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Safety, precision, and e�ciency are the key ingredients for successful future human-

scale entry, descent, and landing (EDL) missions to the Moon and Mars. In this work, a

complete investigation into each component of an EDL mission, including an emergency

scenario, revealed some of the necessary techniques that need to be implemented to

e↵ectively reach these goals.

An often-ignored aspect of EDL is the requirement to have a safety protocol in
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place in case of an emergency. In this work, a newly developed abort guidance technique

revealed that an ascent-abort into orbit can be achieved from any point during the lunar

powered descent phase. The two-phase abort methodology is inspired in the solution to

the optimal ascent guidance problem and can be activated autonomously to guide the

vehicle towards a safe orbit with the least amount of propellant possible.

Validation of two state-of-the-art algorithms for entry and optimal powered descent

guidance in di↵erent mission scenarios and in a high-fidelity simulation environment,

demonstrated that a complete non-optimized EDL trajectory can be generated quickly

and reliably. With the addition of an adaptive powered descent initiation logic, based on

the indirect method of optimal control, the total propellant consumption during powered

descent can be greatly reduced even when the powered descent guidance is not optimal.

The complexity of the end-to-end EDL problem limits the extent to which the problem

can be optimized by the known optimal control techniques. Optimization using the direct

method of optimal control can generate a theoretical solution, albeit in an impractical

amount of time and operational limitations. Leveraging the robustness of a state-of-the-art

entry guidance and an optimal powered descent guidance algorithm, a novel approach

to the optimization of the end-to-end EDL problem emerged. The problem is solved

with a bi-level optimization approach in which an inner loop optimizes the propellant

consumption during powered descent, and an outer loop modifies the entry trajectory to

provide the best PDI condition. This innovative approach results in a fast and reliable

trajectory with near-optimal propellant consumption in a matter of seconds. All the

results from this investigation are tested for robustness in Monte Carlo simulations.
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Chapter 1

Introduction

In 1962, president John F. Kennedy dared the United States of America to ac-

complish the biggest challenge ever imagined. In the midst of the cold war, he believed

that whoever won the Space Race would win the war. He set his expectations high and

challenged the National Aeronautics and Space Administration (NASA) to land a human

on the Moon by the end of the decade [1]. History showed that he was correct, whoever

reached the prized Moon landing would set a precedent for the dominion of space. However,

nobody ever imagined that what started as an act of war would have such a positive

impact in our lives as we have seen for the past 60 years [2]. Ever since we landed the first

man on the Moon, the goals have been bigger and greater. Despite not having gone back

to the surface of the Moon, many accomplishments in space exploration through NASA

and the private sector have been achieved [3, 4, 5].

President Kennedy would hardly have imagined that one day we would build the

biggest and most complex machine and send it to space in the form of the International

Space Station [6]. That we would eventually get so good at sending humans to space that

we would have been living in space for more than 20 continuous years since 2000 [7]. We
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have built satellites that have left our solar system and telescopes so clear that have shown

us clusters of stars in perfect detail [8, 9, 10].

And all of this for what? Very simple, because as humans we want to explore and

we want to understand. When we look at both of these ideas we realize that one can’t live

without the other. To explore is to understand and to understand you need to explore.

Countless missions have shaped our society through discoveries that have changed our

perspective of the universe. There is hardly anybody in the world that has not heard of

NASA. With so many years of exploration, by now it would be hard to think what else to

do. And yet, we have only scratched the surface of what can be achieved as humanity. The

reason why space exploration is so important is because it brings hope. Each mission is so

significantly challenging and complex that knowing humans can get together to accomplish

such an endeavor gives us a chance to solve more dramatically important problems in our

planet. Nowadays, NASA and the space community is trying to open new frontiers by

planning some of the most challenging missions ever imagined. On one hand, to go back

to the Moon and make it habitable to humans. On the other hand, we want to reach

where no other human has before, we want to reach Mars [11, 12, 13].

Entry, Descent, and Landing is among the most challenging stages of a planetary

landing mission [14]. The ability to steer a hypersonic vehicle through the atmosphere of a

planet and safely descend towards a landing target requires e↵ective and precise guidance

and control algorithms. Previously, robotic landings on Mars have been accomplished

with a combination of entry and powered descent guidance [15, 16, 17, 18]. The biggest

spacecraft to perform EDL maneuvers have been the Mars Science Lab in 2012 and the

2



Mars 2020 Mission [19, 20]. In the entry guidance phase, the vehicle is guided towards

the landing site and the velocity is reduced by using parachutes to take advantage of

the aerodynamic forces in the atmosphere [21]. Entry uses energy dissipation. The

entry phase also serves as an initial alignment phase with the landing site, reducing the

crossrange distance between the vehicle and the landing site. The powered descent phase

uses supersonic retropropulsion (SRP) to eliminate any remaining velocity from the entry

phase before starting a vertical descent with constant velocity that ends in a soft-landing

on the surface [22].

It is intended that future Mars landing missions will be performed with a crew

onboard the vehicle [23, 24]. The long journey from Earth to Mars will require that the

crew stays on the destination for an extended period of time. To accomplish this goal, the

spacecraft must be able to carry the life support systems necessary to keep the crew safe

for the duration of the mission [25]. The higher level of complexity in a crewed mission

will require a larger and heavier spacecraft than previously flown. For comparison, Mars

2020 landed a total weight of 3649 kg, while a human-scale Mars mission would be in the

order of 60 metric tons [26]. With a spacecraft of this magnitude, it becomes infeasible to

utilize parachutes during entry [27]. Instead, control during entry can be achieved with

aerodynamic surfaces on the vehicle. The motion of the aerodynamic surfaces produces

three-dimensional motion with the aid of the lift and drag forces developed as the vehicle

moves through the atmosphere. A combination of aerodynamic control during entry and

SRP during powered descent is required to bring the vehicle safely on the ground. The

heavier spacecraft will result in a larger speed at the entry interface, and powered descent
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becomes a critical component of EDL in order to control the spacecraft towards the landing

site and eliminate any targeting errors before touchdown. The propellant fraction of SRP

will be critical for the feasibility of a mission of this kind. It is therefore very important to

have entry guidance and powered descent guidance work together to use the least amount

of SRP propellant. Landing within 50 meters of the predetermined target location is

necessary for a successful crewed mission to Mars [25]. This allows the crew to be away

from any danger and in the vicinity of available support systems flown in previous missions.

New technology and engineering advances in EDL are required to meet these challenges,

especially entry and powered descent guidance algorithms that are fully adaptive and not

limited to predefined or stored reference trajectories. Improved propellant performance is

important to reduce mission cost and maximize payload capacity.

The aforementioned concepts can be easily applied to a lunar landing mission. With

the distinction that the lack of atmosphere in the Moon eliminates the need for an entry

phase. The relatively close distance between the Moon and the Earth reduces the level of

complexity required to perform a crewed lunar landing mission in comparison to a Mars

landing mission. The Apollo program accomplished a total of 6 human landings on the

surface of the Moon. Lessons learned from the Apollo missions propelled the development

of new technology to land humans on the Moon once again [28]. In this new era of space

exploration, going back to the Moon to create a sustainable human presence will give the

opportunity to develop technology necessary for future missions to Mars [29]. Therefore,

investigating how current technology can be adapted for lunar landing missions is an

important component of the development of Mars EDL. In the near future, the inclusion
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of a lunar outpost to perform operations in lunar proximity will allow the mission duration

to be shorter than previous missions to the Moon, thus giving an advantage to the types of

maneuvers that can be perform to bring the spacecraft to safety in case of a contingency.

Over the entire descent trajectory, the vehicle experiences uncertainty in the

environment (atmosphere) and system dynamics that are critical to maintain the control

of the vehicle. The guidance algorithms must be adaptive and robust with respect to

uncertainty. In addition, the guidance solution for powered descent must be calculated

onboard and within the capabilities of the spacecraft computer. The spacecraft in future

missions will have the advantage of better onboard capability, allowing it to use more

sophisticated numerical optimization algorithms and complex computations than the ones

available in previous human landing missions; but the capability is still limited. In recent

years, advances in optimal control and numerical optimization have led to the development

of guidance techniques that permit a more robust solution within the limits of onboard

computation [30, 22].

Over the years, di↵erent entry and powered descent guidance algorithms have been

developed to improve individual aspects of EDL. These algorithms evolved to fulfill the

needs of di↵erent types of spacecraft, missions, and the increase in onboard computational

capability. The increase in oboard computation opens new possibilities where technologies

previously considered unrealistic are now viable. In aerospace engineering, Computational

Guidance and Control (CG&C) is a trend that needs to be explored further [31]. The

approaches to guidance and control problems resulted from CG&C are no longer bounded

by the traditional closed-form solution. Rather, the problem is solved by a numerical
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algorithm onboard. CG&C has the potential to greatly increase the capability with better

performance for the existing systems.

Currently, the evolution of entry guidance methods has led to methods that

e↵ectively overcome problems during entry guidance and powered descent. However, the

solutions to these problems are approached separately and no current method considers

both entry guidance optimization and fuel e�ciency at the same time. The need for both

computationally advantageous algorithms and propellant e�ciency during missions to

other planets are the main drivers for this investigation. In a time like this, it is desired to

explore the solar system by maximizing our resources. Learning from current technology

to create a new generation of optimization algorithms for guidance and control will help

the development of spacecraft control in future missions.

1.1 Motivation

During the course of any interplanetary landing mission, multiple phases need to be

integrated smoothly to produce a complete mission profile that would transport a payload

from launch on Earth to the landing location on the target planet. The cost of the mission

is one of the most important considerations for planning. An increase in weight can cost

the mission hundreds of thousands of dollars. Keeping the weight as low as possible is an

important, yet, di�cult task to accomplish given the complexity of multiple spacecraft

systems. One of the areas where most of the weight resides is in the tanks that carry

the propellant for landing operations. Minimizing the propellant consumption during

EDL operations is important, especially for missions to Mars where the propellant-mass
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fraction of the vehicle is very high. The EDL phase is one of the most di�cult segments

of a mission and can be the di↵erence between success and failure. Solving this problem

optimally with respect to propellant consumption is challenging on two fronts: on one side

it is required to land a vehicle safely on the ground while on the other it needs to be done

as propellant-e�ciently as possible. Either one of these problems is hard by itself.

Another important consideration is that guidance algorithms for the Moon and

Mars need to be able to safely and precisely transport astronauts from an orbit to the

landing location. In the past, successful EDL human and robotic missions have been

achieved on the surface of the Moon and Mars [28, 19]. Most of them without any sort of

optimization and with fragile algorithms that relied heavily on the astronauts to operate

properly. Advances in numerical optimization techniques and optimal control theory have

opened the doors to solve problems in an optimal sense, changing completely the paradigm

of what can be achieved. In an era where computational capability is much greater, taking

advantage of these techniques is imperative to develop the tools of the future.

Development of optimal or near-optimal solutions to the problem of landing a

spacecraft on the surface of the Moon or Mars is necessary to achieve the desired landing

site with the least amount of propellant possible while staying within the limits of on-board

computer capability. In this proposal three di↵erent topics will be addressed: the problem

of optimizing entry guidance to provide a fast and reliable solution on-board the vehicle,

coordinating entry and powered descent to obtain the best powered descent initiation

(PDI) condition available, and aborting to a safe orbit in case of an emergency that makes

the landing unfeasible. Using optimal control and state-of-the-art EDL techniques, a suite
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of EDL guidance algorithms will be developed for human and robotic landing missions

to the Moon and Mars. The integration of these algorithms in end-to-end simulations

will demonstrate the e↵ectiveness of the algorithms in taking advantage of aerodynamic

control, develop a fast fuel-optimal powered descent guidance algorithm applicable to

three-dimensional powered descent, and achieve the landing accuracy required to land

a human-scale vehicle to the surface of Mars. Furthermore, onboard optimization is a

challenging task that has not been accomplished in real-time.

Through this work, a solution to the propellant optimization problem wants to be

found while keeping the rigorous safety and accuracy standards. Robust state-of-the-art

entry and powered descent guidance algorithms are utilized as the baseline of this work.

The advantages in propellant e�ciency and accuracy are exploited in a novel bi-level

optimization approach to gain a near-optimal performance.

1.2 Previous Work

Previous Work in Entry Guidance

Entry guidance has evolved over the years to satisfy the requirements of di↵erent

missions and vehicles. The first generation of entry guidance emerged of the need to control

the Apollo capsule during re-entry through Earth’s atmosphere [32, 33]. Capsule vehicles

produce a low-lift to drag ratio vehicle and generate lift through a center of mass o↵set to

produce a non-zero trim angle of attack [34]. A closed-form analytical solution is generated

through approximations to coe�cients based on a reference trajectory stored as a table.

Despite having a reference trajectory, the guidance is not a tracking law, but it depends
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on the reference trajectory to generate adjoint variables around the linearized dynamics

of the reference trajectory. The adjoint variables serve as the sensitivity coe�cients for

the predicted downrange error with respect to trajectory dispersions. To generate the

trajectory, a bank angle command was produced to eliminate the predicted downrange

error. Bank reversals are enforced to achieve a crossrange requirement and the sign is

changed whenever a velocity-dependent deadband is reached. Originally, the Apollo entry

guidance was planned as a skip entry guidance, with an initial entry and a subsequent re-

entry. The purpose of the skip entry was to extend the period of time that the vehicle spent

on the atmosphere to mitigate more velocity. However, the low computational capacity of

the time required the use of an analytical solution and approximations that made the skip

entry too risky and only a direct entry was flown. The Apollo entry guidance has been

a rather successful algorithm that has been implemented in contemporary missions as a

modified and more advanced version of the original algorithm. Two relevant examples are

the Mars Science Lab [34] and the Orion capsule of the Artemis Program [35].

