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ABITRACT. In this essay, we study and comment on two number thearetical applications
of prime cvelotomic felds (evelotomic fields obtained by adjeining & primitive pth root of
unity to 3, where p is an odd prime). We begin by giving a simplified proof of Kummer's

case of Fermat's Last Theorem obtained by linking different versions of the proof in different

texthooks, YWe finally modernize Dirichlet’s solution 1o Pell’s Equation.
R |
Throughout this paper. unless specified otherwise, { = ¢, := ¢ *  where p 15 an odd
prime, A = Q) and g 15 the ring of intecers of . We assume knowledge of the basic
properties of prime cyvelotomic fields that can be found in most intraduetory algabrae number
1]1t'nr_1' texthooks (=X [-_J-. Section 1.3.2, PP 1039, [T. Section 3.2, Pp- G4 ‘.-.‘: . ]i.:ll]l{"l.:-' that:
o Crallfh @ 0Q)) 15 womorphie to UL/ pL) (the group of unts of £/pf), which 15 evelie
and of order p — 1.
* O = Z[¢] = (1.¢. ... ¢ *). where {1.{.....("*} is a E-basis for O.
o The only roots of unity in Oy (1.e. solutions m C to 2™ = 1 for some n £ [4] are of
the form iu,__". with 1 € £,
We also assume elementary knowledge of quadratic characters, quadratic reciprocity, and

s
the Legenclre symbal (—)
pe
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Proof. Consider the ideal F4J. J contains the element -—[:L'ﬂ.ai--,.'jyn}l- S0 .l'ull_-l.:{yu.— [J"}+L_:jll;u} =

1. APPLICATION TO A SPECIAL CASE OF FERMAT'S LAST THEOREM (C'—¢?duw isin J+J. Likewise, since O = Z[(], we have that —('(xo+C ) = wo+( 1 i

in I and that L_:i[.ru-} q;jyu] = L:‘J'u { ;;i_jw isin J. Se l,_:i.l'ﬂ + ;;H"yg - ;;jl‘[.ru E“'i;i.ﬁl'l:l] = [.,1_‘ - L;J:}.I.'u

Fermat’s well-known final theorem. proved by Andrew Wiles and Richard Tavlor in 1994, is in I +J. Now xg and yp are relatively prime rational integers. and so there exist a and

states that b in & such that arg + byg = L. So alC* — (g + 8" — Ty is in I + J. implying that

mr"+y"£;" ['.;Il.!"l}l isin f + J.
where x.y. :.n € £ has no non-trivial solutions {x. y. ) for n = 3,
In fact. to prove this theorem, it suffices to prove that xP+y® = :* has no integral solutions .
Now
for anyv positive odd prime p, since & + ¢} = 28 vields ¥ + 47 = P where p is an odd prime L
: gt pats ey p-
dividing n (which exists since n = 3) and (.31, 21) = (23’7, 10’ 29’ T ). In other words, we (1"[‘;" i .;-fj]z : H{l:nir _ l;jkj‘z
can restrict our study to the case where n is an odd prime. k=1
: ; . i i : ; i i
There iz a very elegant proof of a special case of this theorem using evelotomy. The main - H{_H——Hj—i]}“ - .,}'*“_‘]JE
use of the concept here iz that it allsws us to transform a "sum of n-th |:-nu.'t-.-r.-i" prtﬂﬂt—.-n:l k=1
=1 gl
inte a "divisibility" problem since we can now factor a® + ™ as [](« + 'yl =13 H{ N [
1=y o
In this section, we shall lay out said proof. We will suppose that (xg 49, 7g) 15 a solution k=1
p=1
to af + y* = =F for some odd prime p. Then R . = | kg
¥ I L = (P H{l ="
k=
ik
(1.1) b+ = =} ol n 3
] - E 1
Without loss of Hener:ﬂil_}'. we can take T, and g to Toes |,1:4L'Lr'.'."|.-it-1. H*l.'-lﬁre-l:.' ]Jril'm:-. for k=1
It
& =

if some integer d divides two of them. it must divide the third. and then 2§ + 4§ = 2 is

equivalent to .1'1; - yJ: = ."? where (xg, 5. 20) = d - [y, 3. 21), with xy, 3, 2y In Z.

