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Abstract: The double-pomeron coupling strength ~'n tile dual resonance model is found in both 
the inclusive and exclusive regions by comparison with experiments. Double-pomeron 
coupling occurs in inclusive experiments in the Mueller diagram for the central plateau 
region. Its strength can also be bounded from its non-observation in the two-particle to 
four-particle exclusive experiments. The dual resonance model is used to perform the 
analytic continuation of a six-point amplitude between these regions. The results show 
that the coupling strength for two forward pomerons in the exclusive region must be less 
than 1 of that in the inclusive region. This is experimental evidence for substantial for- 
ward double-pomeron decoupling in exclusive processes. 

1. Introduction 

In order  to learn more about  the nature of  the pomeron  singularity, we have ex- 

amined theoret ical  models  for doub le -pomeron  exchange in two of  its exper imenta l  

occurrences [1 ]. The first occurrence is in the observat ion o f  a central  plateau or 

p ionizat ion region in the single-particle spect rum at ISR energies [2]. The pionizat ion 

cross section has been related by Mueller [3] to an absorptive part o f  a forward 

3 -~ 3 scattering ampli tude involving doub le -pomeron  exchange as indicated in fig. 

la. The  second occurrence is in the 2 ~ 4 p roduc t ion  ampli tude in the double  Regge 
region as in fig. 2a. This has been studied for 7r p ~ ~-(Tr+~r - )  p at 25 GeV/c  by 

Lipes, Zweig and R o b e r t s o n ( L Z R )  [4]. More recent ly,  others  [5] have also searched 

for double -pomeron  exchange in pp -+ p Qr+Tr - )  p. 
In this paper we will s tudy the dual resonance mode l  tree diagrams for the six 

point  ampli tude with the inclusion o f  pomeron  trajectories.  The dual resonance am- 

* Supported in part by the US Atomic Energy Conmlission. 
** Supported in part by the National Science Foundation. Technical report no. 73-1.  
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plitude can be analytically continued between the pionization and production region, 
and we will determine the double-pomeron coupling strengths needed for agreement 
with each experiment. We find that the coupling strength in the exclusive region 
must be about 1 of  that in the inclusive region. By fixing the double-pomeron 3~  
coupling strength from the inclusive experiments, we can quantitatively state from 
the exclusive experiment that double-pomeron exchange must decouple in the for- 
ward exclusive process by at least a factor of  3@0. This experimental evidence agrees 
with the proof  of  Finkelstein and Kajantie [6] that double-pomeron coupling must 
vanish in the forward exclusive process if the pomeron is a Regge pole of  unit inter- 
cept. 

The relation of  the absorptive part in M 2 = (Pa + Pb + p~_)2 of  the forward six- 
point function for a + b + ~-~ a + b + ~-to the inclusive single-particle spectra for 
a + b ~ c + X has been derived by Mueller. It was applied to the dual resonance mod- 
el six-point amplitude by DeTar et al. [7] and others [8]. We present the form suit- 
able for pomerons of intercept one in the forward direction and obtain the double- 
pomeron coupling strength by fitting to the pionization spectrum. 

The six-point dual model may also be used to evaluate the 2 ~ 4 cross section in 
the double Regge region. Since LZR did not observe double-pomeron exchange we 
can set an upper limit to the double-pomeron coupling strength in this region. Since 
the pomeron exchanges should be strongly damped in momentum transfer, we ap- 
proximate the dual resonance model for pomeron exchanges at zero momentum 
transfer (forward kinematics) and add phenomenologically the observed exponential 
damping in pomeron momentum transfers. 

The dual diagrams for the six-point function which are present in the double 
Regge limit with pomeron exchange are shown in figs. 1 and 2. Only the diagram of 
fig. la has an M 2 absorptive part and contributes to pionization in the 3--3 region. 

c ¢ 

~ a 

o b ~ b 
c ~ o b 5 b 

(a) (b) (a) (b) 

+ ( c . , ~ )  
c C 

b a b 

o 
c ~ a 6 

tc) (d) (c) (d) 

Fig. 1. Dual resonance model diagrams with 
double-pomeron exchange contributing to 
Btu. Only (a) has an M 2 discontinuity in the 
inclusive region. 