Another generation of entry guidance algorithms unfolded with the introduction

of the space shuttle vehicle. A shuttle-like spacecraft has a high-lift-to-drag ratio and

departed from the short range achieved by a capsule vehicle [36]. In the space-shuttle

guidance, the plan was to fly a long range trajectory and land the vehicle horizontally

and at a supersonic speed of Mach 2.5. To this end, a small flight-path-angle was flown

for most of the entry trajectory and a quasi-equilibrium glide condition assumption is

utilized to simplify the entry dynamics. A tracking law followed a drag acceleration versus

Earth-relative velocity profile for speeds above Mach 10.5, and a drag acceleration versus
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energy profile for speeds below Mach 10.5. These profiles were linked together as drag

deceleration functions to create a drag deceleration reference profile [37] that defines a

longitudinal reference trajectory. The reference drag profile is followed by a linearized

gain-scheduled tracking law that generates the control command. The control of the

vehicle was achieved through bank angle control with a bank reversal logic similar to the

Apollo entry guidance. Other vehicles that also used some version of the space shuttle

entry guidance are the X-33 and X-37B hypersonic vehicles [38, 39].

In recent years, advances in computational capability allowed the use of more

sophisticated techniques to calculate entry trajectories onboard a vehicle. One of the

outstanding advances of entry guidance is the emergence of numerical predictor-corrector

algorithms that take advantage of computational improvements to quickly calculate a

solution in real-time. The advantage of these methods is that they can adapt to large

trajectory dispersions without relying on a reference trajectory or a tracking law. The

working principle of predictor-corrector algorithms is that based on an initial control profile,

a predicted trajectory is generated from entry interface to the final condition, where a

target error is calculated. The algorithm updates a parameter to modify the control

profile and correct the targeting error. The iterative process continues until a threshold is

met. Two state-of-the-art entry guidance algorithms are the numerical predictor-corrector

entry guidance (NPCG) [40] and the Fully Numerical Predictor-Corrector Entry Guidance

(FNPEG) [21]. In both cases, the algorithms achieve convergence in less than 1 second

on a conventional computer. Of particular interest is FNPEG, that has unified the three

previously fragmented areas of low-, mid-, and high-lift-to-drag ratio vehicles with a single
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algorithm that can generate a trajectory for each case with only minor modifications on

the mission and vehicle parameters [21]. Furthermore, it can easily enforce inequality

constraints, a former weakness of predictor-corrector algorithms.

Previous Work in Powered Descent Guidance

A total of 21 successful landing missions on the surface of the Moon have been

completed. The United States has attained 11 successful landings (6 missions were

accomplished with a crew on-board), Russia has done 7, while China recently landed 3

operational missions. The more challenging goal of landing a vehicle on Mars has only

been accomplished a total of 10 times. The United States has landed a combination of

landers, rovers, and even a helicopter on 9 occasions, while China accomplished the task

for the first time in 2020.

The first account of a landing on a di↵erent planet was accomplished by Russia

with their Luna 9 lander on the Moon in 1966. On the American side, the Surveyor

Program achieved the first lunar landing during the same year [41]. These e↵orts were

propelled by the space race between the space dominant nations: the United States and

Russia. The ultimate goal was to create the technology necessary to land a manned

vehicle on the surface of the Moon. The lack of atmosphere on the Moon required the

use of retro-rockets in all landings. Gravity on the surface of the Moon accounts for only

one-sixth to that of Earth, demanding less engine power for a soft-landing. In the first

landing attempts of the Surveyor Program, a solid-propellant retro-engine was ignited

to decelerate the vehicle from a pre-calculated time delay using an altimeter to generate

a marking signal [42]. During the burn, attitude was maintained constant with three
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liquid-propellant engines. The solid motor burns for 40 seconds and is jettisoned when

empty. Vernier engines were used to control the spacecraft at 0.9 lunar g’s for the remainder

of the descent. The attitude and thrust during the Vernier engine phase was controlled

with velocity and range measurements to the lunar surface [42]. Attitude was held at the

original position until the velocity radar locked on the lunar surface, then the thrust vector

was aligned with the velocity vector until touchdown at 10 mph [43]. The soft-landing

method employed was not very accurate, landing 18.96 km away from the target with

Surveyor 1; but it was e↵ective at landing the spacecraft on the ground [44]. The goal of

the Surveyor program was to develop the technology to land humans on the Moon with

Apollo. At the same time, attempts to land a vehicle on the surface of Mars were taking

place. The addition of the Mars atmosphere made available the use of entry guidance. In

this case, a lift control phase was used to maneuver the vehicle through the atmosphere

at hypersonic speeds. To help reduce the velocity during entry even further, almost all

robotic landing missions on Mars made use of supersonic parachutes. During the Viking

Program, the first successful landing on Mars, retro-rockets were used to land the vehicle

after parachute separation [45, 46]. Later, the Mars Pathfinder and Mars Exploration

Rovers (MER) made use of retro-rockets and large airbags to cushion the impact during

landing [47, 48]. Phoenix, Insight, and Tianwen-1 achieved landing using parachutes

and powered deceleration with retro-rockets [49, 50]. Although some missions like the

Phoenix lander had sensors for hazard detection and avoidance, these methods were not

very accurate as the use of parachute caused large dispersions in the landing range and

crossrange and the simple gravity turn applied failed at recovering from the error [51, 52].
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The landings of the Mars Science Laboratory and Mars 2020 utilized a slightly di↵erent

method for the terminal phase. AS the heaviest spacecraft flown to Mars, these vehicles

required the use of retro-rockets mounted on a skycrane to lower the rovers safely on the

ground [19].

The culmination of powered descent guidance development resides in two powered

descent guidance algorithms that have successfully landed a crewed vehicle: E-guidance

and Apollo Powered Descent Guidance (APDG) [53, 54]. These approaches were developed

at the same as the two alternatives for the first human landing on the Moon. In the end,

APDG was the algorithm selected for the Moon landings. Both methods solve the landing

problem in closed-form solution with a thrust acceleration vector profile that is linear

for E-guidance and quadratic for APDG. Although neither one of the algorithms is fuel-

optimal, E-guidance generally results in lower propellant consumption. Studies showed that

E-guidance is close to the fuel-optimal solution in a constant gravity field [55]. Through the

years, APDG has influenced many guidance developments for landing [56, 57, 58, 59, 60].

An apparent problem with E-Guidance and APDG is their need for a PDI trigger to start

the engines. This goes in hand with a proper selection of the time-to-go or total burn

time from PDI to touchdown. The original algorithm developed required these values as

inputs, but did not provide an easy way to calculate them. During the Apollo program,

trial and error in simulations was the method that provided an acceptable solution. The

importance of PDI selection has been studied with results that show the great impact

it has on propellant consumption, accuracy and robustness [61, 62]. In Lu [61], a new

approach at calculating a near-optimal PDI condition has been proposed with the aid
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of an optimal powered descent guidance solution called the Universal Powered Guidance

(UPG) [22]. The optimal solution to the soft-landing problem can be solved with UPG

to obtain the optimal time-to-go. During powered descent, UPG can be activated at

a predefined altitude to start testing the soft-landing solution and comparing the final

range to the landing site. Once the landing site has been reached, a command is sent

to start powered descent immediately with the calculated flight time. This approach

solves two problems: finding a suitable time-to-go to be used as an input to APDG, and

starting powered descent at a near-optimal PDI condition. A unifying approach combined

both E-guidance and APDG into a single guidance equation with a tuning parameter the

Tunable Apollo Powered Descent Guidance (TAPDG) [63]. TAPDG has the advantage

that it provides a set of solutions that can vary the shape of the trajectory and thrust

profile to provide flexibility when used with di↵erent vehicles or missions. When the

adaptive PDI condition is applied with TAPDG, the guidance becomes the Augmented

Apollo Powered Descent Guidance (A2PDG), a guidance approach with improved fuel

consumption [63]. Furthermore, the application of the fractional polynomial theory to

powered guidance uncovered a family of guidance laws that included the Augmented Apollo

Powered Descent Guidance as one of its variations when properly tuned, demonstrating

increased control of fuel consumption and trajectory design in a new formulation known

as the Fractional Polynomial Powered Descent Guidance (FP2DG) [64, 65].

Recently, multiple approaches have been proposed to address the problem of landing

a crewed vehicle to the surface of Mars [58]. The main focus has been on landing a vehicle

as close as possible from the landing site [24]. Pinpoint landing algorithms have been at the
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forefront of these e↵orts [30, 66, 67, 68, 59, 69]. In powered descent, aerodynamic forces

are usually ignored making the optimal control problem easier to solve than the optimal

entry guidance problem. Optimal solutions to the powered descent guidance problem

have been developed yielding results that have the potential to be applied on-board a

spacecraft [70, 71, 22, 72]. Despite being easier to solve, the number of constraints on

an optimal pinpoint landing problem often results in convergence issues. Alternative

methods that approximate the optimal control problem [73], or use an optimization such

as successive convexification [74, 75, 76, 77] have addressed these concerns.

Previous Work in Abort Guidance

The first instance of an abort guidance implementation was during the Apollo

program. The Apollo Primary Guidance Navigation and Control System (PGNCS) was

used to fly the Lunar Module (LM) during descent, ascent, aborts, and rendezvous. There

were two descent abort guidance programs, P70 for abort using the descent stage engine,

and P71 if the ascent stage propulsion system is required to achieve orbit insertion. The

targeted orbital insertion conditions were di↵erent depending on where the abort would

take place during descent, because of the varying relative position between the LM and

Command and Service Module (CSM) and the rendezvous requirement with CSM after

abort [78]. For aborts during descent, the PGNCS would fly the vehicle using the same

guidance law and logic for lunar ascent. The guidance commands only attitude, and

no engine throttling is used. The abort guidance begins with the attitude pitched to

the vertical (similar to the vertical rise phase in ascent from the lunar surface) until the

altitude is greater than 25,000 ft (for lunar ascent the vertical rise terminates when the
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altitude rate reaches +40 ft/s). During the vertical rise the LM is rotated to the desired

azimuth (normally in the CSM orbital plane). The next phase, orbit insertion phase, is

designed for e�cient propellant usage to achieve the targeting condition [78]. The guidance

command is defined by an acceleration profile which is a linear function of time. The

time-to-go is determined by the velocity to be gained. Based on the current state and

the targeting condition, the guidance law determines the accelerations in the radial and

crossrange directions [78].

In the event of a PGNCS failure during descent, the landing would not be attempted.

The backup system, the Abort Guidance System (AGS), would be used to insert the

LM into a safe orbit and accomplish the rendezvous with the CSM. The AGS was not

designed to support lunar landing. The early back-up powered-descent abort plans were

complex because of the limited onboard capabilities in navigation, computation, guidance,

and communication [79]. An early version of the AGS was to provide a pitch sequence

based on the time of abort and stored constants and produces a thrust cut-o↵ signal

based on the velocity [80]. A compensation scheme compared velocity readings from an

accelerometer on the thrust axis with nominal velocity values at specified time intervals,

and adjusted pitch attitude and velocity at engine cut-o↵ [80]. Later as a general-purpose

computer TRW MARCO 4418 became available onboard, this open-loop guidance plus

closed-loop compensation design of AGS was abandoned in favor of a simplified explicit

ascent guidance algorithm [81]. According to Goodman [81], the AGS guidance algorithm

is similar to that reported in Scofield [82]. The guidance method in Scofield [82] targets a

particular set of final conditions specified by the final radius and radial velocity as well as
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crossrange. The engine cut-o↵ time is chosen to meet the targeting value of the total final

velocity.

Ever since the Apollo Program, little e↵ort has been done to update the abort

guidance sequence for onboard operations during powered descent. The only other attempt

at solving the abort guidance problem has been found in Kenny [83], and that it is likely

to have been inspired by some of the work presented in this dissertation. In Kenny [83],

the time-optimal abort guidance problem is solved in real-time using a feature-based

learning method. A large data-set of optimal trajectories is run o✏ine with di↵erent initial

conditions. Then, the information obtained is processed with a neural network to map

the relationships based on the generated data-set. The problem is solved in real-time, a

requisite for future onboard operations on the Moon.

Previous Work in Optimized End-to-End Entry, Descent, and
Landing

Lately, many new algorithms expand on the computational capability to solve the

optimal or optimized entry guidance problem using convex optimization for trajectory

tracking [84, 85], using parameter optimization [86], or even learning-based optimal

control [87]. It is evident that the solutions to these problems generate solutions that

are considerably close to an optimal solution at a significantly faster time than previous

generations. However, some of the solutions that can be obtained with these methods

require some additional modifications to be operational. For instance, the optimal solution

in Wang [84] exhibits some undesirable characteristics of entry flight. Namely, the optimal

bang-bang solution solves the problem in only two bank reversals, which can result in
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exceeding the crossrange requirement. This is especially true when there is no control

margin left towards the end, as is the case in Wang [84]. New approaches such as using

learning-based methods to find the optimal solution in You [87], open a door into new

possibilities that can be achieved by higher computational power. The only downside

is that many times, it is still necessary to use simplified models to be able to solve the

problems, thus, a↵ecting the accuracy of the solution.