1||1||-{"" .‘1']'“1.]]. I I'(.‘f;L]l'!t'! Lh(!‘ lJTﬁ]Jil'HI'I. to A !'j'l_}EEiEl] Case Elr]fi ALY lili!t [ I'h'.l'-!".":' rrof ffi-l‘i-l'.l!!""

the elass number h of €. and that p does not divide xpynzo. From (1.1}, we shall reach a So N(¢' = ¢’) = p. implying that N{(I + J) divides p. If N(I + J) = p. then we would have
p dividing N([) since [ is contained in [ + J. But then that would imply that p divides
?_]:[l{,t'u—k-.:im} = xh+uh = 5. vielding that p divides zg since p is prime. But this contradicts
.;::Dr initial assumption. We must therefore have that V(I + J) equals 1. and therefore that

contradiction. \We will first need the following proposition:

Proposition 1. Let i £ j (mod p). Then the ideals T = (xg + Lfy,;} and J = (x4 + yg)

are relatively prime. I+JisOg. But P| I and P | J,oso P T+ J. S0 P must be all of O, and so I and J are

coprime. L]
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Now ah +1f = 25 implies that Pnl (w0 + o) = (20)F as ideals, But {(xo +'w) 0= <
p— 1} are pairwise coprime by p::}r_ﬂitiun 1. So by unique factorization of ideals, each of
these ideals must be a p-th power. So in particular, taking ¢ = 1, (x5 + () = JI? for some
ideal J. So since (xg + Cyy) is principal. [J] has order dividing p in the ideal class group.
but since p does not divide i by assumption. we must have that the order of [J) is 1. So J
1z principal. Let J = (a). Then (xo + Cw) = (o”). and so xp + Cyp i3 associate to o, We

write xg + Cyo = wa® where u is a unit in (g, We now introduce the following lemma:

Lemma 1. Let u be a unit in Ox. Then u =7 for somet € I

Proof. Define v by u = vi. Conjugation is a Galois automorphism on O since { = (™' =
(P!, So % is also a unit. and so v is in Ox. Now let oy, ..., 0p—1 be the (p — 1) Calois
antomorphisms on Qg such that op() = Fowith k€ Z. Thenforalll < &k < (p— 1), we

have that o.v = 2 = —ﬁ— by the above remark. So |ogv| = opv - Fo = 1. So |ogv|” =

.l
For any n e .
p—1
Now consider the polvnomial f(x) = [](x — oxv). The coefficients of this polynomial are
k=l

elementary symmetric polynomials in {opv : 1 < & < p — 1}, and so are invariant under

action by Gal(K : Q) ={or:1 <k < p—1}. So flx) is in E[x]. But then the coefficient

of 2% is 5,1, where s; is the ;™ elementary symmetric polynomial. But by the previous
;p—l —ik

paragraph. |.4;1,_.. .||,,._.| = |a;,z] = p—1—Fk. So there are finitely many possible such
j=1

flxz) with integer coefficients since the coefficients are bounded. So there are finitely many
possible roots since a polynomial of finite degree has a finite number of roots. But |ou®| =1
for any n € M. s0 the {v" : n € M} satisfv the same argument. So we must have v v™ for
=% = 1, and it follows that v is a root of unity in .

some n_n in . So v"

30 by the basic properties of prime cyclotomic fields, we must have v = i{f for some

1 =% k=l
=2 4.
L =l

which 15 in {1 £ L;I'_!}-z = (I, we get |._:k = | (mod A) for all & £ Z. 50 since I.:k = L_:-Fk

e E- :":.l'_'l'l.'l.' el .-I'l. =] — -!.;- Hllti Ef.i-]l:-i-i['lE[‘ I!.'-[':IIIHHI.'U{-"'II\'.'.[-" r1II!IEIIl]{] .-lll.- T]IEI! H‘IJIEE

iz congruent to 1, which is itself congruent to .\:k madule A, a = & (moed A) for all a € O

