
UC Berkeley
Earlier Faculty Research

Title
A Bridge between Travel Demand Modeling and Activity-Based Travel Analysis

Permalink
https://escholarship.org/uc/item/4999552w

Author
Recker, W. W.

Publication Date
2000-10-01

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4999552w
https://escholarship.org
http://www.cdlib.org/


1

A Bridge between Travel Demand Modeling and Activity-Based Travel Analysis

W. W. Recker

Department of Civil and Environmental Engineering and Institute of Transportation Studies

University of California, Irvine, CA  92697, U.S.A.

Abstract

The focus of this paper is on the demonstration that some rather well-known network-
based formulations in operations research, that have heretofore largely gone unnoticed in
activity-based travel research, offer a potentially powerful technique for advancing the general
development of the activity-based modeling approach.  These formulations can provide an
analytical framework that unifies the complex interactions among the resource allocation
decisions made by households in conducting their daily affairs outside the home, while
preserving the utility-maximizing principles presumed to guide such decisions.  A mathematical
programming formulation is developed and used to identify the similarities and differences
between traditional trip-based modeling methodologies and those pertaining to an activity-based
approach.  It is demonstrated that the two approaches are directly related.

Keywords: Activity-based travel analysis, Travel demand modeling, Mathematical programming.

1.  Introduction

Proponents of activity-based approaches to analyzing travel behavior have argued that the

conceptual clarity, theoretical consistency, and purported unmatched potential for policy

application of such approaches have the potential to lead to substantially greater understanding

and better prediction of travel behavior.  Yet, the inherent complexities of an approach that is

based on the spatio-temporal linkages among a whole collection of activities and their associated

travel, rather than on characteristics of a single isolated trip, have proven to pose serious

impediment to the development of the approach beyond either qualitative or rudimentary

statistical analyses.  The few exceptions to this generally fall into the categories of computational

process models (Lenntorp, 1976; Jones et al., 1983; McNally and Recker, 1986; Recker et al,

1986; Gärling et al, 1994; Golledge et al, 1994; Ettema et al, 1995b; Kitamura and Fujii, 1996),
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simulation studies (Axhausen, 1990; Barnett, et al, 1995; RDC, Inc., 1995; Kitamura et al, 1996;

Miller, 1996) or rule-based reconstruction protocols (Bhat and Koppelman, 1993; Ettema et al,

1995a; Pendyala et al, 1995).

Despite their obvious theoretical attractiveness, activity-based approaches to

understanding and predicting travel behavior have suffered from the absence of an analytical

framework that unifies the complex interactions among the resource allocation decisions made

by households in conducting their daily affairs outside the home, while preserving the utility-

maximizing principles presumed to guide such decisions.  The formulation presented in this

paper provides one approach toward removing this major obstacle to operationalizing activity-

based behavioral travel analysis.

In the development of this particular framework, the focus is on the demonstration that

some rather well-known network-based formulations in operations research that have heretofore

largely gone unnoticed in activity-based travel research offer a potentially powerful technique for

advancing the general development of this approach.  Experience using generic solvers for

solution of a set of examples that in the realm of activity-based research have been perceived to

be at least practically intractable, demonstrates that such frameworks are not prohibitively

computationally intensive (Recker, 1995; Recker and Parimi, 1999; Recker et al 2000); and,

undoubtedly, the application of algorithms specifically tailored to the model formulation would

be substantially more efficient.

2.  Trip-Based Travel Demand Modeling as a Mathematical Program

Prior to developing mathematical programming representations of Activity-Based

modeling approaches, it is useful to first couch traditional trip-based approaches in a similar

framework.  Initially, we focus on the actual decision of the traveler rather than on the analyst’s

attempt to model the process and, for purposes of exposition, concentrate on the choice of trip

destination.  Suppose that there are n different substitutable destinations available to the traveler,
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A w n= { , , , , , }1 2 3 � � , which in the traveler’s mind offer corresponding value or utility

U U U U U Uw n= { , , , , , , }1 2 3 � � .   Under the usual assumption of utility maximizing principles

governing the choice, it can be expected that the traveler’s choice of destination, k, will be

determined as:

)( w
Aw

j UMaxUjk
∈∀

=∋= (1)

Equation (1) has a simple mathematical programming equivalent:
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Equations (2) have the familiar representation of a simple integer programming network

optimization formulation in which the owX  decision variables signify the “flow” (values of 0,1

being “no flow”, “flow”, respectively) from some origin o to the destination w A∈ .  The

constraint set, i.e., Equations (2a) and (2b), forces the restriction that flow occurs from the origin

to one and only one destination; i.e., the destination that offers the greatest utility.  Virtually any

common trip-based travel choice can be represented in this fashion (travel mode and route choice

the most obvious examples), although there is little practical value in doing so since the solutions

to simple choices of the form of Equation (1) are obvious by inspection.