Solving the optimal entry or powered descent problem on its own is already

a challenging undertaking. An end-to-end EDL optimized trajectory is an even more

challenging e↵ort. The dynamics of the problem are di↵erent and trying to add two separate

optimization problems proves so di�cult that it is theoretically di�cult to solve with some

assumptions or simplifications. The only instance known to the author of an attempt

to solve a complete EDL optimization problem is in Wan [88], where the complete EDL

trajectory is solved as a 2D problem with multiple assumptions. The problem is formulated

as a polynomial programming problem using polynomial approximations and discretization

techniques. The problem is then converted into a nonconvex quadratically constrained

quadratic program (QCQP). The optimum is found using a customized alternating direction

method of multipliers (ADMM). Despite being a trailblazer in this area, the solution to a

2D problem with multiple assumptions and approximations is not yet at a point to be

functional for trajectories than can be flown by a vehicle. On the other hand, complete

EDL optimization has been achieved by using a simulation environment on a specific

guidance algorithm to produce an optimal nominal trajectory [40]. In Lugo [40], the NPCG

algorithm is used to produce a complete EDL trajectory in a high-fidelity simulation
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environment. The complete EDL trajectory is flown in the simulation environment multiple

times with di↵erent parameters to find the optimal reference trajectory. However, in this

case the optimal solution is pre-calculated and the complete simulation environment to

calculate the solution cannot be implemented on-board. Clearly, technology is starting

to grasp the power of optimization for end-to-end EDL trajectory generation, but new

methods that maintain high-accuracy and that can produce a trajectory rapidly are still

needed.

1.3 Objective and Approach

The main goal of my research is to develop a method to optimize the integrated set

of guidance tools to solve the problem of entry, descent and landing. The main components

required to accomplish this are the development of a fast fuel-optimal powered descent

guidance algorithm applicable to three-dimensional motion and the integration with a

fast and robust entry guidance algorithm for e↵ective control during atmospheric flight.

A central piece to this research will be the methodology and algorithm to integrate the

entry and powered descent guidance algorithms during EDL operations. Furthermore,

expanding on this integration, creating a scheme to optimize both entry and powered

descent simultaneously during the generation of the EDL trajectory. There is strong

evidence in current EDL research that points to significant propellant saving for a human

Mars mission if the entry trajectory can be shaped for the powered descent guidance to

take advantage. One of the challenges is how to best accomplish this collaboration between

entry and powered descent guidance in an onboard environment based on the actual
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condition. This research will implement an algorithm capable of onboard determination

of the trajectory and guidance commands necessary for entry, based on the actual state

and selecting an appropriate condition for PDI. It is intended to deliver an algorithm with

onboard capability based on the actual condition and not requiring complex algorithms or

functions other than the ones already available for entry and powered descent guidance. The

development of this integrated algorithms will allow further investigation and comparison

with current algorithms. The following objectives were selected in order to achieve the

mentioned goals:

Objective 1. Integration of adaptive PDI prediction in powered descent

of a human-scale lunar landing mission.

The starting point of this research was to use a PDI prediction logic to select the

appropriate time to start powered descent on a lunar landing mission. In this objective, it

desired to demonstrate that using a non-optimized powered descent guidance algorithm

with the adaptive PDI logic can reduce the propellant consumption and the risk of mission

failure. The FP2DG was selected to demonstrate this capability as it provides a fast and

reliable analytical solution and it is not optimized. Furthermore, since FP2DG is closely

related to the APDG used to land the first humans on the Moon, a comparison on the

performance is readily available. On the Moon, powered descent starts without an entry

phase at nearly orbital speed, but it was shown that the PDI logic also o↵ers propellant

reduction and safety advantages.The integration of the adaptive PDI logic is a critical step

in the development of this research, as it is the transition between powered descent and

the previous phase.
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For Mars landing missions, both entry and powered descent phases are required.

The baseline entry guidance algorithm to be used is the FNPEG algorithm [21, 31, 89]. A

big advantage of this algorithm is that it provides real-time onboard computation to create

the trajectory design and obtain the guidance solution. This algorithm is designed for entry

flight with active modulation of bank angle. Finding a way to integrate both entry and

powered descent guidance is crucial to this research since it will provide the link between

both phases to improve the overall performance of the EDL mission. A methodology and

algorithm to integrate the entry and powered descent guidance algorithms during the

entry flight will be applied. Similar to the lunar landing mission, the goal of the PDI

logic is to predict a suitable PDI condition in real-time based on the actual condition.

This adaptive determination will improve reliability, precision, and propellant e�ciency

greatly. The condition at the PDI is critical to the powered descent phase, it determines

the divert requirement, the best propellant usage possible, and the trajetory margin to

accommodate dispersions. Usually, the PDI condition is chosen based on specific criteria

such as time at entry interface, altitude, or velocity. Such criteria are not alwasy accurate,

especially in the presence of large dispersions. It is very important that entry and powered

descent algorithms work seamlessly during entry phase to predict and identify the best PDI

condition, and how to determine it onboard without additional complex algorithms besides

the entry and powered descent guidance algorithms already available. The development

of this integrated algorithm will enable to conceive a simple but sensible logic to identify

and trigger a good PDI condition, onboard and based on the actual conditions, that

leads to pinpoint landing with least amount of propellant consumed. The selection of
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an appropriate PDI condition can improve performance in powered descent algorithms

that are not optimal. Using non-optimal algorithms with better performance gives an

advantage in convergence of the solution due to their closed-form solution. For instance,

the FP2DG is an algorithm that is not optimal but that has shown potential when the

best PDI condition is chosen. Using the adaptive PDI logic derived in Lu [61], the optimal

soft-landing solution can be used to predict the best starting point for powered descent.

Additionally, the initial time-to-go can be obtained from the total flight time of the optimal

solution. Using this method for PDI prediction, both entry and powered descent guidance

algorithms can be incorporated to achieve better propellant performance and landing

accuracy.

The purpose of this objective is to demonstrate that the PDI logic o↵ers a near-

optimal transition point between entry and powered descent that will be required for a

Mars mission. Testing and development of this guidance algorithm in Lunar and Martian

landing missions will determine the flexibility and propellant improvement in di↵erent

scenarios. Monte Carlo testing will help assess the robustness of the algorithm by using

dispersions.

Objective 2. Development of abort guidance strategy and algorithm for

crewed lunar landing missions

The need for abort guidance emerged as a need to ascend into a safe orbit in case

landing is no longer an option for the mission. A novel abort technique demonstrated in

Lu [90] has been shown to solve the optimal ascent guidance problem simply and e�ciently.

The same baseline algorithm used for the optimal soft-landing can be used to obtain the
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solution to a fuel-optimal ascent guidance in a configuration named UPG+A [22]. However,

the problem of aborting during a lunar powered descent is more challenging as it requires

changing the trajectory as the vehicle is moving fast in the opposite direction. The di�cult

task of arresting the descent velocity during powered descent is exchanged for a method

that takes advantage of the momentum available to propel the vehicle towards the final

orbit. A pull-up maneuver accomplishes the di�cult task of turning the velocity vector

before starting ascent into a safe orbit. Incorporating UPG+A in the guidance algorithm

will provide an additional safety measurement with minimum e↵ort. The inclusion of an

abort guidance method to the EDL mission will define a new category of EDL problems

that take into account accuracy, robustness, and risk mitigation. The goal is to provide an

algorithm with the capability of providing a solution that will always bring the crew to

safety at any point during the lunar landing mission.

Objective 3. Development of a method for rapid generation of near-

optimal EDL trajectories in real-time

The complete optimization of an EDL trajectory in real-time is a challenging

endeavor that has not been accomplished in the past. Lunar or martian landing missions

rely heavily on predefined mission profiles, assumptions, or sub-optimal solutions. To

create the first real-time EDL optimization method, two fast and robust entry and powered

descent guidance algorithms will be utilized to solve the complete EDL optimization

problem. The problem will be formulated as a hybrid optimal control problem, where the

entry, powered descent, and PDI point will be optimized simultaneously. Since solving the

entry guidance problem optimally is a di�cult task given the highly non-linear terms in the
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entry dynamics, a non-optimized entry guidance algorithm will be used and optimized via a

uni-variate optimization approach. An optimal powered descent guidance algorithms will be

used to find the optimal solution to the last portion of the EDL trajectory. The robustness

of the entry and powered descent guidance algorithms guarantee that a complete EDL

trajectory can be found for appropriate initial conditions. Similarly, the fast convergence

of algorithms will provide a complete optimization of the EDL problem in a matter of

seconds. The goal of this objective is to obtain an optimized end-to-end EDL trajectory

in a matter of seconds, an unprecedented achievement.

Methodology

The goal of this research is to produce a suite of guidance algorithms that can be

integrated and optimized for use in planetary landing missions. The idea is to provide a set

of solutions to the EDL problem in an integrated fashion. Each one of the objectives will

be accomplished by a series of steps: development, simulation and testing. Development of

the optimized guidance algorithms is required to solve the EDL problem. Each algorithm

will be developed separately and integrated to provide a near-optimal solution. End-to-end

simulations will determine the reliability of the algorithm in obtaining a solution that

accurately lands a vehicle on the designating landing location. Comprehensive testing in

nominal and Monte Carlo simulations will be performed to evaluate the performance and

robustness of the entry and powered descent guidance algorithms.
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1.4 Research Contributions

In this investigation, three critical elements that are necessary for future Moon

or Mars EDL operations were uncovered. First, the use of an adaptive PDI logic to

predict the optimal or near-optimal PDI condition is necessary for successful EDL missions.

The results from this dissertation demonstrated that an inadequate selection of PDI can

result in mission failure caused by insu�cient propellant when downrange is too large or

diminished thrust control when the landing site is too close. In addition, it was shown that

a proper PDI condition has a large impact on the overall propellant consumption during

EDL. Furthermore, it was shown in Monte Carlo simulations, that in order to account for

all possible changes to the initial conditions and atmospheric uncertainty, the selection

of the PDI condition needs to be adaptive to the current state of the vehicle. Extensive

testing on multiple missions and vehicles on the Moon and Mars demonstrated that the

use of this technology is essential to minimize propellant consumption and reduce the risk

of failure during landing.

The second critical element was the creation of an abort guidance sequence during

lunar powered descent. To maintain the safety of the crew in all possible scenarios, it is

imperative that an abort-ascent solution be available in case the landing on the surface

becomes too risky or infeasible. Since the Apollo program, the problem of aborting from

powered descent towards an orbit around the Moon had not been addressed. Let alone

solving the problem optimally. In this investigation, the first abort guidance approach since

the Apollo program was developed using an optimal control ascent guidance approach.
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Therefore, the resulting approach is the first abort guidance approach that is completely

fuel-optimal in ascent. Moreover, unlike the Apollo days, this novel technique is completely

autonomous and does not require any input by the astronauts, thus, guaranteeing that

the guidance will always take the astronauts to a safe orbit in case of an emergency at any

point during powered descent.

The third contribution in this dissertation is the development of a novel end-to-end

EDL trajectory optimization formulation that generates a complete trajectory in real-time.

Currently, end-to-end trajectory optimization can only be accomplished o✏ine using

optimization software that usually comes at a high computational cost or take extensive

processing time, a great limitation for onboard implementation. Few attempts at finding a

solution to the complete EDL optimization problem in real-time have been tried, however,

many assumptions and simplification are necessary to make it work. In this investigation,

a real-time end-to-end EDL optimization is achieved for the first time. This significant

result is achieved through the integration of a robust entry guidance algorithm and an

optimal powered descent guidance algorithm. The algorithm is formulated as a hybrid

optimal control problem and solved with a bi-level optimization technique, where an inner

loop optimizes the powered descent phase and an outer loop optimizes the entry trajectory.

The robustness of both entry and powered descent guidance algorithms guarantees the

convergence of the algorithm if a solution exists. Extensive simulations in Monte Carlo

testing showed that this algorithm can reliabley solve the Mars EDL optimization problem

fast and without convergence issues. Solving the optimization problem in real-time

significantly reduces the amount of time spent generating optimal trajectories that many

26



times do not consider operational constraints. In this work, the solutions adhere to all the

dynamics of a three-degree-of-freedom (3DOF) problem to produce trajectories that are

operational. Furthermore, high-fidelity models can be introduced in closed-loop simulation

to produce a more accurate prediction without adding a large computational cost. Using

this novel technology to generate fast and e�cient EDL trajectories in real-time is essential

to better predict the best path to land a vehicle on the surface of Mars with the least

amount of propellant consumption.

1.5 Dissertation Outline

Since multiple topics in EDL are covered throughout the extent of this investigation,

this section describes how the rest of the dissertation will be organized. This way the

reader has a clear picture of what will be found in the upcoming pages. The first important

observation is that in order to develop an optimized end-to-end guidance solution, each

one of the components needed to be investigated separately, sometimes even in di↵erent

planetary bodies. Chapter 2 gives context and introduces important concepts that will

be important to understand before reading through the upcoming chapters. Then, a

list of the supporting entry and powered descent guidance algorithms that were used in

the development of new technology are described in Chapter 3. The results from this

investigation start with a lunar landing demonstration in Chapter 4, where using the

recently developed powered descent guidance FP2DG, the technology is demonstrated for

the first time in a lunar landing scenario. The importance of the PDI condition selection

will play a key role in the rest of this investigation. During the analysis of the lunar landing
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problem, the need for an abort guidance strategy in case of an emergency was exposed. In

Chapter 5, an abort guidance strategy for lunar landing missions during powered descent is

presented. The abort guidance solution resulted in a fascinating discovery on the behavior

of the ascent trajectory from a point on the powered descent trajectory. The discovery

of multiple optimal solutions with the abort strategy is well documented in Chapter 6.

Advancing towards complete EDL trajectory generation, the following Chapters will focus

on human-scale landing missions on the surface of Mars. The reason for this change is

that, in order to investigate entry guidance, it is necessary to perform the studies in a

planet with an atmosphere to obtain the aerodynamic lift and drag necessary to slow

down and control the vehicle during entry guidance. Studies on fully integrated entry

and powered descent guidance algorithms with performance testing and validation in

a high-fidelity simulation environment are the focus of Chapter 7. Finally, Chapter 8

demonstrates that an optimized end-to-end EDL trajectory can be obtained using a bi-level

optimization approach in which both entry and powered descent are optimized to obtain

a near-optimal propellant consumption solution. A summary of the work accomplished,

concluding remarks and recommendations for future work are added in Chapter 9.
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Chapter 2

Background

2.1 Introduction

The subject of entry, descent, and landing (EDL) is broad and incorporates multiple

research areas. To give a complete background, every component will be addressed

separately. Attention will be given to entry guidance, powered descent guidance, and

abort guidance; the most significant areas of development in this investigation. Generally,

in an EDL mission, only the components of entry and powered descent are considered.