4 ¢ BERKELEY SCIENTIFIC JOURNAL ® COLORS ®* VOLUME 17 * Issuk 1

Namely, u = T = £u (mod A) since T = £ " So if v = —(', then u = —u (mod A), which
implies 2u = 0 (mod A). But this is impossible since N{\) = p does not divide V(2u) = 271,

since p is odd. So v = 4%, (|

Then by the above lemma we have u = ("% for some £ in Z. If t = 0 (mod p) then u is
trivially real. Otherwise we set ¢ such that 2¢ =t (mod p) (this exists since p is a rational
prime). Then u = (*%, implying ¢“u = {~“u and so (" u is real. So in any case, there

exists a rational inteser ¢ such that ug :=  “u is real (and is ohviously a unit).
p-2  A\F
So rp+Cyp = (“uga® where uy is real. Working modulo p. we nate thata? = | ¥ 0" | =
=0

p=1

>, af( S — ’}_‘ a; which is in Z. So o = o (mod p). It follows that z¢ + Cyg = CCuga®. So
i=0 =0

taking conjugates we see that xg+("'yp = (" “uga® (mod p). and multiplying by (™ we get

(a0 +C g0 = upa® and Cag+ " o = wga® (mod p). Subtracting the latter congruence

from the former vields
(1.2} C g +C g = Cmg = g = 0 (mod p)

Now an element of Oy = E[(] iz divisible by p if and only if all of the coefficients as a
polyvnomial in ¢ are divisible by p. p does not divide 25 or g since it doesn’t divide a0 29.
so we must check the cases where one of {¢, —=¢, 1 = ¢, ¢ = 1} is congruent to —1 modulo p or

where two of {¢, —¢. 1 — ¢, ¢ — 1} are equal modulo p. These cases can be split as follows:

o ¢ = 0 (mod p) (so that ¢ = —c (mod p)). Then p divides (¢ — ") yu[:’fc;i + 1).
so p divides yo (even 1t p = 1), giving a contradiction. T

s =1 (mod ) (so that L —¢=¢— 1 (mod p)). Then p divides 2o(¢™ — (). 50 | 20
as in the previous case. ‘e then have a contradiction,

e ¢ = 27" (mod p) (so that ¢ = 1 —c (mod p)}. Then p divides {yp—2g)C"+0 (o — 1)
So p divides (xo — wo). We then rewrite (L1} as 25 + (—20)® = (—uyo)® (since p is
odd). Then with the same srgument we will get p | (o + z0). But {1.1) yields
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xh+yh — 28 = 0 (mod p) and so &0+ yo — 20 = 0 (mod p). This vields 3zp = 0 (mod

p). We suppose for now that p = 3. Then this vields that p divides zq. We then get
vet another contradiction.

e Letting one of {¢. —¢. 1 — ¢ ¢ — 1} be congruent to —1 modulo p will vield one of the
coefficients of the terms of (1.2) as £(xg — yp). giving the same contradiction as in

til!‘. prerlm IS CASE.

We therefore obtain a contradiction in all cases. We have, however, supposed that p = 3.

A general study of the case where p = 3 is done elezantly in section 10 of [1]

This is F.'“-:.'-Plllll."-“t“}' a 5i1'|1|:-]'|ﬁed version of the argument that 1= g-ﬁuar: in ['3 Section 17.11.
PP ES‘J{J-E]- which features differently in [J. Section 3. 1. pp. Iﬁﬂ—ﬂj and other number theory
texthooks. However, while Ireland & Rosen use the fact that g is real, Borevich & Shafare
vieh use instead the concept of a primary unit. We shall prove that the set of real units and

the set of primary units are in fact identical in Z[(] in the following paragraph. effectively

1.1. Remark: Primary elements in (.

Definition 1. Let a € Op with a prime to p. Then o s primary of and only 1f o 15

congruent to a rational integer modulo (1 — C)°.

In fact. the defimtion of primary elements has historically been ambiguous in number
theory. In [3 Dalawat shows that definitions of primary elements in (g even differ by

o1t ry |: ";I'.i'—]]l'i.IIEH.r}' ". " ;I'.I'J'E.TJJHJ.J"!-"I. .'-'I.]'IIZI I.PP'JIJH-I'IIFT'“} HH{L EVETE t]l(:l'lIE]E '.I'!EHE'. {1Hﬁr!lﬂ'_il;.ll1.'-'\. Ilﬁ fl'_'l]']'l'l

a chain of implications, they are not eguivalent.
\WWe also note that it 15 not true that if p an arbitrary odd prime and g prime in Oy, only

one associate of u is primary (for example. according to the above definition. both {4+ 3w)

; & A g S 27 =T
are primary in the ring of integers of Q(w-) where w =¢"3

6 * BERKELEY SCIENTIFIC JOURNAL ® COLORS * VOLUME 17 © IssuE 1

Proposition 2. Lel a € Oy (nol necessarily prime ) and suppose o prime to p i Oy Then

there exists a k in E. unigue modulo p. such that -:.:kn 18 primary.

