
UC Irvine
UC Irvine Electronic Theses and Dissertations

Title
Checking Robustness for Persistency Memory Programs

Permalink
https://escholarship.org/uc/item/4983x8dc

Author
Luo, Weiyu

Publication Date
2024

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License,
available at https://creativecommons.org/licenses/by/4.0/

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4983x8dc
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA,
IRVINE

Checking Robustness for Persistency Memory Programs

DISSERTATION

submitted in partial satisfaction of the requirements
for the degree of

DOCTOR OF PHILOSOPHY

in Electrical Engineering and Computer Science

by

Weiyu Luo

Dissertation Committee:
Professor Brian Demsky, Chair

Professor Rainer Dömer
Assistant Professor Sang-Woo Jun

2024

© 2024 Weiyu Luo

DEDICATION

To my parents and my family members who always supported me.

ii

TABLE OF CONTENTS

Page

LIST OF FIGURES v

LIST OF TABLES vii

ACKNOWLEDGMENTS viii

VITA ix

ABSTRACT OF THE DISSERTATION xi

1 Introduction and Background 1
1.1 Introduction . 1

1.1.1 Correctness Criteria for Flush Operations 2
1.2 Background on x86 Persistency Model . 5

2 Dynamic Approach: PSan 7
2.1 Preliminaries . 9

2.1.1 Strict Persistency . 10
2.1.2 Robustness Condition . 11
2.1.3 Persistent Lock-Free Data Structures 12
2.1.4 Clock Vectors and Sequence Numbers 13

2.2 Basic Ideas . 15
2.2.1 Checking Equivalence . 16
2.2.2 Supporting Threads . 18
2.2.3 Implications for Updating Constraints 21
2.2.4 Supporting Multiple Crash Events . 22

2.3 Algorithm . 25
2.3.1 Operational Semantics . 25
2.3.2 Suggesting Fixes for Robustness Violations 27

2.4 Evaluation . 31
2.4.1 Methodology . 31
2.4.2 Bug Detection . 32
2.4.3 Performance . 35
2.4.4 Discussion . 36

2.5 Related Work . 38

iii

2.6 Conclusion . 40
2.7 Proof . 41

3 Static Approach: PMRobust 48
3.1 Introduction . 48
3.2 PMRobust . 50

3.2.1 Ensuring data is correctly flushed . 50
3.2.2 Verifying Robustness . 53
3.2.3 Relaxing Robustness for Checksums & Counters 55

3.3 Intraprocedural Analysis . 56
3.3.1 Preliminaries . 56
3.3.2 Transfer Functions . 61
3.3.3 Intraprocedural Error Reporting . 64

3.4 Interprocedural Analysis . 64
3.4.1 Context Sensitivity . 65
3.4.2 Approximating Calling Context Persistency States 67
3.4.3 Objects Reachable from Parameters 68
3.4.4 Stores in Function Calls . 68
3.4.5 Handling Arrays . 70
3.4.6 Detecting References to Persistent Memory 72
3.4.7 Interprocedural Error Reporting . 73
3.4.8 Limitations . 77

3.5 Evaluation . 78
3.5.1 Methodology . 78
3.5.2 Bug Detection . 79
3.5.3 False Positives . 81
3.5.4 Performance . 83

3.6 Related Work . 84
3.7 Conclusion . 86
3.8 Bug Listing . 87

Bibliography 88

iv

LIST OF FIGURES

Page

1.1 An example of execution being robust to the x86 persistency model, where
the pre-crash execution crashes before line 6, and the post-crash execution
executes the readChild method on the same node. 4

1.2 The x86-TSO storage system. 5

2.1 A weakly-persistent execution that reads r1 = 1 and r2 = 2 is not robust. . 8
2.2 Algorithm for updating clock vectors that track the happens-before relation

over stores and sequence numbers that record the TSO order. 14
2.3 System Overview . 16
2.4 An example of non-robust program with missing flush and drain operations. x

and y are initialized to 0. 17
2.5 Constraints for execution of code in Figure 2.4 where r1 = 2 and r2 = 5. . 18
2.6 x and y reside in different cache lines and are initialized to 0. We assume that

in the pre-crash execution, a third thread observes that x = 1 is TSO ordered
before y = 1. Can the execution read r1 = 0 and r2 = 1? 18

2.7 An example of just adding flushes after stores is not always sufficient to provide
robustness. x and y are initialized to 0. x and y reside in different cache lines.
Can the execution read r1 = 1, r2 = 0, and r3 = 1? 19

2.8 A single-threaded program with three sub-executions. Both sub-executions e1
and e2 are followed by crash events. x and y reside in different cache lines and
are initialized to 0. The execution reads r = 0 and s = 1. 23

2.9 A simple concurrent programming language. 25
2.10 Semantics for checking robustness violations. 26
2.11 Reading from a store that is too old. 28
2.12 Reading from a store that is too new. 29
2.13 Illustration for forward direction subcase 1a. 41
2.14 Illustration for forward direction subcase 1b. 42
2.15 Illustration for forward direction subcase 2a. 43
2.16 Illustration for forward direction subcase 2b. 43

3.1 Assume that x = y = 0 initially. If the post-crash execution observes r2 = 1,
strict persistency requires that r1 = 1. 50

3.2 Using Flush & Drain Operations to Ensure Robustness 51
3.3 Assume that x = y = 0 initially and all accesses are atomic. Can r1 = 1,

r2 = 0, and r3 = 1? . 52

v

3.4 A Simple Persistent Stack . 53
3.5 Lattice and FSM for Escape Analysis . 57
3.6 Lattice and FSM for Persistency State Analysis 58
3.7 Transfer Functions for Escape Analysis, where x and y point to PM locations 59
3.8 Transfer Functions for Persistency State Analysis 60
3.9 Assume that x and y reside on different cache lines and are escaped and clean

initially. 68
3.10 Transfer Functions for Array Persistency State Analysis 71
3.11 Assume that x and y are PM locations that reside on different cache lines and

are escaped and clean initially. 74
3.12 Assume that x and y are PM locations that reside on different cache lines

and are escaped and clean initially, where sb represents the sequenced-before
relation, and hb represents the happens-before relation. 74

vi

LIST OF TABLES

Page

1.1 Reordering constraints in the Px86sim. A ✓ indicates that the order between
the two instructions is preserved, a ✗ indicates that the two instructions can
be reordered, and a CL indicates that the order is preserved only if they both
operate on the same cache line. ‘mf’, ‘sf’, ‘clfopt’, and ‘clf’ represent ‘mfence’,
‘sfence’, ‘clflushopt’, and ‘clflush’, respectively. 6

2.1 Robustness violations. 34
2.2 Execution times for PSan and Jaaru (the underlying model checking infras-

tructure). PSan incurs minimal overhead compared to Jaaru. 35
2.3 Comparison with other tools; robustness subsumes ordering heuristics/condi-

tions used in existing tools. 38

3.1 New Robustness Violation Bugs . 79
3.2 Report False Positive Rate . 81
3.3 Average analysis time of PMRobust over 10 runs 83
3.4 Robustness Violation Bugs . 87

vii

ACKNOWLEDGMENTS

I would like to sincerely thank my advisor, Professor Brian Demsky, who played a key role in
my Ph.D. journey. In past six years, I was lucky to benefit from his mentorship and experience
that helped me grow and gain exceptional skill sets in software systems and programming
languages. I sincerely thank him for selecting me to be one of his students and patiently
teaching me how to think critically, do research, develop big systems, and present ideas. I
would not be able to successfully finish my Ph.D. degree without his help and guidance.

I would like to thank professors and fellow researchers who helped me along the way. I thank
Professor Aparna Chandramowlishwaran, Professor Rainer Dömer, Professor Isaac Scherson,
and Professor Sang-Woo Jun for serving on my candidacy exam committee. I also thank
Hamed Gorjiara, Rahmadi Trimananda, Alex Lee, and Simon Guo who have been my peer
co-authors. Finally, I thank Peizhao Ou, Zachary Snyder, Ahmed Al Nahian, Seyed Amir
Hossein Aqajari, Derek Yeh, Xiafa Wu, Keonho Lee, Conan Truong, and many others who
have been my colleagues.

I would like to thank the developers of PMDK from Intel, Memcached, RECIPE, and Redis
in particular Andy Rudoff, Piotr Balcer, Frank Hady, and Sekwon Lee that I extensively
used their work in my research evaluation. I would like to thank the developers of LLVM
and C++ language that I used these programming languages and compilers in my research
in past 6 years.

Finally, I would like to thank University of California Irvine for granting me a one-year
fellowship. Also, I would like to thank National Science Foundation grants CNS-1703598,
OAC-1740210, CCF-2006948, CCF-2102940, and CCF-2220410. My doctoral research and
the work presented in this dissertation would not be possible without the support from these
institutions.

viii

VITA

Weiyu Luo

EDUCATION

Doctor of Philosophy in Computer Engineering 2024
University of California, Irvine Irvine, California

Master of Science in Computer Engineering 2021
University of California, Irvine Irvine, California

Bachelor of Science in Mathematics 2018
Pennsylvania State University State College, Pennsylvania

RESEARCH EXPERIENCE

Graduate Student Research 2008–2024
University of California, Irvine Irvine, California

TEACHING EXPERIENCE

Teaching Assistant 2024
University of California, Irvine Irvine, California

ix

REFEREED CONFERENCE PUBLICATIONS

Checking Robustness to Weak Persistency Models Jun 2022
Proceedings of the 43rd ACM SIGPLAN International Conference on Programming
Language Design and Implementation

Stateful Dynamic Partial Order Reduction for Model
Checking Event-Driven Applications that Do Not Ter-
minate

Jan 2022

Verification, Model Checking, and Abstract Interpretation: 23rd International Conference,
VMCAI 2022

C11Tester: A Race Detector for C/C++ Atomics Mar 2021
Proceedings of the 26th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems

SOFTWARE

PSan https://plrg.ics.uci.edu/psan/

A tool for checking robustness to weak persistency models

C11Tester http://plrg.ics.uci.edu/c11tester/

A tool for testing C/C++ atomics in real world code

x

https://plrg.ics.uci.edu/psan/
http://plrg.ics.uci.edu/c11tester/

ABSTRACT OF THE DISSERTATION

Checking Robustness for Persistency Memory Programs

By

Weiyu Luo

Doctor of Philosophy in Electrical Engineering and Computer Science

University of California, Irvine, 2024

Professor Brian Demsky, Chair

Persistent memory (PM) technologies offer performance close to DRAM with persistence.

Persistent memory enables programs to directly modify persistent data through normal load

and store instructions bypassing heavyweight OS system calls for persistency. However, these

stores are not immediately made persistent, developers must manually flush the corresponding

cache lines to force the data to be written to persistent memory. While state-of-the-art

testing tools can help developers find and fix persistency bugs, a prior study has shown that

fixing persistency bugs on average takes a couple of weeks for PM developers. Developers

have to manually inspect the execution to identify the root cause of the problem. In addition,

most of the existing state-of-the-art testing tools require heavy user annotations to detect

bugs without visible symptoms such as segmentation faults.

In this thesis, we present robustness as a sufficient correctness condition to ensure that

program executions are free from bugs resulting from missing flushes. We present two

approaches to for checking robustness, one dynamic and one static. We develop an algorithm

for checking robustness and have implemented this algorithm in the dynamic PSan tool.

PSan can help developers both identify silent data corruption bugs and localize bugs in large

traces to the problematic memory operations that are missing flush operations. We have

evaluated PSan on a set of concurrent indexes, persistent memory libraries, and two popular

xi

real-world applications. We found 48 bugs in these benchmarks that 17 of them were not

reported before.

While dynamic tools can help developers find missing flush instructions, they typically require

test cases that reveal the bug. Test cases can be onerous to write and can easily miss covering

critical bug revealing executions. Therefore, we also present PMRobust, a static analysis

that can ensure that persistent memory code is free from all missing flush bugs. PMRobust

does not require any test cases and reports all missing flush bugs. PMRobust’s analysis

supports common persistent memory programming patterns and avoids reporting spurious

bug reports for these patterns. We have evaluated PMRobust on persistent memory libraries

and several persistent memory data structures. We have found a total of 80 bugs in popular

PM benchmarks including 15 new bugs.

xii

Chapter 1

Introduction and Background

1.1 Introduction

Persistent memory (PM) revolutionizes the storage-memory hierarchy [85, 93, 52]. This

technology became commercially available with Intel’s release of Optane DC Persistent

Memory [51]. Persistent memory interfaces with the processor via the memory bus similar

to DRAM, providing byte-addressable storage access to programs via processor load and

store instructions. This enables PM to provide programs with a new level of performance by

enabling them to manipulate data directly without needing heavyweight OS system calls.

The low latency and durability of PM have spurred the development and redesign of file

systems [27, 65, 66, 80, 103, 106, 108, 109, 19, 59], databases [3, 67, 23, 81, 88], log-based

systems [74, 18, 58, 73, 34, 48], key-value stores [17, 105, 107, 60, 112, 114, 45], and concurrent

DRAM indexes [16, 111, 70, 90, 102, 116, 14] for persistent memory.

Designing crash-consistent PM programs is especially challenging because the cache system

is volatile and its contents vanish upon a failure, e.g., a system crash or a power failure.

Processor manufacturers have introduced new instructions such as CLWB and SFENCE on

1

x86 [50], and DC CVAP on ARM [2], to force cache lines to be written back to persistent

memory. Developers of PM programs need to carefully use these instructions since a missing

flush instruction can make a program vulnerable to crash consistency bugs.

Researchers have taken two primary approaches to improve PM reliability. First, there is a

body of work on developing high-level abstractions such as transactional libraries [21, 13, 110,

35, 37, 75, 53, 64, 104, 10, 113, 99, 36, 82], locks [6, 15, 47, 55, 76], or synchronization-free

regions [40] to hide the complexity of using such instructions, but these abstractions come

at a performance cost and their implementations are still susceptible to crash consistency

bugs. Second, researchers have developed testing/checking frameworks [69, 61, 79, 78, 87, 43,

54, 77, 46, 25, 86, 33, 44] to find and fix performance problems (e.g., redundant flushes and

fences) and crash consistency bugs (e.g., missing fences and flushes).

Testing tools suffer from two major drawbacks. First, to detect persistency bugs, they require

test cases that can expose an execution error such as a segmentation fault or an assertion

failure. The issue is that not all bugs cause such visible symptoms. Some of these tools require

user annotations to catch bugs that do not lead to a program failure. Writing annotations

not only incurs a burden on users but also is error-prune itself. Consequently, such tools can

report false positives that originate from users’ mistakes in using annotations. Second, in

most cases, when a bug causes an execution to crash, it can be difficult to locate what part

of the execution contains the bug. In fact, a recent study [86] on 26 bugs reported by Intel’s

pmemcheck tool shows that these bugs took on average 23 days and a maximum of 66 days to

fix. These results highlight that diagnosing persistency bugs demands arduous human efforts.

1.1.1 Correctness Criteria for Flush Operations

Bugs in the uses of flush and drain operations can be trivially eliminated by making stores

become persistent in the same order that they become visible to other threads. Strict

2

persistency [91] is such a persistency model that ensures that the ”persistency memory order

is identical to volatile memory order”. Most hardware persistent memory specifications do

not provide strict persistency. However, Intel has developed an optional new feature called

enhanced Asynchronous DRAM Refresh (eADR) that relies on stored power to flush the

contents of the cache to persistent memory during a power failure. Consequently, eADR-

enabled persistent memory provides strict persistency. However, eADR functionality cannot

be relied upon because it requires the system vendor to provide additional stored energy

hardware such as a battery. Due to these specialized requirements on system vendors, it is

expected that many Intel PM systems will not provide strict persistency for the foreseeable

future according to our email discussions with Intel engineers.

As a result, PM developers must explicitly use flush instructions (or similar mechanisms)

to ensure that program executions under weak persistency semantics are correct. Our key

observation is that the typical correct usage of flush instructions in PM programs ensures that

program executions under weak persistency semantics are equivalent to those under strict

persistency semantics. Building on this observation, we define a new notion of correctness,

robustness, for programs under weak persistency in terms of their equivalence to post-

crash executions under strict persistency. A program is robust to a weak persistency

model if, for any crash events, each post-crash execution of the program under that weak

persistency model is equivalent to some post-crash execution after some crash event under

strict persistency. Robustness is a sufficient criterion to assure correct usage of flush and

drain operations—adding more flush and drain operations to a robust program will not alter

the set of possible post-crash executions. Robustness is not a necessary condition because

programs may (1) be tolerant of reading stale values, e.g., counters that only need to be

approximately correct, or (2) use other mechanisms like checksums to detect and discard

inconsistent data after reading it.

In general, robustness does not require a developer to insert flush operations immediately

3

after every store. For example, consider a PM program in which a new node is added to a

persistent singly-linked list. Stores to the new node are not visible to post-crash executions

unless a commit store to the next field of some existing node in the linked list adds the new

node to the list before the crash. The program is robust as long as these stores are flushed

before the commit store is performed. This pattern of using a commit store is typically how

developers write PM programs, and robustness precisely captures the pattern.

1 void addChild(node *ptr , char * data) {

2 childNode * tmp = alloc_child ();

3 tmp ->data = data;

4 clflush(tmp , sizeof(childNode));

5 ptr ->child = tmp;

6 clflush (&ptr ->child , sizeof(childNode *));

7 }

8

9 char * readChild(node *ptr) {

10 if (ptr ->child != NULL) {

11 return ptr ->child ->data;

12 }

13 return NULL;

14 }

Figure 1.1: An example of execution being robust to the x86 persistency model, where
the pre-crash execution crashes before line 6, and the post-crash execution executes the
readChild method on the same node.

Example. To illustrate, consider the example from Figure 1.1 on the x86 persistency

model. Suppose that execution of the addChild method crashes immediately before line 6

and that after the crash the program executes the readChild method on the same node.

There are two possible post-crash executions: (1) the post-crash execution that results from

the pre-crash execution where the store of the reference to the child field was flushed, and

(2) the post-crash execution that results from the pre-crash execution where the store of

the reference was not flushed. The first post-crash execution is equivalent to the post-crash

execution under strict persistency where the pre-crash execution crashes after the store in

line 5. The second post-crash execution is equivalent to the post-crash execution under

strict persistency where the pre-crash execution crashes before the store in line 5. Since all

post-crash executions of this program under the weak persistency model are equivalent to

some post-crash execution under strict persistency, this program is robust.

4

1.2 Background on x86 Persistency Model

This section briefly overviews the Intel-x86 persistency semantics following the Px86sim

model in Raad et al. [96, 97]. For our purposes, the differences between Raad et al. [97]

and Khyzha [62] are minor and do not affect our work. The Px86sim semantics capture the

behavior Intel implemented and intended for the architecture. They differ slightly from the

semantics in Intel’s manual due to mistakes in precisely specifying the intended behavior

in the documentation. Since the Px86sim semantics do not formalize non-temporal store

semantics, we do not support them.

Thread

Bu
ffe

r
Cache

by
pa
ss

Thread

Bu
ffe

r by
pa
ss

Persistent Storage

Figure 1.2: The x86-TSO storage
system.

Each core/thread on x86 has a store buffer that buffers

stores to the cache to hide the store latency. Stores in

the store buffer are written to the cache in order. The

cache is volatile — a power loss event will cause cached

data that has not been written back to persistent storage

to be lost. Cache lines are written back to main memory

non-deterministically when the cache needs the space for

other data. The x86 architecture provides instructions to

force the cache to write data back to persistent storage.

The three such instructions are: (1) the cache line flush instruction clflush that flushes

a cache line, (2) the optimized cache line flush instruction clflushopt, and (3) the cache

line write back instruction clwb. Each of these instructions takes as input the address of the

cache line to flush and flushes that corresponding cache line.

A key difference between these instructions is how they can be reordered across other instruc-

tions. Table 1.1 summarizes the instruction ordering constraints for persistent storage on

x86-TSO. The clflush instruction is inserted into the store buffer just like store instructions,

and when it exits the store buffer it causes the cache line to be immediately flushed to

5

Later in Program Order

E
a
rl
ie
r
in

P
ro
g
ra
m

O
rd
er Re Wr RMW mf sf clfopt clf

Read ✓ ✓ ✓ ✓ ✓ ✓ ✓
Write ✗ ✓ ✓ ✓ ✓ CL ✓
RMW ✓ ✓ ✓ ✓ ✓ ✓ ✓
mfence ✓ ✓ ✓ ✓ ✓ ✓ ✓
sfence ✗ ✓ ✓ ✓ ✓ ✓ ✓

clflushopt ✗ ✗ ✓ ✓ ✓ ✗ CL
clflush ✗ ✓ ✓ ✓ ✓ CL ✓

Table 1.1: Reordering constraints in the Px86sim. A ✓ indicates that the order between the
two instructions is preserved, a ✗ indicates that the two instructions can be reordered, and a
CL indicates that the order is preserved only if they both operate on the same cache line.
‘mf’, ‘sf’, ‘clfopt’, and ‘clf’ represent ‘mfence’, ‘sfence’, ‘clflushopt’, and ‘clflush’, respectively.

persistent memory. The clflushopt instruction is inserted into the store buffer also like store

instructions, but it can be reordered across store instructions to other cache lines, clflush

instructions to other cache lines, and other clflushopt instructions. The clflushopt in-

struction cannot be reordered across mfence or locked RMW instructions. The store fence

instruction sfence also orders clflushopt instructions relative to clflush, clflushopt,

clwb, and store instructions. The clwb instruction only writes back the contents of the cache

line and does not evict it from the cache and thus has better performance. However, from a

semantics perspective, the clwb instruction is identical to clflushopt instruction [97], and

thus we treat them identically in our discussions. While ARM has a persistency model [98],

we are not aware of any commercially available persistent memory for ARM. Our basic

approach should also be applicable to ARM. We expect that in the future standards bodies

may develop persistent memory models to enable portable code much like language memory

models such as C++11 [26]. Indeed, there has been some research on portable persistent

memory models [63].

6

Chapter 2

Dynamic Approach: PSan

This section presents PSan, a tool that dynamically checks robustness for programs under

the x86 persistency model and reports violations in a fully automated fashion. For a given

execution, PSan can detect all persistency bugs due to ordering issues in that execution. Our

definition of an ordering bug is a bug that result from stores being persisted in an order that

is different from their happens-before order. These bugs can be corrected by the addition of

flush and/or fence operations. Finding other types of bugs is not the focus of the paper. In

this work, we focus on the x86 persistency model, while our ideas are generally applicable to

other weak persistency models as well. Given a crash event and a post-crash execution, PSan

computes a set of strictly persistent executions whose pre-crash executions are consistent with

the post-crash execution. If this set becomes empty, i.e., such a strictly persistent execution

does not exist, PSan finds a robustness violation.