To visualize every component of EDL, an overview of a simple mission scenario is shown

in Figure 2.1. Entry guidance is shown in green, powered descent is colored yellow, and

an optional abort guidance is painted in red. In this chapter, the entry and powered

descent will be described in detail. The description of the abort guidance problem and the

ascent equations of motion will be presented in Section 5. Furthermore, a brief overview is

presented on the direct and indirect methods of optimal control.

29



Figure 2.1. Overview of entry, descent, landing and abort mission.

2.2 Overview of Entry, Descent, and Landing

2.2.1 The Entry Guidance Problem

The entry phase of an EDL mission refers to the segment where an hypersonic entry

vehicle glides through the atmosphere of a planet using aerodynamic lift as directional

control. This phase is only present in a planet with an atmosphere that has su�cient

aerodynamic forces to allow guided control. Depending on the mission, the vehicle, and

the target planet requirements; an entry phase may or may not be needed. When there is

no atmosphere present, the entry phase is non-existent or termed a de-orbit phase. The

main goal of the entry phase is to slow down the vehicle as much as possible while keeping

it aligned with the landing location. During this phase, a guidance command is produced

to control the vehicle through the atmosphere as it achieves a specified final condition.

The final condition can consist of a predefined final altitude, velocity, and range-to-go

to the landing site. As the spacecraft dives through the atmosphere, aerodynamic forces

produce lift and drag that can be utilized to steer the vehicle. Aerodynamic control
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surfaces are used to guide the vehicle by directing the lift and drag forces to provide the

required control solution. Achieving the final condition at the end of the entry phase is

fundamental for the success of the mission as it provides the starting condition for the

powered descent guidance. Powered Descent Initiation (PDI) occurs when the control

of the vehicle is transferred from the entry guidance algorithm to the powered descent

guidance algorithm. Selecting the ideal PDI condition can make an impact on the overall

propellant consumed, but more importantly, it can be the di↵erence between the success

or failure of the mission.

The highly nonlinear 3-dimensional equations of motion for a gliding vehicle over a

spherical rotating planet in non-dimensional form are defined as:

ṙ = V sin � (2.1)

✓̇ =
V cos � sin 

r cos�
(2.2)

�̇ =
V cos � cos 

r
(2.3)

V̇ = �D �
✓
sin �

r2

◆
+ ⌦2r cos� (sin � cos�� cos � sin� cos ) (2.4)
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where r is defined as the radial distance from the planet center to the vehicle; ✓ and �

are the longitude and latitude; V is the planet-relative velocity; � and  are the flight-

path-angle and heading angle of the relative velocity vector, with  measured clockwise

in the local horizontal plane from the north. The bank angle � is the roll angle of the

vehicle about the relative velocity vector, positive to the right. Bank angle and roll angle

are di↵erent when the angle-of-attack is not zero. The value ⌦ is the non-dimensional

constant that represents the planet self-rotation rate. The initial conditions of entry are

the same as the conditions at the entry interface (EI) for the EDL problem:

r(t0) = r0 (2.7)

✓(t0) = ✓0 (2.8)

�(t0) = �0 (2.9)

V (t0) = V0 (2.10)

�(t0) = �0 (2.11)

 (t0) =  0 (2.12)

Final entry constraints are typically set to a point when the trajectory reaches a position

at a specified distance sf (that can be zero) from the target location at a specified final

altitude rf and velocity Vf
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r(tf ) = rf (2.13)

V (tf ) = Vf (2.14)

s(tf ) = sf (2.15)

Dimensionless aerodynamic lift and drag accelerations in units of g0 are defined by L and

D, respectively and calculated with the following equations:

L = ⇢(r)V 2SrefR0CL/(2m0) (2.16)

D = ⇢(r)V 2SrefR0CD/(2m0) (2.17)

with ⇢ as the dimensional altitude-dependent atmospheric density, Sref the dimensional

reference area of the entry vehicle, and m0 the constant mass of the vehicle in kg. CL and

CD are the nondimensional aerodynamic lift and drag coe�cients; both are functions of

the vehicle, angle-of-attack ↵ and Mach number. The angle of attack in entry flight for all

sections of this work is assumed to be prescribed as a constant or a function of the Mach

number.

Generally, bank angle is used as the main guidance control during the entry phase

and it is subjected to the following operational constraints
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�min  |�(t)|  �max (2.18)

In some cases, the rate of bank angle acceleration is also limited to avoid immediate control

reaction.

For numerical simulations, is always a good practice to normalize the variables

so that their numerical values are on the similar orders of magnitude. In this work,

normalization is achieved by scaling lengths by the radius of the planet, rscale = R0;

velocities by Vscale =
p
g0R0, with g0 the as the graviational accelration at R0; and the

time by tscale =
p

R0/g0.

2.2.2 The Powered Descent Guidance Problem

The main objective of powered descent is to make sure that the vehicle lands

gently on the surface and near the landing site. This is accomplished by eliminating the

remaining velocity of the vehicle before reaching the landing location using retro-propulsion

for a planet without atmosphere or supersonic retro-propulsion (SRP) when there is an

atmosphere. If an entry phase is present, the final condition of the entry phase is usually

the starting condition of powered descent. Regardless of the actual result after entry

guidance, it is important that the powered descent guidance can take the vehicle from its

actual state to the final condition on the ground. The guidance achieves this by activating

the SRP rockets to produce a thrust force that helps slow down and drive the vehicle.

Although it is necessary to use SRP to achieve the desired outcome, it is expected that

fuel consumption is kept at a minimum, and the powered descent algorithm is entrusted
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to perform this task. The spacecraft steering is also used to reduce the cross-range and

downrange distance to the landing site. To accomplish this, the vehicle is controlled from

an initial condition to a landing location on the surface of the planet. The powered descent

guidance generates the commands for the thrust direction and magnitude necessary to

accomplish this goal.

The 3-dimensional equations of motion for powered descent dynamics on a planet

or the Moon in a Cartesian coordinate system are represented with:

ṙ = V (2.19)

V̇ = g + aT (2.20)

ṁ = � T

Ve

(2.21)

where r 2 R3 and V 2 R3 are the position and velocity vectors of the spacecraft. The

planetary gravitational acceleration is represented by g and the thrust acceleration vector

by aT . A central gravity model is used to make the algorithm applicable for longer duration

flights. The aerodynamic forces are generally ignored because an atmosphere does not exist

(such as a landing on the Moon), or is thin enough to be ignored by the powered descent

guidance solution [22]. However, some aerodynamic forces exist and are not accounted for

in the equations of motion for powered descent. The initial state is assumed to be known:
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r(t0) = r0 (2.22)

V (t0) = V 0 (2.23)

m(t0) = m0 (2.24)

Now, let us introduce a predefined final position, r⇤
f
, velocity, V ⇤

f
, and thrust acceleration

a⇤
Tf
, all specified at a final time, tf > 0. The final position and velocity will define the

landing position and velocity vectors as a targeting condition:

r(tf ) = r⇤
f

(2.25)

V (tf ) = V ⇤
f

(2.26)

aT (tf ) = a⇤
Tf

(2.27)

Thrust T and thrust direction 1T are limited by the following constraints

Tmin  T (t)  Tmax (2.28)

||1T (t)|| = 1 (2.29)

where Tmin � 0 and Tmax � Tmin have constant values.

The powered descent is present in all mission cases of this dissertation as it is the

last measure to stop the vehicle from directly crashing into the ground before landing.
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A New Approach to Entry, Descent, and Landing

Traditionally, both entry and powered descent phases have been developed without

taking into account each other in the EDL design and analysis. That is, the entry phase,

and descent and landing phases are designed, analysed and evaluated separately. The

only connection they have is through a nominal interface condition. Studies have shown

that end-to-End optimization of EDL can be achieved and an optimal nominal trajectory

can be found for a specific mission scenario [91]. Optimizing the entire EDL trajectory

can take a long time and an evaluation of that extend is unlikely to obtain a solution in

the amount of time available for flight operations. In this sense, a complete end-to-end

optimization is not what is envisioned in this study. Rather, it is the intention of this

investigation to apply a fast solution that connects entry and powered descent of two

independently developed algorithms through an adaptive PDI condition that benefits the

overall performance of EDL. Taking advantage of the PDI logic presented in Lu [61], the

development of an optimized set of tools that interact with each other through the proper

selection of their interfaces is envisioned. The ultimate goal is to create algorithms that

are suitable for on-board implementation without incurring high computational costs.

Nonetheless, these algorithms must be reliable in obtaining an accurate and fuel-optimal

solution. In addition, using our capability to increase the safety of the mission by providing

a solution to an emergency situation is a task that will keep astronauts as the priority.

Taking all aspects in consideration, the following inquires lie around the purpose of

this investigation: Can we produce results that are near-optimal with an algorithm like

the fractional polynomial guidance? Can a near-optimal entry guidance algorithm be used
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to produce a reliable solution to the entry problem without the need for much complexity?

Is it possible to abort to a safe orbit during powered descent of a lunar landing mission

using a fuel-optimal ascent guidance algorithm? It is intended to deliver an algorithm with

onboard capability based on the actual condition and not requiring complex algorithms or

functions other than the ones already available for entry and powered descent guidance.

Using a new methodology for entry guidance; applying an adaptive PDI formulation; and

using a simple, yet powerful, powered descent guidance algorithm can provide a fast and

robust solution to the entry, descent, and landing problem.

2.3 Direct and Indirect Methods of Optimal Con-
trol

Optimal control methods were utilized in this work to find the solution that mini-

mizes the total propellant consumption in the EDL problem. There are two main options

for solving optimal control problems, direct methods and indirect methods of optimal

control. The goal in both methods is to find the optimal control inputs to minimize an

objective function, subject to certain constraints. In the direct method approach, the

optimal control problem is converted into a parameter optimization problem to be solved

as a nonlinear programming problem (NLP) [92]. The problem can be transformed into

a parameter optimization problem using several methods such as optimal parametric

control [93], collocation method [94], di↵erential inclusion [95], and pseudospectral meth-

ods [96]. Problems solved with the direct method depend on an initial guess that often

needs to be supplied by the user. As a consequence, convergence to the optimal solution

is conditional on a proper initial guess. However, direct methods are less vulnerable to
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convergence issues if properly configured, even for large problems [94]. A downside is that

direct methods can be less accurate in comparison to indirect methods because a solution

does not need to satisfy the necessary conditions. However, the direct method is very

e�cient when solving well-defined large scale problems.

In the direct method of optimal control, the problem is formulated as a mathematical

optimization problem or nonlinear programming problem, with the state and control defined

as

x = [x1, x2, . . . , xn]
T 2 Rn (2.30)

u = [u1, . . . , um]
T 2 Rm (2.31)

and the dynamics of the finite-dimensional system are represented by a system of first-order

di↵erential equations

ẋ = f(x,u, t) (2.32)

The problem consists in minimizing f(x) subject to

h(x) = [h1(x), . . . , hm(x)]
T = 0, h : Rn �! Rm (2.33)

g(x) = [g1(x), . . . , gp(x)]
T  0, g : Rn �! Rp (2.34)

where f , h, and g are C1 and m  n and p � 0.

In the indirect method approach, Pontryagin’s minimum principle and necessary
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conditions are applied to create a two-point boundary-value problem (TPBVP) that is

solved numerically to obtain an optimal trajectory [94, 97]. Two of the most accepted

methods to solve TPBVPs are approximation [98] and shooting methods [94]. Generally,

a guess on the initial value of the adjoint variables is necessary within a certain tolerance.

The advantage of the indirect method approach is that a continuous-time solution can

be obtained. In problems with nonlinear dynamics such as powered descent, a solution

with the indirect method takes advantage of that continuity to produce a trajectory from

beginning to end.

To define the problem with the indirect method, the system dynamics are defined

by

ẋ = f(x,u, t) (2.35)

with the initial condition at initial time t0 is

x(t0) = x0 2 Rn (2.36)

A set of algebraic constraints called terminal constraints need to be satisfied at the

final time tf

g(x(tf ), tf ) = 0 (2.37)

where g(·, ·) : Rn ⇥ R �! Rj, (j  n) is a vector function and tf can be specified for
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a fixed-final time problem or not be specified for a free final-time problem. In a free

final-time problem, the final time also needs to be determined as part of the solution.

The control vector that will satisfy the dynamics is defined as u 2 Rm and it is

generally a function of time to-be-determined. It is constrained to a set of feasible control

values U 2 Rm

u 2 U, 8t 2 [t0, tf ] (2.38)

The performance index is the minimization term of the problem

J = �(x(tf )) +

Z
tf

t0

L(x,u, t) dt (2.39)

A Hamiltonian function combines the objective function and the system dynamics, and is

defined as

H = L(x,u, t) + pTf(x,u, t) (2.40)

where L is the Lagrangian of the function defined by

L(x,µ,�) = f(x) + �Th(x) + µTg(x) (2.41)

and p is the co-state vector or the adjoint variables. The co-state equations are derived
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from the Hamiltonian function and represent the evolution of the co-state vector over time

ṗ = �@H
@x

(2.42)

The transversality condition consists in satisfying the following equation

p
f
=

@�

@xf

+
@g

@xf

↵ (2.43)

with ↵ a vector multiplier.