Proaf. Consider the ideal P := (1—{) in Q. Then the norm N(FP) of the ideal is P]:IIIZI - -,‘"II =

=1
o ]1:,.' the fact that -[-T'mr{ IK: ﬂ} 1% i..‘if.'llﬂt}l.‘pl'l'i{' T E—_{EFE] So Pisa ]]!‘i.]l'l[' i.l'.I.l‘.i-l]l and 15 thus
of {ll'HI'ﬁT l. ST.'I :l}:n.' DI_"LIE]\'."II'I.EIIH TI'I.E'-[JI.'I.'.‘T]'I i.]'l H]El‘.]]l'ﬂ'i(: I'II.:III'I]'J!.‘.T 1.]](4.‘1'.1]':;'. HITY l'.]("l'l]l'.‘r'lr. (Iljl ﬂ_{f ;:i
the root of a monic polynomial of degree 1 in Oy /F. 50 in the particular case of o, we
have a — ag = 0 in Ok /P for some ag in £. In other words. a = ag mod (1 = ). Now set
A= 1= for simphaty. 5o &5= € Oy and so. by the same argument. S5™ = a; mod A
tfor some a; in Z. We stop repeating this here because multiplying the congruence by A, we
now have a congruence modulo A%, which is what we want to consider. Maore precisely, we
T ]'I.H\.'E' th = {ig = I'JL.-"ll. r1|::-d .-'llli. o = ag -+ HL.-"'I. r1|n-d .-'llli.-

We want to eliminate the X {1e. t].{-!'H!'E!F lj- Lermm ].11.' ]IIIL]III'FJ]}"iI'IH hoth sides ]5".}' L,-“ for some

n € L. Notice that { = 1 = A. S0 modulo b

[pn = c,;“-r:n-i-re,u,:"."'.
= ao(l = A" +aM(l-2)"

= agll — nA) + a Al — nA)
since considering (1 — A)" as a polynomial in A, A% divides \* for ¢ = 2. 5o

("o = ag + (a; — nag)h mod A

Now a prime to p, s0 if ag = 0 (mod p). then ag = 0 (mad A). and 50 a = 0 (mod A),

which is a contradiction. So ay # 0 (mod p). and 0 a; — nag = 0 has a unique solution &

module p. Now (1 — ) divides (1 — %), and N 'l__{.:]l = 'ﬂ;f_'i;; = 1. 50 (1 — (%) is associate

fi I:I —-c.,]l It follows that {1 —;:]IE divides o3 anc so k is (still, since qy — nag € ?:] the uui[lut-:
integral solution medule p to a; — nag = 0 mod A%, Then gkn ap mod A, and therefore

L;*n is primary. O
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TIIE{JTHII'I 1. E-!"f L1 -E.l!'! [ urzzrr JIF.! f-}ﬁ'- Tn’.!!':'il.' L ;.'F i"l"'-l'l! — U J:.':Z ililF'.!I]'F!-I']Z:I"HI r'rz {.‘:}_ﬁ'.

p=12

Froaf. Since Oy = Z[(] = (1.¢ -;._:F'_r"l'r‘,. we can write u as ¥ ap(" for unique ag, ... ap_z €
= k=0
o p-2 p-12
£. And so, noting that L;I'_] = E ¢, we see that L;_! = E re;:c.;k_'I = E{ru:_. -fr,:P_|:,_|_t}c.;k
=0 k=0 k=0
where ag is defined to be ag modp for all £ in & {0,....,p — 1}, Even when ¢ = 0 and
-3
we have no (P! term. this still works since ap_; = 0. Sonow 3 (ap g —ay)J* = @ =
fomar}
p=d &
7' = 3 (ke — ajpo1yse)s by Lemma 1 and therefore. since this representation is unique,
k=10
we get
1.3) e = Ofp_13et —Ogp—ay Forall0< k< p—1
. k+t (p—1)=t —k 1 e