Fig. 2. Dual resonance model diagrams with 
double-pomeron exchange contributing to Bst. 
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However, this term and the additional signature terms in fig. 1 actually vanish in the 
analytic continuation to the forward 2 - 4  region. So the diagrams that give the 
2 -+ 4 cross section in the forward limit are those of  fig. 2. By the use of  crossing, 
the coupling strength for diagrams of fig. 2 with pion poles in pomeron + pomeron 
-+ rr + rr must be the same.for the diagrams of  fig. 1 for pomeron + rr -+ ~r + pomeron. 
This connection allows us to compare the coupling strengths in the pionization and 
production regions. The coupling strength call also be obtained from the residue of 
the pion pole in the 2 -+ 4 double-pomeron exchange. The value obtained there is 
consistent with the limit set by the LZR analysis. The inconsistency of the coupling 
strengths we find arises because the full dual resonance amplitude for double-pome- 
ton exchange does not satisfy the decoupling behavior in the forward exclusive pro- 
cess as required by unitarity [6]. 

In sect. 2 we evaluate the dual resonance model six-point function in the double- 
pomeron exchange limit and construct the signature structure. In sect. 3 we eva- 
luate the six-point amplitude in the production region with the forward scattering 
approximation and show that the diagrmns of fig. 1 vanish here. In sect. 4 we com- 
pute the production cross section using the diagrmns of  figs. 1 and 2 and find the 
strength of  the coupling consistent with the LZR experiment. The strength of  the 
coupling consistent with the pionization region is found in sect. 5 where we take 
the M 2 discontinuity and compare it to the ISR data. Our conclusions and a discus- 
sion of  the theoretical sources of  the discrepancy of the double-pomeron coupling 
strengths are presented in sect. 6. 

2. Dual resonance model for six-point amplitude with double-pomeron exchange 

Tile dual resonance model for the six-point amplitude in the Bardakci-Ruegg [9] 
formulation gives a completely defined form for the amplitude. In the regions in 
which c and g are close in momentum space (%~, not large) and double-pomeron 
exchange is dominant, the amplitude has contributions from the twelve diagrams in 
figs. 1 and 2. The pomeron exchanges are in the ah and bb channels, and the analyt- 
ic form of the amplitudes are completely specified by the ordering of the external 
lines. 

In the production region we label the momentum as in fig. 3. The correspondence 
is 

Pa=P0  ' P ~ - = - P l '  Pb=P5  ' Pb = - p 4 ,  Pc = P2' Pc py(2 .1 )  

The double-Regge region has Scc = (P2 + P3 )2 ~ 4m2 fixed and Sac, Sc~ and Sab posi- 
tive and becoming asymptotic. This results in S~acSc~/Sab remaining finite in the phys- 
ical region. 

In the pionization region 

Pa = Pa '  Pb = --Pb'  Pc = -- Pc = q ' (2.2) 
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Pl P2 P3 P4 

o b 
PO P5 

Fig. 3. Labeling of momentum vectors in the production region. 

where q is the momentum of the observed particle, so that Sce is fixed at zero. Also 
Sae , Sb~ and M 2 = Sab e become asymptotic with 

SaeSbe 2 + m 2 (2.3) 
- q ±  

Sab ~- 

fixed. 
Thus to get the double-Regge behavior in both regions we analyze the six-point 

function in the limit 

O~a~ 4 _ 0 0  ~a - + - - ~  C~b~ 4 _ 0 0  
C ' 

ab- c ~ _ oo O~ab~_ ~ _ oo , 

with the following ratios fixed: 

OtEc OCb~- O~a~- O~b~- OtVc ~- Otc~ b- 

°~a~- Otb-c eab~- ~Ec °tcb- 

(2.4) 

(2.5) 

We need only present the calculations of  the first diagrams in fig. la and fig. 2a. This 
is because the values of  the other diagrams, which make up the signature structure, 
can be found by substituting different variables in the results of  the first diagrams, 
with appropriate continuations around the cuts. 

The sum of  the diagrams in figs. 1 and 2 is written as 

T= 1_~ GaGbG2 gP (Btu + Bst) ' (2.6) 
rr2s 0 

where G a is the coupling strength of  the pomeron to particle a at zero-momentum 
transfer and gp is the remaining coupling strength to be fit to various experiments; 
Bst is the sum of  diagrams in fig. 2 and st refers to the fact that it has dual poles in 
the s- and t-channels, as well as the s~and u-channels of  pomeron + pomeron 4 n+n - ,  
while Btu is the sum of  diagrams in fig. 1 and has poles in the t- and u-channels of 
pomeron + pomeron 4 n+n -.  We first calculate the double-Regge limits of  the first 

1 and B~t , respectively, and then discuss the rest of  diagrams in fig. la and fig. 2a, Btu 
the diagrams through the signature factors. 