In the Pontryagin’s Minimum Principle, the optimal state trajectory x⇤, optimal

control u⇤, and its corresponding Lagrange multiplier vector �⇤ minimize the Hamiltonian

such that

H(x⇤(t),u⇤(t),�(t), t)  H(x(t),u(t),�(t), t) (2.44)

The necessary condition for an optimal control solution requires that at every point in

time, the optimal control u⇤(t) and the corresponding co-state vector p(t) must satisfy

@H

@u
= 0 (2.45)

To solve the optimal control problem the state equations, co-state equations, and the

transversality condition need to be solved simultaneously as a two-point boundary value

problem (TPBVP), with the initial conditions at the initial time t0, and the boundary
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conditions at tf .

In this dissertation, both the direct and indirect methods are used to solved the

complex entry, optimal powered descent and optimal abort guidance problems. The indirect

method of optimal control is utilized to solve the fuel-optimal powered descent guidance

problem. Since the indirect method approach is usually faster to solve, the solution can be

obtained in real-time. Depending on the complexity of the equations in the problem, the

indirect method might not be an option given that it requires advanced mathematical and

numerical analysis. For that reason, optimization of entry guidance is di�cult to achieve

given the highly non-linear equations of motion. Often, complex problems that cannot

be solved using the indirect method of optimal control are solved using a direct method

approach. Acknowledging that, unless solved analytically to examine if the problem in fact

satisfies the necessary conditions, the solution might not be an optimal solution. In the

case that an analytical solution cannot be easily found, an understanding of the general

solution is necessary to evaluate if the solution obtained is expected. The indirect method

is used in this work to validate the discovery of a recently discovered phenomenon in abort

guidance that will be discussed further in Section 6 and to create a benchmark solution to

the complete EDL optimization problem to compare with the results from the novel EDL

optimization approach resulting from this work and that will be discussed in Section 8.
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Chapter 3

Supporting Algorithms for Entry
and Powered Descent Trajectory
Generation

3.1 Introduction

Since multiple guidance algorithms for entry and powered descent will be analyzed,

some background on the characteristics of each approach will be given to aid with the

understanding of this study. In this section, a group of fast and robust entry and powered

descent guidance algorithms will be presented. These algorithms are the state-of-the-art in

entry and powered descent guidance and were utilized to obtain many of the results from

this work. It is important to point out that the author did not develop these algorithms.

The author, however, did contribute in the validation of the algorithms using high-fidelity

simulation environments and performance testing in di↵erent landing scenarios. This

section is included because the algorithms presented here are the building blocks of many

of the technology advancements of the original work presented in this dissertation.
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3.2 Entry-Guidance Supporting Algorithm

3.2.1 The Fully Numerical Predictor-Corrector Entry Guid-
ance Algorithm

FNPEG is a versatile entry guidance method suitable for a wide range of vehi-

cles with di↵erent lift characteristics. The algorithm is capable of inequality constraint

enforcement such as heating rate, dynamic pressure, and load factor limits. Altitude

rate feedback and inequality constraint enforcement permit diverse orbital and suborbital

mission requirements. Bank angle control is employed to steer the vehicle from the end

of the deorbit phase until the targeting condition is reached. Altitude and velocity are

utilized as the targeting parameters that need to be reached. An initial bank angle is

calculated and used to generate a bank-angle magnitude profile. Range-to-go to the final

condition is used to define the bank-angle profile. Every iteration, a new initial bank angle

magnitude is calculated to ensure that the final condition is met. To maintain performance

and reduce crossrange distance towards at the end of the segment, a bank reversal logic is

applied to calculate the bank sign of every new bank command calculated. The number of

bank reversals performed is selected by the user.

In FNPEG, the bank angle magnitude along the trajectory is parameterized by a

linear profile as shown in Figure 3.1. The bank angle profile establishes the longitudinal

entry trajectory that will be followed. The independent variable for the entry problem is

the energy-like equation e

e =
1

r
� V 2

2
(3.1)
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The importance of this parameter arises from the fact that if higher-terms associated

with planet-rotation and J2 terms are ignored, it can be shown that the derivative ė is

monotonically increasing inside the atmosphere

ė = DV > 0 (3.2)

The initial e0 and final value ef are specified for given initial and final altitude and

velocity values. For predefined values of e0 and ef , �0 and �f define the initial and final

bank angle magnitude in the profile curve, these are values of |�| at e0 and ef , respectively.

The final bank angle must satisfy �f > 0 to provide control margin towards the end of

entry flight [99]. The value of the initial bank angle �0 is found by a Newton-Raphson

method with inexact line search to achieve the specified ground range when the energy

target is met, that is, e = ef . If both �0 and �f satisfy Equation (2.18), then the bank

angle constraint will be satisfied throughout the entry flight.

Figure 3.1. Bank angle control parameterization used in the fully numerical
predictor-corrector entry guidance.
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To reduce large crossrange dispersions, a number of bank reversals are performed

by FNPEG during flight. A bank reversal occurs every time the sign of the bank angle is

changed instantaneously and the vehicle is banked in the opposite direction of the lift vector.

The sign of � is determined by a numerical predictive lateral control technique [31, 100].

In the lateral control implementation of FNPEG, the user can decide the number of bank

reversals to be performed. With the combination of longitudinal and lateral control, a

guidance command with the magnitude and sign of � is produced at any point during

the entry trajectory. The command obtained is based on the current condition and the

specified target. FNPEG has been highly regarded as the state-of-the-art in entry guidance

and has demonstrated to be accurate and highly robust in extensive testing [31].

3.3 Powered Descent Guidance Supporting Algo-
rithms

3.3.1 Fractional-Polynomial Powered Descent Guidance

Building on the legacy of the Apollo Program, FP2DG was born out of the careful

analysis of the Apollo Powered Descent Guidance and the E-Guidance Laws. Unlike

the guidance laws used in during Apollo, an advantage of this approach is the ability

to tune the guidance to meet mission requirements and to increase e�ciency. Rather

than a single guidance solution, this algorithm is considered a family of solutions that

emerge from the selection of user-selected tuning parameters. The guidance parameters

selectable by the user are the time-to-go (or total flight time), final altitude, final velocity,

final acceleration, and two gains that control the shape of the trajectory. The e↵ect of

these parameters on trajectory shaping manifest in the form of engine throttle setting,
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pitch angle profile, and powered descent trajectory profile. Multiple solutions under the

same guidance approach can be obtained by the careful selection of this tuning gains with

advantages on the reduction of propellant consumption and better vehicle positioning by

an appropriate trajectory profile selection.

Starting from the 3-dimensional equations of motion for powered descent dynamics

on a planet or the Moon in a Cartesian coordinate system defined by Equations 2.19 -

2.21, initial conditions in Equations 2.22 - 2.24, and final conditions from Equations 2.25

- 2.27. Assuming that r(t) and V (t) are known at any point along the trajectory, the

guidance problem is to find the appropriate thrust acceleration command aT (t) at any

moment in time to guide the vehicle towards achieving the targeting condition at t = tf .

Recently, a fractional-polynomial powered descent guidance (FP2DG) approach is

developed in Lu [64]. A fractional polynomial of a non-negative variable x � 0 is defined

to be

p(x) = a0 + a1x
�1 + · · ·+ akx

�k (3.3)

where a0
i
s are real constants, but the exponents �1 � 0, · · · , �k � 0 are not necessarily

integers. In FP2DG, consider a reference thrust acceleration profile by

ad(t) = a⇤
Tf

+ c2t
�

go
, � � 0 (3.4)

where c2 2 R3 is a to-be-determined constant vector, and tgo is the time-to-go defined by

tgo = tf � t (3.5)
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From the equations of motion 2.19 and 2.20, the corresponding reference profiles

for the velocity and position vectors V d(t) and rd(t) that also satisfy the terminal

conditions 2.25 - 2.27 can be analytically obtained. The commanded thrust acceleration

is then generated from the following tracking control law

aT (t) = ad(t)�
kV
tgo

[V (t)� V d(t)]�
kr
t2
go

[r(t)� rd(t)] (3.6)

where kV and kr are two feedback gains. When kV is chosen to be

kV =
kr

(� + 2)
+ � + 1 (3.7)

the resulting guidance command aT (t) is independent of the to-be-determined coe�cient

vector c2, and the guidance law becomes what we call FP2DG law that takes the form of

aT (t) = �


kr

2(� + 2)
� 1

�
a⇤
Tf

+


�kr

2(� + 2
� � � 1

�
g +

� + 1

tgo

✓
1� kr

� + 2

◆�
V ⇤

f
� V (t)

�

+
kr
t2
go

�
r⇤
f
� r(t)� V (t)tgo

�
(3.8)

It is revealed in Lu [64] that the FP2DG law is the same as the explicit guidance law

derived from the following thrust acceleration profile

aT = a⇤
Tf

+ c1t
�

go
+ c2t

�2
go
, �2 =

kr
� + 2

� 2 (3.9)

If one integrates the equations of motion with the above thrust profile, use the current
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state [r(t) V (t)] as the initial condition, and solve the required coe�cient vectors c1 and c2

to meet the targeting condition in Equations 2.25 and 2.27, a substitution of the resulting

c1 and c2 back into the above aT profile will produce exactly the FP2DG law. The reader

is referred to Lu [64] for much more complete and in-depth derivation and discussion on

the guidance method.

There are two parameters in the FP2DG law, � > 0 and kr  2(�+2). The value of

kr, and to a lesser degree, the value of �, can be adjusted to shape the descent trajectory

and the engine throttle characteristics. For instance, a larger value of kr predictably

leads to a steeper trajectory toward the end. Therefore kr can e↵ectively control the

trajectory if there is descent cone constraint at the landing to ensure ground clearance

before touchdown. More details on the e↵ects of kr and gamma on the trajectory and

propellant usage for a Mars landing mission can be found in Lu [64]. An important class

of the FP2DG law family is when � = 1. In this case the guidance law becomes the

Augmented Apollo Powered Descent Guidance (A2PDG) law first derived in Lu [63]:

aT (t) = (
kr
6
�1)a⇤

Tf
+(

kr
6
�2)g+

2

tgo
(1� kr

3
)(V ⇤

f
�V (t))+

kr
tgo

(r⇤
f
�r(t)�V (t)tgo) (3.10)

Two very interesting special cases of the A2PDG law (thus special cases of the

FP2DG law) are when kr = 6 and kr = 12. At kr = 6, the A2PDG law becomes the

Apollo-era E-guidance law developed in Cherry [53]:

aT (t) = �2/tgo[V
⇤
f
� V (t)] + 6/(tgo

2)[r⇤
f
� r(t)� V (t)tgo]� g(14) (3.11)
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On the other hand, at kr = 12, the A2PDG law reduces to the Apollo lunar descent

guidance law [101, 102, 54]:

aT (t) = a⇤
Tf

� 6

tgo

⇥
V ⇤

f
� V (t)

⇤
+

12

t2
go

⇥
r⇤
f
� r(t)� V (t)tgo

⇤
(3.12)

In this paper the FP2DG law in Equation 3.8 with � = 1 and kr = 9 is used as the baseline.

3.3.2 Universal Powered Guidance

The Universal Powered Guidance or UPG is a three dimensional propellant-optimal

powered descent guidance algorithm based on the indirect method of optimal control. The

algorithm has been developed over the years and applied to ascent, deorbit, and orbital

transfers [103, 104, 105, 106]. UPG has been used extensively in Mars landing applications,

where the mass of the spacecraft is much heavier than a typical robotic mission and landing

precision is a requirement. The problem follows the same dynamics of the powered descent

problem described in Section 3.3.2. UPG finds the optimal burn times to activate the

spacecraft’s SRP and the total flight time to reach the landing site. The formulation of

UPG is simpler than algorithms like G-FOLD and it does not require extensive tuning

when the mission or vehicle is changed. Di↵erent terminal formulations and constraints

can be used without a↵ecting the usability of the algorithm. The biggest drawbacks fall on

the lack of inequality constraints on glide slope, pointing direction and velocity constraints.

Furthermore, the algorithm does not have guaranteed theoretical convergence. Extensive

simulations and Monte Carlo testing have shown that the algorithm is very capable of

obtaining a solution with the appropriate initial conditions. The algorithm determines the
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thrust direction, thrust magnitude and optimal flight time to solve on of the three available

powered descent problems in the formulation: pinpoint-landing problem, Bolza-landing

problem, and soft-landing problem.

The optimal powered descent problem is to find the thrust magnitude (T (t))

and direction (1T (t)), subject to the constraints in Equations 2.28 and 2.29, to reach a

predetermined terminal condition s [r(tf ),V (tf ), tf ] = 0 while minimizing a performance

index of the form:

J = �(rf ,V f , tf ) + "

Z
tf

0

T

⌫ex
dt

�
(3.13)

where  � 0 and " � 0 are constants. Equation 3.13 includes all commonly utilized

optimization problems. For instance, if � = 0, the problem becomes a minimum-propellant

problem for any " > 0. If " = 0 and � > tf , the problem is now a minimum-time

problem for any  > 0. At last, if " = 0,  > 0, and � = V T (tf)V (tf), the problem for

the minimum-final-velocity. There are three di↵erent optimal powered descent problem

solutions for a mission based on the desired targeting conditions. Each case is defined as

follows:

Pinpoint-landing Problem

Let us introduce a predefined final position, r⇤
f
,and velocity, V ⇤

f
, all specified at

a final time, tf > 0. Assuming that r(t) and V (t) are known at any point along the

trajectory, the guidance problem is to find the appropriate thrust acceleration command
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aT (t) at any moment in time to guide the vehicle towards achieving the targeting condition

at t = tf . The terminal constraints in the pinpoint-landing problem are the following:

r(tf ) = r⇤ (3.14)

V (tf ) = V ⇤ (3.15)

The performance index is the propellant consumption, when  = 0 and " = 1 in Equa-

tion 3.13:

J =

Z
tf

0

T

⌫ex
dt

�
(3.16)

In this problem, the vehicle lands exactly at the landing point with the least amount of

propellant consumption.