Letting &y be the mod p solution to k 4+t = p — & (mod p), we get ag,us = ap_y, and so

(1.3) yields agp_yjee = 1. (1.3) then becomes
[ 1.4) kst = Cpak = Gk forall0 <k <p-—1

mince replacing & by —(k 4+ 1) in (1.4} leaves the equation invariant, we get E;!' pairs of
equal terms with distinct indices amongst ag. ..., 6p—1 (the 'remaining” term being ap ). Let
by ‘I-’E'fl be representatives of these distinet pairs, and let by, = ap ¢ (we have simply
zelected and reordered the a;'s).

Now zet A := 1 — { as in the previous proof. By the proof of Proposition 2, there is a
unigue ¢ module p such that “u is primary, and this ¢ is the solution to ax = b (mod p)

o \ p=3

where u = a+b) (mod A°). To find @ and b, we define the polynomial f(x) := ¥ apx*. This
ke=iF

notation yvields that a and b are coefficients of the terms in 1 and x respectively in f(1 — ).

since w = f(¢) = f(l — A). Making elementary use of the Binomial Theorem. we see that

p—2 p—2 w1l
fll=z)= %Y a(l —x)*= S ag — % kagr + . (we only need the first two terms since a

ﬂ]ld E? are Lll!.‘ﬁ.lll‘.‘l:i. ]I1{Hl1llﬂ .-:Il.z]- EEI i i!'-i t]l{‘ .‘-il'.il]ljt-inll ]

-1 p-1
(1.5) Z“"’ = Z kay {mod p)
k={} k=0

8 * BERKELEY SCIENTIFIC JOURNAL ® COLORS ®* VOLUME 17 * IsSUE 1

wince gy = U, this is equivalent to

| =
(1.6) E ap |lr = = Z kag [mad p)
=0 le=il)

N o

o+t = p— kg (mod p)

il

= bg + 1 =(lg+ 1)+t (mod |p)
= (ke+¢) = 27"t (mod p)

= E:Ig‘-{l_-,g = gyt = Ga=1y.

Finally, note that ta; + (f —i)a,; =th since g, = ay_;=b (with 1 <[ < %l] by (1.4).

p=! p=i
(1.6) then becomes by, +23 b o= — [ (27 modp)b, + E th, | (mod p). It is
k=1 k=1

clear that ¢ = —27'# (mod p) is a sclution to this congruence. By uniqueness of this solution,
we see that

w is primary <> t = 0 (mod p) < u is real.

2. AN APPROACH TO PELL'S EQUATION USING CYCLOTOMY

Pell's }___{|I,IHI G 1%

S rfil_,rE =1, zyeZk

in & and y. where d is a positive integer. A nonpositive d trivially yields the single

solution (1. 0). and we can consider d to be square-free, since any square factor of d can be

incorporated into y.

1||‘i-1." 'I.".';“ 'llfi]l'l?lri]:.' Efj]l?i'il.'ti':l' 1.-]“.'! el ".".']!l'.l'l’. I!'.II i!:' E1ll []-[].lil 'i]'!'ir'lll'. 2. T]Il:‘ l'!li.I'I,IH.I lIl'.H'l Ll 1.]“.'!"
be salved using cyvelotomy and quadratic residues. A partial selution was found by Dirichlet
13| using this method, building upon the work of Gauss. In this section, we build upon

Dirichlet’s work, explicitly writing the solution and using the machinery of Galois theory to

BERKELEY SCIENTIFIC JOURNAL * COLORS ®* VOLUME 17 ¢ Issue 1 ¢ 9




=
streamline the approach. Again., we let p be an odd prime. define p* = l[—l‘]ti"p. and let

= /=1 We start by introducing an important lemma,

qulz) =2 n (z L,'l"]l
1 <k<p
-
Lemma 2. Define 4 o :
g-i{z) :=2 [] (=-¢7)
1S k<p
I:: =]
qlx) = flz) + o glx) o
Then ; v where f(x) and g{x) are polynomials in E[x|.