We begin with Bltu of  fig. la, and the method follows that of  ref. [7] but without 
the restriction to the pionization region *. The six-point amplitude for B ltu can be 

* We are indebted to C. DeTar for showing us the method for handling these integrals. 
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c 

Fig. 4. Bardakci-Ruegg form of the amplitude which gives fig. I a after performing a dual variable 
lransformation. 

obtained from the Bardakci-Ruegg form for a + ~ -~ g + c +b + b (fig. 4) by a dual 
variable transfomlation [91 

1 - x  2 

x - 1 - z x  2 ' 

and gives 
1 1 1 

Bnl= f f f dXldZdX2XlC~a~ 1 z-%5 c l x2C~b-b-1 
0 0 0 

X (1 - x1 )-c~fic-1 (1 z) -aa~e- 1 (1 - x 2  )-c~bc:- 1 

X (1 XlZ)-aabe+a~c+abc(1 - x 2 z )  -c~ab~+c~be+aae 

X( I  XlZ-X2Z+XlX2Z) aabe+~aae-abc C~a~ 

Since the double-Regge region eq. (2.4) and (2.5) is dominated by 

x 1 ~ O ( -  1/aac- ) , x 2 ~ O ~-  1/O~be ), 

we substitute 

x 1 = 1 -- exp (Vl/aae),  x 2 = 1 - exp (y2/ab~-) , 

(2.7) 

(2.8) 

and drop terms in O (1/C~ac), O (1/abe), to obtain 
l 

Bt ul =(-o~, ac"~aaa (--°tbe -)w°b ; dz z - aaac - I  ( 1 - z )  -~ac 11 , (2.9) 
0 

with 

I= f f  dYl f dY2 YlC~aa-l y2  c~b~-I 
o o (2.1o) 

+ exp I -  Yl _ Y2 aabc z "1 z)-] 
~-~c (z~a-c+(1 Z) Oegc) "~cb~(ZOtbc+(1--z) O Z b g ) + Y l Y 2 ~  1" -- 1 

The integrals over Yl, Y2 converge in the limit (2.4) and (2.5) and can be expressed 
in terms of the confluent hypergeometric function U(o~, t3; ~) (ref. [11]) (also called 
q~, ref. [12]) yielding 
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1 
Btu = [ ' (-Otag ) ['(--OCb~ ) 

1 

f dz z - aaac -  1 (1 - z )  -aage-  1 
0 

X [--O:a~- z -- O~ac.(1 - -z)]  C~a~ [_0% c z -- abV (1 - -z)]  ~b~ (2.11) 

X ( _ y ) - ~ a ~  U ( _ a a ~  ' _ % ~  + % G  + 1 ; - y ) ,  

where 

[aa~ z +O~ac(1 - z ) ]  [agc z +abV(1 --z)]  
Y = O~ab ~ z(  1 - z )  (2.12) 

The U-function has a cut  for negative argument,  i.e. y positive, and in the forward 
3 - 3  region for pionization 

aa~ °~b~ 
Y = ~ab~Z(1- -z )  

i.~ positive and provides the M 2 discontinuity through aab ~. The duality of  fig. la  
shows up in (2.11) by the simultaneous Regge behavior in bo th  aa~ and a ; o  as well 
as a~- c and abe .  The expression is also unchanged under (a, b, c) +* (g, b, ~-) as can be 
seen by substituting z -* 1 - z .  

The other  diagrams in fig. 1 can be obtained by the appropriate interchanges of  
momenta .  For  example, to evaluate the diagram of  fig. lb we interchange in (2.11) 
and (2.12) 

a ~ g ,  

O~ab g -+ O~a_b2 

~aE '+ o¢__ ac 

--o/s ~ --aab ~ , 

-- O~a~- , 
(2.13) 

O~-ac ~ O~ac -- o~_ c . 

For the pionization region, we take the Otab ~- discontinuity in the ab~ channel to ob- 
tain the single-particle spectrum. This arises from only fig. la [7] since the other  am- 
plitudes do not  contain aab~" 

In the product ion  region we use the + i e prescription embodied in [13] 

~gc + i e  = -- e - h r a g c  = e-iTr~ - -  
' °ta c a c  ' 

ot~- c + ie = -- e-irra-b c ' o ~ -  = -- e-i~ro~--b c ' 

- " = --  e -  inoL O~ab ~- + i e  = - -  e t~rotab ~ , O~a~- c a b c 

(2.14) 

(2.1S) 