Our key insight is that we can efficiently compute this set of consistent pre-crash executions

under strict persistency by reasoning about the interval in which an equivalent strictly

persistent pre-crash execution must have crashed using constraints. In particular, each load in

the post-crash execution that reads from a store s in the pre-crash execution under the x86

7

persistency model constrains where an equivalent strictly persistent execution may crash—the

crash point must be somewhere between the store s and the next store to the same memory

location. If this set of constraints is unsatisfiable, there is no equivalent strictly persistent

execution.

1 x = 1;

2 y = 1;

3 x = 2;

4 y = 2;

(a) Pre-crash execution.

1 r1 = x;

2 r2 = y;

(b) Post-crash execution.

Figure 2.1: A weakly-persistent execution that reads r1 = 1 and r2 = 2 is not robust.

To illustrate, consider the executions in Figure 2.1, which shows a single-threaded program

executed under a weak persistency model. If r1 = 1, we know that an equivalent strictly

persistent execution must have crashed after the assignment x = 1 but before the assignment

x = 2. If r2 = 2, then we know that an equivalent strictly persistent execution must have

crashed after the assignment y = 2. These two constraints are not simultaneously satisfiable,

and therefore this execution is not robust.

Next, we extend this approach to support multi-threaded programs. The key idea is that

PSan determines whether there is an equivalent trace that can be produced by selecting

different (but compatible) crash points for different threads. Our idea for implementing this

is to have the robustness analysis compute per-thread crash intervals and ensure that these

intervals describe a prefix of the pre-crash execution that is closed under the happens-before

relation.

Robustness enables PSan to infer the exact program line with a missing flush or drain

operation. Each robustness violation involves an earlier store that was not made persistent

and a later store that was made persistent—the earlier store is missing a flush operation.

For instance, for the execution in Figure 2.1, PSan determines a flush instruction must be

inserted after x = 2 to fix the robustness violation.

8

This chapter makes the following contributions:

1. Robustness: It defines robustness, a sufficient correctness condition for the placement

of flush and drain operations in persistent memory programs.

2. Detecting Robustness Violations: It presents an approach that uses robustness to

identify persistency bugs that may not have visible symptoms.

3. Bug Localization: It presents an algorithm that localizes bugs in PM programs to

the specific stores where flush and drain operations should be inserted.

4. Bug Fixes: It presents an algorithm for translating robustness violations into bug

fixes. PSan’s bug fixes ensure that stores are persisted in the correct order.

5. Implementation and Evaluation: We implemented PSan with a full simulation of

Px86sim semantics with different modes and strategies to support complex, real-world

programs. We evaluated PSan on CCEH, FAST FAIR, the RECIPE persistent memory

indexes, the PMDK library, as well as two popular industrial applications Redis and

memcached. PSan found 48 persistency bugs that 17 of them have never been reported

before; so far 7 bugs have been confirmed.

2.1 Preliminaries

Recovery mechanisms often rely on specific persistency orderings in the program’s execution.

Failure to enforce such orderings can lead to data corruption and loss after a system crash.

There are different memory persistency models that allow different persistency orderings to

be observed by recovery procedures [92, 91, 28, 57, 41, 31]. Among them, strict persistency is

the most conservative and intuitive model which integrates memory persistency into memory

9

consistency [91]. Under strict persistency, the recovery procedure observes the memory in an

equivalent state as a separate processor would under the memory consistency model.

This section formalizes the strict persistency model and the robustness condition. We will

introduce some notations first. Given a PM program P , an execution of the program is the

complete trace of memory operations, fences, cache flush operations, and crash events in

executing the program P . We denote an execution as Exec. A crash is denoted by C, and we

use Ci to denote the i-th crash event in an execution Exec. The crash events partition an

Exec as:

Exec = e1C1e2C2...enCnen+1,

where n is the number of crash events in Exec. We say that each ei is a sub-execution of

Exec and write ei ⊂ Exec to denote this relation. This terminology describes the scenario

where a process crashes and then recovers multiple times.

Memory operations include load and store operations: a load is denoted as ld⟨x, τ⟩, and a

store is denoted as st⟨x, τ⟩, where x is the memory location and τ is the thread executing the

operation. Since we only care about which store a load reads from, the actual values that

a store writes and a load reads from are not important in our context, and we omit them

in the notation. When the memory location or the thread that performs that operation is

irrelevant in the context, we will omit them in the notation and write ld⟨x⟩ or st⟨x⟩.

2.1.1 Strict Persistency

We formalize strict persistency in terms of the total store order (TSO) memory model. If

in an execution, a store st⟨x⟩ is ordered before another store st⟨y⟩ in the x86-TSO memory

consistency order, i.e., st⟨x⟩ takes effect in the cache before st⟨y⟩, we write st⟨x⟩ tso−→st⟨y⟩ to

represent TSO-ordered-before relationship between these two stores. Under strict persistency,

10

the volatile memory order and persistent memory order are identical. That means that for

two stores st⟨x⟩ and st⟨y⟩, if st⟨x⟩ tso−→st⟨y⟩, then st⟨x⟩ is persisted before st⟨y⟩.

2.1.2 Robustness Condition

One can näıvely implement strict persistency by inserting flush operations after every memory

access. Developers typically do not do this because this strategy can incur unacceptable

overheads. However, the strict persistency model can be utilized as a correctness condition

in using a weaker persistency model, e.g., relaxed persistency. Recall from Section 1.1, a

program under weak persistency models can behave the same as the program under strict

persistency without requiring flush operations after every load and store. Building on this

idea, we next define robustness for a single execution in terms of multi-threaded prefixes.

Definition 2.1. Let e be a sub-execution of some execution Exec = e1C1...Cnen+1. We define

a multi-threaded prefix of e as a subset G of operations in e such that G is closed under the

happens-before relation over stores and the sequenced-before relation, and that stores in G

maintain the same TSO order as in e.

We define a multi-threaded prefix of Exec as a subset F of operations in Exec such that F is

closed under the reads-from relation, and F = e1
′ where e1

′ is a multi-threaded prefix of e1; or

F = e1
′C1...Ckek+1

′, where k < n and ei
′ is a multi-threaded prefix of ei for all 1 ≤ i ≤ k + 1.

Definition 2.2. An execution Exec with n crash events is robust if for all 1 < i ≤ n + 1,

there exists a multi-threaded prefix Fi of Hi = e1C1...Ci−1ei such that

1. the last sub-execution of Fi is ei ;

2. if st⟨x⟩ ∈ ej is read from by a load in later sub-executions for some j ≤ i, then st⟨x⟩ ∈ Fi

; and

11

3. Fi is a valid execution under strict persistency in which all stores in ej have committed

to the cache before the crash Cj occurs for all 1 ≤ j < i .

Each multi-threaded prefix of Exec preserves the sequenced-before and reads-from relations,

the happens-before relation over stores, and the TSO order in Exec. The happens-before

relation over stores is defined in Section 2.1.4. Definition 2.2 requires that each portion of

the execution in Exec up to some crash event (i.e., Hi = e1C1...Ci−1ei) is equivalent to the

multi-threaded prefix Fi in that the last sub-execution of Fi has the same behavior as that of

Hi. Intuitively, it means at any point of the execution, the most recent sub-execution has the

same behavior as that of some strictly persistent execution. For store operations st⟨x⟩ ∈ ej

that are not included by any of multi-threaded prefixes Fi’s, where i > j, their effects are

either not written to the persistent memory or not read from by loads in sub-executions later

than ej in Exec. However, if st⟨x⟩ ∈ ej is read from by loads in later sub-executions, then

it must be included in all of Fi’s where j ≤ i. Lastly, each Fi is an execution under strict

persistency when all stores in Fi are written to the persistent memory.

The following definition presents the notion of robustness for programs:

Definition 2.3. A program P is robust to a weak persistency model if every execution Exec

of program P is robust.

2.1.3 Persistent Lock-Free Data Structures

As prior studies note [102, 6, 56, 22], strict persistency guarantees recoverability for lock-free

data structures. Thus, robustness is a sufficient criterion to correctly port lock-free data

structures to persistent memory. The key observation is that a crash of a lock-free data

structure under the strict persistency model is equivalent to a crash-free execution in which

one set of threads runs the pre-crash execution and stop at their respective crash locations

12

and then after those threads stop, the second set of threads runs the post-crash execution.

Lock-freedom guarantees progress for such execution, and thus robustness plus lock-freedom

suffices to ensure crash consistency.

The robustness definition is generic and can be applied to any program, including single-

threaded, log-free, and lock-based multi-threaded programs, in addition to lock-free programs.

For persistency strategies other than lock-free programs, robustness can still be a useful

tool for finding any potential flush/fence bugs even though robustness is not sufficient to

guarantee crash consistency for such programs. Broadly speaking, the domain of applicability

for PSan is PM programs that attempt to persist data across crashes.

2.1.4 Clock Vectors and Sequence Numbers

Our algorithm for checking robustness requires tracking the happens-before relation and

the TSO order, so we will cover some basics on how we use clock vectors to track the

happens-before relation [29] over stores and sequence numbers to track the TSO order.

Clock vectors have an initial value ⊥CV, a union operator ∪, a comparison operator ≤, and

a per-thread increment operator incτ that is invoked every time a thread performs a store.

These are defined as follows:

⊥CV = λτ.0,

CV1 ∪ CV2 ≜ λτ.max(CV1(τ),CV2(τ)),

CV1 ≤ CV2 ≜ ∀τ.CV1(τ) ≤ CV2(τ),

incτ(CV) = λu. if u == τ then CV(u) + 1 else CV(u).

Each store has a clock vector associated with it, and each thread has its own clock vector.

13

States:

Tid ≜ Z CV ≜ Tid → Z CV ≜ Tid → CV SCV ≜ store → CV

seq : Z SEQ ≜ store → Z

[LOAD]

st⟨x, τs⟩
rf−→ld⟨x, τ⟩ CV′ = CV[τ 7→ CV(τ) ∪ SCV(st⟨x, τs⟩)]

⟨CV,SCV,SEQ, seq⟩ ⇒ld⟨x,τ⟩,st⟨x,τs⟩ ⟨CV′, SCV,SEQ, seq⟩

[STORE ISSUE]

CV′ = CV[τ 7→ incτ(CV(τ))]
SCV′ = SCV[st⟨x, τ⟩ 7→ CV′(τ)] SEQ′ = SEQ[st⟨x, τ⟩ 7→ 0]

⟨CV,SCV,SEQ, seq⟩ ⇒st⟨x,τ⟩ ⟨CV′,SCV′,SEQ′, seq⟩

[STORE COMMIT]

seq′ = seq + 1 SEQ′ = SEQ[st⟨x, τ⟩ 7→ seq′]

⟨CV,SCV,SEQ, seq⟩ ⇒st⟨x,τ⟩ ⟨CV, SCV,SEQ′, seq′⟩

[CRASH]

seq′ = 0 CV′ = reset(CV)
⟨CV,SCV,SEQ, seq⟩ ⇒crash ⟨CV′,SCV,SEQ, seq′⟩

Figure 2.2: Algorithm for updating clock vectors that track the happens-before relation over
stores and sequence numbers that record the TSO order.

We define a map CV that maps a thread identifier to the thread’s clock vector and write

CV(τ) to denote the clock vector for thread τ. We define SCV as a map from a store to

store’s clock vector.

In order to keep track of the TSO order, we define a sequence number for each store operation,

representing the order the stores take effect in the cache. We maintain a map SEQ that maps

a store to its sequence number.

Figure 2.2 presents the algorithm for updating clock vectors and sequence numbers. The

sequence counter seq is a strictly increasing global counter, which is initialized to 0. The

14

[LOAD] rule applies when a load reads from a store and merges the clock vector of the thread

performing the load with the clock vector of the store being read from. The [STORE ISSUE]

rule applies when a thread τ performs a store, i.e., inserting the store into the thread’s store

buffer. It updates the thread τ’s clock vector using the incτ operator, initializes the store’s

clock vector, and initializes the store’s sequence number to 0. The [STORE COMMIT] rule

applies when a store leaves its store buffer. It increments the counter seq by 1, and assigns

the store’s sequence number as the counter’s current value. When a crash event occurs, the

[CRASH] rule resets the sequence number counter seq to 0 and the map CV to an empty

map. For two stores st⟨x⟩ and st⟨y⟩ in the same sub-execution, if SCV(st⟨x⟩) ≤ SCV(st⟨y⟩),

then the store st⟨x⟩ happens before the store st⟨y⟩.

Given a store st⟨x, τ⟩ and its clock vector SCV(st⟨x, τ⟩), we define the clock of the store as

SCV(st⟨x, τ⟩)(τ), the τ-th component of its clock vector. We will use a helper function getcl

throughout the paper that takes a store as input and returns the clock of the store. Because

the incτ operator is only applied to thread τ, and a load operation in thread τ may only

update components of thread τ’s clock vector other than the τ-th component, every store in

a thread has a unique clock. Note that the clock of stores orders stores in a single thread

in a sub-execution by when they are issued, while the sequence number orders stores in a

sub-execution by when they commit their values to the cache.

2.2 Basic Ideas

Figure 2.3 presents an overview of the PSan system. PSan builds on the open-source Jaaru

infrastructure [43] for simulating the x86 persistent memory model. Jaaru’s frontend takes

as input the PM program source and generates an instrumented binary. The instrumented

binary is executed by Jaaru, and Jaaru generates an execution trace. Jaaru assumes as input

a set of test cases that explore a program’s PM data structures. These can potentially be

15

LLVM
Frontend

Compile

PM
Program

Instrumented
Binary

Jaaru PM Simulator/Model Checker

PSan Plugin

Execution
TracesReport

Figure 2.3: System Overview

generated by existing test data generation tools [77, 1, 11, 12, 8, 4, 71, 101, 100, 38, 39, 94].

Jaaru generates executions of PM programs, and then PSan checks these executions for

robustness violations using Jaaru’s plugin interface.

PSan reports robustness violations to users, which can help users find bugs in the uses of

flush and drain operations. PSan can also be helpful for debugging known bugs. When

an assertion violation or other error is detected, Jaaru provides developers with the trace.

This trace can contain millions of operations, and it can be difficult to understand which

ones are relevant to the crash. PSan can quickly relate bugs in the uses of flush and fence

operations to the individual memory operation that is either missing a flush operation or has

an incorrectly placed flush operation. PSan then suggests to users one or more bug fixes.

2.2.1 Checking Equivalence

PSan’s approach for identifying equivalent strictly persistent executions computes a set of

strictly persistent executions that are consistent with the behavior of the weakly persistent

execution thus far. The basic approach relies on computing potential crash intervals that

describe the set of equivalent strictly persistent executions. We model potential crash intervals

using constraints. If the constraints become unsatisfiable, then no such equivalent strictly

persistent pre-crash execution exists and the program is not robust. At this point, PSan

16

would then report a robustness violation.

During the post-crash execution of the program, PSan updates the constraints to compute a

potential crash interval for the pre-crash execution. The constraint set is initially empty to

indicate that any strictly persistent pre-crash execution is consistent with the behavior of the

initially empty post-crash execution. Each load in the post-crash execution potentially narrows

the set of strictly persistent pre-crash executions that are consistent with the post-crash

execution.

For each potential crash interval constraint, the beginning of a range corresponds to a unique

store, and so does the end of a range. We use the clocks of stores defined in Section 2.1.4 to

mark the beginnings and ends of ranges. Note that although the clocks of stores are used to

mark the beginning and end ranges of potential crash interval constraints, a constraint really

means that an equivalent strictly persistent execution should crash after the store corresponding

to the beginning of the range commits to the cache and before the store corresponding to the

end of the range commits to the cache.

1 x = 1;

2 y = 2;

3 x = 3;

4 y = 4;

5 x = 5;

(a) Pre-crash execution

r1 = y;

r2 = x;

(b) Post-crash execution

Figure 2.4: An example of non-robust program with missing flush and drain operations. x
and y are initialized to 0.

Figure 2.4 presents an example that we will use to present our basic approach. The left

column in Figure 2.4 shows the code of the pre-crash execution and the right column shows

the code of the post-crash execution. Section 2.4.1 elaborates on how PSan inserts crash

points in the program. The clocks of stores in the pre-crash execution are listed on the left of

Figure 2.4-a.

Consider an execution in which r1 = 2 and r2 = 5. Figure 2.5 shows such an example and

17

r1=2;

x=1 y=2 x=3 y=4 x=5
X

Power
failure

Initially

r2=5; X

Figure 2.5: Constraints for execution of code in Figure 2.4 where r1 = 2 and r2 = 5.

illustrates the process of checking for an equivalent strictly persistent execution. At the

beginning of the post-crash execution, the potential crash interval constraint set is empty.

After the post-crash execution reads 2 from y, this constrains an equivalent strictly persistent

pre-crash execution to have crashed after the assignment y = 2 commits to the cache, but

before y = 4 commits to the cache. Therefore, the potential crash interval constraint [2, 4)

is added to the constraints. When the post-crash execution reads 5 from x, this constrains

an equivalent strictly persistent pre-crash execution to have crashed after the store x = 5

commits to the cache and implies the potential crash interval constraint [5,∞) should be

added to the constraints. However, the combination of the prior interval constraint [2, 4)

and the new interval constraint [5,∞) is unsatisfiable. Thus, there is no equivalent pre-crash

execution under strict persistency. This execution is possible under the x86 persistency model

because there is no flush and drain operation for y after y = 4.

2.2.2 Supporting Threads

x = 1;

flush x;

(a) Thread τ1 in pre-crash ex-
ecution

y = 1;

flush y;

(b) Thread τ2 in pre-crash ex-
ecution

r1 = x;

r2 = y;

(c) Post-crash execution

Figure 2.6: x and y reside in different cache lines and are initialized to 0. We assume that
in the pre-crash execution, a third thread observes that x = 1 is TSO ordered before y = 1.
Can the execution read r1 = 0 and r2 = 1?

18

x = 1;

flush x;

(a) Thread τ1 in pre-crash ex-
ecution

r1 = x;

y = r1;

flush y;

(b) Thread τ2 in pre-crash ex-
ecution

r2 = x;

r3 = y;

(c) Post-crash execution

Figure 2.7: An example of just adding flushes after stores is not always sufficient to provide
robustness. x and y are initialized to 0. x and y reside in different cache lines. Can the
execution read r1 = 1, r2 = 0, and r3 = 1?

We next discuss the basic ideas of how we generalize our approach for updating potential

crash interval constraints to the multi-threaded context.

Per-Thread Crash Intervals

Näıvely applying potential crash interval constraints to a multi-threaded execution trace

using TSO order is overly restrictive. Figure 2.6 presents an example that demonstrates the

issue with this approach. We assume that the store x = 1 is TSO ordered before the store

y = 1 in the pre-crash execution and this could potentially be observed by pre-crash threads.

Consider the execution where r1 = 0 and r2 = 1.

This execution is robust, because it is equivalent to a strictly persistent execution where

thread τ1 does not perform any operation, thread τ2 executes y = 1, and then the program

crashes. Then the post-crash execution of the strictly persistent execution would read r1 = 0

and r2 = 1.

In the näıve approach, we inspect the trace of the pre-crash execution to determine where

an equivalent execution should crash. Since clocks of stores do not order stores in different

threads, sequence numbers have to be used in the constraints. r1 = x = 0 yields the

constraint [0, seqx = 1), because an equivalent strictly persistent execution must crash before

the store x = 1. Similarly, r1 = y = 1 yields the constraint [seqy = 1,∞). However, the

combination of the two constraints [0, seqx = 1) ∧ [seqy = 1,∞) is unsatisfiable.

19

To solve this issue, each thread requires its own potential crash interval constraints, since each

thread can make different progress when a program crashes. Therefore, we define potential

crash interval constraints C as a map from a thread identifier to a potential crash interval

constraint for the thread. The map C is satisfiable if and only if each interval constraint in

its range is satisfiable. Each C(τ) is initially empty.

Persistency Closure under Happens-Before

Another aspect of the simple approach in Section 2.2.1 is that it only updates potential crash

interval constraints based on the TSO ordering between stores at the same memory location.

This simple approach is not enough to detect robustness violations in the multi-threaded

context. More specifically, if a store is made persistent in a robust execution, then all stores

that are read from and that happen before this store must also be made persistent. However,

the simple approach cannot detect robustness violations in executions where a store that has

been read from and that happens before a persistent store is not made persistent.

Figure 2.7 presents an example that shows such robustness violations. This example is also

interesting because it shows that simply adding flush operations after each store is not always

sufficient to guarantee robustness. Figure 2.7-(a) and 2.7-(b) present the pre-crash execution

code for thread τ1 and thread τ2. Figure 2.7-(c) shows the code for the post-crash execution.

We assume that both x and y are initialized to 0, and that they reside in different cache

lines. Consider the execution where thread τ1 executes x = 1 and is paused by the operating

system before executing the corresponding flush. Then, thread τ2 reads r1 = x = 1, stores

y = r1 = 1, and flushes y. If the program crashes at this point, the post-crash execution

can read r2 = 0, but r3 = 1. Such an execution is not feasible under strict persistency.

When the post-crash execution reads r2 = 0, it can be inferred that the thread τ1 of an

equivalent strictly persistent execution must have crashed before the store x = 1 commits to

20

the cache. Therefore, we have C(τ1) = [0, getcl(x = 1)). Similarly, when the load r3 = y

reads from the store y = r1, it can be inferred that the thread τ2 of the equivalent strictly

persistent execution must have crashed after the store y = r1 commits to the cache, and

C(τ2) = [getcl(y = r1),∞). At this point, both C(τ1) and C(τ2) are satisfiable, failing to

detect the robustness violation in this execution.

This execution exhibits a robustness violation because the store y = r1 is made persistent,

but the store x = 1 that happens before it is not. This robustness violation can be fixed if

x = 1 is forced to be persistent before y = r1 by adding a flush instruction after the load

r1 = x in thread τ2.

It is worth noting that if we require that stores that are not read from and are TSO ordered

before a persistent store be made persistent in a robust execution, then this condition is

too strong in that it would classify some robust executions as non-robust. For example, the

execution in Figure 2.6 is robust, but x = 1 is not persistent even though it is TSO ordered

before y = 1, and y = 1 is made persistent.