Continuing with our example, we note that, in the simplest case of linked travel, the trip

to a particular destination k is inherently coupled to a return trip (at some later time) to the origin

o.  In cases where the travel times and relevant costs are equal for both the trip from the origin
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and its return, we can simply solve Equation (1) and stipulate the return trip; in cases where they

differ, we can simply include in the wU  the  relevant contributions of the return trip (the return

trip destination being fixed at o).  The equivalent mathematical programming formulation

formally can be expressed as:
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Here, we have assumed that the wU  are broken down into their component parts, uoow UU + .

The first two constraints in Equations (3a) restrict flow to a single path both to and from the

origin; the third constraint ensures that the choice of a particular destination is accompanied by a

return trip from that and only that location.  As we begin to assemble the rudiments of an activity

pattern in Equation (3), we note that the principal complication to the trip-based formulation is

expressed in a growing expansion in the dimensionality of the constraint space that is necessary

to capture the linkages among activities and travel.

More complex  travel choices that have common trip-based representations, such as the

joint choice of travel mode and destination, extrapolate very easily to the type of mathematical

programming formulation characterized by Equations (3).  For example, suppose that the

individual making the trip described by Equation (1) has available the set of travel modes
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},,2,1{ VV ��ν=  for the trip.  The trip-based representation for the joint choice of mode m and

destination k , which we designate as (m,k), is

)(),(),(
,

ν
ν w

VAw
l
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∈∈∀
=∋= (4)

where ν
wU  is the utility of any particular mode-destination combination.  Based on Equation (3),

Equation (4) has the obvious equivalent mathematical programming representation:
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Solutions to Equation (5) can be represented as a pair of directed line segments in physical space

forming a closed loop that connects the origin to the particular destination, via a particular mode,

that maximizes the traveler’s utility; i.e., the projection of the traveler’s completed path through

time and space from the origin to the destination and return to the origin (Figure 1).  Nowhere

captured in this solution is the unfolding of the spatial path along its temporal dimension – a

limitation common to the formulations in both Equations (4) and (5).  Indeed, we have reached

the practical limitation to the information that can be readily gleaned from trip-based modeling
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frameworks which, except for sweeping generalizations, assume the temporal dimension to be

exogenous to the travel choice and irrelevant to the modeling process.  This, of course, is not an

unreasonable assumption in such rudimentary examples as those considered above (where we

have isolated the choice situation from any linkages that it might have either to previous or to

impending decisions) in which the utility of the choice is assumed to be invariant with time; it is

completely unreasonable and unwarranted if there is any dependency among such choices.

3.  Bringing Temporal Factors Into Trip-Based Travel Demand Applications Through
Mathematical Programming

The implicit incorporation of temporal considerations in the travel choice protocol marks

the point of departure between conventional trip-based and activity-based approaches both for

any practical application of a trip-based formulations (such as those in Equations 1 and 4) as well

as the point at which mathematical programming formulations (such as those in Equations 3 and

5) begin to provide conceptual efficiencies.  For example, suppose that the activity that is to be

performed at the selected destination in the example above has an expected duration that is

dependent on the location chosen; i.e., each destination Ai ∈  is associated with an expected time

needed to complete the activity that is equal to is .  To complete the picture, we assume that the

availability of the activity (e.g., the “open” hours of a shop) at each site w is bracketed by the two

times ],[ ww ba , and that the traveler’s availability for the activity is limited to the period defined

by ],[ 1+nba
�

.  To these conditions, we add a travel time matrix with elements ν
uwt  that represent

the expected travel times between all locations },{, Aowu ∈  by travel mode V∈ν .

Corresponding to these new temporal restrictions, we add to the list of decision variables in our

mathematical programming formulation the optimal times oT  for leaving the origin and wT  for

arriving at any particular location Aw ∈ .  With these additions, the mathematical program

describing the choice can be written as:
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The introduction of temporal considerations through the decision variables uT , which are

continuous in time, substantively alters the mathematical program by changing it from an integer

to a mixed-integer programming problem; this change significantly increases the difficulties in

obtaining its solution.  The first three of the temporal constraints represented by Equations (6b)

indicate that these constraints are enforced only for the selected alternative, i.e., only for the

destination k for which the “flow” variables kook XX  and  are non-zero.  In there present

“conditional” form they are not amenable to standard formal solution techniques.  However, they

easily can be rewritten in an equivalent form:
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where  M  is a large positive number; the conditions specified by Equations (6b′) are practical

constraints only when the value of the appropriate flow variable is unity, in which case the right-

hand side of the expression takes on a value of zero.  The solutions to Equations (6) are in the

form of an annotated directed path through time and space that represents the unfolding of the

traveler’s motion to and from the selected destination (Figure 2); the projection of this path on

the spatial dimension is the solution to Equations (5).

We note that, if the utility components in Equation (6) are independent of time, then the

mathematical programming solution represents a formal specification of defining the choice set

as including only those destinations that can be accessed from the origin (and the activity

completed) during the “window” of time available to the traveler – a specification that is

exogenous in trip-based methodologies.  In such cases, a unique global optimum generally

cannot be found, since any combination of values for m
ko TT ,  that satisfy Equations (6b) while

ensuring ( , )m k is the solution of Equation (4) will produce an identical maximum utility.  In the

more general case where )(,, wwuwu TUU νν = , Equations (6) may produce a unique optimum;

however, the solution procedure may be extremely complex because of the associated

nonlinearities in the objective function, i.e., the product terms involving the ν
uwX  and the ν

uwU  as

an implicit function of wT .  In either case, the solutions can be viewed as forming the essential

“building blocks” of an activity pattern.