Bolza-landing Problem

In the Bolza-landing problem, the vehicle ends at a specified altitude and velocity.

However, the exact location at which the vehicle ends is not specified. The terminal

constraints for the Bolza-landing problem are:
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||r(tf )|| = ||r⇤|| (3.17)

V (tf ) = V ⇤ (3.18)

The use of the Euclidean norm modifies the targeting condition. The final altitude might

be defined to be at the surface of the planet, but the landing location might be di↵erent

than the specified r⇤. To penalize the landing error (r(tf )� r⇤, the performance index is

replaced with by:

J =  [r(tf)� r⇤]T [r(tf )� r⇤]

Z
tf

0

T

⌫ex
dt

�
(3.19)

with a constant  > 0 and constant " = 1. The penalization of the final position error

allows some control over how far the vehicle can land from the target condition. A higher

value for  represents a larger penalization and a landing closer to the target condition.

One of the main uses of the Bolza landing problem is to satisfy cases where there no

feasible solution exists that satisfy the requirements of the pinpoint-landing problem,

either because the divert capability is too low or the dispersions are large to and cannot

be achieved by the controls of the vehicle.

54



Soft-landing Problem

The soft-landing problem is the least constrained of the three powered descent

guidance problems. The terminal constraints are the same as in the Bolza problem:

||r(tf )|| = ||r⇤|| (3.20)

V (tf ) = V ⇤ (3.21)

Except that in this case, the performance index is only the propellant consumption ( = 0):

J =

Z
tf

0

T

⌫ex
dt

�
(3.22)

In this version of the powered descent problem, the goal is to land the vehicle safely and

with the least amount of propellant possible. The algorithm is only constrained to reach

the ground at a specified velocity and altitude, regardless of its location with respect to

the landing site. Hence, this is the most propellant-e�cient solution that can be obtained

given the problem initial conditions.

The reader is encouraged to look at Lu [22] for more details on the development

and formulation of UPG.

3.3.3 Guidance for Propellant-Optimal Landing of a Rocket

The Guidance for Propellant-Optimal Landing of a Rocket, or G-POLAR, is another

fuel-optimal powered guidance algorithm based on the indirect-method of optimal control.

It solves the optimal control problem reliably given an initial condition. The algorithm is
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fast and able to find a solution in under 3 milliseconds on a typical desktop computer. The

work on G-POLAR is a continuation of UPG and o↵ers improvements on several fronts

such as taking a numerical approach, adding constraints to the thrust pointing direction

and solving a solution degradation phenomenon. The solution provides information on

the complete 3DOF propellant-optimal powered descent trajectory and is able to predict

the final propellant consumption. In the same way as UPG, the software implementation

of G-POLAR is relatively simple and requires a small amount of storage space. This

is usually common in solutions with the indirect method. Lu [107] provides a complete

description and demonstration of G-POLAR.

In GPOLAR, a topocentric Cartesian coordinate frame with origin at the landing

site is used. A representation of the topocentric frame is shown in Figure 3.2.

Figure 3.2. Topocentric frame representation with xyz at the landing site (the frame
OXY Z is a planet-centered frame).

More information on G-POLAR can be found on Lu [107].
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3.3.4 Adaptive Powered Descent Initiation Logic

The powered descent initiation is the moment in which the engine on a spacecraft

is activated to start powered descent. In the Apollo program, PDI occurred at the perilune

of the descent orbit from the lunar parking orbit. The PDI condition is usually selected

as a trigger point, based on pre-planned mission scenarios based on a nominal trajectory.

However, a predefined PDI point is not ideal given that uncertainty might drive the state

to be far away from the predicted state. For this reason, the determination of the PDI

condition is crucial as it defines the diver requirement and stress level that the guidance

must endure to control the vehicle towards the target.

Recent developments of work on Mars EDL [22, 63] have demonstrated that an

adaptive approach is the best way to predict the ideal PDI condition. When the current

state is taken into account, the PDI point can be predicted more accurately. The algorithm

is based on the propellant-optimal soft-landing solution to a powered descent guidance

problem. Out of the three powered descent landing modes described previously, the

soft-landing solution provides the trajectory with the least amount of propellant possible.

This is because it is also the least constrained solution. During unpowered flight, the

algorithm calculates the total range-to-go to the landing site if the soft-landing powered

descent solution were to be activated at that moment. This prediction occurs periodically

until the range-to-go reaches zero. At this point, a signal is sent to the algorithm to

activate powered descent at that moment. The optimal flight-time is used as the initial

guess for the powered descent guidance and the propellant consumption is near-optimal

as it is activated at a point that is really close to optimal. The powered descent solution
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uses the pinpoint-landing mode to reach the desired target accurately. Figures 3.3 and 3.4

illustrate the working principle of the adaptive PDI logic as it is activated during the entry

phase.

Figure 3.3. Concept of operations of adaptive powered descent initiation logic.

Figure 3.4. Range to landing site measurement in adaptive powered descent initiation
logic.

With this method, the PDI condition is not simply a trigger, but an actual point

selected by the algorithm to produce a trajectory with optimal propellant consumption.

In Section 4 we demonstrate among other aspects that this adaptive PDI logic works

very well for lunar landing, dramatically increasing the capability of the vehicle to handle
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autonomously dramatic increase of the initial downrange with nearly the same propellant

usage and ensured landing accuracy. The PDI logic is deployed at perilune in the simulations

in Section 4. But the PDI logic could be activated before perilune as well. In such a case

it is expected that the ability of the guidance system to land successfully the vehicle in

the presence of more substantial decrease in the initial downrange will be improved.

3.4 Summary

The contents of Chapter 3 describe di↵erent supporting algorithms that will be

utilized throughout the dissertation. The material provided is not a full reprint, but

the author wishes to acknowledge the primary investigators of the sources cited and the

contribution of their work on the progress and development of this project. The material

on the Fully Numerical Predictor-Corrector Entry Guidance is referenced from Lu, P.,

“Entry guidance: a unified method,” Journal of Guidance, Control, and dynamics, vol. 37,

no. 3, pp. 713–728, 2014. The material on the Fractional-Polynomial Powered Descent

Guidance is referenced from Lu, P., “Theory of fractional-polynomial powered descent

guidance,” Journal of Guidance, Control, and Dynamics, vol. 43, no. 3, pp. 398–409,

2020. The material on the Universal Powered Guidance is Lu, P., “Propellant-optimal

powered descent guidance,” Journal of Guidance, Control, and Dynamics, vol. 41, no.

4, pp. 813–826, 2018. The material on Guidance for Propellant-Optimal Landing of A

Rocket is referenced from Lu, P. and Callan, R., ”Propellant-optimal powered descent

guidance revisited.” Journal of Guidance, Control, and Dynamics, vol. 46, no. 2, pp.

215–230, 2023.
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Chapter 4

Demonstration of Human-Scale Lu-
nar Landing Mission

4.1 Introduction

In this chapter, a recently developed guidance method named the fractional-

polynomial powered descent guidance (FP2DG) is applied for the first time to a crewed

lunar landing mission to the South Pole of the Moon. The FP2DG method inherits the

maturity and flight-proven legacy of the Apollo lunar descent guidance law, yet, o↵ers

much greater flexibility in trajectory shaping and performance trade. For autonomous

operation in a diverse range of situations, the FP2DG law is aided by an on-board powered

descent initiation algorithm to adaptively determine a best timing for engine ignition

based on the actual state of the flight. This guidance approach is reviewed first, then

demonstrated in deterministic and Monte Carlo simulations in the lunar landing mission.

Nominal and parametric studies show and compare the performance of the guidance law

under di↵erent gain values. Furthermore, studies on the importance of an appropriate PDI

condition are shown and compared to cases in which onboard PDI determination is not

active. The robustness, high accuracy and propellant e�ciency of FP2DG are supported
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by deterministic and Monte Carlo simulations. The guidance approach is shown to be

highly robust, accurate, and propellant e�cient.

4.2 Vehicle and Mission

The vehicle and mission data used in this demonstration are the same as those

presented in Table 4.1. Note that unlike in the Apollo 11 mission, the condition in Table 4.1

is called the perilune condition, not the PDI condition, because the PDI condition will be

determined by the adaptive PDI logic in our approach. The adaptive PDI logic is executed

from perilune and on until the PDI condition is determined by the logic. Depending on

the actual condition (particularly downrange), the PDI condition found can be right at

perilune, or at a time after perilune. Together with the PDI point, the initial value of tgo

is also provided by the fuel-optimal soft-landing solution in the PDI logic. In the nominal

case the logic finds the PDI point to be 21 seconds after perilune.

Table 4.1. Initial conditions and vehicle data for lunar landing mission at the South Pole
of the Moon.

Perilune Condition Value

altitude (km) 15.24
longitude (deg) 41.85
latitude (deg) -71.6
inertial velocity (m/s) 1,698.3
inertial topocentric flight path angle (deg) 0.0
inertial topocentric azimuth angle (deg) 180
downrange (km) 559.41
crossrange (km) 0.48
total vehicle mass (kg) 15,103
total fuel mass (kg) 10,624
vehicle dry mass (kg) 4,479

At PDI, the powered descent commences. The FP2DG law with � = 1 and kr = 9
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are used. The powered descent phase ends at an altitude of 20 m above the landing with a

descent rate of 1 m/s. A terminal descent phase of 20 sec follows and the vehicle touches

down at the landing site with a descent rate of 1 m/s. In the terminal descent phase, the

vehicle is guided by the FP2DG law with � = 1 and kr = 6. These parameters are chosen

because they lead to zero total acceleration at the touchdown and the engine throttle is

nearly constant in this terminal descent.

Closed-loop simulations are performed in three-degree-of-freedom mode. The

guidance cycle time is 0.1 sec (at a rate of 10 Hz). Perfect navigation information is

assumed. Therefore, the landing accuracy reported in this paper should be put in the

context that it showcases the capability of the powered descent guidance system should

other uncertainty and dynamic e↵ects are ignored.

4.3 Nominal Lunar Landing Trajectory using the
Fractional-Polynomial Powered Descent Guid-
ance

The nominal descent flight from perilune lasts 701.6 sec, and the powered descent

(including the terminal phase descent) takes 680.2 sec. The propellant usage is 7,152 kg,

significantly below the allotted fuel mass of 8,248 kg. With perfect navigation and no

rotational and engine dynamics considered, the vehicle lands exactly at the South Pole

with the required descent rate.

Figure 4.1 shows the altitude versus ground range along the nominal trajectory. The

insert in the figure depicts the final portion of the trajectory including the terminal/vertical

descent phase. Figure 4.2 gives the nominal engine throttle and thrust acceleration profiles.

62



The nominal throttle profile has su�cient margins on both the up- and down-side. The

e↵ect of sudden reduction in the thrust magnitude caused by switching into the terminal

descent phase is evident in the throttle/acceleration profiles.

Figure 4.1. Nominal planetodetic altitude in lunar powered descent using the
fractional-polynomial powered descent guidance.

Figure 4.2. Nominal engine throttle and thrust acceleration in lunar powered descent
using the fractional-polynomial powered descent guidance.

Assuming that the engine gimbal angle is ignored, the required thrust direction will

specify the body orientation of the vehicle. The body pitch and yaw angle of the vehicle

63



are plotted in Figure 4.3. A final pitch angle of 90 degrees indicates a vertical touchdown

as required. The yaw angle is small, a result of nearly perfectly aligned nominal descent

trajectory. Figure 4.4 illustrates the variations of the thrust angle, the angle between the

thrust vector and the relative velocity vector. A constant 180-deg thrust angle means a

pure gravity turn. It is apparent the FP2DG law-guided descent is not a pure gravity turn,

except for the terminal descent phase which is practically a vertical descent.

Figure 4.3. Nominal vehicle pitch and yaw angles in lunar powered descent using the
fractional-polynomial powered descent guidance.

4.4 Parametric Studies on Thrust Profile and Tra-
jectory Shaping

Studies were performed over the two main parameters of the guidance, kr and �.

For the parametric studies of kr , a constant value � = 1.0 was used while the value of kr

was varied from 6.0 to 12.0. In Figure 4.5, the trajectories defined by 5 di↵erent values of kr

are shown. These trajectories show the uniform pattern created by the selection of di↵erent
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Figure 4.4. Nominal thrust angle profile in lunar powered descent using the
fractional-polynomial powered descent guidance.

values of kr. It was shown in Lu [64] that increasing kr makes the trajectory shallower for a

landing on Mars, the same circumstances apply for a lunar landing. Likewise, the relative

velocity in the trajectory pictured in Figure 4.6 follows a pattern that varies uniformly as

kr increases, with greater values of kr holding slower velocities throughout the trajectory.

Figure 4.5. Parametric studies on kr during lunar powered descent, with � = 1.0, using
fractional-polynomial powered descent guidance: nominal planetodetic altitude vs.

distance to landing site.

In terms of thrust acceleration and throttle, three trajectories are presented in
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Figure 4.6. Parametric studies on kr during lunar powered descent, with � = 1.0, using
fractional-polynomial powered descent guidance: nominal planetodetic altitude vs.

relative velocity.

Figure 4.7 for comparison. All three profiles show similar trajectories but depending on the

value of kr the length of the trajectory varies. For bigger values of kr the total duration of

flight gets longer. Notice that the throttle command has a slight jump at the end signaling

the change to the vertical descent phase.

Figure 4.7. Parametric studies on kr during lunar powered descent, with � = 1.0, using
fractional-polynomial powered descent guidance: thrust acceleration and engine throttle.