2.2.3 Implications for Updating Constraints

In this section, we will present implications for updating potential crash interval constraints

in executions with a single crash event. Every time a load ld⟨x⟩ in the post-crash execution

reads from a store st⟨x, τ1⟩ in the pre-crash execution, PSan updates constraints based on

the following implications:

1. Observed stores must have executed: When a load ld⟨x⟩ in the post-crash execution

reads from a store st⟨x, τ1⟩ in the pre-crash execution, we can infer that an equivalent strictly

21

persistent execution must have crashed after the store st⟨x, τ1⟩ commits for thread τ1:

st⟨x, τ1⟩
rf−→ld⟨x⟩

⇒ C(τ1) := [getcl(st⟨x, τ1⟩),∞) ∧ C(τ1). (2.1)

2. Newer stores must have not executed: If there is a second store st⟨x, τ2⟩ that is TSO

ordered after the st⟨x, τ1⟩, then the equivalent strictly persistent execution must have crashed

before st⟨x, τ2⟩ commits for thread τ2, because otherwise, ld⟨x⟩ would read from st⟨x, τ2⟩ in

the strictly persistent execution instead:

st⟨x, τ1⟩
rf−→ld⟨x⟩ ∧ st⟨x, τ1⟩

tso−→st⟨x, τ2⟩

⇒ C(τ2) := [0, getcl(st⟨x, τ2⟩) ∧ C(τ2). (2.2)

3. An execution prefix is closed under happens before: If there is any store st⟨y, τ3⟩

that happens before st⟨x, τ1⟩ in the pre-crash execution, then the equivalent strictly persistent

execution must have crashed after st⟨y, τ3⟩ commits for thread τ3, because st⟨y, τ3⟩ must have

been executed before st⟨x, τ1⟩:

st⟨x, τ1⟩
rf−→ld⟨x⟩ ∧ st⟨y, τ3⟩

hb−→st⟨x, τ1⟩

⇒ C(τ3) := [getcl(st⟨y, τ3⟩),∞) ∧ C(τ3). (2.3)

2.2.4 Supporting Multiple Crash Events

So far, our discussion has only focused on executions with one crash event. In an execution

Exec with n crash events, the execution has n+1 sub-executions. Therefore, each crash event

should have its own potential crash interval constraints, and we define map C that maps a

22

sub-execution e to the potential crash interval constraints for the crash event immediately

following the sub-execution. For a complete execution, C would map the last sub-execution

to an empty set of constraints, because there is no crash event after the last sub-execution.

In an ongoing execution, we refer to the sub-execution after the last crash event that has

occurred so far as the current sub-execution. When a load in the current sub-execution

reads from a store in a previous sub-execution e, PSan would update the potential crash

interval constraints for the sub-execution e. However, if a load in the current sub-execution

reads from a store in a previous sub-execution that does not immediately precede the current

sub-execution, then some additional constraints would apply, because the store that is read

from cannot be overwritten by any store in sub-executions later than e. We present these

additional constraints in Section 2.3.1.

x = 1;

y = 1;

(a) sub-execution e1

y = 2;

r = x;

(b) sub-execution e2

s = y;

(c) sub-execution e3

Figure 2.8: A single-threaded program with three sub-executions. Both sub-executions e1
and e2 are followed by crash events. x and y reside in different cache lines and are initialized
to 0. The execution reads r = 0 and s = 1.

Figure 2.8 presents an example of a single-threaded execution with two crash events and

three sub-executions. Although this example is single-threaded, the general idea applies to

multi-threaded programs. Both sub-executions e1 and e2 are followed by crash events. The

load r = x = 0 reads from the initial value of x, and the load s = y = 1 reads from the

store y = 1 in the first sub-execution.

Right after the crash event following sub-execution e2, the execution is robust so far. Since

the program is single-threaded, we will omit the thread identifier in the notation. The load

r = x = 0 updates C(e1) as C(e1) = [0, getcl(x = 1)), because the first sub-execution of

an equivalent strictly persistent execution must crash before x = 1 commits to the cache,

and C(e2) has no constraints. Then when the load s = y reads from y = 1, C(e1) becomes

23

[0, getcl(x = 1)) ∧ [getcl(y = 1),∞), because the first sub-execution of the equivalent exe-

cution must crash after y = 1 commits to the cache. Also, C(e2) becomes [0, getcl(y = 2)),

because the second sub-execution of the equivalent execution must crash before y = 2 com-

mits to the cache. Otherwise, the older store y = 1 would be overwritten. However, the

constraints in C(e1) are not satisfiable, and such equivalent execution does not exist.

Note that a misinterpretation of the constraint C(e2) = [0, getcl(y = 2)) would suggest that

the second sub-execution should be empty. Then since r = x is not executed, C(e1) becomes

[getcl(y = 1),∞), resutling in satisfiable constraints. However, this is not the case. First of

all, the constraint C(e2) = [0, getcl(y = 2)) suggests that the second sub-execution of the

equivalent execution should crash before y = 2 commits to the cache, not necessarily before y

= 2 is executed. Second, even if the second sub-execution of the equivalent execution crashes

before y = 2 is executed, it does not affect the original weakly persistent execution that was

used to derive the map C, and so we do not remove the implications of the load r = x from

C(e1).

24

2.3 Algorithm

a ∈ Reg v ∈ Val τ ∈ TId

Prog ::= TId
fin−−→ Com

Com ::= Exp | PCom

| let a := Com in Com

| if (Com) then {Com} else {Com}

| repeat Com

PCom ::= load(x) | store(x,Exp) | CAS(x,Exp ,Exp)

| FAA(x,Exp) | mfence | sfence

| flushopt x | flush x

Exp ::= v | a | Exp op Exp

Figure 2.9: A simple concurrent programming language.

We present our algorithm for detecting robustness violations with respect to the simple

concurrent language used by Px86sim [97], as described in Figure 2.9. We assume that Reg is

a finite set of registers (local variables), Val is a finite set of values, and TId ⊆ N is a finite set

of thread identifiers. An expression Exp is either a register, a value, or the result of applying

an arithmetic operation on two expressions. We define a multi-threaded program Prog as

a function mapping each thread to the sequential program that the thread executes. The

sequential fragment of the language is given by the Com grammar, which includes primitive

commands PCom, expresssions, assignments to local variables, conditional statements, and

loops. The load(x) denotes an atomic read from location x, and the store(x,Exp) denotes

an atomic write to location x. The CAS(x,Exp,Exp) denotes the atomic compare-and-swap.

The FAA(x,Exp) denotes the atomic fetch-and-add operation. Our analysis treats RMW

operations in the same fashion as a load immediately followed by a store. The mfence and

sfence denote a memory fence and a store fence, respectively. Lastly, flushopt and flush

denote persist instructions, persisting the cache line where location x resides.

2.3.1 Operational Semantics

Figure 2.10 presents our algorithm in operational semantics as an extension to the Px86sim

operational model.

25

We present a correctness proof for the algorithm in Section 2.7. Before performing the analysis

in Figure 2.10, the algorithm in Figure 2.2 for computing clock vectors and sequence numbers

is applied to the corresponding operations. After the analysis in Figure 2.10, we extend the

transitions for the Px86sim operational model [97].

We use the following notations in the algorithm:

• getexec(st⟨x, τ⟩) returns the sub-execution that contains the store st⟨x, τ⟩;

• next(st⟨x, τ⟩, e) returns the smallest set of stores that includes (1) the first store to

the location x in each thread that is TSO ordered after store st⟨x, τ⟩ in the sub-

execution getexec(st⟨x, τ⟩) and (2) the first store to the location x in each thread in

any sub-execution that follows getexec(st⟨x, τ⟩) and precedes e;

• nextop(i) returns the instruction that follows i in the execution;

• top(Exec) returns the last sub-execution in Exec, i.e., the current sub-execution;

• C maps a sub-execution e to its mapping Ce from threads to potential crash intervals.

States:

C ≜ Exec → C C ≜ TId → Constraint List

[LOAD-PREV]

st⟨x, τ⟩ rf−→ld⟨x⟩ ê = getexec(st⟨x, τ⟩)
ec = top(Exec) ld⟨x⟩ ∈ ec ê ̸= ec {st⟨x, τ1⟩1, ..., st⟨x, τn⟩n} = next(st⟨x, τ⟩, ec)

∀i ∈ {1, ..., n}.êi = getexec(st⟨x, τi⟩i), σi = SCV(st⟨x, τi⟩i)(τi)
C0 = C[ê 7→ {⟨τ ′, C(ê)(τ ′) ∧ [SCV(st⟨x, τ⟩)(τ ′),∞)⟩ | τ ′ ∈ TId}]
∀i ∈ {1, ..., n}.Ci = Ci−1[ei 7→ Ci−1(êi)[τi 7→ Ci−1(êi)(τi) ∧ [0, σi))]]

⟨ld⟨x⟩, C⟩ =⇒ ⟨nextop(ld⟨x⟩), Cn⟩

Figure 2.10: Semantics for checking robustness violations.

We only check for robustness violations when a load in the current sub-execution reads from

a store in a previous sub-execution. The clock vector SCV(st⟨x, τ⟩) has information about

26

the last store in each of the other threads that happens before st⟨x, τ⟩, because for each

τ ′ ̸= τ, SCV(st⟨x, τ⟩)(τ ′) is exactly the clock of the last store in thread τ ′ that happens before

st⟨x, τ⟩. When τ ′ = τ, SCV(st⟨x, τ⟩)(τ ′) is the clock of st⟨x, τ⟩. Therefore, C0 is the result of

applying implications 2.1 and 2.3. Then the last line in Figure 2.10 iteratively applies the

implication 2.2 for each store in the set next(st⟨x, τ⟩, ec).

2.3.2 Suggesting Fixes for Robustness Violations

We next discuss how PSan suggests fixes for robustness violations. In general, there are

two ways to fix a robustness violation. The first is to use flush and/or drain operations to

force the cache to write back a cache line to persistent memory. The second is to leverage

the existing cache coherence mechanism to enforce the desired ordering by locating a pair of

stores for which an ordering violation is observed on the same cache line.

Each identified bug is defined by a pair of stores: the first store is ordered earlier in the

happens-before relation than the second store, but only the second store was persisted and

observed by loads in post-crash executions. PSan gives this pair of stores to users. The bug

fix is a little more complicated because these stores could potentially be in different threads

and it is possible, for example, that the thread that executes the first store stops immediately

after the store, and some other thread reads from this store and later performs a second store.

In this case, we cannot prevent this robustness violation by adding a flush after the first

store since that thread stops. We have to fix this bug by adding a flush after the load. Thus,

PSan defines a fix as a set of flush intervals that cover operations that happen between the

pair of stores.

There are two cases in which a robustness violation may be reported — the first case is

when the most recent load reads from a store that is too old to be consistent with the strict

persistency model, and the second case is when the most recent load reads from a store that

27

x

ld<𝑦>

Post-crash
execution

Pre-crash
execution

x

st1<𝑦>

rf

x

st2<𝑦>

tso

Crash
interval

Figure 2.11: Reading from a store that is too old.

is too new. We first discuss the first case in more detail.

Reading from Too Old of Store. Figure 2.11 presents a robustness violation that occurs

when the most recent load ld⟨y⟩ reads from a store st1⟨y⟩ that is too old. This occurs because

the program is missing a flush on some newer store st2⟨y⟩ to the same memory location. Our

algorithm detects this when the presence of the later store st2⟨y⟩ causes the algorithm to

move the end of the crash interval backward past the beginning of the interval. A single load

can potentially reveal multiple stores st2⟨y⟩ that are missing flush operations. This set of

stores are the stores st⟨x, τi⟩i such that the computation of the maps Ci in the load rule of

our operational semantics computes a new unsatisfiable interval.

The fix for this bug is to insert a flush and a drain that happen after the store st2⟨y⟩ and

happen before the beginning of some potential crash interval. Specifically, PSan computes

for each thread a potential flush window that starts at the first operation in that thread

that happens after st2⟨y⟩ and continues until the beginning of that thread’s crash interval.

We distinguish the interval for the thread that performed st2⟨y⟩, and call this interval the

primary fix interval. While all the suggested fixes will eliminate the robustness violation, we

believe the primary fix interval is typically the desired fix. However, the primary fix interval

may not always exist as seen in the scenario in Figure 2.7 in which a thread crashes between

performing a store and flushing and draining the store, but a second thread observes the

28

x

ld<𝑦>

x

ld<𝑧>

Post-crash
execution

Pre-crash
execution

x

st1<𝑦>

rf

x

st2<𝑦>tso

Crash
interval

x

st3<𝑧>

rf

hb

Figure 2.12: Reading from a store that is too new.

presence of that store and then persist stores of their own. In this case, the primary fix

interval would be empty, and PSan would produce an alternate interval for that second

thread.

Alternatively, to fix this bug by colocating fields on the same cache line, PSan would compute

the store that sets the beginning of the crash interval shown in Figure 2.11. The store st2⟨y⟩

must be made persistent before that store, and thus developers must modify the memory

layout to ensure that both stores write to the same cache line.

Reading from Too New of Store. Figure 2.12 presents an execution in which the most

recent load ld⟨z⟩ reads from a store st3⟨z⟩ that is too new to be consistent with the strict

persistency model. This occurs because a previous load ld⟨y⟩ read from a store that was too

old since some store st2⟨y⟩ was missing an appropriate flush operation. Our algorithm detects

this violation when the store st3⟨z⟩ causes the beginning of the crash interval to be move

forward past the end of the crash interval.

The fix for this bug is to insert a flush and a drain operation such that st2⟨y⟩ happens before

the flush and drain operation and the flush and drain operation happens before st3⟨z⟩. We

must first compute the store st2⟨y⟩. We implement this by recording for each crash interval

the store that sets that its end. If the store at the end of an interval happens before st3⟨z⟩,

then this store is a store st2⟨y⟩. There can be multiple such stores. For each thread and

29

each store st2⟨y⟩, we report an interval such that st2⟨y⟩ happens before operations in the

interval and operations in the interval happen before st3⟨z⟩. We distinguish the interval for

the thread that executed st2⟨y⟩ as a primary fix. Similar to the previous case, the primary

interval is typically the desired fix. But the interval can be empty if st2⟨y⟩ happens before

st3⟨z⟩ only if some other thread in the pre-crash execution reads from st2⟨y⟩.

Alternatively, to fix this bug by colocating fields on the same cache line, the store st2⟨y⟩ must

be made persistent before the store st3⟨z⟩, and thus developers must modify the memory

layout to ensure that both x and y are located on the same cache line.

Implementation. The algorithm as described only detects robustness violations on the

current execution. Our implementation is built on the Jaaru model checker and at every

load, it selects a store for that load to read from. Before selecting a store for a load to read

from, PSan checks each possible store that the load can read from to see if it will create a

robustness violation. PSan reports any detected violation. A straightforward application of

the algorithm can only detect a single robustness violation in an execution. PSan can detect

multiple robustness violations in a single execution by forcing loads to read from stores that

do not cause robustness violations. This allows PSan to continue the execution past the first

detected robustness violation so that PSan can detect additional robustness violations.

30

2.4 Evaluation

In this section, we evaluate the usefulness and effectiveness of PSan in finding persistency

bugs in a set of benchmarks. We start by describing the benchmarks and the configuration

of our system. Then, we describe our evaluation methodology and analyze the bugs found by

PSan. Finally, we discuss our observations from our experiments.

System Setup. PSan was implemented atop the open-source Jaaru model checker for

persistent memory [43]. Our experiments were carried out on an Ubuntu 18.04 machine with

a 6 core 3.7 GHz Intel i7-8700K processor and 32GB RAM.

2.4.1 Methodology

We first tested PSan on the RECIPE [70] collection of PM indexes based on B+-trees, tries,

radix trees, and hash tables [84, 49, 70]. CCEH [84] is an efficient hash table for persistent

memory. FAST FAIR [49] is an efficient implementation of B+-tree. We used all of these

data structures (i.e., P-ART, P-BwTree, P-CLHT, and P-Masstree) in our experiment except

P-HOT because it does not compile with LLVM. We recompiled each of these programs with

Jaaru’s LLVM compiler pass to instrument memory accesses and cache operations. Each

program has a test driver that performs operations on the data structure.

We also evaluated PSan on three popular real-world frameworks and applications: PMDK [53],

Memcached [23], and Redis [67]. PMDK is the most active open-source library for accessing

persistent memory and is developed and maintained by Intel. This well-tested library

simplifies accessing persistent memory and debugging PM applications. PMDK incorporates

a wide range of libraries from direct APIs to access persistent memory, i.e., libpmem, to

object transactional APIs, i.e., libpmemobj. Similar to prior works, we used five PMDK

data structure examples to evaluate our tool, BTree, CTree, RBTree, Hashmap atomic,

31

and Hashmap tx. Memcached is a high-performance distributed memory caching system

implemented by Lenovo to use persistent memory. This in-memory key-value store uses

low-level libpmem APIs to efficiently store data in persistent memory. To evaluate PSan with

Memcached, we implemented a client that issues insertion and lookup requests. Redis is an

industrial high-performance cache server and in-memory database developed by Intel. Redis

is capable of caching data on DRAM and persisting it in persistent memory through PMDK’s

transactional APIs. Similar to Memcached, we implemented our own client to modify and

lookup data.

PSan supports two different exploration strategies that target different types of applications:

(1) random search mode in which PSan explores random executions with random crash

points and (2) model checking mode in which PSan systematically inserts crashes before

each fence-like operation and after the last operation of the program and then, explores all

values that each load can read.

In our data structure benchmark experiments, i.e., CCEH, FAST FAIR, and RECIPE, we

used both model checking mode as well as random execution mode with 10,000 executions.

We used a similar configuration for evaluating PMDK examples. However, for Redis and

Memcached we just used random mode since these benchmarks require an outside client,

which makes model checking challenging.

2.4.2 Bug Detection

During our experiment, PSan found a total of 48 bugs in benchmarks, and 17 of them

were not reported by any of the state-of-the-art testing frameworks. 13 bugs were related to

robustness violations in the memory management code of the benchmarks. Table 2.1 reports

only violations/bugs that are not in the memory allocation code due to space constraints.

Violations with * are known bugs. We reported these violations to the developers of these

32

tools and so far, developers of CCEH and FAST FAIR have confirmed these violations are

real bugs. The RECIPE developers acknowledged the reported bugs but did not fix them,

since these bugs are related to memory allocators and garbage collectors, and the code for

memory allocators has to change regardless. For each of these violations, PSan reports the

variable that needs a flush instruction and the precise range where the flush needs to be

inserted. In our experiment, we simply applied PSan’s suggestions and reran the program

until no robustness violations were reported.

After analyzing each reported robustness violation, we categorized them into three different

types:

Missing Flushes/Fences. Table 2.1 presents all memory locations that participated in

robustness violations. Note that some of these violations refer to different usages of the same

variable in different functions or executions. All the robustness violations except #9 are due

to missing fence/flush instructions. 12 robustness violations caused program failures in our

experiment and the rest had no visible manifestations. We examined the code and verified

for each violation that the bugs could cause data corruption, data loss, or memory leak.

Cache-line Alignment Bugs. PSan identified one robustness violation that would likely

not be fixed with flush or fence instructions, i.e., #9 in Table 2.1, in FAST FAIR benchmark.

In this benchmark, the header class is used at the beginning of the page class [49]. The

problem is that the developers did not carefully consider C++ object layout semantics. They

neglected the fact that a word-aligned 8-bit field has 8 bits of padding following it when it

is followed by the 16-bit field. Consequently, the header class is larger than expected and

results in the rest of the page class not having the expected cache line alignment and thus

breaks code that relies on stores to different fields in the page class writing to the same cache

line to maintain ordering.

Memory Management Bugs. In addition to robustness violations in Table 2.1, PSan

33

Table 2.1: Robustness violations.

Benchmark Field Cause of Robustness Violation
1 CCEH sema locking sema in Segment::Insert
2 CCEH sema unlocking sema in Segment::Insert
3* CCEH key writing to key in Segment::Insert
4* CCEH Directory:: [i] writing to [i] in CCEH constructor
5* CCEH Directory:: writing to in CCEH constructor

6* CCEH CCEH
writing to CCEH fields
in CCEH constructor

7 FAST FAIR switch counter incrementing it in page::insert key
8 FAST FAIR last index updating it in page::insert key
9 FAST FAIR dummy unalignment caused by header class
10 FAST FAIR entry::ptr writing to ptr in insert key
11* FAST FAIR entry::ptr writing to ptr in entry constructor

12* FAST FAIR leftmost ptr
writing to leftmost ptr in

header constructor
13* FAST FAIR btree::root writing to root in btree constructor

14 P-ART
typeVersion-

locking it in N::writeLockOrRestart
LockObsolete

15 P-ART
typeVersion-

locking it in N::lockVersionOrRestart
LockObsolete

16 P-ART
typeVersion-

unlocking it in N::writeUnlock
LockObsolete

17 P-ART nodesCount updating it in DeletionList::add
18 P-ART N16::keys updating it in N16::insert
19 P-ART N16::count updating it in N16::insert
20* P-ART N4::keys updating it in N4::insert
21* P-ART N4::children updating it in N4::insert

22* P-ART deletionLists
writing to deletionLists in

Epoche constructor
23* P-ART Tree::root writing to root in Tree constructor
24 P-BwTree next updating it in GrowChunk function

25* P-BwTree gc metadata p
writing to gc metadata p address in
GCMetaData::PrepareThreadLocal

26* P-BwTree gc metadata p
writing to content of gc metadata p
in GCMetaData::PrepareThreadLocal

27* P-BwTree tail writing to tail in AllocationMeta

28* P-BwTree epoch manager
writing to epoch manager
in BwTree constructor

29* P-CLHT version list
writing to clht t::version list

in clht gc thread init

30* P-CLHT num buckets
writing to clht t::num buckets

in clht hashtable create

31* P-CLHT table
writing to clht t::table
in clht hashtable create

32 PMDK PMEMobjpool
memcpy operation on pool object

in libpmemobj library
33 PMDK ulog storing ulog in libpmemobj library

34 PMDK
ulog entry memcpy in applying modifications

base on a single ulog entry base

35 PMDK
ulog entry applying ULOG OPERATION OR

base on a single ulog entry base

found 9 more robustness violations in P-ART and 4 more in P-BwTree. PSan found these

violations in memory management code such as garbage collection and the memory allocation

implementation. As mentioned in the paper [70], the RECIPE benchmark implementations

focused on providing a platform to measure performance and did not fully implement the crash

34

recovery and memory management components. These 13 reported robustness violations are

real robustness violations, but there are more significant bugs in the code than just missing

flush and drain instructions; fixing them requires more fundamental changes in the design of

the memory management component.

While robustness is a sufficient condition for an execution to be free of bugs related to missing

flush and fence operations, PSan, like all dynamic tools, can miss reporting a flush/fence

bug if it does not explore an execution that reveals the missing flush/fence.

2.4.3 Performance

We next ran 100 random executions with both PSan and Jaaru, the underlying model checker,

to report the overhead of PSan. Table 2.2 reports the average times taken to run one random

execution for each of the benchmarks. PSan and Jaaru have comparable execution times

because checking robustness introduces minimal overheads. This table also reports the total

number of executions that PSan explored to find all reported bugs. Overall, it takes less

than a minute to explore all executions used to find bugs for a benchmark and an average of

13.1 seconds per benchmark.