4.  The Bridge to Activity-Based Analysis

The destination choice example that we have been discussing provides a convenient

kernel for developing a mathematical programming formulation of an activity-based travel choice
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paradigm – one which may be viewed as a “stringing together” of multiple destination choice

problems to form a continuous path in time and space that achieves some objective that is

specified by the traveler.  To keep matters simple for purposes of illustration, we first consider

the case in which a single traveler is faced with travel choices involving the completion of two

out-of-home activities, }2,1{},1{ == nA , with trip ends that we will designate by }2,1{=+P ,

respectively.  Also, we will assume that mode choice considerations are irrelevant to these

choices, although we will later see that the incorporation of travel mode choice ranges from being

trivial to challenging, depending on what is included in the choice set.  Before introducing any of

the temporal aspects of this problem, some discussion of its spatial character may prove helpful

in understanding the notation that will be adopted in the more general cases that follow.  The

possible spatial projections of the activity pattern paths associated with this simple example are

three in number, as shown in Figure 3; two of these (Alternative Paths b and c) are simple

variants of each other, determined by trip-chaining sequence.

For the projection shown as “Alternative Path a” in Figure 3, an obvious notation can be

adopted to identify the terminus (or trip end) of the “return-home” trip associated with each

activity.  Although both trips have the same physical location for their respective return-home

trips, it is convenient to give a distinctive label to each of these trip ends that ties it uniquely to

its corresponding out-of-home activity.  We do this for the path shown as “Alternative Path a” in

Figure 4, using the notation that the label identifying the terminus of the return-home trip be the

label number of the activity plus the total number of activities in A.  This same notation also can

be applied to the two trip-chaining alternatives (Alternative Paths b and c), although perhaps not

with so obvious reason – in these latter cases, we essentially construct a “shadow” path that does

not include intermediate trip ends.  Designate this set of return-home trip ends by

}4,3{}2,1{ =++=− nnP .  For convenience, to this list we add two other “home” nodes as “0”

and “ 512 =+n ”, designating the trip ends that mark the very first departure from the home and

that signify the last node in the activity pattern from which no other trip can emanate,

respectively.  A word of explanation regarding the nature of this latter node – each out-of-home
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activity is associated with its return-home trip end; the last of these return-home trip ends (either

“3” or “4” in this example) is also associated with a link to trip end “5” (also at the physical

home location) from which no further outgoing trips are possible.1  Figure 5 shows this expanded

labeling for the possible paths identified in Figure 4 .

We now begin to construct the mathematical program that we will use to describe the

choice of the activity pattern (i.e., the selection of the traveler’s spatio-temporal path whose

spatial projection is one of the three paths identified in Figure 5) for this example.  Spatial

connectivity requires that:
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1 In the parlance of the mathematical programming analog on which this formulation is based, trip end “5” represents
the depot in a vehicle routing problem.
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+
+ ∈∀= PuX uun  , 0, (7 a6 )

where the notation }4,3,2,1{== −+ PPP �  and }5,4,3,2,1,0{}12,,0{ =+= nPN  is used to

designate appropriate sets of nodes.  We have grouped these equations according to the types of

conditions that they impose in order to assist in visualization of the relationships between the

mathematical program and the requirements for spatial connectivity.  Equations (7 a1 ) impose the

condition that there is one and only one path leading from any out-of-home activity.  Equations

(7 a2 ) ensure that that there is a connected path among the activities (and their return trips to

home) and that no activity is revisited.  Equations (7 a3 ) enforce a restriction similar to that in

Equations (7 a1 ), but with reference to the paths leading from the origin and to the final

termination (i.e., the depot).  Equations (7 a4 ) stipulate that the return-home trip be on the same

path as it’s associated out-of-home activity.  Equations (7 a5 ) rule out illogical flows.  Finally,

Equations (7 a6 ) ensure that the path leading to a particular out-of-home activity precedes the

return-home trip; these conditions will be subsumed by the temporal constraints that will be

imposed later. Readers familiar with mathematical programming will recognize Equations (7 a1 )

through (7 a6 ) as the constraint equations in what is known as the “Pickup and Delivery Problem

(PDP),” which itself is a derivative of the famous “Traveling Salesman Problem (TSP).”

The incorporation of temporal factors that restrict the feasibility of the three (in our

simple example) spatial paths defined by Equations (7 a1 ) through (7 a6 ) and depicted in Figure 5

is relatively straightforward; the principal restrictions are simply generalizations of Equations 6b.