g-1(2) = f(2) — VF9(2)

Froof. Mote that the product of the 2 above polynomials (on the left-hand side) is 4 n (r—
1 <ksp

L:j"}l = 4, x). which has integer coefficients. The product is therefore fixed by any Galois

gl =1

.L‘I

automorphism in Gal{ : ). Now taking @ .= = n (1 —:,_'k:IE. we see that 8° = " since
k=1

{—~1]-L'rl_1 = (%) {mod 2), and @ is trivially in Q. So J}} € (. Now an automorphism o

in the Galois group fixes p* if and only if o is a square. But this is if and only if o fixes all

{and only) the L;‘L' such that & is a quadratic residue module p. So n B Hj"]l 15 in .F[l_:

where L := Q(/p*). All the coefficients in L|x] are of the form @ + b,/p* where a and b are

both rational and 5- an algebraic integer (allowing for the fact that p* = 1 (mod 4)}. The

coefficients of 2 [] (x — () are therefore rational algebraic integers and thus in £. We can
i

now expand g, (x) and rewrite it as gy (x) = flx)+ /p*glx) where f(x) g(z) are polynomials

in Z[xz|.

A similar arpument shows that g_;(x) € f,[.‘e']. Now let 7 be the Galois antomorphism in

If?ufllf{ 2 {;'} defined h}' .[1.,"?] = "rfi"_; [rm»t'mg that K : L : Q is a tower of fields). Then ];3.'

the above, and since 2 must fx rn{.i']l- we mist have that .I:H'Ir]- = I.:I! where {f] {—;} = =1. Sa
since 7 iz a Galois automorphism over K. we must have r(gy(x)) = ¢g_;(2). This yields that

g1(x) = flx) - /P*glz). 0O

CF ANV E 'Ii.‘-i- resili. i]".II! e .‘ii:r]'l il I'EIE'F!‘]IEHIL r IIl.'!i:-!'. .JTL’.I I-',-'I.'II.‘i-r:'-L."i o = J:,!SE ?I!-lﬂ. J:!'.I'J]F.'i
To prove tl t. Dirichlet simply ref  Article 357 of G great Disquisit
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Arithmeticae, in which the arpument is quite long. Thankfully, using the above application
of Galois Theory that was probably unavailable to Gauss and Dirichlet. the lemma iz guickly
PrOYET.

We now go back to Pell's Equation. Setting d = p. Pell’s Equation then becomes

A ]

(2.1) & —py =1
H}' I-E!IIHI'I.H. E-
Amp(x) = qu(x)g-i(x) = f(x)* — (2")g(x)’
And zo, replacing x by 1, we pet

(2.2) 4p = .:'? . p'.r;;" where xy ;= f(1) and 3 := g(1)

Since fir) and g(x) are in E[.a'] and x; g In &, we can see that Lemma 2 relates to Pell's
Equation insofar as it gives us a pair () ;) that verifies an equation very similar to (2.1).
Since p is prime. the above equation shows that p must divide &;. So defining &, = 5P'-.

we can rewrite equation (2.2) as 4p = p*&; — p"yi. and so. dividing by p.
el
(2.3) Pl — (1) Ty =4

We now analvze gy(x) and g_;(x) to obtain some insight as to the values &y and y.

2 = (p—z)* (mod p). so all quadratic residues are in {2* (mod p): 1 < » < 21}, We can
=t P2
therefore reorder the terms in g,(x) and write it as 2 ﬁ (E —-.:H]I. and so ¢ (1) =2 ﬁ' “_';H 3
which ean much maore easily be computed than 2 IIP:II (1 le} Since 4p = rﬂ{lk}:;l_. (1), we
bl
51

can also easily compute g_;(1).