Table 2.2: Execution times for PSan and Jaaru (the underlying model checking infrastructure).
PSan incurs minimal overhead compared to Jaaru.

Benchmark Jaaru Time (s) PSan Time (s) # total executions
CCEH 0.050 0.051 1068

Fast Fair 0.036 0.038 19
P-ART 0.045 0.047 348

P-BwTree 0.032 0.032 93
P-CLHT 0.142 0.143 6

P-Masstree 0.035 0.037 93

35

2.4.4 Discussion

Harmless Violations. While the proposed approach to correctness can handle many

persistent data structures, there are design patterns that can cause false positives. These

design patterns include link-and-persist [24], pointer tagging [72], and checksums. These design

patterns all allow post-crash executions to safely observe low-level violations of robustness

without compromising high-level safety. In particular, during our evaluation, we observed

that PM programs that use checksums can safely read from data that has only been made

partially persistent because the checksum will fail and the program will safely discard the

data. Programs that use checksums are not robust by our prior definition because their

post-crash executions may observe robustness violations. However, the values read by the

loads that cause the robustness violations are discarded when a checksum check fails. PSan

supports these patterns by using annotations. In particular, PSan uses these annotations to

postpone the processing of the loads from a given checksum computation until the checksum

validation completes successfully. If the checksum validation fails, those loads operations are

discarded. In Table 2.1, violations #33 - #35 are caused by checksums validating redo logs.

These violations are harmless because the program safely discards the data when checksum

fails, while such harmless violations could be avoided by checksum annotations.

Comparison with Other Tools. Of the six tools that can potentially detect ordering

violations, only two tools, Jaaru [43] and Witcher [33], are both available and do not require us

to annotate the expected ordering properties to be checked. Thus, we limited our comparison

to Jaaru and Witcher. Jaaru found 18 persistency bugs in CCEH, FAST FAIR, and RECIPE

benchmarks, of which 15 are related to missing proper persistency mechanisms. Jaaru’s

developers had to manually examine each bug and reason about the execution traces to fix

each persistency bug. On the contrary, PSan automatically reported the exact variable that

needed a flush instruction and the precise location where the flush needed to be inserted.

PSan reported 20 bugs that were not identified by Jaaru. Witcher reported 4 ordering bugs

36

in our evaluated benchmarks and for each bug, Witcher requires developers’ manual efforts

to reason about the root cause of intricate crash states. One of these bugs was also found by

PSan. PSan did not report the rest of these bugs since Witcher used different test driver

programs to exercise the RECIPE benchmarks, while we used the programs from Jaaru’s

distribution of the RECIPE. While we would like to perform an evaluation on the exact

same programs, this is problematic. We could not run PSan’s programs on Witcher, because

Witcher’s distribution does not contain support for finding correctness bugs. We could not

run Witcher’s programs on PSan, because they do not have any code that runs after a crash.

PSan reported 31 bugs that could not be found by Witcher.

Note that not being able to find all bugs reported by other tools on the same set of benchmarks

evaluated by PSan and these tools is primarily due to the implementations of these tools

that have particular dependencies on program versions, inputs, environments, etc., not a

limitation of using robustness as a correctness criterion. As discussed earlier, robustness

subsumes all ordering-related constraints and PSan should report all ordering bugs for given

executions that are caused by missing flush and fence instructions.

37

2.5 Related Work

Robustness to weak persistency models builds on a rich literature of defining the correctness

of concurrent code by relating concurrent executions to other executions. In the context

of weak memory models, a program is robust [9, 89, 68, 83] against a weak memory model

if all of the program’s executions under the weak memory model are permitted under the

sequential consistency model.

Table 2.3: Comparison with other tools; robustness subsumes ordering heuristics/conditions
used in existing tools.

Tool Persistent Order
PSan Robustness
Witcher [33] Dependence heuristic
PMDebugger [25] User annotations
PMTest [79] User annotations
XFDetector [78] Commit store annotations
Jaaru [43] Crash/assertion failure
Yat [69] Crash/assertion failure
Agamotto [87] Does not check order
Pmemcheck [61] Does not check order
PMFuzz [77] Just fuzzes input, uses Pmemcheck

or XFDetector for checking
Hippocrates [86] Does not repair ordering bugs

Robustness provides a rigorous foundation that subsumes prior work that relied on heuristics

or annotations to check whether stores are persisted in the correct order. Note that in

the comparison with prior work, we only focus on ordering bugs that are result of

missing/misplaced flush and fence instructions. Prior tools are able to identify other

types of bugs such as performance bugs and the bugs resulting from stores being issued in an

improper order. PSan does not attempt to find those types of bugs, and our comparison

does not focus on them. Table 2.3 summarizes the approaches other tools take to checking

the order of PM stores. All these conditions are essentially instances of robustness violations.

Witcher [33] relies on heuristic inference rules that use control and data dependencies to

detect stores that are not made persistent in the correct order due to missing flushes and

38

fences. PMTest [79] and PMDebugger [25] rely on programmers to explicitly annotate

ordering constraints, e.g., that store x=1 is persisted before store y=1. PMDebugger also has

some built-in oracles that can find some bugs without heavy annotations. XFDetector [78]

requires that ordering constraints are specified implicitly by annotating a set of commit

variables, otherwise it can report false positive. Jaaru [43] and Yat [69] only detect ordering

bugs when the program crashes or asserts, and developers must manually localize the bug.

Pmemcheck [61] and Agamotto [87] only check that stores are flushed and do not check the

order they are flushed in. Our comparison with prior work is based on set of benchmarks

that overlap between their evaluation and PSan’s evaluation.

PSan can save significant manual effort compared to repairing bugs without a tool. While

Hippocrates [86] automatically implements bug fixes, PSan can suggest bug fixes to developers,

for example, where there needs to be a flush inserted for a specific store and it must be done

before another specific store is executed. However, Hippocrates only detects and corrects

bugs where a flush is missing and cannot fix bugs in which stores may be persisted in an

incorrect order. Such bugs commonly happen when developers delay flushes until the end

of an update, overlooking the possibility that the stores could persist in the wrong order.

PSan’s bug fixes ensure that stores are persisted and that they are persisted in the same

order as the happens-before relation. There are also inter-thread persistency bugs in which

a thread performs a store and stops before its flush instruction, but another thread reads

from that store, performs another store based on the read value and then persists the later

store (e.g., the execution in Figure 2.7). PSan is the only tool to our knowledge that will

suggest the correct fix of fixing this bug in the second thread. PSan largely complements

the work on Hippocrates of implementing interprocedural fixes. PSan requires no ordering

annotations, reducing developer burden and eliminating the potential for missed bugs or

false alarms due to incorrect annotations. Moreover, robustness is sufficient to guarantee the

absence of missing flush or drain operations. As shown in our evaluation, PSan found 17

new bugs that were previously unknown.

39

2.6 Conclusion

This chapter presents robustness, a sufficient correctness condition for the use of flush and

drain operations in persistent memory programs. We implemented the first tool that leverages

this condition to localize persistency bugs in the program and suggests fixes. PSan found 48

bugs (including 17 new bugs) in 13 popular PM benchmarks.

40

2.7 Proof

For two sub-executions ei, ej ⊂ Exec, if ei is earlier than ej , then we write ei ≺ ej ; if ei equals

or is earlier than ej, then we write ei ⪯ ej.

Theorem 1. Let P be a PM program. An execution Exec of P under a weak persistency

model is robust if and only if the algorithm in Figure 2.10 does not report a robust violation.

Proof. Let Exec be an execution with n crash events.

Forward We will prove the forward direction by contradiction. Suppose that the algorithm

in Figure 2.10 reports a robustness violation and that Exec is robust. Without loss of

generality, we only need to consider the first robustness violation reported by the algorithm.

Suppose that the first robustness violation is reported when a load ld⟨x⟩ ∈ es reads from a

store st⟨x⟩ ∈ ei, where ei ≺ es, which imposes a constraint c that is incompatible with some

existing constraint c0 in C(ej)(τk). The constraint c is either of the form [0, α) or of the form

[β,∞).

st<𝑥>

st<𝑦>

st<𝑥, 𝜏𝑘>’
tso

hb

ld<𝑥>

rf

𝑒𝑖 𝑒𝑠

ld<𝑦>

rf

𝑒𝑟

Figure 2.13: Illustration for forward direction subcase 1a.

Case 1: The constraint c is of the form [0, α). Then this constraint must be induced by some

store st⟨x, τk⟩′ ∈ next(st⟨x⟩, es) and α is the clock of st⟨x, τk⟩′, i.e., α = SCV(st⟨x, τk⟩′)(τk).

Now we have two subcases: either st⟨x, τk⟩′ ∈ ei or st⟨x, τk⟩′ ∈ ej, where ei ≺ ej.

Subcase 1a: Suppose that st⟨x, τk⟩′ ∈ ei. Then we have ei = ej and st⟨x⟩ tso−→st⟨x, τk⟩′. The

conflicting constraint c0 must be of the form [β,∞) and β > α. Therefore, it implies that

41

st<𝑥>

st<𝑦>

st<𝑥, 𝜏𝑘>’

hb

ld<𝑥>

rf

𝑒𝑖 𝑒𝑠

ld<𝑦>

rf

𝑒𝑟𝑒𝑗

Figure 2.14: Illustration for forward direction subcase 1b.

the constraint c0 was added to C(ei)(τk) when some store st⟨y⟩ ∈ ei was read from by a load

ld⟨y⟩ ∈ er, where ei ≺ er, and β = SCV(st⟨y⟩)(τk). Since the constraint c0 was added before

c, the load ld⟨y⟩ is either in the sub-execution es that contains ld⟨x⟩ or in a sub-execution

earlier than es, i.e., ei ≺ er ⪯ es. By the algorithm for computing clock vectors, there must

be a store st⟨z, τk⟩ ∈ ei that has the clock β. The store st⟨z, τk⟩ either happens before the

store st⟨y⟩ or is the store st⟨y⟩. Now because α is the clock of st⟨x, τk⟩′, β is the clock of

st⟨z, τk⟩, and β > α, it implies that st⟨x, τk⟩′
hb−→st⟨z, τk⟩. Hence, we have st⟨x, τk⟩′

hb−→st⟨y⟩.

Since both st⟨x⟩ ∈ ei and st⟨y⟩ ∈ ei are read from by loads in later sub-executions and ei ≺ es,

we have st⟨x⟩, st⟨y⟩ ∈ Fs due to the condition 2 in Definition 2.2. Since Fs is closed under

the happens-before relation, it implies that st⟨x, τk⟩′ ∈ Fs and st⟨x⟩ tso−→st⟨x, τk⟩′ in Fs. In the

case where all stores in Fs have committed to the cache before a crash occurs, st⟨x, τk⟩′ has

committed to the cache. Therefore, the load ld⟨x⟩ ∈ es that reads from st⟨x⟩ in the execution

Exec should not read from st⟨x⟩ in Fs under strict persistency. Thus, we have derived a

contradiction because the reads-from relation in Fs should be a subset of the relation in Exec.

Subcase 1b: Suppose that st⟨x, τk⟩′ ∈ ej, where ei ≺ ej. This subcase is similar to subcase 1a.

By the same reasoning, we can deduce that there exists a st⟨y⟩ ∈ ej such that st⟨x, τk⟩′
hb−→st⟨y⟩

and that st⟨y⟩ is read from by a load ld⟨y⟩ ∈ er, where ej ≺ er ⪯ es. Hence, st⟨x, τk⟩′, st⟨y⟩ ∈

Fs because of the condition 2 in Definition 2.2 and that Fs is closed under the happens-before

relation. In the case where all stores in Fs have committed to the cache before a crash occurs,

st⟨x, τk⟩′ has committed to the cache. Now because st⟨x⟩ ∈ ei, st⟨x, τk⟩′ ∈ ej, ld⟨x⟩ ∈ es and

42

ei ≺ ej ⪯ es, ld⟨x⟩ should not read from st⟨x⟩ in Fs under strict persistency, leading to a

contradiction.

Case 2: The constraint c is of the form [β,∞). Then ei = ej and β = SCV(st⟨x⟩)(τk). The

conflicting constraint c0 must be of the form [0, α) and α < β. Suppose that the conflicting

constraint c0 was added when a store st⟨y⟩ was read from by a load ld⟨y⟩ in a later sub-

execution er. Then the constraint c0 must be induced by some store st⟨y, τk⟩′ ∈ next(st⟨y⟩, er),

where st⟨y, τk⟩′ ∈ ei, ei ≺ er, and α = SCV(st⟨y, τk⟩′)(τk). Since the constraint c0 was added

before c, we also have er ⪯ es. We have two subcases: either st⟨y⟩ ∈ ei or st⟨y⟩ ∈ el, where

el ≺ ei.

st<𝑦>

st<𝑥>

st<𝑦, 𝜏𝑘>’
tso

hb

ld<𝑥>

rf

𝑒𝑖 𝑒𝑠

ld<𝑦>

rf

𝑒𝑟

Figure 2.15: Illustration for forward direction subcase 2a.

st<𝑦>

st<𝑥>

st<𝑦, 𝜏𝑘>’

hb

ld<𝑥>

rf

𝑒𝑙 𝑒𝑠

ld<𝑦>

𝑒𝑟𝑒𝑖

rf

Figure 2.16: Illustration for forward direction subcase 2b.

Subcase 2a: Suppose that st⟨y⟩ ∈ ei. Then we have st⟨y⟩ tso−→st⟨y, τk⟩′. Since SCV(st⟨y, τk⟩′)(τk) =

α < β = SCV(st⟨x⟩)(τk), by a similar argument as in subcase 1a, we can deduce that

st⟨y, τk⟩′
hb−→st⟨x⟩. Since st⟨x⟩ ∈ ei is read from by the load ld⟨x⟩ ∈ es, where ei ≺ er ⪯ es,

then st⟨x⟩ ∈ Fr. Similarly, st⟨y⟩ ∈ Fr. Since Fr is closed under the happens-before relation,

we have st⟨y, τk⟩′ ∈ Fr. In the case where all stores in Fr have committed to the cache before

a crash occurs, st⟨y, τk⟩′ has committed to the cache. However, because of st⟨y⟩ tso−→st⟨y, τk⟩′,

43

the load ld⟨y⟩ ∈ er should not read from st⟨y⟩ ∈ ei in Fr under strict persistency, causing a

contradiction.

Subcase 2b: Suppose that st⟨y⟩ ∈ el, where el ≺ ei. Similar to subcase 2a, we can deduce that

st⟨y, τk⟩′
hb−→st⟨x⟩. Since st⟨x⟩ ∈ ei is read from by the load ld⟨x⟩ ∈ es, where ei ≺ er ⪯ es, we

have st⟨x⟩ ∈ Fr. Similarly, st⟨y⟩ ∈ Fr. Since Fr is closed under the happens-before relation,

we have st⟨y, τk⟩′ ∈ Fr. In the case where all stores in Fr have committed to the cache before

a crash occurs, st⟨y, τk⟩′ has committed to the cache. Because st⟨y⟩ ∈ el, st⟨y, τk⟩′ ∈ ei, and

el ≺ ei, we can deduce that the load ld⟨y⟩ ∈ er should not read from st⟨y⟩ in Fr under strict

persistency, which is a contradiction.

In conclusion, we have shown that if the algorithm in Figure 2.10 reports a robustness

violation, then there does not exist a strictly persistent execution that is equivalent to Exec,

and hence Exec is not robust.

Backward Suppose that the algorithm in Figure 2.10 does not report a robustness violation.

Then the strategy is to construct a sequence of multi-threaded prefixes F2, ..., Fn+1 as required

by Definition 2.2. The proof is organized into the following 4 steps.

Step 1: Construction of multi-threaded prefixes.

We will construct Fs for some 1 < s ≤ n+ 1 as follows. If one such Fs can be constructed,

then we can construct all others in a similar manner.

Since the map C is satisfiable, C(ei)(τj) is satisfiable for all i = 1, ..., n+ 1 and j ∈ TId. For

each ei, consider the constraints Ci,j := C(ei)(τj). Since Ci,j is a joint and (∧) of a list of

constraints of the form [α, β), we can treat each constraint as an interval and define Ci,j

as the set intersection of the list of constraints in Ci,j. Since Ci,j is satisfiable, then Ci,j is

an non-empty interval of the form [α, β) and has a lower bound which is the clock of some

store performed by thread τj in the sub-execution ei. If Ci,j is an empty set, we will let

44

Ci,j = [0,∞). We will use begin(Ci,j) to denote the lower bound of Ci,j.

Then we can construct the multi-threaded prefix Fs in this way. For each ei, where 1 ≤ i < s,

we can get a multi-threaded prefix ei
′ by cutting off all operations that are sequenced after

the store with the clock begin(Ci,j) in each thread τj ∈ TId. We will take es
′ to be es. Then

we let Fs be e1
′C1...Cs−1es

′.

Step 2: Each ei
′ is a valid multi-threaded prefix of ei.

By construction, es
′ is a valid multi-threaded prefix for es. We also want to show that each

ei
′, where 1 ≤ i < s, is a valid multi-threaded prefix for ei. It is obvious that ei

′ is closed

under the sequenced-before relation by construction. So we only need to show that ei
′ is

closed under the happens-before relation over stores. If we can show that ei
′ is closed under

the reads-from relation where both the source and destination of the reads-from edge are in

ei
′, then the closure under the happens-before relation follows as a consequence.

To prove it by contradiction, suppose that there exists a pair of load ld⟨x⟩ and store st⟨x, τj⟩

such that st⟨x, τj⟩, ld⟨x⟩ ∈ ei, st⟨x, τj⟩
rf−→ld⟨x⟩ in ei, st⟨x, τj⟩ /∈ ei

′ but ld⟨x⟩ ∈ ei
′. Then

SCV(st⟨x, τj⟩)(τj) > begin(Ci,j), and there exists some store st⟨y, τk⟩ ∈ ei that is sequenced

after ld⟨x⟩ and that is read from by a load ld⟨y⟩ in some sub-execution later than ei. Then,

we have st⟨x, τj⟩
hb−→st⟨y, τk⟩ in ei, and SCV(st⟨y, τk⟩)(τj) ≥ SCV(st⟨x, τj⟩)(τj). When the

store st⟨y, τk⟩ ∈ ei is read from by the load ld⟨y⟩ in a later sub-execution, the constraint

[SCV(st⟨y, τk⟩)(τj),∞) should be added to Ci,j, according to the algorithm in Figure 2.10.

Then we have begin(Ci,j) ≥ SCV(st⟨y, τk⟩)(τj) ≥ SCV(st⟨x, τj⟩(τj)) > begin(Ci,j), which is a

contradiction. Therefore, ei
′ is closed under the reads-from relation where both the source and

destination of the reads-from edge are in ei
′. Then ei

′ is also closed under the happens-before

relation and is a valid multi-threaded prefix of ei for all 1 ≤ i < s.

Step 3: Fs is a valid multi-threaded prefix.

45

Next, in order to show that Fs = e1
′C1...Cs−1es

′ is a multi-threaded prefix of e1C1...Cs−1es,

we need to show that Fs is closed under the reads-from relation. Since we have already

shown that for all 1 ≤ i < s, ei
′ is closed under the reads-from relation where both the

source and destination of the reads-from edge are in ei
′ (this also holds for es

′ as es
′ = es),

we only need to show that Fs is closed under the reads-from relation where the source and

destination of the reads-from edge are in different sub-executions. In other words, suppose

that st⟨x, τk⟩ ∈ ei, ld⟨x⟩ ∈ ej, st⟨x, τk⟩
rf−→ld⟨x⟩, and ld⟨x⟩ ∈ ej

′, where ei ≺ ej ⪯ es. Then

we need to show that st⟨x, τk⟩ ∈ ei
′. Since st⟨x, τk⟩ ∈ ei is read from by the load ld⟨x⟩ in the

later sub-execution ej, the constraint [SCV(st⟨x, τk⟩)(τk),∞) was added to Ci,k. Therefore,

we have begin(Ci,k) ≥ SCV(st⟨x, τk⟩)(τk), and it follows that st⟨x, τk⟩ ∈ ei
′, based on the

construction of ei
′. Thus, Fs is closed under the reads-from relation , and hence Fs is a valid

multi-threaded prefix of e1C1...Cs−1es.

Step 4: Fs satisfies Definition 2.2.

We still need to show that Fs satisfies Definition 2.2. The condition 1 in Definition 2.2 is

satisfied trivially by the construction of Fs. The same reasoning in the proof of Step 4 can

be applied to show that the condition 2 also holds. We will prove by contradiction that the

condition 3 holds.

Suppose that for all 1 ≤ i < s, all stores in ei
′ have committed to the cache before the crash

Ci occurs, but Fs is not an execution under strict persistency. Then there exist st⟨x, τk⟩ ∈ ej
′,

st⟨x, τl⟩′ ∈ ej
′, and ld⟨x⟩ ∈ er

′, where ej
′ ≺ er

′ ⪯ es
′, such that st⟨x, τk⟩

rf−→ld⟨x⟩ and

st⟨x, τk⟩
tso−→st⟨x, τl⟩′. Without loss of generality, assume that st⟨x, τk⟩ is immediately TSO

ordered before st⟨x, τl⟩′. Then st⟨x, τl⟩′ ∈ next(st⟨x, τk⟩, er). Since st⟨x, τl⟩′ ∈ ej
′, it implies

that SCV(st⟨x, τl⟩′)(τl) ≤ begin(Cj,l). However, when st⟨x, τk⟩ was read from by the load

ld⟨x⟩ in er, the algorithm in Figure 2.10 would add the constraint [0,SCV(st⟨x, τl⟩′)(τl)) to

Cj,l, and therefore begin(Cj,l) < SCV(st⟨x, τl⟩′)(τl). This contradicts with the inequality

SCV(st⟨x, τl⟩′)(τl) ≤ begin(Cj,l). Therefore, condition 3 in Definition 2.2 also holds.

46

In conclusion, since each multi-threaded prefix Fs where 1 < s ≤ n+ 1 can be constructed in

the above fashion, the execution Exec is robust.

47

Chapter 3

Static Approach: PMRobust

3.1 Introduction

In this chapter, we propose a novel static analysis that can ensure the absence of flush-related

bugs and requires no test cases. Robustness has been proposed as a model for the correct

use of flush and drain operations in Chapter 2 [42]. As a reminder, the observation here is

that bugs in the uses of flush and drain operations can be trivially eliminated by making

stores become persistent in the same order that they become visible to other threads. Strict

persistency [91] ensures that the “persistency memory order is identical to volatile memory

order”. Robustness ensures that any execution of a program under a weak persistency model

is equivalent to some execution of the program under strict persistency. It thus suffices to

ensure that the correct usage of flush and drain operations as additional flush and drain

operations will not alter the set of possible post-crash program executions.