First, there is the restriction that the commencement time of the activity associated with any trip

end w, i.e., wT , requiring travel from another trip end u can occur no sooner than the termination

time of the corresponding activity at u plus the travel time from the site of activity u to the site of

activity w.  This can be represented as:

PwuTtsTX wuwuuuw ∈∀≤++�= , ,   1 . (7b1 )
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or, equivalently,

PwuXMTtsT uwwuwuu ∈∀−⋅≤−++ , , )1( (7b1
' )

Similar restrictions hold for travel from the origin node, 0, to any activity, as well as for travel

from any activity to its “return home” activity:
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To these conditions we add restrictions regarding the time windows available for activity

completion:

.
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121212 +++ ≤≤
≤≤

∈∀−≤≤

nnn

ooo

uuuu

bTa
bTa
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(7b3 )

As stated above, Equations (7b1 ), (7b2 ), and (7b3 ) are, expectedly, almost a direct translation of

the temporal constraints enforced in the destination choice example described in Equations (6b).

However, in that example, the nodes had no particular relation to each other, other than being

alternative destinations for the same activity.  In the current case, however, there is an implicit

temporal relationship between the nodes in +P  and those in P− ; those in the latter representing

the “return home”  trip ends of the former.  As such, there is a restriction that the activity start
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times for elements of  P+  precede those of corresponding elements in P− .  This condition can be

represented as:

+
++ ∈∀≤++ PuTtsT ununuuu  , , . (7b4 )

To complete the current picture, we need to add non-negativity and integer constraints

equivalent to those in Equations (6c):
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Once again, those familiar with mathematical programming will recognize Equations

(7 a ⋅ ), (7b ⋅ ), and (7c) as the constraint equations in what is known as the “Pickup and Delivery

Problem with Time Windows (PDPTW);”  see, e.g., Solomon and Desrosiers, 1988 for details on

this class of problem.  In terms of the activity pattern problem that is being considered by this

simple example, Equations (7b ⋅ )place additional constraints on the unfolding of the possible

spatial paths shown in Figure 5 (and defined by Equations 7a⋅) in the temporal dimension.  The

effect of these constraints on the feasibility of the three paths is demonstrated by adding some

temporal information to our example, corresponding to the various activity durations, time

windows, and travel times:

,   
2
8

][ �
�

�
�
�

�
=is  ,  

2010
5.88

],[ �
�

�
�
�

�
=ii ba   ,   

2110
5.1917

],[ �
�

�
�
�

�
=++ inin ba   

 ]216[],[
]206[],[

1212

00

=
=

++ nn ba
ba



14

tuw

TO 0 1 2 3 4 5

FROM

0 0.00 1.00 0.25 0.00 0.00 0.00

1 1.00 0.00 1.00 1.00 1.00 1.00

2 0.25 1.00 0.00 0.25 0.25 0.25

3 0.00 1.00 0.25 0.00 0.00 0.00

4 0.00 1.00 0.25 0.00 0.00 0.00

5 0.00 1.00 0.25 0.00 0.00 0.00

We note that the travel time matrix makes explicit that the physical locations of the “return

home” activities is coincident with the home location “0”.  Feasible space-time paths associated

with spatial projections a and b are shown in Figures 6a and 6b, respectively.  Under these

conditions, all space-time paths associated with spatial projection c become infeasible (Figure

6c).

Introduction of some objective that is to be satisfied in the selection of an activity pattern

from among those that are feasible completes the specification of the most rudimentary form of

the Activity Pattern Problem (APP).  For example, if the objective of the traveler in our current

example is to minimize travel time, i.e.,

uw
Nu Nw

uw Xt ⋅= � �
∈∀ ∈∀

 Time Travel TotalMin , (7d)

then the optimal activity pattern is easily found to be that displayed in Figure 6b.
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5.  Some Examples of Easy Embellishments to the APP Kernel

Once couched in its most basic form, the activity pattern problem is easily extended to

incorporate certain accepted aspects of travel decisions that are either difficult or impossible to

account for using conventional trip-based formulations.  For example, the notion that travel

decisions are made within the context of both travel time as well as travel budget constraints is

almost trivially included by adding to the base formulation the following constraints:

cuw
Nu Nw

uw

tuw
Nu Nw

uw

BXc

BXt

≤⋅

≤⋅

� �

� �

∈∀ ∈∀

∈∀ ∈∀ (8)

where uwc  are the costs of travel between nodes, and ct BB  and  are the traveler’s time and

money budgets, respectively.

Other, less trivial but nonetheless straightforward, considerations include placing certain

restrictions on the characteristics of the tours that comprise the activity pattern.  For example,

incorporation of considerations that are functions of the cumulative number of sojourns in a tour,

e.g., the number of sojourns or the amount of time between stops at home, can be achieved by

defining an “accumulator” variable, say wd , that is incremented with each successive stop on a

tour, and a register, say wY , that tracks the total accumulation of  wd , i.e.,

.0
, ,   1

},,{ ,   1

=
∈∈∀=−�=

∈∈∀=+�=
−

−

+

o

wnwuuw

wwuuw

Y
PwPuYdYX

PwPouYdYX

(9)

The first of these relations accumulates wd , while the second releases the accumulation upon a

“return home” activity; the third is simply an initial condition.  Restriction of the value of the wY

variable to some limiting value D, can then be used to capture a number of potentially limiting

characteristics of multiple-sojourn tours.  For example, if D is specified as:
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In addition to the minimization of total travel time (see, e.g., Equation 7d), a number of

other components potentially important to the traveler’s overall utility are easily incorporated.