Similarly, the e↵ects of � on the trajectory can be found by setting a constant value
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of kr and changing the value of �. For this parametric study, the constant value of kr =

9.0. The nominal trajectories for di↵erent values of � are shown in Figure 4.8. When �

= 1.0, the trajectory becomes the same as the nominal trajectory. From the plot, it can

be gathered that the shape of the trajectory varies but behaves in a way that is easy to

predict. The insert shows that the direct implication of increasing � is that the trajectory

becomes shallower towards the end, similar to the e↵ect of decreasing kr. This goes hand

in hand with the results from Figure 4.9, where is shown that the relative velocity remains

smaller throughout the trajectory for bigger values of �. The trajectory shaping capability

is clear, having the tuning parameter � permits to have more flexibility. One thing to note

is that the parameter � is more sensitive than kr, and the maximum tuning limit depends

on the specific scenario in use. In this case, for a lunar landing, the limiting factor was

found to be � = 3.0.

Figure 4.8. Parametric studies on � during lunar powered descent, with kr = 9.0, using
fractional-polynomial powered descent guidance: nominal planetodetic altitude vs.

distance to landing site.

Figure 4.10 provides the thrust profile and throttle command that would be issued
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Figure 4.9. Parametric studies on � during lunar powered descent, with kr = 9.0, using
fractional-polynomial powered descent guidance: nominal planetodetic altitude vs.

relative velocity.

by the algorithm. The results presented are not uniform, but they follow a specific trend.

This shows just how much can be gained from knowing the e↵ects of tuning the guidance.

Figure 4.10. Parametric studies on � during lunar powered descent, with kr, using
fractional-polynomial powered descent guidance: thrust acceleration and engine throttle.

Ultimately, having a tunable guidance capable of solving the landing problem gives

the user an opportunity to select a desired trajectory by taking into account the trade-o↵

between trajectory shaping and fuel consumption.
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4.5 Onboard Determination of Powered Descent
Initiation Condition

While the adaptive PDI logic first presented in Section 3.3.4 is originally developed

for Mars EDL where the unpowered phase is entry flight (actively guided or otherwise),

nothing in the above described working principle precludes the same algorithm from being

applied to lunar landing, even though the unpowered flight before PDI in lunar landing

is ballistic (orbital). Perhaps the only consideration is that the ballistic trajectory does

not rapid increase in altitude after perilune. This is only precaution (which may not

even be necessary for the PDI algorithm to still work safely), and any reasonable descent

orbit for a crewed lunar landing mission is likely to be one with a small eccentricity. In

this section, it is demonstrated that this adaptive PDI logic works very well for lunar

landing, dramatically increasing the capability of the vehicle to handle autonomously

dramatic increase of the initial downrange with nearly the same propellant usage and

ensured landing accuracy. The PDI logic is deployed at perilune in the simulations, but

the PDI logic could be activated before perilune as well. In such a case it is expected that

the ability of the guidance system to land successfully the vehicle in the presence of more

substantial decrease in the initial downrange will be improved.

Powered descent in all Apollo lunar landing started at perilune. In a significant

o↵-nominal case where perilune occurs much farther from the landing site, PDI at perilune

may not be a good, or even a feasible choice. For instance, if for some unforeseen reason

the perilune in the preceding mission occurs at the equator instead of at a latitude of -71.6

deg, igniting the engine right away would not even come close to landing vehicle at the
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South Pole.

The adaptive PDI logic however would ensure a successful landing by allowing the

vehicle to continue on its ballistic trajectory (the ascending part of the 60 nm× 50,000ft

descent orbit), until an appropriate time to start the powered descent. In this scenario,

the PDI logic will continuously check the condition for PDI while the vehicle is in ballistic

flight. At 1,235 seconds after perilune, the PDI logic determines that this is the time for

PDI. The vehicle lands at the South Pole accurately 845.7 seconds later, with a propellant

usage of 7,375 kg. Figure 4.11 shows the ground track of the trajectory since perilune,

with both the ballistic and powered descent phase in blue and red, respectively.

Figure 4.11. Ground track of the powered descent landing trajectory when perilune is at
the equator and the adaptive PDI logic is active.

Some results of using the PDI logic under di↵erent initial ground ranges is shown

in Table 4.2. The case with lowest propellant consumption is shown in green color. For

the same vehicle, initial conditions and landing site, it is evident that the PDI logic finds
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a particular burn time to be the optimal solution. Increasing the initial ground range

just drives the vehicle to coast for a longer period of time until it reaches the optimal

PDI condition. This can be seen by taking a look at how the PDI increases as the initial

ground increases. On the other hand, decreasing the initial range-to-go makes the PDI

logic realize that it should activate immediately but still tries to find an optimal solution.

Also, since the PDI logic is trying to find the optimal time PDI, the propellant usage stays

close to the value for the nominal trajectory, achieving nearly optimal fuel consumption.

After PDI initiation, FP2DG takes over and lands the vehicle safely on the ground. The

nominal trajectory is shown for comparison as Test Case 3 in Table 4.2.

Table 4.2. Comparison of nominal lunar powered descent mission at di↵erent initial
ground ranges when adaptive PDI logic is active.

Test Case Initial Ground PDI Time (s) Burn Time (s) Propellant
Range (km) Usage (kg)

1 1015 293.8 607.9 6945
2 863 202.8 607.7 6941
3 559 21.4 607.4 6935
4 498 0.0 607.4 6970
5 437 0.0 607.4 7087

To show the importance of the PDI logic, a comparison of a lunar landing attempt

with di↵erent initial ground ranges is summarized in Table 4.3 with Test Case D as the

nominal trajectory. The case with lowest propellant consumption is shown in green color

and a failed case is shown in red. Notice that all PDI Time is 0 because powered descent

starts right away and also the burn time is a fixed 720 seconds. In this test, the PDI logic

was not active, instead PDI was activated right away with a fixed initial time-to-go of 720

seconds (the flight time of Apollo 11). It was revealed that beyond 832 km, the algorithm
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without PDI logic would fail at landing successfully. This is caused by the vehicle being

extremely far and the guidance not being able to reach the landing location. Furthermore,

if the ground range is increased or decreased, the fuel consumed starts to increase as well.

Table 4.3. Comparison of nominal lunar powered descent mission at di↵erent initial
ground ranges when adaptive PDI logic is inactive.

Test Case Initial Ground PDI Time (s) Burn Time (s) Propellant
Range (km) Usage (kg)

A 832 0.0 720.0 Failed
B 711 0.0 720.0 7918
C 620 0.0 720.0 7067
D 559 0.0 720.0 7168
E 498 0.0 720.0 7291
F 437 0.0 720.0 7536

The inclusion of the PDI logic can be the di↵erence between the success or failure

of a mission. From Table 4.2, it can be seen that the PDI logic adapts very easily to the

conditions and tries to find an optimal solution regardless of the PDI time, with propellant

used being nearly optimal. From Table 4.3, it is clear that a time-to-go trigger is not a

good metric for PDI and that it only works for a specific set of conditions. Moreover, if

the fuel consumption between Tables 4.2 and 4.3 (PDI active/not active) is compared, not

having onboard PDI determination always requires a greater amount of fuel for the same

conditions. The lower propellant consumption comes from the time-to-go prediction being

near-optimal. Dispersed PDI conditions suggest that not a single PDI condition satisfies

all possible scenarios.
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4.6 Stress Tests on Individual-Parameter Disper-
sions in Perilune Condition

Here we disperse each initial state variable at the perilune one at a time, to the

maximum on both the plus and minus sides, until either (1) the landing condition can no

longer be met; or (2) the propellant mass has been depleted. This test helps establish the

single-parameter dispersion limits on the perilune state variables and gain an understanding

on the performance range of the FP2DG guidance law.

Table 4.4. Monte Carlo dispersions in lunar powered descent: allowable single-parameter
ranges.

PDI State Min Dispersion Max Dispersion Notes

Altitude (km) -14.5 60.0
Limited by landing

accuracy

Flight Path
Angle (deg)

-6.0 5.0
Limited by landing
accuracy or ground

clearance

Downrange (km) -120.0 Not Limited

Adaptive PDI allows
the downrange to be

increased by any value,
given the 100x16 km

deorbit ellipse

Crossrange (km) -240.0 240
Limited by max

fuel usage of 8248 kg

Velocity (m/s) -400.0 180.0
Limited by landing

accuracy
Engine thrust
magnitude (%)

-7.0% +50.0%
Limited by landing

accuracy

The last row in Table 4.4 reveals that the guidance law is extremely robust with

respect to positive thrust dispersions, that is, the actual engine thrust can be 50% higher

than the value the guidance solution uses, and the vehicle can still land accurately. Note

that thrust dispersions also create mass flow rate dispersions because the mass flow rate
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is proportional to the thrust magnitude. The tolerance on negative thrust dispersions

(when the actual thrust is lower than the modeled value) is much smaller (yet still at a

respectable level of 7%). This finding suggests that, if necessary, the maximum thrust

value used in the guidance law may be biased (reduced) from the nominal value. This bias

will e↵ectively cause the actual engine thrust level to be positive dispersion to the engine

model in the guidance law (unless the actual thrust is much lower than nominal value).

This way the guidance would be able to accommodate significant engine dispersions in the

minus direction as well.

An elaboration on the “not limited” the maximum dispersion of perilune downrange

is in order. As Figure 4.5 vividly illustrates, any increase of initial downrange is simply

accommodated by the adaptive PDI logic. Therefore, the upside of initial downrange is

not limited by either propellant usage limit or landing accuracy. On the other hand, if

PDI must occur at the initial time, the maximum downrange increase is limited by 220

km in this case.

Figure 4.12 demonstrates the ground tracks of 3 di↵erent landing trajectories,

all starting at the equator (a dispersion of initial downrange of 2,160 km). Two of the

trajectories have about the largest initial crossrange dispersions (on both positive and

negative sides). The adaptive PDI logic and FP2DG law guide the vehicle for a successful

landing at the South Pole in all 3 cases.
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Figure 4.12. Ground tracks of three di↵erent powered descent landing trajectories when
perilune is at the equator and the adaptive PDI logic is active.

4.7 Robustness Examination using Monte Carlo
Simulation

Monte Carlo simulations provide a means to assess the combined e↵ects of the

dispersions and modeling uncertainty. Table 4.5 lists the dispersions and uncertainty used

in the Monte Carlo simulations reported in this paper. As often employed in Monte Carlo

simulations, the notion of the factor of safety (FOS) will be used later where FOS is a

positive scaling factor of no smaller than unity that multiplies the nominal dispersions

to generate the actual dispersions used in the Monte Carlo simulations. The dispersions

in Table 4.5 are for FOS = 1.0. The perilune state dispersions are again known to the

guidance system because of the assumption of perfect navigation system. The uncertainty

in initial vehicle mass and thrust magnitude however is unknown to the guidance system.

It should be pointed out that the sizes of the dispersions and uncertainty in Table 4.5
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are very large, with most of them 3 - 10 times the orders of magnitude of the dispersions

commonly expected. They are not chosen not to imitate any particular realism, but to

stress the guidance system.

Table 4.5. Dispersions and uncertainty values of 3000 lunar powered descent Monte
Carlo simulation runs with a factor of safety = 1.0.

Dispersion/Uncertainty Distribution 3�-Value

Perilune altitude (m) Zero-mean Gaussian 1000.0
Perilune longitude (deg) Zero-mean Gaussian 2.0
Perilune planetodetic latitude (deg) Zero-mean Gaussian 2.0
Perilune inertial velocity (m/s) Zero-mean Gaussian 10.0
Perilune inertial flight path angle (deg) Zero-mean Gaussian 0.5
Perilune inertial azimuth (deg) Zero-mean Gaussian 10.0
Initial vehicle mass (%) Zero-mean Gaussian 2.0
Engine thrust (%) Zero-mean Gaussian 1.0

The results reported in this paper are from a total of 3000 dispersed closed-loop

simulations for each value of the FOS. Table 4.6 summarizes the statistics on the touchdown

condition and propellant usage for FOS = 1.0. The vehicle lands accurately in all cases

with the final velocity very close to the specified velocity of 1.0 m/s. There is no horizontal

velocity at touchdown because the flight path angle is practically -90 degree in all cases.

With a 90 deg final pitch angle, the vehicle’s final attitude is vertical as desired. The

maximum propellant usage is 7,690 kg, still significantly below the total propellant mass

of 8,248 kg. The adaptive PDI logic determines the powered descent duration (the initial

value of tgo), and this is why the powered descent durations are not identical. But the

variations are within 5 seconds between the shortest and longest duration.

The adaptive PDI logic finds a PDI time for each of the 3000 dispersed trajectories,

depending on the actual trajectory state. Figure 4.13 shows the distribution of the PDI
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Table 4.6. Statistics of 3000 lunar powered descent Monte Carlo simulation runs with a
factor of safety = 1.0.

Parameters Mean
Standard
Deviation

Minimum Maximum

Touchdown Miss (m) 3.54E-05 1.91E-05 7.65E-06 7.87E-04
Touchdown Velocity (m/s) 9.92E-01 2.36E-02 8.98E-01 1.06E+00
Touchdown Flight Path
Angle (deg) -9.00E+01 1.14E-02 -9.00E+01 -8.96E+01
Touchdown Pitch Angle (deg) 8.99E+01 4.29E-02 8.81E+01 9.00E+01
Propellant usage (kg) 7.18E+03 6.94E+01 7.11E+03 7.69E+03
Duration of Powered Descent (s) 6.80E+02 7.38E-01 6.78E+02 6.83E+02

time since perilune. The best PDI times for the dispersed trajectories were as early as

right at the perilune, and as late as 60 seconds after perilune. The ground ranges to

the landing site and altitudes at the PDI for the dispersed trajectories are plotted in

Figure 4.14. Due to the large dispersions in Table 4.5, the PDI ground ranges and altitudes

had also substantial dispersions as the adaptive PDI logic worked on each trajectory. The

crossranges at PDI with respect to the landing site can be more than 100 km as seen in

Figure 4.15, which indicates that some of the powered descent trajectories were very much

3-dimensional, and the guidance system has the ability to do significant crossrange divert.

