.
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Fig. 4 The impact of energy misalignment on the prediction for EELS spectra taken in
this work and XAS spectra extracted from the literature. Experimental EELS spectra are
shown in (a-c) and literature XAS spectra are shown in (d-f) [21]. The spectra are shifted horizontally
on the energy axis by the amount indicated in the x axis but are not changed in any other way. The
scatter plot color corresponds to the prediction’s standard deviation. The horizontal orange dashed
lines show the location of the formal oxidation state of each material. The dashed black line indicates
the location of the raw spectrum without any energy axis shifting. The red dashed line indicates the
amount of energy axis shifting required to bring the experimental spectrum’s onset energy to the
same value as its corresponding simulated spectrum in our dataset.

Fig. 5 Performance of the random forest model on experimental mixed valence spectra.
(a) shows mixtures of Cu(0) and Cu(I), while (b) shows mixtures of Cu(I) and Cu(II). The scatter
plot color corresponds to the prediction’s standard deviation. The dashed line indicates the location
of a perfect prediction, while the vertical lines indicate the standard deviation of each prediction.
The vertical lines show one standard deviation in the negative and positive direction.

Fig. 6 Random forest model performance on simulated data augmented by Poisson
noise. The standard deviation of the Poisson distribution used to generate the noise is shown in the
x axis of each plot. The error bars denote the standard deviation of the RMSE/R2 across 100 random
states for that noise standard deviation value.
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