(2.16) 
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This involves carefully accounting for the phases in the terms of (2.11) and the cros- 
sed terms of fig. 1 as well as for the cuts iny  for the different regions o fz  integra- 
tion. Defining 

1 1 
- - , z b = , (2.17) Za 1 aa ~ / a ; c  1 a ~  

we find the result for the sum of the diagrams in fig. 1 in the production region 

Btu = r (-- aa5 ) F (-- able) (a~c) aah- (a~c)ab~ 

1 

x f dzz-%Sc-l(1 z) -~a~V-1 II -Z/Za laaG I1 z/z b 1%6- 
0 

X ( l + e  "rC%a)(1 +e bb)( y _ i e ) - a a a u (  aara " aa~+able+l .  

y i e ) -  2 i d i s c y [ ( - y  ie)--%mU(-aa?,-aa~ +able+ 1" y--ie)].  (2.18) 

To evaluate the double-Regge limit of the diagram fig. 2a we begin with the 
Bardakci-Ruegg form [9] 

I 1 1 

Bl=st f f f dUl du)du3_ u I  aag l ( l  - U l  ) c~-c-- 1 
0 0 0 

X u - a a g c - l ( 1  u2 )-acc--1 u3a'bb-1 (1 -- u3)-acb--1 
2 

X (1 UlU2) ~acc-÷a~c+~cc(1 u2u3 )-c~ccb+ac~+acb 

X (1 --UlU2U3 )-aab+agc~+accb ace 

double-Regge limit For the 

--)- o o  --~ - - 0 o ~  aa c , ac b ~ _ c~, aa b 

aac a ~  a~c e ac~  
t¢ -= , , f ixed,  

aab O~aa c O~cb 

we substitute 

(2.19) 

(2.20) 

U 1 = 1 -- exp (yl/aS-c) , u3= 1 -- e x p ( y 3 / a ~ ) ,  (2.21) 
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and drop higher-order terms in O(1/aa-c), O(1/ac~ ) in the integral to obtain 

1 
1 a aa'5 u~%ac-z 1 u2)-a  c ~ - _  - 1 Bst= ( -  gc) ( - a ~ )  w°~ f du 2 (1 - 

0 

X dY 1 f dY3Yl a a ~ - I  y 3  a~°~-I (2.22) 
0 0 

[ yl y3 aab 
× exp - aggc (agc(1 - y 2 )  + afi-cc-U2) - a ~  (a~b(1 - u 2 )  + acc~ u2)+YlY3U2 agca~J 

These amplitudes for fig. 2 do not have discontinuities in aab- ~ and do not contribute 
to pionization. The Yl and Y3 integrals may be done as in (2.11) and changing 
u2=z  

1 

1 _ f dz z -~a~c- _z)-acE - 1 B s t _ y(_aag ) p(_ab~.)  1 (l 
0 

X [-O~ac~Z - a~-c( 1 - z)] aa~ [_acc~ z - acl ~ ( l - 2)] C~bb (2.23) 

X ( - x )  aaa U ( - a a 5  , - a a ~  + ab~ + 1; - -x ) ,  

where 

[age ~ z +a5-c(1 - z ) ]  [acc  b z + a ~  (1 - z ) ]  
x = (2.24) 

aab z 

In the production region x is positive and we again have a cut from the U-function, 
which gives rise to cuts in s or aab" The sum of the diagrams in fig. 2 gives rise to the 
signature structure for the exchanged pomerons and is carried out analogously to 
(2.13) - (2.18): 

Bst = (1 + e iTrc~) ( 1 + e iTmb~) B l ( x  + ie) 
(2.25) 

- e iTrc~a~ e ilrc~b~ (Blst (x + ie) - B 1 (x - ie ) ) .  

For future use, we record that the U-function may be written in terms of the 
entire function M(ref. [11]) (also called ~ ,  ref. [12]) 

/r t ( - -y ) -a l  M ( - a  1, - a  1 +a3+ 1 , - y )  
( _y ) -~ l  U(_a l ,_e t l  +a3 + l ; _ Y ) =  sin rr (a3_al  + l) [ ~ ~ ( ( - a l l  ~ ]~ 

( - y ) - a 3 M ( - - a  3, ---a 3 + a  t + 1, -Y) /  

- F ( - a l )  F( - -a  3 + a 1 + 1) / (2.26) 
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The discontinuity of  this function f o r y  ~> 0 may be found from this form. The dis- 
continuity cancels the poles in cq and c B and gives 

hn v {lp(_C~l) P(_c~3)(__.v ) ~1 U(_o~I, o~ 1 +~3 + 1, y)} 
(2.27) 

- lr e2Vy {q U(o~ 3 + 1, -oe 1 + {t 3 + 1, y)  . 