Examples of potential components of the disutility function of the household that may be easily

specified in the objective function include:

uw
Nu Nw

uw Xc� �
∈ ∈

⋅ total travel cost.

�
+∈

−
Pu

uu bT )( a measure of the risk of the inability to complete activities

due to stochastic variations in travel times and/or

activity durations.

�
−∈

−
Pu

uu bT )( a measure of the risk of not returning home in time due

to stochastic variations in travel time or activity

participation.
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�
+∈

++ −−−
Pu

nuuuunu tsTT )( , a measure of the delay in returning home incurred by trip

chaining.

 )( 12 on TT −+ the extent of the travel day.

We note that, with the exception of the first of these examples, such considerations can not be

captured by trip-based methodologies.

6.  Extension of the APP Kernel to the Basic Household Activity Pattern Problem (HAPP)

The mathematical programming approach outlined above has been extended by Recker

(1995) to the general case in which the household activity pattern problem (HAPP) is posed as a

network-based routing model incorporating vehicle assignment, ride-sharing behavior, activity

assignment and scheduling, and time window constraints.  The resulting HAPP formulation is in

the form of a Mixed Integer Linear Programming (MILP) model. The equations describing the

problem are contained in Recker (1995) and are not repeated here.  However, the general form of

the HAPP mathematical program formulation of the travel/activity decisions for a particular

household, say i, during some time period is represented by:

0AX

XBX

≤

⋅′=

i

iiiZ

:subject to

)( Minimize

(10)
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The outputs Xi  of the optimization for each household i are specified by the following decision

variables2:

wuVNwuXuw ≠∈∈ ,,, , υυ binary decision variable equal to unity if vehicle  υ  travels

from activity  u  to activity  w, and zero otherwise.

wuNwuHuw ≠∈∈ ,,,   , ηαα binary decision variable equal to unity if household

member  α  travels from activity  u  to activity  w, and zero

otherwise.

PuTu ∈, the time at which participation in activity  u  begins.

VTT n ∈+ υυυ    ,, 12o the times at which vehicle  υ  first departs from home and

last returns to home, respectively.

ηααα ∈,   T,T n+12o the times at which household member  α  first departs from

home and last returns to home, respectively.

The various sets referenced in the above are defined by the following notation:

A = {1, 2,…, j,…, n} the set of out-of-home activities scheduled to be completed
by travelers in the household.

V = {1, 2,…, υ,..., | V |} the set of vehicles used by travelers in the household to
complete their scheduled activities.

P+ = {1, 2,…, u,…, n) the set designating location at which each activity is
performed.

P- = {n+1, n+2,…, n+j,…, 2n} the set designating the ultimate destination of the "return to
home" trip for each activity.  (It is noted that the physical
location of each element of P- is "home".)

                                                
2 The notation used here is the same as that contained in Recker, 1995.
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P = P+�P- the set of nodes comprising completion of the household's
scheduled activities.

N = {0, P, 2n+1} the set of all nodes, including those associated with the
initial departure and final return to home.

Bi  is a vector of coefficients that defines the relative contributions of each of the decision

variables to the overall disutility of the travel regime to the household.  Descriptively, the

constraint sets AX 0i ≤ for this MILP are classified into six groups: (a) routing constraints that

define the allowable spatial movement of vehicles and household members in completing the

household’s activity agenda; (b) scheduling constraints specify the relationship of arrival time,

activity  begin time, and waiting time, and continuity condition along the temporal dimension; (c)

assignment constraints that are applied to match the relations between activity participation and

vehicle usage as well as activity performers (household members); (d) time window constraints

that are used to specify available schedules for activity participation; (e) coupling constraints that

define the relations between vehicle-related variables and member-related variables; and (f) side

constraints including budget, capacity, and rules for ride-sharing behavior.  With the exception of

the side constraints (i.e., classification “f “ above), these constraints capture the physical

conditions that ensure that each member of the household, as well as each vehicle used by the

household, have a consistent, continuous, path through time-space that results in all of the

activities on the household’s agenda being successfully completed.  The reader interested in a

detailed derivation and explanation of these constraints is referred to the original work by Recker

(op cit).

The solution vector, Xn
∗ , to Equations (10) represents the household’s utility maximizing

behavior, relative to the prescribed objective )( iZ X 3, with regard to completing its activity

agenda.  The solution patterns reveal personal travel behavior and activity participation within a

                                                
3 In this form, the specification of the objective function is prescribed by the analyst; e.g.., the minimization of total
travel time.
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household context, while preserving the concept that the need for travel originates from

participation in activities, that travel constitutes the linkage between activities, and in which all of

the required components are contained in the activity scheduling problem.  An application of the

methodology in the estimation of the upper bounds of certain policy alternatives in reducing vehicle

emissions can be found in Recker and Parimi (1999).