The PSan tool presented in Chapter 2 relied on a dynamic analysis combined with random

execution generation or model checking to find robustness violations for persistent memory

programs [42]. PSan suffers from the same limitations as all dynamic analysis—it requires

48

test cases and may miss bugs that are not revealed by the test cases. PMRobust finds

all flush and fence bugs and does not require any test cases to find bugs. The cost of these

stronger guarantees is that the static analysis has a higher risk of reporting false positives.

49

3.2 PMRobust

This section discusses key ideas behind our approach to verifying the safety of PM code in

C/C++. We first discuss the requirements that robustness places on PM programs. We then

present an approach to verifying that programs are robust to weak persistency models.

3.2.1 Ensuring data is correctly flushed

1 x = 1;

2 y = 1;

(a) Pre-crash execution

1 r1 = x;

2 r2 = y;

(b) Post-crash execution

Figure 3.1: Assume that x = y = 0 initially. If the post-crash execution observes r2 = 1,
strict persistency requires that r1 = 1.

Figure 3.1 presents an example that illustrates the requirements of strict persistency. Strict

persistency requires that the persistency order for stores respect the happens-before relation.

This means that the store x = 1 must be persistency ordered before the store y = 1 and the

execution in which r1 = 0 and r2 = 1 is forbidden.

It may initially appear that robustness would require a flush instruction after every store to

persistent memory. However, it turns out that robustness only requires that the persistency

order for stores respect the happens-before relation when post-crash executions can potentially

observe a violation of strict persistency. For example if post-crash executions only read

from y, then the program is robust even if y = 1 is made persistent and x = 1 is not. This

observation is most relevant for a newly created persistent object that has not yet become

reachable from the roots of persistent data structures. It suffices to wait to flush stores to a

newly created persistent object until the object is inserted into a persistent data structure.

We next present a sufficient set of requirements on flush and drain operations to ensure

robustness. Figure 3.2 presents a finite state machine that captures how to implement

50

robustness using flush and drain operations for the x86-TSO persistency model. We refer to

a state in this finite state machine as an escape persistency state. The finite state machine

captures the set of legal transitions for cache lines through escape persistency states. If

there are two cache lines that contain objects that are escaped and non-clean, then this is a

robustness violation. A key insight is differentiating between (1) memory locations that are

captured by the local thread and thus stores to the memory location would not be visible

if the program crashed and (2) memory locations that have escaped to become reachable

from the roots of persistent data structures and thus stores would be visible if the program

crashed.

Escaped
Clean

Captured
Clean

Escaped
Dirty

Escaped
Pending Flush

Captured
Dirty

Captured
Pending Flush

At most one cache line
can be in these states

at a time

store

store

store

Capture

Escape

drain
drain

store or concurrent
atomic load to same
cache line

store or concurrent
atomic load

clflushopt/
clwb

clflushopt/
clwb

clflush

clflush

store or concurrent
atomic load to same
cache line

Figure 3.2: Using Flush & Drain Operations to Ensure Robustness

In general, persistent memory programs must ensure that data written to persistent memory

before a crash was consistently written out before using the data. This check often takes

the form of a commit store to a memory location that is read before the data to ensure the

data’s consistency. For example, the store at line 16 in Figure 3.4 is a commit store. Post-

crash executions then read from this commit store to determine whether data is consistent.

This commit store corresponds to the event that causes a memory location to escape.

This insight has been used successfully by both the Jaaru [43] model checker and the

XFDetector [78] persistency bug finding tool. In Jaaru’s evaluation, violations of robustness

typically corresponded to persistency bugs. The only exception we observed was the checksum

pattern that uses a checksum to validate that data was read consistently.

51

Captured Objects: Memory locations can be captured (i.e., there exists no path from

the persistent data structure roots to the memory location). Stores to captured memory

locations are not visible after a crash, and thus it is safe to delay flush instructions until

immediately before the memory location escapes via insertion into a persistent data structure.

This can have several benefits—first, it becomes possible to use optimized flush instructions

like clflushopt or clwb on several cache lines and amortize the cost of the drain operation

across multiple flush instructions. Second, if the program performs stores in a non-sequential

order, it is possible to handle multiple non-consecutive store instructions to the same cache

line with one flush instruction.

Escaped Objects: Memory locations have escaped if there is a path of references from

a persistent data structure root to the memory location and the necessary conditions have

been set so that data structure code may read from the memory location. Escaped memory

locations require enforcing stronger persistency order constraints—the persistency order of

stores to escaped memory locations must match the happens-before order. If consecutive

stores happen to be to the same cache line, this happens automatically due to cache coherence.

If they are to different cache lines, it is necessary to flush the first store before the second

store.

Thread 1:

1 x = 1;

2 clflush (&x);

Thread 2:

3 r1 = x;

4 y = r1;

(a) Pre-crash execution

1 r2 = x;

2 r3 = y;

(b) Post-crash execution

Figure 3.3: Assume that x = y = 0 initially and all accesses are atomic. Can r1 = 1, r2 = 0,
and r3 = 1?

Atomic loads require extra care to ensure robustness. Consider the example in Figure 3.3.

If the pre-crash execution crashes before the clflush instruction in Thread 1 completes,

52

but after the store to y in Thread 2 has been made persistent, it is possible for r2 = 0 and

r3 = 1, violating strict consistency. Robustness in this case requires a clflush instruction

to the cache line of x after Thread 2 reads from x. This example also has an implication

for stores to escaped memory locations inside of critical sections—the store must be flushed

before the lock is released.

3.2.2 Verifying Robustness

1 struct Node {

2 int data;

3 struct Node * next;

4 };

5

6 struct Stack {

7 struct Node * top;

8 };

9

10 void push(struct Stack *s, int val) {

11 struct Node * head = s->top;

12 struct Node * n = pmalloc(sizeof(struct Node));

13 n->data = val;

14 n->next = head;

15 clflush(n);

16 s->top = n;

17 clflush(s->top);

18 }

Figure 3.4: A Simple Persistent Stack

We begin with a simple example that we use to illustrate key concepts in our approach to

verifying that persistent memory code correctly flushes data. Figure 3.4 presents a single-

threaded persistent stack. The push method adds a new value on the top of the stack. The

push procedure calls pmalloc to allocate a new stack node, stores the value val to the node,

and updates the node’s next field. Then it flushes the new node, update the top of the stack

to reference the new node. Finally, the procedure flushes the update to the top of the stack.

In this example, the stack s and node n are the persistent variables and have one of the

states in Figure 3.2. The stack s is the root of the persistent data structure and is escaped

initially. When node n is created, it initially has the state ⟨captured, clean⟩ for both fields.

The node n has the state ⟨captured, dirty⟩ for both fields after the stores at lines 13 and 14.

53

Both fields’ states are changed to ⟨captured, clean⟩ after n is flushed. The commit store at

line 16 makes n escaped as n is reachable from the persistent data structure root, and the

state of s to ⟨escaped, dirty⟩. However, we are in an safe state, as only s is escaped and dirty.

Finally, s is also flushed and becomes ⟨escaped, clean⟩ when the procedure ends.

Verification

We next discuss our proposed approach to verifying the safety of PM programs. Our approach

builds on the finite state formulation for ensuring robustness from Section 3.2.1. The basic

idea is to use a static analysis to compute at each program point a mapping from memory

locations to set of potential escape persistency states.

The transfer function for an action A is then defined by applying the persistent state transitions

from Figure 3.2 to the individual escape persistency states of the input set to generate the set

of output escape persistency states. The transfer function is monotonic and so the analysis is

a fixed-point dataflow analysis over a method’s control flow graph.

The analysis must check several correctness properties. The first is to verify that the program

does not take a forbidden transition that would violate robustness such as allowing a non-

clean object to escape or have multiple dirty escaped cache lines. We compute the effect

of method calls by extending escape persistency states with extra information that tracks

their corresponding initial states when the method was first called. When the analysis of the

method is complete, the static analysis has determined how the method changes each of the

possible escape persistency states.

Loads pose an interesting challenge because they allow another thread to observe a store

before it is made persistent, and that thread may then store a value that was derived from

the value returned by the load. The later store can potentially be persisted before the initial

store and thus a crash can leave the persistent memory in an inconsistent state. For example,

54

in Figure 3.3, it is possible for y = r1 to be persisted before x = 1, and then the post-crash

execution would read r2 = 0 and r3 = 1.

This problem can be solved by inserting a flush instruction immediately after the load, but

this incurs an overhead. We consider two cases for loads:

1. Non-atomic Loads: In the case that the load is a non-atomic load, there is no issue

as long as the original store is flushed before its mutex is released and thus before it

can be read. We require that non-atomic stores be flushed before any release operation

such as an unlock is performed.

2. Atomic Loads: Atomic operations allow accessing memory that is not protected by

a lock. However, atomic accesses can also be protected by a lock, which could be a

common use case for PM code if the atomics are used to guarantee store atomicity

in the case of a crash. However, if an atomic memory location is not protected by a

mutex, we must add a flush instruction after any atomic loads. We address this issue

by having atomic loads change the persistency state to dirty. This forces the thread to

flush the data before performing other visible stores. Note that robustness violations

from loads are not always bugs. There are design patterns that can cause false positives.

These design patterns include link-and-persist [24], pointer tagging [72], and checksums.

These design patterns allow post-crash executions to safely observe low-level violations

of robustness without compromising high-level safety.

3.2.3 Relaxing Robustness for Checksums & Counters

A usage pattern that is sometimes used in persistent memory programs is to write some data

and a checksum, and then persist both the data and the checksum. When accessing the

data, the PM program first verifies the checksum before using the data. While this pattern is

55

safe, it can yield executions that are not equivalent to any execution under strict consistency

and thus violates robustness. PMRobust includes annotations that developers can use to

specify that an object is accessed using the checksum pattern. PMRobust then relaxes its

robustness checks.

Another use case that could potentially occur in systems programming is that some memory

locations may hold atomic values that can tolerate losing updates in the presence of a crash.

A potential example is atomic counters that might only need to be flushed during shutdown

or periodically. A crash might cause these counters to have stale values, but this may be

acceptable in some cases.

3.3 Intraprocedural Analysis

In this section, we first discuss the core intraprocedural analysis. Later, in Section 3.4 we will

extend this analysis for the interprocedural context and to handle arrays. The intraprocedural

part is implemented as a standard forward dataflow analysis. The algorithm maintains a

program state at each instruction.

3.3.1 Preliminaries

The set of instructions that we analyze are non-atomic loads, non-atomic stores, atomic loads,

atomic stores, atomic RMWs, assignments, and flush and fence instructions. An object can

occupy multiple cache lines and thus an object reference r ∈ R can be used depending on

the field to access one of several different cache lines. Objects are by default not aligned to

cache lines, and thus the static analysis will not necessarily know whether two different fields

reside on the same cache line. Thus, we model a memory location m ∈ M as the combination

l = ⟨r, n⟩ ∈ L of a reference r ∈ R and a non-negative offset n ∈ Z0+ from that reference.

56

We next describe our core analysis approach. For each persistent memory location, our

analysis must compute: (1) whether a reference to that memory location may have escaped

to persistent memory, and (2) the status of any stores to that memory, i.e., whether they

have been flushed to persistent memory. We decompose these into two analysis problems.

Although the original finite state machine in Figure 3.2 combines both properties into a single

FSM, we have separated the two properties into two finite state machines to simplify the

presentation.

Figure 3.5a presents a finite state machine that summarizes the dynamic semantics for whether

a memory location has escaped and Figure 3.5b presents a lattice for our escape analysis. We

use an escape state e ∈ E to represent one of the two escape values, i.e., {captured, escaped},

from the escape analysis lattice. Here we need a may-escape analysis because we need to

conservatively determine whether a reference may have escaped. Thus we have the escaped

value lower on the lattice, and a merge of a escaped value with a captured value would yield

the escaped state. The core analysis computes a map GE ⊆ R × E from memory locations

to escape states at each program point. The meet operator ⊓ : E × E → E is defined by

e1 ⊓ e2 = lower(e1, e2), which returns the lower of the two lattice values. We write e1 ⪰ e2 if

e1 is higher than or equal to e2 in the lattice.

captured

escaped

Assign reference

(a) Finite State Machine

captured

escaped

(b) Lattice

Figure 3.5: Lattice and FSM for Escape Analysis

57

Figure 3.6a presents a finite state machine that summarizes the dynamic semantics for

persistency state of a memory location. and Figure 3.6b presents a lattice for our persistency

state analysis. We use a persistency state p ∈ P to represent one of the three persistency

state values, i.e., {clean, clwb, dirty}. The lattice is ordered in this fashion, because we need

to know whether a memory location may require a fence instruction (clwb) or whether it may

require a fence and flush instruction (dirty). For example, if a reference is clean on one path

to a node and clwb on a different path to the node, the analysis must conservative assume it

is clwb at the merge point.

The core analysis computes a map GP ⊆ L× P from memory locations to persistency states.

The meet operator ⊓ : P × P → P and the ordering operator ⪰ for P are defined similar to

the ones for E .

clean

dirty

Store or
 atomic load

clwb

fence

clflush

clwb

(a) Finite State Machine

clean

clwb

dirty

(b) Lattice

Figure 3.6: Lattice and FSM for Persistency State Analysis

58

statement G ′
E =(GE −KILL) ∪GEN

y=x U =GA(x) ∪ {y}
G ′
A = {⟨r, S⟩ | ⟨r, S⟩ ∈ GA ∧ r /∈ U}∪

{⟨r, U⟩ | r ∈ U}
GE

′ = {⟨r, e⟩ | ⟨r, e⟩ ∈ GE ∧ r ̸= y}∪
{⟨y, e⟩ | ⟨x, e⟩ ∈ GE}

*y=x or
*y=&x->f

U =GA(x)

GE
′ = {⟨r, e⟩ | ⟨r, e⟩ ∈ GE ∧ r /∈ U}∪

{⟨r, escaped⟩ | ⟨r, e⟩ ∈ GE ∧ r ∈ U}

y=*x U =GA(y) \ {y}
G ′
A = {⟨r, S⟩ | ⟨r, S⟩ ∈ GA ∧ r /∈ GA(y)}∪

{⟨y, {y}⟩} ∪ {⟨r, U⟩ | r ∈ U}
GEN = {⟨y, escaped⟩}
KILL = {⟨y, ∗⟩}

Figure 3.7: Transfer Functions for Escape Analysis, where x and y point to PM locations

59

statement G ′
P = (GP −KILL) ∪GEN

x->f=v GEN = {⟨⟨x, offset(f)⟩, dirty⟩}
KILL = {⟨⟨x, offset(f)⟩, *⟩}

y=x->f

where f is an
atomic field

GEN = {⟨⟨x, offset(f)⟩, dirty⟩}
KILL = {⟨⟨x, offset(f)⟩, *⟩}

flush(&x->f) GEN = {⟨⟨x, offset(f)⟩, clean⟩}
KILL = {⟨⟨x, offset(f)⟩, *⟩}

clwb(&x->f) G ′
P = {⟨l, p⟩ | ⟨l, p⟩ ∈ GP∧

(p ̸= dirty ∨ l ̸= ⟨x, offset(f)⟩)}∪
{⟨l, clwb⟩ | ⟨l, dirty⟩ ∈ GP ∧ l = ⟨x, offset(f)⟩}

fence G ′
P = {⟨l, p⟩ | ⟨l, p⟩ ∈ GP ∧ (p ̸= clwb)}∪

{⟨l, clean⟩ | ⟨l, clwb⟩ ∈ GP}

Figure 3.8: Transfer Functions for Persistency State Analysis

60

3.3.2 Transfer Functions

Checking Whether Objects are Captured

In practice, it is difficult to precisely determine whether an object has escaped or not. We

take a very simple approach to escape analysis — once a reference to a newly allocated struct

or array is stored to anyplace other than a variable, we assume it has escaped. The key ideas

of the analysis are that newly allocated object start in the captured state. For example, the

statement x=new would result in the analysis computing that x is in the captured state at

the program point immediately after this statement. This is stored in the map GE . The

analysis then computes the sets of variables that may reference the same object. After the

statement x=new, the analysis would compute that x is the only variable to reference the

memory it references. The analysis stores this information in the alias map GA ⊆ R× P(R)

from references to the set of references that may alias, where P(R) denote the power set of R.

If the value in a variable x is stored to some heap location, the variable x and all variables

that may reference the same heap location are marked as escaped.

We next present the formalization of our escape analysis in Figure 3.7. Note that we use the

form G ′
E = (GE −KILL)∪GEN if the GEN and KILL sets are constant sets, and we explicitly

express the transfer functions as sets otherwise. We next discuss the transfer functions for

key statements:

Assignment Instruction: When there is an assignment instruction y=x, y will now alias

x and everything x aliased. We compute a set U that contains y and everything x aliased.

Thus, for each element r ∈ U , we removed its old alias set S and replaced it with the new

alias set U . At the same time, we update GE to assign y to have the same escape state as

x. For example, line 11 in Figure 3.4 would create the alias head and s, and mark head as

escaped.

61

Store Instruction: When we see a store instruction *y = x or *y = &x->f that stores the

address x or the address of one of its fields &x->f to any location, we consider x and any

address that x may alias as escaped. We compute a set U that contains all the references

that x aliased. For each reference r ∈ U , we change its escape state to escaped and keep

the escape state of other references in GE intact. For example, line 16 in Figure 3.4 makes n

escaped.

Load Instruction: When a load instruction y = *x reads from x, and y points to some

persistent memory, the analysis marks y as escaped. The reasoning is that if we had previously

stored the address of some PM location a to *x (i.e.,*x = a), then a is considered as escaped

due to the store instruction. Then when we load from x, the loaded value should also be

marked as escaped. The * symbol in the KILL set {⟨y, ∗⟩} denotes previous escape state

that y has. Since y is overwritten, we compute the new alias map G ′
A as three pieces: 1)

we compute U as the set that removes y from its alias set and update the alias set for each

reference r ∈ U ; 2) the alias set for y is the singleton {y}; and 3) the alias sets for references

r /∈ GA(y) are the same. Note that while there may be multiple references to the same object

as y references, precise reference information is not important to keep as all references will

be marked as escaped.

Analyzing Persistency States

In this section, we describe how we model load, store, flush, and fence instructions in the

persistency state analysis. Figure 3.8 presents the transfer functions for the persistency

state analysis, where we assume x is a PM location. Similar to Section 3.3.2, we express

transfer functions using GEN and KILL sets when they are constant sets. The reader may

note that variables may alias but this analysis does not track aliasing information. The key

observation is that aliasing does not create soundness issues — it simply means that the

same variable that is used to perform a store must be used to flush the value. The lack of

62

aliasing information may result in false positives in cases where one alias is used to perform a

store while another is used to flush the store. In Figure 3.8, we use ⟨x, offset(f)⟩) to denote

the memory location of x->f.

Store/Atomic Store: When an atomic or non-atomic store writes to a field x->f, the KILL

set removes the old persistency state of x->f (i.e., ⟨x, offset(f)⟩), and the GEN set marks it

as dirty. Similar to Figure 3.7, the * symbol in KILL sets denote previous states.

Atomic Load: As we mentioned in Section 3.2.2, an atomic load changes the state of the

loaded variable or field to dirty. So the analysis removes the old persistency state of x->f

and marks it as dirty.

Atomic RMW: Atomic RMWs are combinations of atomic loads and stores, so we apply

the transfer functions of atomic load and store instructions.

Atomic CAS: An atomic CAS instruction is an atomic RMW instruction if it returns

successfully, and is an atomic load otherwise. Since our transfer functions have the same

effects when storing to a field x->f and when performing an atomic load from x->f, we

consider atomic CAS instructions as atomic RMW instructions in our analysis.

Flush: When flushing the address of a field x->f with a clflush instruction, the KILL

set removes the old persistency state of x->f, and the GEN set marks it as clean. Flushing

the address of a field x->f with clwb or clflushopt instructions is subtle. In this case, the

transfer function does not change the persistency states of locations other than x->f. The

persistency state of location x->f is changed to clwb if its previous persistency state was

dirty.

Fence: For fence instructions, the transfer function leaves the persistency states untouched

for locations whose persistency states are not clwb. The locations whose persistency states

are clwb are changed to the clean state.

63

3.3.3 Intraprocedural Error Reporting

PMRobust has two types of reports: errors and warnings. Warnings will be discussed in

Sections 3.4.5 and 3.4.8. Error reporting falls into two categories: 1) unflushed variables at

function exits; and 2) a store to an escaped PM location when a different PM location is

already escaped and non-clean.

The first category of errors is checked at function exits. When we complete the analysis of a

function, we get the program states at each function exit and take a union of the states by

using meet operators. If the state of any PM location that is not a function parameter or the

return value is escaped and non-clean, we report an error for the location.

The second category of errors is checked at each instruction. If two PM locations are escaped

and non-clean at any point of time, this is an error. However, to avoid creating duplicate

reports, we only report this type of error when a second PM location becomes escaped and

non-clean, given that some PM location is already escaped and non-clean in the program state.

To address robustness violations involving multiple threads, if there is a release operation to a

non-persistent memory location (atomic store release or unlock) and there is an escaped and

non-clean location, PMRobust reports an error and the source line number of the second

store. Recall from Section 3.3.1, a PM location l is a pair ⟨r, n⟩ of a reference and an offset

from the reference, so an escaped PM object with two or more fields being non-clean is also

reported as an error.

3.4 Interprocedural Analysis

In this section, we first discuss extending the core analysis to be interprocedural. Then we

discuss how we detect bugs that involve objects reachable from function parameters and

bugs that involve multiple functions. Lastly, we present details about array support, how we

64

detect references to persistent memory, and theorems regarding PMRobust’s soundness.

3.4.1 Context Sensitivity

To handle function calls, we extend our analysis with function call contexts. The context

sensitivity is implemented using function summary tables. Each function maintains a function

summary table that maps calling contexts to summarized cached results.

For a function with n parameters, a calling context is of the form C ∈ (E × P)n. A calling

context C can be thought of as a vector that stores the abstract escape and persistency state

for each function parameter. While a function parameter may have m fields and each field

can have a persistency state, we introduce an abstraction to collapse the m persistency states

to a single abstract persistency state, by returning the lowest persistency state among the m

persistency states. The purpose of the abstraction is to reduce the possible number of calling

contexts and cached results. The details about the abstraction is discussed in Section 3.4.2.

For a function F with n parameters, A cached result that corresponds to a calling context

C is of the form R⟨F,C⟩ ∈ (E × P)n+1. We use the notation R⟨F,C⟩ because the cached result

depends on the calling context C and function F . Similar to a calling context, a cached result

can also be thought of as a vector that stores the abstract escape and persistency state for

each function parameter and the return value. In the case where function F does not have a

return value, the last element in the cached result is ignored in the analysis.