Another formula of  interest for double-pomeron exchange [1, 11 ] is that at 

oe 1 = I, o~ 3 = 1 

e y U(2, 1,y)  = (1 +y) E 1 Cv) - e y , (2.28) 

where E 1 is the exponential integral. 

3.  S i x - p o i n t  a m p l i t u d e  in th e  p r o d u c t i o n  r e g i o n  

In calculating the amplitude and cross section in the production region we will 
insert the physical knowledge that momentum transfers associated with pomeron 
exchange are strongly damped, since this is not present in the dual model. We thus 
insert the factors e s2sa~ e g2sbb with g2 = 5 GeV -2  in the amplitude for each pomeron 
exchange. These phenomenological factors have been used by others for treating 
pomerons in the dual model. This damping in sat = (Pa + p~)2, Sb g = (Pb + pg)2 moti- 
vates the simplifying approximation of  taking SaT ~ O, Sbg ~ 0 in the rest of the 
amplitude. We define invariants for pomeron-pomeron -+ n+n 

7-ZO~aa c =o/(Saa c - m2) ,  
(3.1) 

v =- c~aa e = a ' (sa~ - m 2) , 

where m is the pion mass and a '  the slope of  the trajectory. Then in the limit Ssc, 

So- b ~ ~,  see fixed, and 

(v) °(0 sa~a, Sbb 0 + 0 1 + , (3.2) 

we obtain the forward kinematics: 

r + u + ~ ' s - = O  (3.3) 
CC ~ 

°t~-cc accb , Scc t.},+/r-,~, 

O~ac O~cb 7 

(~gc @b~ 

~a-c C~gc 
; (3 .s)  } 
U 

o~ _ = o /  ( 3 . 6 )  ace (~ccb O~ab Sc~ ' 
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°~aac abe %-c a ~  r 2 
. . . . .  - r-  (3.7) 

aab ~- aab a Sc~ 

In the contributions of  Bltu and B~t to the parts of Btu and Bst not involving dis- 
continuities, the forward kinematic approximation aa~ = 1, ab~  = 1 allows consider- 
able simplification since the U-function becomes a polynomial [11 ] 

U ( - 1 ,  1, - y )  = - ( l + y ) .  (3.8) 

In the part of  Btu not involving the discontinuity the signature factors in (2.18) 
cancel the poles in (2.1 l) and the result at aa5 = 1, ab6 = 1 using (3.8) is 

Btu = 7r 2 {aabB( - - r+l , - - v+l )+aa~agcB( - z+  2,--:v ) 

+(~ca~c+aa~abe)B(-r+ l , - v +  l) +a~cabvB(-r ,--v+ 2)} (3.9) 

- ( B ~  Cv + i~) B ~ (y  - iO) /u 

where 

B(x, y) = r (x )  r ( y ) / r ( x  +y)  . 

Now applying the foward kinematics (3.3) - (3.7) we find that the non-discontinuity 
terms vanish in the forward direction. 

The discontinuity of  B 1, arises from the cut of  the U-function eqs. (2.11) and 
(2.12) when y ~> 0. In the production region, since aa~, abe < 0 and a~c , OC6c > 0 - 
this occurs for 

1 1 
- -  ~ < z ~ <  - - - = z  b , ( 3 . 1 0 )  

Za ~" 1 - aa~ /a~c 1 - O~c/abc 

or with reversed order when necessary. In the forward approximation, however, 
from (3.5) we find that z a = z b so that the integration over the discontinuity vanishes, 
provided that the integral is non-singular in the forward limit. This can be shown 
using (2.11) and (2.27) by first taking the discontinuity and then the forward limit 
aa~ = 1, ab~ = 1. 

Thus we find that the continuation of the Btu term, which gives the M 2 discon- 
tinuity for pionization, vanishes in the forward direction in the production region: 

Btu = 0 (at Sa~ = Sb6 = 0) .  (3.1 1) 

Although the Btu term does not vanish in the non-forward directions, it will be 
smaller than the Bst term for some region around the forward direction. Thus we 
neglect the Btu term with respect to the Bst term in calculating the cross section in 
the production region. The application of crossing in the pomeron + pomeron - nrr 
part of  the amplitude requires that the Bst term have the same coupling constant as 
the Btu term. 
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We now evaluate the terms in Bst in the forward production region, taking for 
the trajectory in the d~ channel act. = a Scc + a o. Using (2.23) and (3.8) for aaa = 1, 
¢tb~ = 1, we can perform the integration and obtain 

Bst .... rr 2 aabB (- r +  1,- ac~)+C~gc ~ ac~-f~B(-+ r + 2 ,  +act+) 

+(aaccacb+a~a.accb)B( r + l ,  a @ + l )  (3.12) 

+%c%~oB( - r ,  % c + 2 ) }  - (B~t{x+ie) B ~ t ( x - - i e ) ) + c , . a .  