7.  Activity-Based Demand Modeling

In the examples considered in the previous sections to demonstrate the application of the

mathematical framework, the specification of the objective function is known to both the

decision maker and the analyst.  The typical problem in demand modeling (of which the HAPP is

a subset) is focused on inferring the relative weights associated with potential components of the

utility function that are determinants to a population's revealed selection of the decision variables

(in the model estimation phase) with subsequent forecasts made using these weights in

conventional application of the model.  In that sense, the modeling framework developed offers a

real analytical option for estimating the relative importance of factors associated with the spatial

and temporal interrelationships among the out-of-home activities that motivate a household's

need or desire to travel.  Such estimation can proceed in a manner similar to utility-maximizing

estimation techniques used in conventional demand analysis (e.g., regression, logit and probit

analyses) in which the choice situation is presumed to be unconstrained; the proposed framework

provides both the necessary constraint considerations on the household's decision alternatives

within a utility-maximizing structure as well as a convenient mechanism for generating the set of

feasible alternatives that are likely to be considered.

Discrete Choice Utility Maximization as a Mathematical Program

As a means of better positioning the issues related to use of the HAPP mathematical

programming formulation in travel demand analysis, we first examine traditional utility-

maximizing discrete choice analysis from the perspective of mathematical programming.  Stated
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in simplified terms, the choice problem for a particular observation, n, is assumed to be: from a

set of alternatives available to n, say },,,{ 21 Kn qqqQ �= , select the alternative ∗q  that

maximizes the utility or, alternatively, minimizes the disutility nZ  that is derived from the

choice.   The disutility of any particular alternative iq , say )( i
i
n qZ , is presumed to be an implicit

function of the vector of attributes, ],,,[ 21 iJiii aaa �=′a , that define iq  relative to the choice

situation; a common representation for i
nZ  is the linear function ini

i
nZ aa ⋅′= b)( , where nb  is a

vector of coefficients (sometimes referred to as “utility weights”).  The prime (‘) symbol is used

here and throughout to designate the transpose of a vector or matrix.

For a mutually exclusive choice set, we define a vector of decision variables

[ ]
�
�

�
�

�

==
chosen is  ealternativ if,1

chosennot  is  ealternativ if,0
,

i

i
xx iiX      ,

and the choice problem defined above can be represented by the following mathematical

program:
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)( Minimize
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Equations (11) are, of course, an idealization of the choice process.  The linearization of the

utility function is at best a first order approximation to the mapping of attribute levels to utility,

and the specification of nX  undoubtedly will exclude some aspects (however minor) of the

alternative that influence the decision.  Inclusion of these, and other, unobservable effects on

choice is the basis of random utility theory (Manski, 1977), which assumes that, while the

decision maker selects the alternative with the greatest utility with certainty, the analyst is only

able to specify utility to within some disturbance (or, random) term.  The observed behavior, say

nX~ , is related to the model as:

1~1

:subject to

~)~( Minimize ~

=⋅′

+⋅′=

n

nnn n
Z

X

XBX Xξ

(12)

where 
nX~ξ  is a disturbance term that is specific to any particular candidate solution nX~  to

Equations (12).  Equations (12) are a non-deterministic system of equations.  Because of the

simplicity of the constraint set (a product of both the one-dimensional nature of the choice, and

the mutual exclusivity property, as well as the countable choice set), the error term in Equations

(12) can be incorporated directly into the utility weight matrix, i.e.,

1~1

:subject to

~~)~( Minimize

=⋅′

⋅′=

n

nnnZ

X

XBX

where
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11

~   ,

and where the iξ  are the disturbance terms. Under these conditions, the probability of any

particular

[ ]
�
�

�
�

�

=

≠
==

ki

ki
xx iin

 ,1

 ,0
~,~~X

being a solution is obtained directly as ),,( kiiiinkkn ≠∀+⋅≥+⋅ ξξ aa bbProb ; the familiar

result in the statement of the choice probability under random utility assumptions.  Absent

invoking this result, these same probabilities presumably would arise from an appropriate Monte

Carlo simulation of the error terms in Equations (12).

HAPP Utility Maximization

We turn now to the HAPP activity-based modeling scheme.  Recall that the HAPP

mathematical programming formulation of the travel/activity decisions for a particular

household, say n, during some time period is represented by Equations (10), above.  The form of

Equations (10) is generally similar to that of Equations (11), with some notable exceptions that

greatly complicate its application in empirical demand analysis – 1) the set of feasible solutions

(alternatives) in the system defined by Equations (10) is infinite, while that for Equations (12) is

countable (and, usually small), 2) the solution vector of Equations (10) comprises continuous, as

well as discrete, variables, 3) while the overall solution represents a mutually exclusive choice,

the solution vector itself is composed of components that are not generally mutually exclusive, 4)

the components of Bn  are not directly interpretable as utility weights of attributes, but rather are
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related to these weights through a transformation matrix, and 5) the complexity of the constraint

space of Equations (10) generally precludes the type of closed-form probability result noted

above for Equations (11).