For two calling context C = ⟨⟨e1, p1⟩, ..., ⟨en, pn⟩⟩ and C ′ = ⟨⟨e′1, p′1⟩, ..., ⟨e′n, p′n⟩⟩ of some

function F , we say that C is higher than C ′ if ei ⪰ e′i and pn ⪰ p′n for all i. The meet operator

⊓ : (E × P)n+1 → (E × P)n+1 for cached results is defined as the pairwise meet operation.

While cached results can contain extra information about F , such as the marksObjDirEsc bit

discussed in Section 3.4.4, we omit it in the representation here. To extend our alias analysis

65

to be interprocedural, we also store the aliasing information between function parameters

and the return value to cached results.

The interprocedural analysis uses a worklist that stores pairs ⟨F,C⟩ of a function F and a

calling context C that need analysis. The worklist is initialized to include all functions with

the calling contexts of all parameters having the state ⟨captured, clean⟩. When we complete

the analysis of a function with a calling context, we update the function summary table.

Every time a function F ’s cache results are updated, we push all callers of F with their

calling contexts to the worklist. There are three cases when processing a function call F with

a calling context C:

• Case 1: We have already analyzed F with the calling context C, i.e., the cached

result R⟨F,C⟩ corresponding to ⟨F,C⟩ is present. Then the cached result is used to

approximate the state of the parameters and the return value of F right after the call

site. The approximation of states will be discussed in Section 3.4.2.

• Case 2: We have not analyzed F with the calling contexts C before but have analyzed

F with the calling contexts higher that C. Then we take the cached results R⟨F,C′⟩ for

all calling contexts C ′ higher than C, and use the merged result of this set of cached

results via meet operator for approximation. Finally, we push the pair ⟨F,C⟩ to the

worklist. This choice ensures that we maintain monotonicity when processing call sites

(and thus preserve the termination guarantees for dataflow analysis) — if the analysis

lowers the incoming analysis states for the parameters, the returned analysis state will

either not change or be lower.

• Case 3: We have not analyzed F with the calling contexts C or any calling context

higher that C before. We approximate all parameters and the return value of F as

having the state ⟨captured, clean⟩. Then, we push the pair ⟨F,C⟩ to the worklist.

66

3.4.2 Approximating Calling Context Persistency States

In this section, we discuss how calling contexts are computed from program states, and how

program states are approximated based on cached results. At function call sites, we compute

calling contexts from program states. If cached results are present, then we use the abstract

states in the cached results to approximate the program state of function parameters and the

return value right after the call.

When analyzing a function with a calling context, we approximate the initial program state of

the parameters according to the calling context. When the analysis completes for a function,

we first get the program states at each function exit, and then take a union to compute a

final program state. Finally, we compute the abstract escape and persistency state for each

parameter and the return value and store the abstract states in the function’s cached result

for the given calling context.

At each program point, a variable x that has n fields has a program state ps ∈ E ×Pn, where

each field has a persistency state in Figure 3.6b. Thus, to reduce the number of possible states

in calling contexts and cached results, we introduce an abstraction Abs : E × Pn → E × P

define by Abs(⟨e, p1, ..., pn⟩) = ⟨e, lowest(p1, ..., pn)⟩ that maps a variable’s program state to

an abstract escape and persistency state. In other words, applying Abs on the program

state of x preserves the escape state but only keeps the lowest persistency state in fields of

x. Meanwhile, when approximating a variable’s program state with an abstract state, we

use AbsRev : E ×P → E ×Pn define by AbsRev(⟨e, p⟩) = ⟨e, (p, ..., p)⟩ that approximates the

persistency state of each field as the abstract persistency state.

67

3.4.3 Objects Reachable from Parameters

When a function F has a parameter p whose field f points to some PM object q, the calling

contexts or function cached results of F does not have information about the persistency state

of q. Thus, if F accesses p->f, dereferences it, and modifies the content of q, the changes to

q are not reflected in the cached results of F .

To deal with this issue, we note that when p->f is dereferenced, a load instruction is performed,

i.e., there is some instruction y = *p->f. So instead of recording the changes to *p->f in the

persistency state of p, we treat y as a new label with initially clean states. By the transfer

functions in Figure 3.7, y is considered as escaped due to the load instruction. If the function

F writes to y, we require the content of y be flushed before F returns. Otherwise, we report

an error.

1 void F(int &a) {

2 a = 1;

3 flush(&a);

4 }

5

6 void main() {

7 x = 1;

8 F(y);

9 }

(a) A buggy execution

1 void F(int &a) {

2 a = 1;

3 flush(&a);

4 }

5

6 void main() {

7 x = 1;

8 F(x);

9 }

(b) A bug-free execution

Figure 3.9: Assume that x and y reside on different cache lines and are escaped and clean
initially.

3.4.4 Stores in Function Calls

A naive implementation of context sensitivity can sometimes miss bugs caused by stores in

methods. Figure 3.9a presents such a buggy execution. Assume both x and y are initially

escaped and clean. Although f flushes a right after the store, the main function still has a

bug, as the execution has two cache lines that contain escaped and non-clean objects right

after line 2. Therefore, to detect such bugs, we add an marksObjDirEsc bit to function

68

cache results to indicate if a function with a clean calling context makes an escaped object

non-clean. We also set this bit if a function with a clean calling context performs a release

operation to catch robustness violations involving multiple threads.

Figure 3.9b shows an execution similar to the one in Figure 3.9a but is bug-free. The key

observation is that the parameter of f in Figure 3.9b is escaped and non-clean, while the

parameter of f in Figure 3.9a is not. We generalize the condition to functions with multiple

parameters.

Theorem 2. Suppose function F calls G(x1, ..., xn) and some objects are escaped and non-

clean in the program state of F right before calling G. If the marksObjDirEsc bit is set in

G under the calling context, while none of x1, ..., xn is escaped and non-clean, then this is a

robustness violation.

Proof. If the marksObjDirEsc bit is set in G under the calling context, and none of G’s

parameters is escaped and dirty, then G must make some object O escaped and dirty, and

O is different from the objects that are already escaped and dirty before calling G in F .

Therefore, calling G causes a robustness violation.

Theorem 3. Suppose function F calls G(x1, ..., xn) and no objects are escaped and non-clean

in the program state of F right before calling G. Then if calling G causes any robustness

violation, the violation will be detected while analyzing G with the calling context.

Proof. Since no objects are escaped and dirty in the program state of F before calling G, the

calling context of G has all of its elements being ⟨captured, clean⟩. So if calling G causes any

robustness violation in F , the violation will be detected while analyzing G with the calling

context.

Theorem 4. Suppose function F calls G(x1, ..., xn) and some objects are escaped and non-

clean in the program state of F right before calling G. Suppose some of x1, ..., xn is escaped

69

and non-clean. Then if there is a robustness violation caused by calling G from F , some

robustness violation is reported.

Proof. Suppose that there is one escaped and dirty object O in the program state of F before

calling G. Then O must be one of G’s parameters. Therefore, the only case that causes a

robustness violation is where G makes some other object escaped and dirty before flushing O.

This violation can be detected when analyzing g with its calling context.

Now suppose that there are more than one escaped and dirty objects in the program state of

F before calling G. Without loss of generality, assume there are exactly two such objects O1

and O2. Suppose O1 is passed into G while O2 is not. If G makes any object other that O1

escaped and dirty, then this is the same case as the previous paragraph. If G stores to O1,

there is a robustness violation between the pair O1 and O2. However, a robustness violation

already exists between the pair before calling G.

3.4.5 Handling Arrays

We next discuss how PMRobust treats arrays. Our key idea is to abstract array writes as a

pair of an array reference and an index. Formally, we model an array element l = ⟨r, n⟩ ∈ La

as a reference r ∈ R and a non-negative index n ∈ Z0+ from that reference. We abstract

the array index using the variable that provided the value used by the array dereference

operation. Thus, our abstraction is only able to track dirty array elements as long as the

original index variable exists. To ensure soundness, when a function writes to some PM array,

we conservatively require the written element to be flushed before the function returns.

We conservatively assume all array elements have escaped and only compute a map GPa ∈

La ×P from array elements to persistency states. Figure 3.10 presents the transfer functions

for the array persistency analysis. Figure 3.10 is similar to Figure 3.8 except that the addresses

70

statement G ′
Pa

= (GPa −KILL) ∪GEN

a[i]=v GEN = {⟨⟨a, i⟩, dirty⟩}
KILL = {⟨⟨a, i⟩, *⟩}

flush(&a[i]) GEN = {⟨⟨a, i⟩, clean⟩}
KILL = {⟨⟨a, i⟩, *⟩}

y=a[i]

where a[i] is
atomic

GEN = {⟨⟨a, i⟩, dirty⟩}
KILL = {⟨⟨a, i⟩, *⟩}

clwb(&a[i]) G ′
Pa

= {⟨l, p⟩ | ⟨l, p⟩ ∈ GPa ∧ (p ̸= dirty ∨ l ̸= ⟨a, i⟩})∪
{⟨l, clwb⟩ | ⟨l, dirty⟩ ∈ GPa ∧ l = ⟨a, i⟩}

fence G ′
Pa

= {⟨l, p⟩ | ⟨l, p⟩ ∈ GPa ∧ (p ̸= clwb)}∪
{⟨l, clean⟩ | ⟨l, clwb⟩ ∈ GPa}

Figure 3.10: Transfer Functions for Array Persistency State Analysis

71

being stored to and loaded from are replaced by array elements. At a function exit, we report

warnings if the map GPa contains any element whose persistency state is not clean.

3.4.6 Detecting References to Persistent Memory

PMRobust uses a CFL-reachability-based alias analysis introduced by Zheng and Rugina[115]

to distinguish persistent memory locations from non-persistent locations. First, the analysis

requires a set of user-configured persistent memory allocators, and the pointers returned by

these allocators are identified as the initial set of persistent memory pointers. The aliases

of known persistent memory (PM) pointers are iteratively computed and added to the set

until a fixed point is reached, ensuring all potential PM pointers are eventually included.

The PM locations in a program are then locations pointed to by the computed PM pointers.

Alternatively, this procedure could be viewed as a taint analysis, with the taint representing

the capability to point to persistent memory, which is propagated by the transition rules

of the CFL. The CFL-reachability-based formulation of the aliasing relation is precise and

enables a demand-driven algorithm, in which only pointers that point to persistent memory or

can reach persistent memory (through a series of dereferences and offsets) are explored. This

helps our analysis avoid calculating aliasing relations between a large number of non-persistent

memory pointers, such as those pointing to the stack.

Our version of the alias analysis is adapted from an existing implementation from the LLVM-8

codebase[30]. It uses function summary to speed up the analysis on large programs and

eagerly calculates alias relations between all pointers. We modified the analysis to only

explore aliases of PM pointers following the original demand-driven formulation[115]. The

implementation is context-sensitive due to the use of function summaries. We added type-

based field-sensitivity to the analysis, where a PM pointer status is tracked for each offset of

a struct type. Whenever an offset of a concrete struct is identified as a PM pointer, the status

72

is set to true for the offset of the struct type and propagates to the offset of all structs of that

type. This approach does not sacrifice much precision compared to full field-sensitivity, as

persistent memory programs that aim to be correct mostly likely use specialized data types

for persistent memory. Using the same data type for both volatile and persistent memory is

indeed rarely seen in the benchmarks we evaluate in Section 3.5.

3.4.7 Interprocedural Error Reporting

The error reporting mechanism for interprocedural analysis is the same as the intraprocedural

one, except that robustness violations that involve multiple functions are also reported. In

this section, we present a lemma and a theorem about PMRobust’s soundness.

Lemma 5. If a PM location x is reachable from persistent data structure roots, then the

escape analysis will mark x and its alias as escaped.

Proof. We will prove the statement for intraprocedural analysis first, and then prove for the

interprocedural analysis.

Case 1: If x is stored to some data structure via *y = x, then x and all elements in its alias

set GA(x) are marked as escaped by the second transfer function in Figure 3.7. Furthermore,

if x is later loaded from y, say a = *y, then a is an alias of x. Note that although a is not

in the alias set GA(x) of x, a is also marked as escaped by the third transfer function in

Figure 3.7.

Case 2: If x is added to the alias set GA(a) of some variable a via a = x, and later a is made

escaped via *y = a, then the second transfer function in Figure 3.7 marks the entire set GAa

as escaped.

Case 3: If x has already escaped, and later an alias of x is created via y = x, then the first

73

transfer function in Figure 3.7 marks y as escaped.

For interprocedural analysis, we only need to consider two cases.

Case 1: Suppose x has already escaped in some function H, then y becomes an alias of x

in some function G(x, y, ...), where H is the caller of G. Note that the function cached

results also contain the may-alias information between function parameters and the return

value. So the analysis will use the cached result to mark y as escaped.

Case 2: Suppose y becomes an alias of x in some function F(x, y, ...), and then x escapes

in some function G(x, ...) (or y escapes in G(y, ...)), where F and G share the same

caller H. Right after calling F in H, H has the information that y may alias x. If x escapes in

G(x, ...), then when the analysis uses the cached result of G to mark x as escaped, it also

marks the variables that may alias x as escaped. The case is similar when we have y escape

in G(y, ...) instead of x escaping in G(x, ...).

1 void F(...) {

2 x = 1;

3 y = 1;

4 }

(a) Subcase A.1

1 void F(){

2 x = 1;

3 G(y, ...);

4 }

(b) Subcase A.2

1 void F() {

2 G(x, ...);

3 y = 1;

4 }

(c) Subcase A.3

1 void F() {

2 G1(x, ...);

3 G1(y, ...);

4 }

(d) Subcase A.4

Figure 3.11: Assume that x and y are PM locations that reside on different cache lines and
are escaped and clean initially.

S: x.store(1)

N

T: y.store(1)

sb

hb

(a) Subcase B.1

S: x.store(1)

M

T: y.rmw()

sb

hb

(b) Subcase B.2

S: x.store(1)

M

N

T: y.store(1)

sb

sb

hb

(c) Subcase B.3

Figure 3.12: Assume that x and y are PM locations that reside on different cache lines and
are escaped and clean initially, where sb represents the sequenced-before relation, and hb
represents the happens-before relation.

74

Theorem 6. If a program has a robustness violation, then PMRobust will report some

error or warning.

Proof. A robustness violation must involve two stores S and T that write to PM locations x

and y on different cache lines such that x and y are reachable from persistent data structure

roots, that S happens before T , and that x is not flushed before the store to y. By Lemma 5,

we can assume that both x and y have been marked as escaped. We next enumerate the

cases and show that our analysis reports some error or warning. For simplicity, we assume x

and y are two different PM objects. The same proof will apply if they are fields of the same

PM object that reside on different cache lines.

Case A. We first consider the case where the stores S and T are in the same thread.

Figure 3.11 presents a few subcases. Without loss of generality, we assume that functions

G, G1, G2 write to their first parameters without flushing them. Although there can be

chains of function calls in practice, those cases are not different from the cases presented in

Figure 3.11. Subcase A.1 is obvious, as the analysis detects two escaped and dirty objects

at y = 1 and reports an error. For Subcase A.2, the analysis also reports some robustness

violation according to Theorem 4. Subcase A.3 is similar to Subcase A.1, as we assume G

writes to its first parameter. Subcase A.4 is similar to Subcase A.2.

Case B. Now we consider the case where the stores S and T are in two different thread.

Since we assume S happens before T , there are three possible subcases as presented in

Figure 3.12. The
hb→ edges represent the happens-before relation, and the

sb→ edges represent

the sequenced-before relation or the program order.

In Subcase B.1, since N is sequenced before T , we can assume that operations N and T are

in the same function, say F . Since N happens after S, S is an atomic store, and N is either

75

an atomic load or atomic RMW that reads from x. In either case, by the transfer functions

in Figure 3.8, x is dirty right after the operation N . Thus, there are two escaped and dirty

objects after the store T , and the analysis reports a bug while analyzing the function F .

In Subcase B.2, since M happens before T that performs a store to y, T is an atomic RMW

operation, and M can be an atomic store or atomic RMW that stores to y. Since S is

sequenced before M , we can assume that S and M are in the same function, say F . By the

same reasoning as Subcase B.1, there are two escaped and dirty objects after the operation

M , and the analysis reports a bug while analyzing the function F .

In Subcase B.3, the operations M and N establish a happens-before relation. Although, the

operations S and T are not necessarily atomics, that does not change the proof. There are

three possibilities. Subcase B.3.1) If M and N are atomic operations that read from or write

to persistent memory locations, then it is similar to Subcase B.1 and Subcase B.2. Subcase

B.3.2) If M and N are atomic operations on non-persistent memory locations, then M must

be a release operation and we require that (a) all cache lines must be clean before doing any

release operation and (b) any function call in which all parameters are clean in the calling

context that contains a release operation marks itself as having done a release operation, and

thus all cache lines must be clean before making such a function call. Subcase B.3.3) If M

and N are locking operations where M is an release and N is an acquire, it is the same as

Subcase B.3.2.

Other Cases. We will discuss some other cases in this paragraph. Note that the above

proof also applies if x and y are array elements. If x is some object reachable from some

function parameter, then Section 3.4.3 mentions the strategy where we create a new label

when x is dereferenced. The new label is marked as escaped by the transfer functions in

Figure 3.7. Thus, the proof above also applies. Lastly, if x is some address computed by

pointer arithmetic, then we will throw a warning right after the store to x.

76

3.4.8 Limitations

Our treatment of pointer arithmetic is very imprecise and report a warning when there

are stores to or loads from PM addresses computed by pointer arithmetic. We also do not

implement support for global pointers as they are rarely used to reference persistent memory.

77

3.5 Evaluation

In this section, we evaluate the effectiveness and performance of our analysis at uncovering

persistency robustness violations on a suite of benchmarks. We start by describing the

benchmarks and our system configuration. We then discuss our evaluation methodology and

present the analysis report from each of the benchmarks. Lastly, we discuss our findings from

the reports and address sources of imprecision in our analysis.

System Setup: PMRobust was implemented as an analysis pass in LLVM 8.0.0. Our

experiments were carried out on a Ubuntu 20.04.6 machine with a 10 core 3.7 GHz Intel

i9-10900K processor and 128GB RAM.

3.5.1 Methodology

We tested PMRobust on the RECIPE[70] collection of benchmarks consisting of B+-trees,

tries, radix trees, and hash table variants that were specialized to function as PM indexes.

Of the five data structures in the RECIPE benchmarks, one (P-HOT) failed to compile

with LLVM, and we used the remaining four (P-ART, P-BwTree, P-CLHT, P-Masstree)

in the evaluation. In addition, we included CCEH[84], an efficient PM hashtable; and

FAST FAIR[49], an efficient implementation of B-Tree for PM, in our evaluation.

We also evaluated our tool on PMDK[53]. PMDK uses checksums and thus can safely

eliminate many flush operations and thus is not really amenable to analysis by PMRobust.

We included PMDK as it is commonly used in prior work, but as expected it results in a large

number of false positives. We omitted both Memcached as it also makes use of checksums

and thus would show similar results, and Redis because it is redundant as it uses the same

PMDK library.

78

Our analysis is designed to start from a main function, and incrementally analyze all functions

reachable from it, and therefore an entry point containing a main function is needed for

each data structures we test on. For this purpose, we used test programs provided by the

data structure implementer to ensure all appropriate user-facing API calls (and all functions

reachable from them) are covered.

3.5.2 Bug Detection

Table 3.1: New Robustness Violation Bugs

Benchmark Location Cause of Robustness Violation

14 P-ART N16::key atomic load of key in N16::getChildren
15 P-ART N16::children atomic load of key in N16::getChildren
16 P-ART N16::children atomic load of key in N16::getChild
17 P-ART N256::children atomic load of key in N16::getChildren
18 P-ART N4::children atomic load of key in N4::getChild
19 P-ART N4::children atomic load of key in N4::getChildren
20 P-ART N48::children atomic load of key in N48::getChild
21 P-ART N48::children atomic load of key in N48::getChildren
22 P-ART N48::childIndex atomic load of childIndex in

N48::deleteChildren
52 PMDK stats persistent::

heap curr allocated
atomic load of heap curr allocated in
STATS CTL HANDLER

53 PMDK stats persistent::
heap curr allocated

increment heap curr allocated in pal-
loc heap action on process

54 PMDK stats persistent::
heap curr allocated

subtract from heap curr allocated in pal-
loc heap action on process

56 PMDK dst applying ULOG ENTRY AND on dst
in ulog entry apply

57 PMDK dst applying ULOG ENTRY SET on dst in
ulog entry apply

58 PMDK dst applying ULOG ENTRY BUF COPY
on dst in ulog entry apply

In our evaluation, PMRobust found a total of 80 bugs, of which 60 are not memory

management related and can be found in Section 3.8, and 20 are memory management bugs,

and will be addressed separately. Compared to PSan [42], a dynamic analysis that checks for

79

the kind of persistency violation, we found 6 new bugs in PMDK and 9 new bugs in P-ART

of the RECIPE benchmark, listed in Table 3.1. It is important to note that we found new

bugs in benchmark suites have been heavily analyzed by many bug finding tools.

As far as we are aware these bugs have not been reported by other studies in the literature.

The new bugs #14-22 are unflushed atomic loads, which are only violations if a thread loads

data stored by another thread, a scenario that does not occur in P-ART’s test program and

thus not explored by PSan. Similarly, #56-58 are located on different branches of the same

switch statement as the previously reported bug #55. They have not been found before most

likely because they are not called by the test programs. These new reports provide evidence

for the advantages of the static approach. Since PMRobust does not currently support

function pointers, there is one bug reported by PSan that our tool failed to report.

All of the violations are due to missing flushes after the dirty-state-inducing operation to

the memory location listed, which is either a write or an atomic load. The violations caused

by missing flushes after locking and unlocking operations (e.g., #11, #12, #13) would in

fact cause deadlocks after recovering from a crash. To address this problem, the RECIPE

paper assumes that ”the locks used in the index are non-persistent, and that the locks are re-

initialized after a crash”. However, these assumptions are not implemented in their codebase,

and PMRobust is right to identify them as violations with respect to the implementation.

Note that the number of reports do not necessarily correspond to the number of bugs. A

function with missing flushes could cause multiple violations when they are used in multiple

places in the program, causing multiple bug reports. For example, this is the case for

N::writeLockOrRestart, reported as #11. This function is used for acquiring the write lock

on tree nodes in P-ART, which caused twelve bug reports from separate function calls. For

the sake of clarity, we only list such functions once in the table. A template function with

missing flushes could also be reported multiple times if they are instantiated multiple times

in the LLVM IR.