Using the forward kinematics (3.3) - {3.7) we find 

, s F ( -  r + l ) P ( a c e )  

(3.13) 

-- (Bi l l (  "~ + i+ } a ~1 ( x --I -- i {  ) ) } C - -  

The interchange c ++ E is accomplished here by interchanging r and v. 
We note that in the case when c+cc is the pomeron, the intercept is % = 1 and the 

pomeron gives a vanishing contr ibution to the non-discontinuity terms in Bst in the 
forward direction. Since the ?r~r channel also receives contributions form the P' tra- 
jectory which will not vanish in tile forward direction, we will keep only tile P' in 
Bst as tile dominant contribution.  

The discontinuity in Bst can be taken for ¢taa :/: 1, Olbb ~ 1 using (2.27) and then 
evaluated at aaa = 1, ~bb = 1 using (2.28) 

1 

o (3.14) 
X [ ( I + x )  E | ( x ) - e ? : ]  + c ' , ~ c ,  

where in the forward kinematics 

r(1 ell2 
x = , (3.15) 

OZS _ Z 
CC 

We see that this absorptive part in x or Sab does not have a pion pole in the overlapp- 

ing variable r -- Cea~ c at r = O. 
Fur themmre,  although hn B~t has a pole at ace = 1, the symmetrizations of 

c ~ v guarantees that this pole occurs in the S-wave from tt~e daughter trajectory, 
not in the P-wave. For  the case where ace- is the pomeron, this result coupled with 
(3.13) shows that the triple pomeron vertex vanishes in the dual model when all 
pomerons are at unit angular momentum. This has already been verified for the dual 
model in the triple Regge inclusive region [14]. Some of  the decoupling properties 
of  pomerons in the dual resonance model have also been found by others [15]. 

In the evaluation of  the cross section in the production region we will not include 
the discontinuity parts since it is sufficient for our purposes to shows that the non- 
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discontinuity parts of  (3.12) by themselves give much too large an exclusive cross 
section when using the coupling constant found in the inclusive region. 

We can independently fix the double-pomeron coupling strength by factorization 
at the pion pole r = 0 or v = 0. A pion pole at r = 0 exists in the four diagrams of  
fig. 1 and only the first four diagrams of fig. 2, since the interchange of  c ~ ~ puts 
the poles into v = Rag ~ . 

Since the poles are at spin zero, the six-point function splits into a product of  
four-point functions. The residues of  these poles in the double-Regge limit can be 
evaluated for Btu from (2.9) where the pole occurs from the divergence at z -+ 0 and 
integration by parts evaluates the remainder of  the integrand at z = 0 giving 

] ~ . c ~ a ~  
B t u ' + - T l ,  O t g c )  (O~c)~bb IF'( Rag)F(--Otb~ ) 

_ hrC%a) _ t~a bb-- (3.16) 
X ( l + e  ( l + e  ) . 

The discontinuity term in (2.18) does not possess a pion pole since it is a discontinui- 
ty in Otab e- which is an overlapping variable to Ra~ c. Similarly we can evaluate the 
pion pole residue for Bst from (2.22) with u 2 -+ 0 

gs t .+(_r  ) 1 (Rgc)C~ag (oe~_~)ab~ p ( _  Sag ) l-'(--Rb~ ) 

• - ( 3 . 1 7 )  
X (1 +e -z'r%a) (1 + e z'r~bb) . 

Again the discontinuity terms in %b does not have a pion pole since aab overlaps 
%g,c- The pion poles in (3.16) and (3.17) add and in the forward direction contri- 
bute to (2.6) 

2 GaGbG2rr gP (age) (Rg~) .  (3. l S) T = r T  0 

By factorization of T into a + 7r and b + rr forward absorptive parts we find gp = 2 ~ in 
the production region. 