As in the discrete choice example, Equations (10) constitute a model of observed

behavior, say nX~ .  Owing to the specification of the model, the observed behavior is related to

the model as:

0XA

XBX X

≤⋅

+⋅′=

n

nnn n
Z

~

:subject to

~)~( Minimize ~ξ

(13)

where 
nX~ξ is the disturbance term between the observed ( nX~ ) and the modeled ( nX ) behaviors.

As was noted in 4) above, the nB  in Equation (13) is related to the common concept of utility

weights through a transformation matrix.  For example, a commonly accepted component of

travel disutility is the travel time.  In the discrete choice formulation of Equation (11), this

component for any particular alternative, say the kth , would be represented by the product of the

travel time associated with alternative k, say the jth  attribute jka , and the travel time utility

weight njb , i.e., njjk ba ⋅ .  In the activity-based formulation of HAPP, the equivalent measure of

disutility is the total travel time of all travel links that comprise the activity pattern:
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where t  is the vector of travel times that comprise the travel time matrix, ordered appropriately.

The corresponding component of  travel time disutility is then simply njnjb XF ~⋅′⋅ .  In general,

the total disutility obtaining from a set of  J  factors (or attributes) would be represented by:

n
j

njnjb XXF ~
~ = Disutility Total ξ+⋅′⋅�

∀
(14)

We note that Equation (14) can be rewritten as:

nn nn
j

njnjb XX XBXF ~~
~~ = Disutility Total ξξ +⋅′=+⋅′⋅�

∀
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While it was possible to generate the probability distributions of optimal solutions to the standard

discrete choice problem either directly or through simple Monte Carlo simulation of the error

terms (coupled to any standard integer programming technique), in the case of HAPP this direct

approach clearly is not possible.  Rather, we are left with only approximate schemes to achieve

this result.  One procedure, for example, would be as follows:

1. Remove the random term from Equation (13) and then apply some sort of branch-and-

bound algorithm to the resulting system.

2. At each stage of uncovering a feasible solution, attach to the value of its objective

function the realization of a random draw from the presumed error distribution.

3. Continue this process to the solution.

4. Repeat the process.
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The above procedure has the drawback that the result is biased by the particular branch-and-

bound protocol (not all feasible solutions are identified) and branches typically are not revisited.

However, a Monte Carlo simulation based on the procedure should produce acceptable results

(akin to the k shortest path type analyses).  A second, and perhaps thornier, problem is that the

solution vector contains continuous (i.e., the starting times of activities), as well as discrete,

variables (i.e., person and vehicle link assignments); hence, an infinity of alternatives exist.  As

such, the probability of  any solution matching exactly the observed behavior is infinitesimally

small.  In dealing with continuous distributions, it is more proper to address the probability that

an outcome lies within some δ  of a particular value.  This approach could also be used in the

HAPP case or, alternatively, the continuous variables that define the choice alternative could be

specified in terms of a “band” around the actual value; e.g., an activity start time of jt  specified

as a start time between δ−jt  and δ+jt .  We note that, since HX ~ and ~ v  are discrete, this latter

procedure would only need to be applied to the T~ component of X~ .

8.  Model Estimation Issues and Obstacles

Standard to demand analysis, the analyst can not directly observe nB ; rather, an estimate,

nB̂ , is sought that can be inferred from the observed behavior, ∗
nX~ .  The goal, then, is to find the

nB̂  that minimizes some prescribed error nε  between the solution vector ∗
nX  and the observed

behavior ∗
nX~ .  The principal task of inferential statistics is to find such an estimate, using sample

data, that can be extrapolated to the population by minimizing some aggregate form of this error

over the entire sample.  In the case of discrete choice analysis, this is usually accomplished with

maximum likelihood estimation of nn ∀≡ ,ˆˆ BB , i.e., assuming that the utility weights are

common across observations, and assuming that the error terms ξi  are independently identically

distributed (IID).  The standard application of maximum likelihood requires that the model

choice probabilities be a differentiable function of the parameters contained in B .  Without such

stipulation, the maximization process could be accomplished using some heuristic search.  For
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example, in the case of the discrete choice problem stated in Equations (12), one could start with

an initial guess of B , say oB , perform the Monte Carlo simulation described above to obtain the

probabilities associated with the selected alternatives for the sample, compute the likelihood, and

then invoke the heuristic to modify oB  in a direction that is expected to increase the value of the

likelihood function.

In the case of the HAPP model (i.e., Equations 13), the only option available is a

heuristic.  The form of the HAPP model may lend the accompanying maximum likelihood

estimation problem to solution by genetic algorithm – we propose one possible procedure below.

The specification of nX  in Equation (13) leads to:

)~()~~()~,~~()~( nnnnnnnnnnn PPPP HHHXXHXTTXX vvv =⋅=⋅=== (15)

Were these events independent,

)~()~()~()~( nnnnnnnn PPPP HHXXTTXX vv =⋅=⋅=== . (15a)

The associated likelihood function for HAPP is given by

∏∏
∀∀

=⋅=⋅====
n

nnnnnnnnn
n

nn PPPP )~()~~()~,~~()~()ˆ( HHHXXHXTTXXB vvvL (16)

and the log likelihood

� ��
∀ ∀∀

=+=+==
n n

nnnnn
n

nnnn PPP )~(ln)~~(ln)~,~~(ln)ˆ(ln HHHXXHXTTB vvvL

The steps in the proposed genetic algorithm are as follows:

1. Define as a multi-objective function the three-tuple
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)ˆ(,)ˆ(,)ˆ()ˆ( 321 µµµµµµµ

that indicates the fitness of any potential solution vector, pB̂ , in maximizing the log

likelihood.