80

Memory Management Bugs PMRobust found 20 bugs in the memory management part

of the benchmark code responsible for memory allocation and garbage collection. As mentioned

in the paper, the RECIPE repository is implemented to demonstrate the performance of the

proposed technique for constructing PM indexes, and does not fully implement crash recovery

in all parts of the code, in particular in its memory management code. As a result, ensuring

crash consistency in the RECIPE memory management code requires more fundamental

changes than adding missing flushes found by PMRobust.

Comparison with Agamotto Agamotto [87] is a tool that finds multiple types of persis-

tency bugs. The violations we check for correspond to their missing flush correctness bugs, of

which Agamotto report 2 in PMDK and 1 in RECIPE, whereas PMRobust reports 9 in

PMDK and 51 in RECIPE.

3.5.3 False Positives

Table 3.2: Report False Positive Rate

Benchmark # of Reports # of False Positives % of False Positives
P-ART 291 176 60%

P-BwTree 113 49 43%
P-CLHT 7 5 71%

P-Masstree 57 32 56%
CCEH 51 31 61%

FAST FAIR 160 111 69%
PMDK 174 162 93%

We report the false positive rate of our tool on each benchmark in Table 3.2. The false

positive reports come from the following sources: (1) not accounting for RECIPE’s state

inconsistency repair mechanism, which tolerates certain violations; (2) not accounting for

certain conditional flushes (e.g., flushes under if statements) that are guaranteed to execute

81

at runtime; (3) not accounting for transient runtime state stored in persistent memory; (4)

not accounting for cache alignment where different fields of an PM object or different PM

objects can be on the same cache line; (5) over-approximation of escaped states; and (6)

over-approximation of violations due to atomic loads.

Of the above sources, RECIPE’s inconsistency repair mechanism and conditional flushes are

inherently dynamic, and to handle them statically would require extensive manual annotations.

Storing unflushed transient states into persistent memory is a practice seen in performance-

critical libraries like PMDK, which accounts for most of the false positives there. This is used

for example to store a volatile mutex together the persistent memory pool it protects. These

runtime states are either protected by a checksum, or are always reinitialized during recovery.

Extensive annotations would be needed to rule out the transient states in persistent memory,

which indicates a fundamental mismatch between these libraries and our approach.

While modeling of escaped states could be made more precise by depending on more sophisti-

cated static techniques — e.g., a flow-sensitive points-to analysis that determines whether

each memory location is reachable from a persistent root at each program point, we chose

not to investigate them in the scope of this paper as they add extra complexity and are not

central to design of our analysis. Similarly, more precise modeling of atomic loads might

involve techniques such as information-flow tracking, as atomically loaded values before a

crash could influence the post-crash state through indirect information flow, which we leave

as future work.

Overall, the false positive rates of our analysis are due to the inherent imprecision of static

analyses, and the approximations we made for practical purposes. The high false positive

rates of static checking in general also manifest in many practical type systems, such as the

linear type system of Rust that conservatively reject many safe programs. Despite these false

positives, the advantages of the static approach are (1) that it is able to report all potential

violations on all paths rather than only on paths explored at runtime and (2) there is no

82

need to construct extensive test suites to reveal bugs. We believe that these tradeoffs are

likely to be worthwhile for persistent data structures that store critical data.

3.5.4 Performance

We ran PMRobust 10 times on each of the benchmarks and present the average analysis

times in Table 3.3. The analysis is reasonably fast for all of the benchmarks, and terminates

in less than 20 seconds for PMDK, the largest of them. The code size of each benchmark is

included for reference.

Table 3.3: Average analysis time of PMRobust over 10 runs

Benchmark Time(s) Code Size(KLOC)
1 P-ART 7.49 2.7
2 P-BwTree 10.19 10.9
3 P-CLHT 0.60 17.6
4 P-Masstree 9.02 2.5
5 CCEH 1.10 4.4
6 FAST FAIR 3.58 2.2
7 PMDK 16.41 51.5∗

∗ only includes data structures and sublibraries used in the evaluation

83

3.6 Related Work

Persistent Memory Bug Detection. There is work on checking/testing PM programs to

find bugs. In particular, XFDetector [78] uses a finite state machine to track the consistency

and persistency of persistent data. PMTest [79] lets developers annotate a program with

checking rules to infer the persistency status of writes and ordering constraints between writes.

Pmemcheck [61] checks how many stores were not made persistent and detects memory

overwrites using binary rewriting. Yat [69] is an attempt to model check persistent memory.

It injects failures before fence operations and eagerly enumerates all post-failure states to

detect potential bugs. Agamotto [87] finds bugs in persistent memory programs by using

symbolic execution. It uses a priority-based static analysis to steer program execution to

program states that frequently modify PM. Jaaru [43] takes a constraint-based approach to

enumerating executions that can drastically reduce the number of post-failure executions.

PMDebugger [25] is a debugger developed on top of Valgrind that tracks operations to find

persistency bugs. Hippocrates [86] is a tool for automatically fixing persistency bugs by

analyzing crash information. Although these tools are able to find many bugs, none of these

tools can assure the absence of flush/fence bugs. POG [95] and Pierogi [5] provide logics that

can be used to manually reason about program behaviors.

Programming Models for PM. There is work on building systems that allow developers

to use PM in a reliable way without knowing the details of PM. For example, a line of

work [13, 35, 37, 75] proposes to use (software or hardware) transactions to provide (failure

and thread) atomicity. Another line of work [7, 15, 47, 55, 76] advocates use of locks or

synchronization-free regions [40]. Memento [20] provides detectable checkpointing—it extends

standard checkpoint with support to allow the system to be able to detect the status of in

flight operations when the crash occurred. These approaches typically incur large overheads

to support the necessary logging.

84

Constructive Approaches. In addition to these general-purpose debugging tools and

programming models, there is a rich literature on systematic transforms for lock-free data

structures to use persistent memory [102, 6, 56, 22, 32, 24]. Most of these constructive

approaches leverage different techniques to deduce flush and fence instructions for lock-free

programs. More recently, Mirror [32] keeps two copies of the data in both DRAM and

persistent memory. Load operations in Mirror only access DRAM, but store operations

update both DRAM and persistent memory. While this design enables Mirror to not require

persistency barriers after load operations, it incurs substantial memory overhead. Israelavitz

et al. [56] introduce the notion of durable linearazibility to data-race-free programs to become

crash consistent. Durable linearazibility is implemented as a set of transformation rules,

which preserve the original happens-before ordering for persistent memory. While these

constructive approaches suffice to ensure robustness, they may inject unnecessary fence and

flush instructions.

85

3.7 Conclusion

This paper presents an analysis that can statically check for violations of robustness, a

sufficient condition for the correct usage of flush and fence operations in persistent memory

programs. PMRobust is the first static analysis tool for checking for bugs with the use of

flush and fence operations and is the only tool that can verify the absence of flush and fence

bugs on all program executions. PMRobust found 80 bugs in popular PM benchmarks.

86

3.8 Bug Listing

All non-memory bugs found by PMRobust in the evaluation are listed in Table 3.4.

Table 3.4: Robustness Violation Bugs

Benchmark Location Cause of Robustness Violation
1 P-ART Tree::loadKey store to loadKey in constructor of Tree
2 P-ART Tree::epoche store to epoche in constructor of Tree
3 P-ART node.children[i] atomic load of node.children[i] in Tree::lookup
4 P-ART node.children[i] atomic load of n.children[i] in Tree::lookupRange
5 P-ART n.children atomic load of n.children in Tree::lookupRange
6 P-ART N4::key store to key in N4::insert
7 P-ART N4::children store to children in N4::insert
8 P-ART N4::compactCount store to compactCount in N4::insert
9 P-ART N16::compactCount store to compactCount in N16::insert
10 P-ART N48::compactCount store to compactCount in N48::insert
11 P-ART N:: typeVersionLockObsolete locking in N::writeLockOrRestart
12 P-ART N:: typeVersionLockObsolete locking in N::lockVersionOrRestart
13 P-ART N:: typeVersionLockObsolete unlocking in N::writeUnlock
14* P-ART N16::key atomic load of key in N16::getChildren
15* P-ART N16::children atomic load of key in N16::getChildren
16* P-ART N16::children atomic load of key in N16::getChild
17* P-ART N256::children atomic load of key in N16::getChildren
18* P-ART N4::children atomic load of key in N4::getChild
19* P-ART N4::children atomic load of key in N4::getChildren
20* P-ART N48::children atomic load of key in N48::getChild
21* P-ART N48::children atomic load of key in N48::getChildren
22* P-ART N48::childIndex atomic load of childIndex in N48::deleteChildren
23 P-BwTree AllocationMeta::next store to AllocationMeta::next in AllocationMeta::GrowChunk
24 P-BwTree AllocationMeta::tail store to AllocationMeta::tail in AllocationMeta::TryAllocate
25 P-BwTree BwTree::this store to various fields of Bwtree in its constructor
26 P-CLHT bucket store to bucket in clht put
27 P-Masstree masstreeptr store to masstreeptr in initOrRecoverPersistentData
28 P-Masstree new sibling store to new sibling by calling its constructor in leafnode::inter insert
29 P-Masstree p.version store to p.version by calling p-¿inter insert in leafnode::split
30 P-Masstree leafnode::wlock store to wlock in constructor of leafnode
31 P-Masstree leafnode::wlock store to wlock in leafnode::lock
32 P-Masstree leafnode::wlock store to wlock in leafnode::unlock
33 P-Masstree leafnode::wlock store to wlock in leafnode::try lock
34 CCEH Directory:: store to in constructor of Directory
35 CCEH Directory:: [i] store to [i] in constructor of Directory
36 CCEH Directory::lock locking in Directory::Acquire
37 CCEH Directory::lock unlocking in Directory::Release
38 CCEH Directory::sema locking in Directory::Insert
39 CCEH Directory::sema unlocking in Directory::Insert
40 CCEH Directory::key writing to key in in Directory::Insert
41 FAST FAIR btree::this store to various fields in constructor of btree
42 FAST FAIR header::this store to various fields in constructor of header
43 FAST FAIR page::entry::ptr store to entry::ptr in constructor of entry
44 FAST FAIR page::switch counter store to switch counter in btree::insert key(uint64 t, char*, int*, bool,

bool)
45 FAST FAIR page::entry::ptr store to entry::ptr in btree::insert key(uint64 t, char*, int*, bool, bool)
46 FAST FAIR page::last index store to last index in btree::insert key(uint64 t, char*, int*, bool, bool)
47 FAST FAIR page::switch counter store to switch counter in btree::insert key(key item*, char*, int*, bool,

bool)
48 FAST FAIR page::entry::ptr store to entry::ptr in btree::insert key(key item*, char*, int*, bool, bool)
49 FAST FAIR page::last index store to last index in btree::insert key(key item*, char*, int*, bool, bool)
50 FAST FAIR page::switch counter store to switch counter in btree::remove key
51 FAST FAIR page::last index store to last index in btree::remove key
52* PMDK stats persistent::

heap curr allocated
atomic load of heap curr allocated in STATS CTL HANDLER

53* PMDK stats persistent::
heap curr allocated

increment heap curr allocated in palloc heap action on process

54* PMDK stats persistent::
heap curr allocated

subtract from heap curr allocated in palloc heap action on process

55 PMDK dst applying ULOG ENTRY OR on dst in ulog entry apply
56* PMDK dst applying ULOG ENTRY AND on dst in ulog entry apply
57* PMDK dst applying ULOG ENTRY SET on dst in ulog entry apply
58* PMDK dst applying ULOG ENTRY BUF COPY on dst in ulog entry apply
59 PMDK dst memcpy to dst in ulog store
60 PMDK dst memcpy to dst in ulog entry apply

* New bugs found by PMRobust

87

Bibliography

[1] D. Angeletti, E. Giunchiglia, M. Narizzano, A. Puddu, and S. Sabina. Using bounded
model checking for coverage analysis of safety-critical software in an industrial setting.
J. Autom. Reasoning, 45:397–414, 12 2010.

[2] ARM. Arm architecture reference manual armv8, for a-profile architecture. https:

//developer.arm.com/documentation/ddi0487/latest, September 2021.

[3] J. Arulraj and A. Pavlo. How to build a non-volatile memory database management
system. In Proceedings of the 2017 ACM International Conference on Management
of Data, SIGMOD ’17, pages 1753–1758, New York, NY, USA, 2017. Association for
Computing Machinery.

[4] D. Babić, L. Martignoni, S. McCamant, and D. Song. Statically-directed dynamic
automated test generation. In Proceedings of the 2011 International Symposium on
Software Testing and Analysis, ISSTA ’11, pages 12–22, New York, NY, USA, 2011.
Association for Computing Machinery.

[5] E. V. Bila, B. Dongol, O. Lahav, A. Raad, and J. Wickerson. View-based owicki–gries
reasoning for persistent x86-tso. In Programming Languages and Systems: 31st Euro-
pean Symposium on Programming, ESOP 2022, Held as Part of the European Joint
Conferences on Theory and Practice of Software, ETAPS 2022, Munich, Germany,
April 2–7, 2022, Proceedings, page 234–261, Berlin, Heidelberg, 2022. Springer-Verlag.

[6] H.-J. Boehm and D. R. Chakrabarti. Persistence programming models for non-volatile
memory. In Proceedings of the 2016 ACM SIGPLAN International Symposium on
Memory Management, ISMM 2016, pages 55–67, New York, NY, USA, 2016. Association
for Computing Machinery.

[7] H.-J. Boehm and D. R. Chakrabarti. Persistence programming models for non-volatile
memory. In Proceedings of the 2016 ACM SIGPLAN International Symposium on
Memory Management, ISMM 2016, pages 55–67, New York, NY, USA, 2016. Association
for Computing Machinery.

[8] B. Botella, M. Delahaye, S. Hong-Tuan-Ha, N. Kosmatov, P. Mouy, M. Roger, and
N. Williams. Automating structural testing of c programs: Experience with pathcrawler.
In 2009 ICSE Workshop on Automation of Software Test, pages 70–78, Vancouver, BC,
Canada, 2009. Institute of Electrical and Electronics Engineers.

88

https://developer.arm.com/documentation/ddi0487/latest
https://developer.arm.com/documentation/ddi0487/latest

[9] A. Bouajjani, R. Meyer, and E. Möhlmann. Deciding robustness against total store
ordering. In L. Aceto, M. Henzinger, and J. Sgall, editors, Automata, Languages and
Programming, pages 428–440, Berlin, Heidelberg, 2011. Springer Berlin Heidelberg.

[10] B. Bridge. Nvm-direct library. https://github.com/oracle/nvm-direct, September
2021.

[11] C. Cadar, D. Dunbar, and D. Engler. Klee: Unassisted and automatic generation of
high-coverage tests for complex systems programs. In Proceedings of the 8th USENIX
Conference on Operating Systems Design and Implementation, OSDI’08, pages 209–224,
USA, 2008. USENIX Association.

[12] C. Cadar, V. Ganesh, P. M. Pawlowski, D. L. Dill, and D. R. Engler. Exe: Automatically
generating inputs of death. ACM Trans. Inf. Syst. Secur., 12(2), Dec. 2008.

[13] D. Castro, P. Romano, and J. Barreto. Hardware transactional memory meets memory
persistency. In 2018 IEEE International Parallel and Distributed Processing Symposium,
IPDPS ’18, pages 368–377, Vancouver, BC, Canada, 2018. Institute of Electrical and
Electronics Engineers.

[14] H. Cha, M. Nam, K. Jin, J. Seo, and B. Nam. B3-tree: Byte-addressable binary b-tree
for persistent memory. ACM Trans. Storage, 16(3), July 2020.

[15] D. R. Chakrabarti, H.-J. Boehm, and K. Bhandari. Atlas: Leveraging locks for non-
volatile memory consistency. In Proceedings of the 2014 ACM International Conference
on Object Oriented Programming Systems Languages & Applications, OOPSLA ’14,
pages 433–452, New York, NY, USA, 2014. Association for Computing Machinery.

[16] S. Chen and Q. Jin. Persistent b+-trees in non-volatile main memory. Proc. VLDB
Endow., 8(7):786–797, Feb. 2015.

[17] X. Chen, E. H.-M. Sha, A. Abdullah, Q. Zhuge, L. Wu, C. Yang, and W. Jiang. Udorn:
A design framework of persistent in-memory key-value database for nvm. In 2017 IEEE
6th Non-Volatile Memory Systems and Applications Symposium (NVMSA), pages 1–6,
Hsinchu, Taiwan, 2017. Institute of Electrical and Electronics Engineers.

[18] Y. Chen, Y. Lu, F. Yang, Q. Wang, Y. Wang, and J. Shu. Flatstore: An efficient
log-structured key-value storage engine for persistent memory. In Proceedings of
the Twenty-Fifth International Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS ’20, pages 1077–1091, New York, NY,
USA, 2020. Association for Computing Machinery.

[19] Y. Chen, J. Shu, J. Ou, and Y. Lu. Hinfs: A persistent memory file system with both
buffering and direct-access. ACM Trans. Storage, 14(1), Apr. 2018.

[20] K. Cho, S. Jeon, A. Raad, and J. Kang. Memento: A framework for detectable
recoverability in persistent memory. Proc. ACM Program. Lang., 7(PLDI), jun 2023.

89

https://github.com/oracle/nvm-direct

[21] J. Coburn, A. M. Caulfield, A. Akel, L. M. Grupp, R. K. Gupta, R. Jhala, and
S. Swanson. Nv-heaps: Making persistent objects fast and safe with next-generation,
non-volatile memories. In ASPLOS XVI, pages 105–118, New York, NY, USA, 2011.
Association for Computing Machinery.

[22] M. Dananjaya, V. Gavrielatos, A. Joshi, and V. Nagarajan. Lazy Release Persistency,
pages 1173–1186. Association for Computing Machinery, New York, NY, USA, 2020.

[23] I. Danga Interactive. Memcached. https://github.com/lenovo/memcached-pmem,
November 2018.

[24] T. David, A. Dragojević, R. Guerraoui, and I. Zablotchi. Log-free concurrent data
structures. In Proceedings of the 2018 USENIX Conference on Usenix Annual Technical
Conference, USENIX ATC ’18, pages 373–385, USA, 2018. USENIX Association.

[25] B. Di, J. Liu, H. Chen, and D. Li. Fast, flexible, and comprehensive bug detection for
persistent memory programs. In Proceedings of the 26th ACM International Conference
on Architectural Support for Programming Languages and Operating Systems, ASPLOS
2021, pages 503–516, New York, NY, USA, 2021. Association for Computing Machinery.

[26] N. Douglas. P1026R0: A call for a data persistence (iostream v2) study group. http:
//www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p1026r0.pdf, 2018.

[27] S. R. Dulloor, S. Kumar, A. Keshavamurthy, P. Lantz, D. Reddy, R. Sankaran, and
J. Jackson. System software for persistent memory. In Proceedings of the Ninth European
Conference on Computer Systems, EuroSys ’14, New York, NY, USA, 2014. Association
for Computing Machinery.

[28] P. Ekemark, Y. Yao, A. Ros, K. Sagonas, and S. Kaxiras. Tsoper: Efficient coherence-
based strict persistency. In 2021 IEEE International Symposium on High-Performance
Computer Architecture (HPCA), pages 125–138, Seoul, Korea, 2021. Institute of Elec-
trical and Electronics Engineers.

[29] C. Flanagan and S. N. Freund. Fasttrack: Efficient and precise dynamic race detection.
In Proceedings of the 30th ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI ’09, pages 121–133, New York, NY, USA, 2009.
Association for Computing Machinery.

[30] L. Foundation. Llvm-8. https://github.com/llvm/llvm-project/tree/release/

8.x, August 2019.

[31] A. Freij, S. Yuan, H. Zhou, and Y. Solihin. Persist level parallelism: Streamlining
integrity tree updates for secure persistent memory. In 2020 53rd Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO), pages 14–27, Athens, Greece,
2020. Institute of Electrical and Electronics Engineers.

[32] M. Friedman, E. Petrank, and P. Ramalhete. Mirror: Making Lock-Free Data Structures
Persistent, pages 1218–1232. Association for Computing Machinery, New York, NY,
USA, 2021.

90

https://github.com/lenovo/memcached-pmem
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p1026r0.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p1026r0.pdf
https://github.com/llvm/llvm-project/tree/release/8.x
https://github.com/llvm/llvm-project/tree/release/8.x

[33] X. Fu, W.-H. Kim, A. P. Shreepathi, M. Ismail, S. Wadkar, D. Lee, and C. Min.
Witcher: Systematic crash consistency testing for non-volatile memory key-value stores.
In Proceedings of the 28th ACM Symposium on Operating Systems Principles, SOSP
2021, pages 100–115, New York, NY, USA, 2021. Association for Computing Machinery.

[34] N. Gao, Z. Liu, and D. Grunwald. Dtranx: A seda-based distributed and transactional
key value store with persistent memory log, 2017.

[35] K. Genç, M. D. Bond, and G. H. Xu. Crafty: Efficient, HTM-compatible persistent
transactions. In Proceedings of the 41st ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI 2020, pages 59–74, New York, NY, USA,
2020. Association for Computing Machinery.

[36] J. S. George, M. Verma, R. Venkatasubramanian, and P. Subrahmanyam. go-pmem:
Native support for programming persistent memory in go. In 2020 USENIX Annual
Technical Conference (USENIX ATC 20), pages 859–872, Boston, MA, USA, July 2020.
USENIX Association.

[37] E. Giles, K. Doshi, and P. Varman. Continuous checkpointing of HTM transactions in
NVM. In Proceedings of the 2017 ACM SIGPLAN International Symposium on Memory
Management, ISMM 2017, pages 70–81, New York, NY, USA, 2017. Association for
Computing Machinery.

[38] P. Godefroid, N. Klarlund, and K. Sen. Dart: Directed automated random testing.
SIGPLAN Not., 40(6):213–223, June 2005.

[39] P. Godefroid, M. Y. Levin, and D. Molnar. Automated whitebox fuzz testing, November
2008.

[40] V. Gogte, S. Diestelhorst, W. Wang, S. Narayanasamy, P. M. Chen, and T. F. Wenisch.
Persistency for synchronization-free regions. In Proceedings of the 39th ACM SIGPLAN
Conference on Programming Language Design and Implementation, PLDI 2018, pages
46–61, New York, NY, USA, 2018. Association for Computing Machinery.

[41] V. Gogte, W. Wang, S. Diestelhorst, P. M. Chen, S. Narayanasamy, and T. F. Wenisch.
Relaxed persist ordering using strand persistency. In 2020 ACM/IEEE 47th Annual
International Symposium on Computer Architecture (ISCA), pages 652–665, Valencia,
Spain, 2020. Institute of Electrical and Electronics Engineers.

[42] H. Gorjiara, W. Luo, A. Lee, G. H. Xu, and B. Demsky. Checking robustness to
weak persistency models. In Proceedings of the 43rd ACM SIGPLAN International
Conference on Programming Language Design and Implementation, PLDI 2022, page
490–505, New York, NY, USA, 2022. Association for Computing Machinery.