Now, the value of p* depends on the value of p modulo 4 so we will consider the two cases

separately for simplicity.
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Case 1: p = 1 (mod 4). So 8 divides bath ya and Cjz. So writing yg := % and £, := 5. we get that y; and £, are

Then (2.3) becomes pf] — yi = 4 (or. to emphasize the similarity to Pell's Equation, integers with (y3 — p&3) = 1:" = —1. As in Case L1, writing (y3 £ /p,)? = a £ b,/p where
— péi = —4). a and b are integers gives a solution (x. y) = (a. b) of (2.1). Summarizing. we get a solution
We then have two subeases. trom . :
Case 1.1: If p = 1 (mod 8). then yi — &§§ = 4 (mod 8). Trivially y and &, must either (b= ( #llg(1)* + Eﬂ%ﬂﬂ}z + p{f%ﬂ +Hﬂ;ﬂﬁ}*} , )

& (9(1)% + 342l (MU el

be both odd or both even. But 17 = 3* = 5° = 7% = 1 (mod 8), s0 if ¥ and &, were both
odd we would have yf — £ = 0 (mod 8), vielding a contradiction. It follows that y; and

£, are both even, and we can thus define the new integers ya := % and & = %L Then
e pﬂ = =1, We can now use the fact that {-‘,-";i_.'-‘}z 15 an integer to get rid of the minus

sign in front of 1. The equation yf — p¢3 = —1 yields (y2 — /BE,) (¥ + /PEy) = =1, and 50

Case 2: p=3 (mod 4).
Write | := ﬁ‘—' Trivially [ is an odd integer. We see that f(x) can be written as 3(q:(x) +
a(z)) = T (2=cf+ T (2=<*). which is of degree I. We shall find a relation amengst

(yz — ,_f";ie_;l.,; (ya + ,_f’;E, = 1. But (y» £ ,,.!’_PEE]E = a % b,/p for yet another pair of integers ,(5,,{-, 1<kep
(a,b). Taking (x,y) = (a. b), we have solved (2.1). Summarizing. we get a solution from the coe ﬂ’icijr::s: of f by ciﬁl;:ring £(¢) and £(©). which is equal to TZ) since f(z) € Zia].
Trivially (3) = 1. so t‘:1']"”’{., — ") = 0 and 80 f() = 1{11., (¢ — C*). Also note that
o = (Sor e 100), H0s00) = o
4 p 2p G =(-1)F ==l andso () ==(3) forall L< k< p-1. Sﬁf[:l.::|=]£:p[:t;—l;:_kj.
where we can directly compute f(1) and g(1) from g,(1) and g_,(1). (&)=t
By the same line of reasoning, f(C) = f(¢™") = 1'}1]’{{:" o V-
Case 1.2: If p = 5 (mod 8), then y? + 3¢ = 4 (mod 8). Given that the only quadratic (5)=
residues modulo 8 are 0, 1, 4. we must have (y?, £%) congruent to one of (1, 1), (0, 4) or (4,0) % = H ({‘?"_ & (-1) H ol
madule 8. :é;:: E;ff

since there are precisely | quadratic residues modulo p

¢ H -k

We now use the fact that 8% = 2*¥ = 4% and consider (31 + /P,)* = 12 + /B¢y where 3,
and £, are the integers defined as (4 + 3p3y) and (p€] + 343¢,) respectively. We then see

that 4 — p¢} = (4} — p&})* = —&. ()=t
But y; = i (y? 4 3p<7). which is congruent to 3 (3 — £3) module 8. If (32 &}) = (1. 1) ——
od 8) th =0 (mod 8). If (37, £]) = (0.4) or (4,0 d &) th =4-40-4 -
(m } $hen 3 o ) o, G140, 2) ow (4,0) (it ) S 1 o since z i =p—P 3 l+l] since the Legendre symbol is a
£2 -4, all congruent to 0 module 8. So in any case y» = 0 (mod 8). 1{%;&
=]
F

Likewise &, = &,(p¢] + 3y%). and as above simple arithmetic module 8 shews that £, = 0

(maod 8).
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0
guadratic character module p and since (;) = 0,
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So f(C) = —CHF(C™"). So writing f(x) = ' + aim1@®™" + ... + a1 + ag. this yields

ail' + el + el tag=—ael —ar ("™ - L —aiil —ay e

[ i
(2.4) Zﬁti:k = E{_ﬂk}‘;!-k
k=0 k=0

But {1.¢, ..., '} is a subset of the Z-basis {1,{,...,¢* %} of O for p = 3, and so is Z-

linearly incdependent. So a;_p = —a; forall 0 < k& < [, We 4.":3.1‘1 theref-::re rewrite f(x) as

Nt — 1)+ dye{zt2 — 1)+ bpae¥ {1 — 1)+ . -r—b._!;:r:"!"(s. —1)= 2 bz (2"~ — 1) for some
k=0
integers by for all 0 < & < %

Replacing x by ¢ 1=
3 or ¥ modulo 8.