4. Cross section for two-pion production in the double regge region 

From the analysis of  the previous section, we use the dominance of  the forward 
amplitude through the Bst term to calculate the cross section for 7r-p -+ rr-(rr+rr - )  p. 
Including the momentum transfer damping in sag, Sbg with g2 = 5 GeV -2 we have 
in this approximation from (3.13) 

GnG p G27r gp s2(Saa+Sbb) s T ~  - -  e - -  ~(Sce, r) , (4.1) 
s o s o 



472 C.H. Mehta, D. Silverman, Double-pomeron decoupling 

where 

s o V ( - 7 +  1) F( ace ) 
~ ( S c ~ ' r ) -  Scc F( z-O~cc+2),, (1-c~0) [o~0(r- l)+ac~- ] + c ~ .  (4.2) 

We take ¢tce to be the P' (f0) trajectory with 

' ( S c c -  4m2 i 
c~ = !  +C~Sc~+imf~ r fo  - -  - -  (4.3) 

c~ 2 .. m~o -- 4m 2 ' 

where 

m~o_= 1.6GeV 2 , mfoFfo  = 0 . 2 G e V  2 Q 

The phase space for the cross section is factorized [1] in terms of a pseudo-three- 
body phase space for the production of a body of mass squared Scc = (Pc + Pc )2 
times the two-body phase space for pomeron + pomeron ~ n+n- .  The pseudo-three- 
body phase space involves the subenergies s I - S~ce-, s 2 - Sc~ and the momentum 
transfers Sa~, Sb~. The two-body phase space involves sc- c and z = aa~ c. The separation 
is carried out in detail in ref. [1]. The result for the cross section is 

G6 G 2 2 
d o _  rr pgp 

dSce 2(27r) 8 s 21312 ; (4.4) 

13 is the three-body phase space in which the saT, Sb~ integrations over (4.1) can be 
done exactly giving [16 *, 1] 

f eA 7r-  sinh X (4.5) 
13 = 4s 2 dsl ds2 X ' 

where 

I 1 2 2  _ m  2 ] A=~2  Sl+S 2 2 s + 3 m ~ + 3 m 2 - - s ( m b - - m a ) ( S 2 - - s  1 a+mb 2) , (4.6) 

rn 2 rn 2) 
X 2  _ X(s' a' ~22 { X(S, Sl, m2) + X(s, s2, m ; )  

s2 (4.7) 

+ 2s(s -s I -s 2 -rn 2 --m2b + 2Sc~ ) 2(s I --m 2) (s 2 --m;)} 

~(x,  y,  z)  = x 2 + y2 + z 2 _. 2xy _ 2yz _ 2zx . (4.8) 

* The integral is in fact ~ the value given in this reference. 
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This is integrated over the physical region subject to the additional constraints used 
by LZR [4] to isolate only the double Regge region 

Sl ~> 2 GeV2 , s2 ~>4 GeV2 , s3 - (pg +pg)2 ~> 4 GeV2 ; (4.9) 

12 is the two-body phase space which can be factorized from 13 by taking the for- 
ward approximation of Sa~ = 0, Sbg = 0 in the limits o f I  2 giving 

T +  

12 _ 2a~crr £ f  dr Iq2(Sc-¢, 7")12 , (4.10) 

where 
1 

1 i r e  =~c~ [-Sc~ • (sc~ (sc~--4m2))  ~ I - (4.11) 

The integrals 12 and 13 are evaluated numerically. 
The zero-momentum transfer pomeron couplings G a, etc., can be evaluated from 

the optical theorem 

GaG b 
otot = I Im T el ( s , t  = 0 ) -  (4.12) 

ab SO 

With s O = 1 GeV -2, we find from pp and ~ p total cross sections 

GTr = 6.2 , Gp = 10.0 . (4.13) 

With the value g_ = ½, the calculated spectrum do/dsce is just bounded by the 
spectrum found byeLZR [4]. 

The integrated cross section in the LZR region with gp = ½ is 

o LzR - 55/ab (4.14) 
c a l c  - 

which is below the cross section observed by LZR of 

0 L Z R  = 90/~b . (4.15) 
e x p  

Since most of  the LZR cross section was accounted for by (P', P) and (p, P) exchange, 
this sets an upper limit in the production region 

gp < ½ . (4.16) 

5. Double-pomeron coupling strength determined from pionization 

We will now compute the single-particle spectrum in the pionization region of  
0 1 

Iq= m l <  O (s~) by using the Mueller optical theorem. The optical theorem relates 
theY'd2 = (Pa + Pb + p~_)2 discontinuity of the forward amplitude for Tab~._ , abe to 
the single-particle cross section. In our normalization this is (see ref. [1]) 
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do 1 
d 3 q / E  2s (2n) 3 ImM2 Tabv-'abv ' (5.1) 