[43] H. Gorjiara, G. H. Xu, and B. Demsky. Jaaru: Efficiently model checking persistent
memory programs. In Proceedings of the 26th ACM International Conference on
Architectural Support for Programming Languages and Operating Systems, ASPLOS
2021, pages 415–428, New York, NY, USA, 2021. Association for Computing Machinery.

91

[44] H. Gorjiara, G. H. Xu, and B. Demsky. Yashme: Detecting persistency races. In
Proceedings of the 27th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems, ASPLOS 2022, page 830–845, New
York, NY, USA, 2022. Association for Computing Machinery.

[45] M. Ha and S.-H. Kim. Ink: In-kernel key-value storage with persistent memory.
Electronics, 9(11), 2020.

[46] M. Hoseinzadeh and S. Swanson. Corundum: Statically-enforced persistent memory
safety. In Proceedings of the 26th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems, ASPLOS 2021, pages
429–442, New York, NY, USA, 2021. Association for Computing Machinery.

[47] T. C.-H. Hsu, H. Brügner, I. Roy, K. Keeton, and P. Eugster. NVthreads: Practical
persistence for multi-threaded applications. In Proceedings of the Twelfth European
Conference on Computer Systems, EuroSys ’17, pages 468–482, New York, NY, USA,
2017. Association for Computing Machinery.

[48] H. Huang, K. Huang, L. You, and L. Huang. Forca: Fast and atomic remote direct
access to persistent memory. In 2018 IEEE 36th International Conference on Computer
Design (ICCD), pages 246–249, Orlando, FL, USA, 2018. Institute of Electrical and
Electronics Engineers.

[49] D. Hwang, W.-H. Kim, Y. Won, and B. Nam. Endurable transient inconsistency in
byte-addressable persistent b+-tree. In Proceedings of the 16th USENIX Conference
on File and Storage Technologies, FAST ’18, pages 187–200, USA, 2018. USENIX
Association.

[50] Intel. Third generation intel xeon processor scalable family technical
overview. https://software.intel.com/content/www/us/en/develop/articles/

intel-xeon-processor-scalable-family-overview.html?wapkw=clwb, June 2020.

[51] Intel. Memory optimized for data-centeric workloads. https:

//www.intel.com/content/www/us/en/architecture-and-technology/

optane-dc-persistent-memory.html, 2021.

[52] Intel. Revolutionizing memory and storage. https://www.intel.com/content/www/
us/en/architecture-and-technology/intel-optane-technology.html, 2021.

[53] Intel Corporation. Persistent memory development kit. https://pmem.io/pmdk/, 2020.

[54] Intel Corporation. Intel inspector. https://software.intel.com/content/www/us/en/develop/tools/oneapi/
components/inspector.html, 2021.

[55] J. Izraelevitz, T. Kelly, and A. Kolli. Failure-atomic persistent memory updates via
JUSTDO logging. In Proceedings of the Twenty-First International Conference on
Architectural Support for Programming Languages and Operating Systems, ASPLOS
’16, pages 427–442, New York, NY, USA, 2016. Association for Computing Machinery.

92

https://software.intel.com/content/www/us/en/develop/articles/intel-xeon-processor-scalable-family-overview.html?wapkw=clwb
https://software.intel.com/content/www/us/en/develop/articles/intel-xeon-processor-scalable-family-overview.html?wapkw=clwb
https://www.intel.com/content/www/us/en/architecture-and-technology/optane-dc-persistent-memory.html
https://www.intel.com/content/www/us/en/architecture-and-technology/optane-dc-persistent-memory.html
https://www.intel.com/content/www/us/en/architecture-and-technology/optane-dc-persistent-memory.html
https://www.intel.com/content/www/us/en/architecture-and-technology/intel-optane-technology.html
https://www.intel.com/content/www/us/en/architecture-and-technology/intel-optane-technology.html

[56] J. Izraelevitz, H. Mendes, and M. L. Scott. Linearizability of persistent memory
objects under a full-system-crash failure model. In C. Gavoille and D. Ilcinkas, edi-
tors, Distributed Computing, pages 313–327, Berlin, Heidelberg, 2016. Springer Berlin
Heidelberg.

[57] J. Jeong and C. Jung. Pmem-spec: Persistent memory speculation (strict persistency can
trump relaxed persistency). In Proceedings of the 26th ACM International Conference
on Architectural Support for Programming Languages and Operating Systems, ASPLOS
2021, pages 517–529, New York, NY, USA, 2021. Association for Computing Machinery.

[58] J. Jeong, C. H. Park, J. Huh, and S. Maeng. Efficient hardware-assisted logging
with asynchronous and direct-update for persistent memory. In 2018 51st Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO), pages 520–532,
Fukuoka, Japan, 2018. Institute of Electrical and Electronics Engineers.

[59] R. Kadekodi, S. K. Lee, S. Kashyap, T. Kim, A. Kolli, and V. Chidambaram. Splitfs:
Reducing software overhead in file systems for persistent memory. In Proceedings of
the 27th ACM Symposium on Operating Systems Principles, SOSP ’19, pages 494–508,
New York, NY, USA, 2019. Association for Computing Machinery.

[60] O. Kaiyrakhmet, S. Lee, B. Nam, S. H. Noh, and Y. ri Choi. Slm-db: Single-level
key-value store with persistent memory. In 17th USENIX Conference on File and
Storage Technologies (FAST 19), pages 191–205, Boston, MA, Feb. 2019. USENIX
Association.

[61] T. Kapela. An introduction to pmemcheck (part 1) - basics. https://pmem.io/2015/
07/17/pmemcheck-basic.html, July 2015.

[62] A. Khyzha and O. Lahav. Taming x86-tso persistency. Proc. ACM Program. Lang.,
5(POPL), Jan. 2021.

[63] A. Kolli, V. Gogte, A. Saidi, S. Diestelhorst, P. M. Chen, S. Narayanasamy, and T. F.
Wenisch. Language-level persistency. In Proceedings of the 44th Annual International
Symposium on Computer Architecture, ISCA ’17, pages 481–493, New York, NY, USA,
2017. Association for Computing Machinery.

[64] A. Kolli, S. Pelley, A. Saidi, P. M. Chen, and T. F. Wenisch. High-performance
transactions for persistent memories. In Proceedings of the Twenty-First International
Conference on Architectural Support for Programming Languages and Operating Systems,
ASPLOS ’16, pages 399–411, New York, NY, USA, 2016. Association for Computing
Machinery.

[65] H. Kumar, Y. Patel, R. Kesavan, and S. Makam. High performance metadata integrity
protection in the WAFL copy-on-write file system. In 15th USENIX Conference on
File and Storage Technologies (FAST 17), pages 197–212, Santa Clara, CA, Feb. 2017.
USENIX Association.

93

https://pmem.io/2015/07/17/pmemcheck-basic.html
https://pmem.io/2015/07/17/pmemcheck-basic.html

[66] Y. Kwon, H. Fingler, T. Hunt, S. Peter, E. Witchel, and T. Anderson. Strata: A
cross media file system. In Proceedings of the 26th Symposium on Operating Systems
Principles, SOSP ’17, pages 460–477, New York, NY, USA, 2017. Association for
Computing Machinery.

[67] R. Labs. Redis. https://github.com/pmem/redis, August 2020.

[68] O. Lahav and R. Margalit. Robustness against release/acquire semantics. In Proceed-
ings of the 40th ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI 2019, pages 126–141, New York, NY, USA, 2019. Association
for Computing Machinery.

[69] P. Lantz, S. Dulloor, S. Kumar, R. Sankaran, and J. Jackson. Yat: A validation
framework for persistent memory software. In Proceedings of the 2014 USENIX Annual
Technical Conference, pages 433–438, Philadelphia, PA, June 2014. USENIX Association.

[70] S. K. Lee, J. Mohan, S. Kashyap, T. Kim, and V. Chidambaram. RECIPE: Converting
concurrent DRAM indexes to persistent-memory indexes. In Proceedings of the 27th
ACM Symposium on Operating Systems Principles, SOSP ’19, pages 462–477, New
York, NY, USA, 2019. Association for Computing Machinery.

[71] G. Li, I. Ghosh, and S. P. Rajan. Klover: A symbolic execution and automatic test
generation tool for c++ programs. In G. Gopalakrishnan and S. Qadeer, editors,
Computer Aided Verification, pages 609–615, Berlin, Heidelberg, 2011. Springer Berlin
Heidelberg.

[72] N. Li and W. Golab. Brief announcement: Detectable sequential specifications for
recoverable shared objects. In Proceedings of the 2021 ACM Symposium on Principles
of Distributed Computing, PODC’21, pages 557–560, New York, NY, USA, 2021.
Association for Computing Machinery.

[73] S. Li and L. Huang. Lospem: A novel log-structured framework for persistent memory.
J. Emerg. Technol. Comput. Syst., 16(3), May 2020.

[74] M. Liu, M. Zhang, K. Chen, X. Qian, Y. Wu, W. Zheng, and J. Ren. Dudetm: Building
durable transactions with decoupling for persistent memory. In Proceedings of the
Twenty-Second International Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS ’17, pages 329–343, New York, NY, USA,
2017. Association for Computing Machinery.

[75] M. Liu, M. Zhang, K. Chen, X. Qian, Y. Wu, W. Zheng, and J. Ren. DudeTM: Building
durable transactions with decoupling for persistent memory. In Proceedings of the
Twenty-Second International Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS ’17, pages 329–343, New York, NY, USA,
2017. Association for Computing Machinery.

[76] Q. Liu, J. Izraelevitz, S. K. Lee, M. L. Scott, S. H. Noh, and C. Jung. iDO: Compiler-
directed failure atomicity for nonvolatile memory. In Proceedings of the 51st Annual

94

https://github.com/pmem/redis

IEEE/ACM International Symposium on Microarchitecture, MICRO-51, pages 258–270,
Virtual Event , Greece, 2018. Institute of Electrical and Electronics Engineers.

[77] S. Liu, S. Mahar, B. Ray, and S. Khan. Pmfuzz: Test case generation for persistent
memory programs. In Proceedings of the 26th ACM International Conference on
Architectural Support for Programming Languages and Operating Systems, ASPLOS
2021, pages 487–502, New York, NY, USA, 2021. Association for Computing Machinery.

[78] S. Liu, K. Seemakhupt, Y. Wei, T. Wenisch, A. Kolli, and S. Khan. Cross-failure bug
detection in persistent memory programs. In Proceedings of the Twenty-Fifth Interna-
tional Conference on Architectural Support for Programming Languages and Operating
Systems, ASPLOS ’20, pages 1187–1202, New York, NY, USA, 2020. Association for
Computing Machinery.

[79] S. Liu, Y. Wei, J. Zhao, A. Kolli, and S. Khan. PMTest: A fast and flexible testing
framework for persistent memory programs. In Proceedings of the Twenty-Fourth
International Conference on Architectural Support for Programming Languages and
Operating Systems, ASPLOS ’19, pages 411–425, New York, NY, USA, 2019. Association
for Computing Machinery.

[80] Y. Lu, J. Shu, Y. Chen, and T. Li. Octopus: an rdma-enabled distributed persistent
memory file system. In 2017 USENIX Annual Technical Conference (USENIX ATC
17), pages 773–785, Santa Clara, CA, July 2017. USENIX Association.

[81] V. J. Marathe, M. Seltzer, S. Byan, and T. Harris. Persistent memcached: Bringing
legacy code to byte-addressable persistent memory. In Proceedings of the 9th USENIX
Conference on Hot Topics in Storage and File Systems, HotStorage’17, page 4, USA,
2017. USENIX Association.

[82] L. Marmol, M. Chowdhury, and R. Rangaswami. Libpm: Simplifying application usage
of persistent memory. ACM Trans. Storage, 14(4), Dec. 2018.

[83] Y. Meshman, N. Rinetzky, and E. Yahav. Pattern-based synthesis of synchronization
for the c++ memory model. In Proceedings of the 15th Conference on Formal Methods
in Computer-Aided Design, FMCAD ’15, pages 120–127, Austin, Texas, 2015. FMCAD
Inc.

[84] M. Nam, H. Cha, Y.-R. Choi, S. H. Noh, and B. Nam. Write-optimized dynamic
hashing for persistent memory. In Proceedings of the 17th USENIX Conference on File
and Storage Technologies, FAST ’19, pages 31–44, USA, 2019. USENIX Association.

[85] D. Narayanan and O. Hodson. Whole-system persistence. In Proceedings of the Seven-
teenth International Conference on Architectural Support for Programming Languages
and Operating Systems, ASPLOS XVII, pages 401–410, New York, NY, USA, 2012.
Association for Computing Machinery.

[86] I. Neal, A. Quinn, and B. Kasikci. Hippocrates: Healing persistent memory bugs
without doing any harm. In Proceedings of the 26th ACM International Conference on

95

Architectural Support for Programming Languages and Operating Systems, ASPLOS
2021, pages 401–414, New York, NY, USA, 2021. Association for Computing Machinery.

[87] I. Neal, B. Reeves, B. Stoler, and A. Quinn. AGAMOTTO: How persistent is your
persistent memory application? In 14th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 20), pages 1047–1064, Banff, Alberta, November
2020. USENIX Association.

[88] D. Ongaro, S. M. Rumble, R. Stutsman, J. Ousterhout, and M. Rosenblum. Fast
crash recovery in ramcloud. In Proceedings of the Twenty-Third ACM Symposium
on Operating Systems Principles, SOSP ’11, pages 29–41, New York, NY, USA, 2011.
Association for Computing Machinery.

[89] P. Ou and B. Demsky. Automo: Automatic inference of memory order parameters for
c/c++11. In Proceedings of the 2015 ACM SIGPLAN International Conference on
Object-Oriented Programming, Systems, Languages, and Applications, OOPSLA 2015,
pages 221–240, New York, NY, USA, 2015. Association for Computing Machinery.

[90] I. Oukid, J. Lasperas, A. Nica, T. Willhalm, and W. Lehner. Fptree: A hybrid scm-dram
persistent and concurrent b-tree for storage class memory. In Proceedings of the 2016
International Conference on Management of Data, SIGMOD ’16, pages 371–386, New
York, NY, USA, 2016. Association for Computing Machinery.

[91] S. Pelley, P. M. Chen, and T. F. Wenisch. Memory persistency. In 2014 ACM/IEEE
41st International Symposium on Computer Architecture (ISCA), pages 265–276, Min-
neapolis, MN, USA, 2014. Institute of Electrical and Electronics Engineers.

[92] S. Pelley, P. M. Chen, and T. F. Wenisch. Memory persistency: Semantics for byte-
addressable nonvolatile memory technologies. IEEE Micro, 35(3):125–131, 2015.

[93] S. Pelley, T. F. Wenisch, B. T. Gold, and B. Bridge. Storage management in the nvram
era. Proc. VLDB Endow., 7(2):121–132, Oct. 2013.

[94] C. S. Pundefinedsundefinedreanu, P. C. Mehlitz, D. H. Bushnell, K. Gundy-Burlet,
M. Lowry, S. Person, and M. Pape. Combining unit-level symbolic execution and
system-level concrete execution for testing nasa software. In Proceedings of the 2008
International Symposium on Software Testing and Analysis, ISSTA ’08, pages 15–26,
New York, NY, USA, 2008. Association for Computing Machinery.

[95] A. Raad, O. Lahav, and V. Vafeiadis. Persistent owicki-gries reasoning: a program
logic for reasoning about persistent programs on intel-x86. Proc. ACM Program. Lang.,
4(OOPSLA), nov 2020.

[96] A. Raad, L. Maranget, and V. Vafeiadis. Extending intel-x86 consistency and persistency:
formalising the semantics of intel-x86 memory types and non-temporal stores. Proc.
ACM Program. Lang., 6(POPL), jan 2022.

96

[97] A. Raad, J. Wickerson, G. Neiger, and V. Vafeiadis. Persistency semantics of the
Intel-x86 architecture. Proceedings of the ACM on Programming Languages, 4(POPL),
December 2019.

[98] A. Raad, J. Wickerson, and V. Vafeiadis. Weak persistency semantics from the
ground up: Formalising the persistency semantics of ARMv8 and transactional models.
Proceedings of the ACM on Programming Languages, 3(OOPSLA), Oct. 2019.

[99] J. Ren, J. Zhao, S. Khan, J. Choi, Y. Wu, and O. Mutiu. Thynvm: Enabling software-
transparent crash consistency in persistent memory systems. In 2015 48th Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO), pages 672–685,
Waikiki, HI, USA, 2015. Institute of Electrical and Electronics Engineers.

[100] K. Sen, D. Marinov, and G. Agha. Cute: A concolic unit testing engine for c. In
Proceedings of the 10th European Software Engineering Conference Held Jointly with
13th ACM SIGSOFT International Symposium on Foundations of Software Engineering,
ESEC/FSE-13, pages 263–272, New York, NY, USA, 2005. Association for Computing
Machinery.

[101] N. Tillmann and J. de Halleux. Pex–white box test generation for .net. In B. Beckert
and R. Hähnle, editors, Tests and Proofs, pages 134–153, Berlin, Heidelberg, 2008.
Springer Berlin Heidelberg.

[102] S. Venkataraman, N. Tolia, P. Ranganathan, and R. H. Campbell. Consistent and
durable data structures for non-volatile byte-addressable memory. In Proceedings of
the 9th USENIX Conference on File and Stroage Technologies, FAST’11, page 5, USA,
2011. USENIX Association.

[103] H. Volos, S. Nalli, S. Panneerselvam, V. Varadarajan, P. Saxena, and M. M. Swift.
Aerie: Flexible file-system interfaces to storage-class memory. In Proceedings of the
Ninth European Conference on Computer Systems, EuroSys ’14, New York, NY, USA,
2014. Association for Computing Machinery.

[104] H. Volos, A. J. Tack, and M. M. Swift. Mnemosyne: Lightweight persistent memory.
In Proceedings of the Sixteenth International Conference on Architectural Support for
Programming Languages and Operating Systems, ASPLOS XVI, pages 91–104, New
York, NY, USA, 2011. Association for Computing Machinery.

[105] X. Wu, F. Ni, L. Zhang, Y. Wang, Y. Ren, M. Hack, Z. Shao, and S. Jiang. Nvmcached:
An nvm-based key-value cache. In Proceedings of the 7th ACM SIGOPS Asia-Pacific
Workshop on Systems, APSys ’16, New York, NY, USA, 2016. Association for Computing
Machinery.

[106] X. Wu and A. L. N. Reddy. Scmfs: A file system for storage class memory. In SC
’11: Proceedings of 2011 International Conference for High Performance Computing,
Networking, Storage and Analysis, pages 1–11, Seattle, WA, USA, 2011. Institute of
Electrical and Electronics Engineers.

97

[107] F. Xia, D. Jiang, J. Xiong, and N. Sun. Hikv: A hybrid index key-value store for
dram-nvm memory systems. In Proceedings of the 2017 USENIX Conference on Usenix
Annual Technical Conference, USENIX ATC ’17, pages 349–362, USA, 2017. USENIX
Association.

[108] J. Xu and S. Swanson. Nova: A log-structured file system for hybrid volatile/non-
volatile main memories. In Proceedings of the 14th Usenix Conference on File and
Storage Technologies, FAST’16, pages 323–338, USA, 2016. USENIX Association.

[109] J. Xu, L. Zhang, A. Memaripour, A. Gangadharaiah, A. Borase, T. B. Da Silva,
S. Swanson, and A. Rudoff. Nova-fortis: A fault-tolerant non-volatile main memory file
system. In Proceedings of the 26th Symposium on Operating Systems Principles, SOSP
’17, pages 478–496, New York, NY, USA, 2017. Association for Computing Machinery.

[110] Y. Xu, J. Izraelevitz, and S. Swanson. Clobber-NVM: Log Less, Re-Execute More, pages
346–359. Association for Computing Machinery, New York, NY, USA, 2021.

[111] J. Yang, Q. Wei, C. Chen, C. Wang, K. L. Yong, and B. He. Nv-tree: Reducing
consistency cost for nvm-based single level systems. In Proceedings of the 13th USENIX
Conference on File and Storage Technologies, FAST’15, pages 167–181, USA, 2015.
USENIX Association.

[112] B. Zhang and D. H. C. Du. Nvlsm: A persistent memory key-value store using log-
structured merge tree with accumulative compaction. ACM Trans. Storage, 17(3), Aug.
2021.

[113] L. Zhang and S. Swanson. Pangolin: A fault-tolerant persistent memory programming
library. In 2019 USENIX Annual Technical Conference (USENIX ATC 19), pages
897–912, Renton, WA, July 2019. USENIX Association.

[114] W. Zhang, X. Zhao, S. Jiang, and H. Jiang. Chameleondb: A key-value store for
optane persistent memory. In Proceedings of the Sixteenth European Conference on
Computer Systems, EuroSys ’21, pages 194–209, New York, NY, USA, 2021. Association
for Computing Machinery.

[115] X. Zheng and R. Rugina. Demand-driven alias analysis for c. SIGPLAN Not.,
43(1):197–208, jan 2008.

[116] X. Zhou, L. Shou, K. Chen, W. Hu, and G. Chen. Dptree: Differential indexing for
persistent memory. Proc. VLDB Endow., 13(4):421–434, Dec. 2019.

98

	LIST OF FIGURES
	LIST OF TABLES
	ACKNOWLEDGMENTS
	VITA
	ABSTRACT OF THE Dissertation
	Introduction and Background
	Introduction
	Correctness Criteria for Flush Operations

	Background on x86 Persistency Model

	Dynamic Approach: PSan
	Preliminaries
	Strict Persistency
	Robustness Condition
	Persistent Lock-Free Data Structures
	Clock Vectors and Sequence Numbers

	Basic Ideas
	Checking Equivalence
	Supporting Threads
	Implications for Updating Constraints
	Supporting Multiple Crash Events

	Algorithm
	Operational Semantics
	Suggesting Fixes for Robustness Violations

	Evaluation
	Methodology
	Bug Detection
	Performance
	Discussion

	Related Work
	Conclusion
	Proof

	Static Approach: PMRobust
	Introduction
	PMRobust
	Ensuring data is correctly flushed
	Verifying Robustness
	Relaxing Robustness for Checksums & Counters

	Intraprocedural Analysis
	Preliminaries
	Transfer Functions
	Intraprocedural Error Reporting

	Interprocedural Analysis
	Context Sensitivity
	Approximating Calling Context Persistency States
	Objects Reachable from Parameters
	Stores in Function Calls
	Handling Arrays
	Detecting References to Persistent Memory
	Interprocedural Error Reporting
	Limitations

	Evaluation
	Methodology
	Bug Detection
	False Positives
	Performance

	Related Work
	Conclusion
	Bug Listing

	Bibliography