Let p =3 (mod 8). Then ! =1 (mod 4) and simple caleulation vields
(11— itk=12(mod 4)

| —(1—12) if k=03 (mod4)
If p=7 (mod E] then [ = 3 (mod 4). and the same type of calenlation vields

141 ifk=32 (modd)
| ~(141) if k=01 (mod 4)

{ —i if p=3 (mod 8)

—1, we see that ('~ — 1) depends on whether p is congruent to

I-t{:t'f-?l: L 1:} —

k{ A—1k 1} -

=1

T

Setting i = . we see that f(i) = X £be(l +¢*) = ya(l + 1)
+i ifp=7 (mod 8) s

where g is in Z.

Now,

o) = goelm(a) - o)

L

= = (x=¢") - (x = ¢*)
UI'F_ t-g:r l-:_'-rl;.!:r:p
(3)=1 (3)=-1

14 ¢ BERKELEY SCIENTIFIC JOURNAL * COLORS ®* VOLUME 17 © IssuE 1

And so

o) = ——2=| I 6-¢*

and g(¢™")

n

&
g
A,

A similar line of reasoning as for f(r) gives us that g{¢) = +C'g(¢™!). Following the same
[
steps as for fla), we find that, writing g(x) as :,L— E apa®, we get ai_, = +a for all

0 < k < 1. We can therefore similarly rewrite g(x) as E bex*(x'=* 4+ 1). where all the
k=0

by, are ilr'ht:egars (remembering that g(x) € Z[x| by Lemma 2). A similar argument shows that
gli) = E +bi(1 = i*) = &4(1 — i*) where £, is in Z.

Mo 1 8 i 0 0l o e L o Y UL — T
r=l—2)4+  +({l4+:-1))=4.

So f(1)*~p"g(1)* = f(1)*+pg(i)* = 41, and so y3(1++" ) 4pSa(1-17)* = 23" —2pga” = 4u.
Dividing by 2i* = 4+2:. this yields

v =Sy = £2
ie. (2 + P (3 — vBE)T = 4

Now ys and £, are odd. otherwise we would have 33 — p&3 = yf + & = 0 # £2 (mod 4).
So the coefficients of (y2 + ,/5%)° = (1d +p£§} + 228 /P are even, We can thus define the
integers o 1= {—"3-';5;3 and b 1= y2&, and get

E H (yz + ﬁ‘fzii.{;’i - /PS)’

4
= -=1
4
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This solves the equation, where

@) = (F0s6r 50 500)56))

where we can directly compute f(i) and g(i) from g (:) and g_,(i).

To apply this method to the general case of Pell’s Equation (where d is square-free but not

necessarily prime). we factor d as [] pi where the p.'s are rational primes. So it suffices to
K=]

study the case where d = pg for primes p and g and deduce the general case by induction. We
will not describe said case in depth here since this paper mainly focuses on prime cyvelotomic

(zP1=1)/(x=1)

fields, but we remark that taking Q(Cp,): mpe(x) = mp(@)mg(*) s e e =

EFT ] (=1
(=7 1) 1)

which can be shown to be irreducible by a similar method as the simple proof for

p—1
showing that 3 #* is the minimal polynemial of {, in Z[z]. Following the same reasoning
k=0
as in the case where d = p, we can write dmy,(x) = f(x)* + pgg(x)* where f(x), g{x) € Z[x].

The rest of the problem is solved in a similar fashion as well.

Using some interesting approximation methods and cuadratic number fields, Ireland &
Rosen (|5, Proposition 17.5.2, pp. 277-8]) show that 2 — dy® = 1 has infinitely many
selutions for any square-free integer d (including d = 2), and that every solution has the
form #(x,, ) (with n € Z) where x, + Vdy, = (x; + Vdy;)" for some solution (xy,3)

commonly known as the fundamental solution.
Acknowledgment Many thanks to Professor Dan Segal. All-Souls College. QGaford. for

his advice.
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