We now compare the M 2 discontinuity of  the dual resonance model with the re- 
cent 1SR measurements of pionization to determine the value ofgp  needed to fit the 
data. The M 2 discontinuity is only contained in the diagram of fig. la  or the B 1 tu 
term of (2.18) which contains C~abV, as discussed in sect. 2. This was first computed 
by DeTar et al. [7]. In the forward amplitude of(5 .1)  for pionization, the momenta  
a r e  

Pa = - Pg  ' Pb = P b  ' Pc = Pc = q ' 

= 0  a - - = 0  s = 0 ,  (5.2) O~a~c ' a a c  ' a a  S b b  = 0 , 

O~ag = ~a i :  ' Otb~ = ° t b c  " 

The y-variable occuring in Bltu in (2.11) is then in the pionization region 

, 2 O~ac agc 0~ (ql + m2) 
- ( 5 . 3 )  

) '  - aabr z(1 --z) z(1 -- z) ' 

and is on the y / >  0 cut for all 0 ~< z ~< 1. The M 2 or y discontinuity for (2.11) is 
taken using (2.27), and evaluating it at aa5 = 1, O~bb- = 1 gives [7] 

1 

B 1 J dz e --v U(2, 1 y)  (5.4) l m M 2  tu = - n ° ~ a b ~  ' " 
0 

Combining this with (2.6) and using the simpler form (2.28) we find for the single- 
particle spectrum (5.1) in the pionization region 

1 
do _ 1 c,' j dz [(1 + y ) E l ( r ) - e  --v] , (5.5) 

d3q/E ( 2"n')4 S-o0 GaGbG2rrgp 0 

2 behavior of  the where y is given by (5.3). We note a similarity of this to the q± 
multiperipheral model with exponential damping in momentum transfer [1, 17] 
which is a function of K = k (qi  2 + m 2) 

do -MP 
d 3 q / E  cx [(1 + K ) E  1 (t~) - e K] , (5.6) 

where k has been determined from data to be k = 2.7 GeV -2. 
We find the value o fgp  by matching the prediction at q2 = 0 from(5.5) with the 

extrapolated value of the ISR data on p + p ~ lr -+ + X from the Saclay/Strasbourg 
collaboration [2] which gives at q± = 0: 
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do (ql  = 0) ; 140 mb/GeV 2 . (5.7) 
d3q/E 

The integral in (5.5) at q± = 0 is 0.90 and using (5.7) with (4.13) we find the intrins- 
ic strength of the double pomeron coupling to be 

gp= 150. (5.8) 

This is the same order as the value found from pionization in the multiperipheral 
calculation [1] since the behavior of the dual model (5.5) is quite similar to (5.6), 
and fire same factorizable coupling constants G,, etc. have been removed to make 
the definitions Ofgp equivalent. This is two orders of magnitude larger than the 
coupling consistent with the exclusive region result of eq. (4.16);gp ~< 1 ~-. 

6. Conclusions 

From the discrepancy of a factor of 300 between the coupling strengths needed 
to satisfy inclusive and exclusive experiments, it is clear that the dual resonance 
model tree diagrams do not perform a good continuation between these regions. 
This reduction of the coupling in the exclusive region is similar in magnitude to that 
found using a multiperipheral model for performing the continuation [1 ]. 

Theoretically, the discrepancy arises because neither the dual resonance nor the 
multiperipheral model used satisfied the requirement that the pomerons in the in- 
clusive 2 ~ 4 process decouple in the forward direction (Sa5 = 0, Sbg = 0). For 
pomerons of unit intercept, complete decoupling in forward double-pomeron ex- 
change is required by unitarity, as ~own  by Finkelstein and Kajantie [6]. This de- 
coupling could remove the discrepancy since the 2 ~ 4 cross section is strongly dom- 
inated near the forward direction due to the fast exponential damping in momen- 
tum transfer of the pomeron exchanges. We have given the statement of double- 
pomeron decoupling a quantitative meaning by fixing its strength in the inclusive 
region and showing from experiment that it nmst be at least 300 times smaller in 
the forward production region. 

We note that this discrepancy can be observed simply from the residue of the pion 
pole giving gp = ½ compared to gp ~ 150 from pionization. Using an amplitude with 
only the pion pole as in (3.18) with exponential damping in Sa~, Sbg gives a cross 
section which is just consistent with the LZR bound. Therefore the magnitude of the 
discrepancy is really independent of the intricate details of the dual resonance model 
results (3.9) and (3.12). 
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