2.  Generate a population of pn  candidate solutions pp np ,,1,ˆ
�=B .  Since the signs of the

coefficients of  B̂ typically are known, the utility components can always be specified in such a

manner that the elements of B̂ are strictly non-negative; and, since the solution is unaffected by

the scaling of the utility coefficients, they can be scaled to be in the range [0,1].  Then, the

candidate solutions are drawn from the range [ ] [ ]′′ 1,1,1to00,0, �� .  Each of

these candidate solutions is termed a chromosome, and the elements of each chromosome are

referred to as genes.

3.  Each chromosome, pp np ,,1,ˆ
�=B , in the population is assigned a “fitness score,”

{ })ˆ(,)ˆ(,)ˆ()ˆ( 321 pppp BBBB µµµ=µµµµ .

4.  Each chromosome is assigned a series of three “probability of reproduction” values, each of

which is proportional to its fitness on the respective element 3,2,1,)ˆ( =ipi Bµ , of

)ˆ( pBµµµµ relative to the other chromosomes in the population.  For example, a particular

pB̂ that scored relatively high on )ˆ(3 pBµ , but low on )ˆ(1 pBµ  and )ˆ(2 pBµ , would be given

a corresponding set of one high and two low probabilities of reproduction.

5.  According to the assigned probabilities of reproduction, a new population is generated by

“mating” a selection drawn according to the probability weights for one of the three elements

of  µµµµ( � )B p  with one drawn by similar fashion from another (after removal of the first selected

from the pool in the second).

6.  The selected pairs of  chromosomes generate offspring via the use of specific genetic

operators, such as crossover and gene mutation.  Crossover is applied to two chromosomes
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(parents) and creates two new chromosomes (offspring) by selecting a random position along

the coding and then splicing the section that appears before the selected position in the first

string with the section that appears after selected position in the second string, and vice versa,

e.g.,
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7. The process is halted if a suitable solution is found.  Otherwise, the process returns to step 3,

where the new chromosomes are scored and the procedure iterates.

The procedure outlined above is suggested as one possible approach to a rather difficult problem,

and has yet to be tested.  It is advanced in the interest of demonstrating that examples exist that, in

concept, complete the requisite components of an activity-based demand analysis procedure.

9.  Concluding Remarks

The so-called activity-based approach to travel analysis has been on the scene for more

than two decades (or considerably longer if it is dated back to the original works of Hagerstrand

and his colleagues).  Most transportation researchers probably agree with the basic tenets of the
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approach – that the need or desire to participate in out-of-home activities drives the

corresponding demand for travel, and that the linkages between sets of activities are potentially

important to the characteristics of such demand.  Yet, most probably because of the inherent

overwhelming complexities of treating the “whole” of travel, the approach has not been

embraced by the mainstream of transportation researchers as offering a viable practical paradigm

for travel demand modeling.  There may indeed be wisdom in this judgement in that, despite

efforts over the past two decades, activity-based modeling advancement has been relegated

largely to either descriptive or proscriptive study, falling well short of being able to be used in the

context of actually forecasting changes in travel behavior.

In this paper, we have tried to couch the activity-based approach in terms that are

amenable to its development as a framework for travel demand modeling.  By showing that a

particular mathematical programming paradigm can be used to describe the demand modeling

processes both for conventional trip-based travel demand and for activity-based approaches it is

hoped not only to facilitate the practicality of activity-based modeling approaches, but also to tap

into the wealth of research that has guided mainstream travel demand analysis.
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Figure 1.  Optimal Space Path for Simple Destination/Mode Choice Example
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Figure 2.  Optimal Space-Time Path for Simple Destination/Mode Choice Example
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Figure 3.  Spatial Projection  of Feasible Space-Time Paths
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Figure 4.  Terminus Labeling for Spatial Projection  of Space-Time Paths
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Figure 5.  Expanded Labeling for Spatial Projection  of Space-Time Paths
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Figure 6a.  Feasible Space-Time Path for Spatial Projection a



Activity 1
Duration = 8

Home Activity 

TIME

SPACE

Available
Time
Window
for Activity 1

111111
000000

HHHHHH oooooo mmmmmm eeeeee

8
8.5

7

1

1

222222
17

19.5

Activity 2
Duration = 2

Available
Time
Window
for Return
Home from
Activity 1

10

20

Available
Time
Window
for Activity 2

6

0.25

Available
Time
Window
to Begin
Travel

21

Time
Window
to Complete
All Travel

111111

333333 ,,,,,, 444444 222222

Home Activity 

555555

Figure 6b.  Feasible Space-Time Path for Spatial Projection b
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Figure 6c.  Infeasible Space-Time Path for Spatial Projection c
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