Finally, the spread of PDI velocities versus altitudes are given in Figure 4.16.

Next, the FOS value is increased to stress further the guidance system to the

point where the performance begins to degrade, or the propellant usage exceeds the total

propellant mass. A value of FOS = 1.5 (i. e., 50% larger dispersions than those listed

in Table 4.5) proved to be the limit. To give a more direct idea on the dispersions for

FOS = 1.5, Table 4.7 provides the actual statistics of the dispersions (not the parameters

themselves) that happened in the simulations. In particular, it shows that the very
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Figure 4.13. Powered descent initiation times of 3000 lunar powered descent Monte
Carlo simulation runs with a factor of safety = 1.0.

Figure 4.14. Planetodetic height and ground range at powered descent initiation for
3000 lunar powered descent Monte Carlo simulation runs with a factor of safety = 1.0.

significant maximum sizes of the dispersions. These perilune dispersions will necessarily

cause PDI condition dispersions. Figures 4.17 and 4.18 show for instance that the PDI

ground range and crossrange had even wider spread than in Figures 4.14 and 4.15. The

spread of the PDI times since perilune among the 3000 dispersed trajectory is depicted in

Figure 4.19. In contrast to Figure 4.13, almost 3 times more cases started the PDI right at
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Figure 4.15. Crossrange at powered descent initiation for 3000 lunar powered descent
Monte Carlo simulation runs with a factor of safety = 1.0.

Figure 4.16. Planetodetic height and relative velocity at powered descent initiation for
3000 lunar powered descent Monte Carlo simulation runs with a factor of safety = 1.0.

perilune (where the time since perilune is zero). This is a consequence of the 50% larger

dispersions in the perilune ground range in the minus direction (shorter ground ranges)

than with FOS = 1.0. As the perilune location moves closer to the landing site, the PDI

would have to occur right away in order to still landing at the same designated site.
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Table 4.7. Statistics of 3000 lunar powered descent Monte Carlo simulation runs with a
factor of safety = 1.5.

Parameters Mean
Standard
Deviation

Minimum Maximum

Touchdown Miss (m) 4.24E-05 8.57E-05 7.86E-06 1.40E-00
Touchdown Velocity (m/s) 9.92E-01 3.55E-02 8.46E-01 1.10E+00
Touchdown Flight Path
Angle (deg) -9.00E+01 5.98E-02 -9.00E+01 -8.91E+01
Touchdown Pitch Angle (deg) 8.99E+01 2.65E-00 8.59E+01 9.00E+01
Propellant usage (kg) 7.22E+03 1.23E+02 7.10E+03 8.23E+03
Duration of Powered Descent (s) 6.80E+02 1.11E+00 6.77E+02 6.84E+02

Figure 4.17. Planetodetic height and ground range at powered descent initiation for
3000 lunar powered descent Monte Carlo simulation runs with a factor of safety = 1.5.

Figure 4.18. Crossrange at powered descent initiation for 3000 lunar powered Descent
Monte Carlo Simulation Runs with a Factor of Safety = 1.5.
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Figure 4.19. Powered descent initiation times of 3000 lunar powered descent Monte
Carlo simulation runs with a factor of safety = 1.5.

4.8 Summary

In this section, the powered descent guidance method called FP2DG is applied to a

lunar landing mission for the first time, o↵ering a wide range of flexibility in trajectory

shaping and fuel consumption. Nominal and parametric studies demonstrate the uniform

behavior of the algorithm when di↵erent tuning parameters are applied. Through the

employment of an adaptive PDI logic developed for Mars missions, it was proven that the

logic remains applicable for lunar landing. The inclusion of the PDI logic demonstrates

the importance of selecting an appropriate PDI condition in the success of a mission and

prove that nearly optimal fuel consumption can be achieved by selecting an appropriate

PDI point. Furthermore, unlike APDG or E-Guidance, it was revealed that without

additional requirements on trajectory shaping, a single phase for the entire powered

descent is su�cient. FP2DG was tested with deterministic and Monte Carlo simulations,

demonstrating the high accuracy, robustness, and fuel performance for crewed lunar

landing.
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Chapter 4, in full, is a reprint of the material as it appears in Powered Descent

Guidance for a Crewed Lunar Landing Mission, 2020. Sandoval, Sergio; Lu, Ping. The

dissertation author was the primary investigator and author of this paper.
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Chapter 5

Abort Guidance during Lunar Pow-
ered Descent

5.1 Introduction

In a crewed space mission the ability to abort throughout all the mission phases has

been an important requirement since the Apollo program [79]. For a crewed lunar landing

mission a particularly challenging phase for abort is in powered descent. In powered

descent the abort would be for the lander to stop descent, turn around, and ascend into

a pericynthion orbit clear of any mountains on the Moon, and then rendezvous with

the rescue spacecraft [79, 80]. It is particularly challenging because abort in this phase

necessitates aggressive maneuvers that in most cases must reverse the direction of the

vertical motion before the abort, and insertion into the specified orbit must be reliably

achieved from a wide range of possible initial conditions that are likely far from a typical

initial condition for ascent flight.

In a crewed space mission the ability to abort throughout all the mission phases has

been an important requirement since the Apollo program [79]. For a crewed lunar landing

mission a particularly challenging phase for abort is in powered descent. In powered
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descent the abort would be for the lander to stop descent, turn around, and ascend into

a pericynthion orbit clear of any mountains on the Moon, and then rendezvous with

the rescue spacecraft [79, 80]. It is particularly challenging because abort in this phase

necessitates aggressive maneuvers that in most cases must reverse the direction of the

vertical motion before the abort, and insertion into the specified orbit must be reliably

achieved from a wide range of possible initial conditions that are likely far from a typical

initial condition for ascent flight.

A problem that has not been considered for some years has been uncovered as

part of this investigation. The reason for this is that if a completely automatic and

reliable guidance is desired, it should encompass every aspect of the mission, including an

emergency. In this section, the first fully automatic abort guidance sequence for a lunar

landing mission is presented. This approach is not only relevant for being the first fully

autonomous guidance sequence, but also obtains a solution that is fuel-optimal from the

beginning to the end of powered descent.

5.2 Guidance Problem

In a Cartesian coordinate system with the origin at the center of the Moon, the

three-dimensional point-mass equations of motion for a rocket-powered vehicle can be

written as:
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ṙ = V (5.1)

V̇ = g(r) +
T

m(t)
1T (t) (5.2)

ṁ = � T

vex
(5.3)

0  T (t)  Tmax (5.4)

The rocket engine thrust has a magnitude T and 1T is the unit vector that defines

the thrust direction. The direction of 1T generally changes with time, and T is allowed

to vary as well, subject to the prescribed upper bound limit Tmax. The e↵ective exhaust

velocity of the rocket engine vex is considered a constant. The vectors r 2 R3 and V 2 R3

are the position and velocity vector of the vehicle with the current mass m. To capture

the e↵ects of the changing direction of the gravitational force in problems with relatively

long flight distances, a central gravitational acceleration model g = �µr/R3
0 is used where

µ is the gravitational parameter of the Moon, and R0 is the equatorial radius of the Moon.

Clearly this is an approximation to the Newtonian gravity g = �µr/krk3. The powered

guidance problem is to determine 1T , T and the burn time to meet the required targeting

condition and optimized a performance index when applicable.

5.3 Nominal Crewed Lunar Landing Mission

In an abort scenario, the first instinct is to start the ascent towards a safe orbit

immediately, regardless of the current state of the vehicle. This belief stems from the
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idea that an instantaneous evacuation of the vehicle is necessary to keep astronauts safe.

However, it is important to recognize that the conditions of the vehicle during powered

descent can render starting the abort ascent immediately a potentially risky proposition,

especially late in descent, where the danger of colliding with the ground exists. we will

demonstrate such possibilities through investigation in this paper.

To ensure safe and fuel-e�cient abort, an automated two-phase powered-descent-

abort guidance strategy is developed in this work [90]. The first phase is a pull-up phase

where the vehicle maneuvers to stop descending and achieve a initial favorable state for

ascent that assures ground clearance during ascent. The second phase is fuel-optimal ascent

into the specified orbit. This guidance strategy and the target pericynthion orbit remain

the same for abort throughout the entire powered descent trajectory, greatly simplifying

the implementation and guidance logic. Figure 5.1 illustrates the concept of operations for

this powered-descent-abort strategy.

The fuel-optimal guidance is performed by the algorithm in Lu [103], dubbed

Universal Powered Guidance for Ascent (UPG+A). It is an indirect-method based algorithm

that solves the 3-dimensional fuel-optimal ascent problem quickly and reliably. To allow

flexibility in the orbital insertion point of the abort ascent, depending on the condition

of abort along the powered descent trajectory, the deployed orbital insertion constraints

only specify the shape, size and orientation of the pericynthion orbit, but not the actual

insertion point into the orbit (sometimes known as “free-attachment-point”). This freedom

however produces a phenomenon that there may be two local optimal solutions for the

fuel-optimal ascent problem [108]. In this work this issue is carefully investigated to
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provide a clear understanding that the abort ascent trajectory by the proposed guidance

strategy is always safe and satisfies accurately the orbital insertion requirements.

Figure 5.1. Concept of operations for two-phase abort strategy during lunar powered
descent.

In the rest of this investigation, the abort guidance problem during powered descent

is formulated; the two-phase abort guidance strategy is supported by the development of

fuel-e�cient pull-up guidance laws, and introduction of the fuel-optimal ascent guidance

algorithm. The fuel-optimal ascent solution is carefully analyzed to gain a full under-

standing, and its validity is verified by an independent direct-method. End-to-end Monte

Carlo simulations for abort throughout the powered descent trajectory for a lunar landing

mission at the South Pole of the Moon are provided to demonstrate the robustness and

e↵ectiveness of the guidance approach.

The vehicle and mission are the same as described in Section 4. For this section,

the descent propulsion system (DPS) is assumed to be healthy and available for an abort.

The guidance abort approach described in this paper however is also applicable to an abort

with only the ascent stage as well. The combined fuel in the descent and ascent stages is

assumed to be available for abort in assessing abort feasibility. The descent stage engine of
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the LM has a maximum thrust of 45,000 N and a specific impulse of 311 sec. The descent

condition starts at the perilune of a 60 nm x 50,000 ft descent orbit [78]. The complete

set of initial conditions are given in Table 4.1 [109]. All the 3DOF simulation results in

this section are obtained by closed-loop simulations where the guidance commands are

updated at a rate of 2 Hz. The Moon is modeled as an ellipsoid and self-rotation of the

Moon is considered. Perfect navigation information is assumed. Figure 5.2 shows the

ground track of the landing trajectory from the perilune of the descent orbit to touchdown

at the South Pole.

Figure 5.2. Nominal ground track for landing at the south pole of the Moon.

r̄0 = V̄ (5.5)

V̄
0
= � 1

kr̄k3 r̄ +
T

m(t)g0
1T (t) (5.6)

where the prime represents the di↵erentiation with respect to the dimensionless
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time ⌧ = t/tscale, r̄ = r/rscale and V̄ = V /Vscale.

5.4 Direct-Abort Guidance Approach

When it becomes necessarily to abort the landing mission, the lander is to fly

into a 10 km ⇥ 150 km pericynthion orbit at an inclination of 90 deg. The perilune

altitude of 10 km of this orbit will clear o↵ any mountains on the Moon [80]. The apolune

altitude and inclination may be determined by the phasing and rendezvous considerations

with respect to the Command Module after the abort. In an abort scenario, the thrust

magnitude T is always at full throttle, T (t) = Tmax. Hence, the only control available is

the thrust direction vector 1T (t), changing with time. In this section we briefly investigate

the viability of the strategy of immediately commanding ascent to the target pericynthion

orbit from the powered descent trajectory by an optimal guidance algorithm, as soon as

abort is commenced.

Figure 5.3. Two abort cases along the lunar powered descent trajectory: abort at 300
seconds since powered descent initiation (PDI), and 610 sec since PDI.
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Figure 5.4. Flight path angle along a complete lunar descent trajectory that initiated
abort at 610 seconds since powered descent initiation.

Figure 5.5. Thrust acceleration aT and mass along a complete lunar descent trajectory
that initiated abort at 610 seconds since powered descent initiation.

Figure 5.6. Pitch angle along two ascent trajectories from lunar abort at 300 and 610
seconds since powered descent initiation.
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5.5 Abort Guidance Problem

The abort guidance problem is separated in two phases: a pull-up maneuver and

an optimal ascent guidance phase. The pull-up maneuver is necessary to position the

vehicle in a suitable direction to start optimal ascent. This is accomplished by the rapid

change of a negative descent flight path angle towards a positive flight path angle ready

for ascent. The fastest way to achieve these changes is by pointing the thrust vector in

a direction perpendicular to the velocity vector of the vehicle. Three di↵erent guidance

laws were developed in to complete this maneuver. The complete derivation of the pull-up

maneuver can be found on Lu [90]. In this paper, a general ascent guidance problem is

solved. The three-dimensional equations of motion for a vehicle with rocket propulsion

defined as a point-mass system in a Cartesian coordinate system are defined as follows:

ṙ = V (5.7)

V̇ = g(r) +
T

m(t)
1T (5.8)

ṁ = � T

g0Isp
= � T

vex
(5.9)

The origin of the equations is at the center of the Moon. The equations describe the

dynamics of the rocket as it moves around the Moon with r 2 R3 and V 2 R3 specifying

the position and velocity, respectively.
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In an abort scenario, the thrust magnitude T is always at full throttle, T (t) = Tmax.

Hence, the only control variable available is the thrust direction 1T (t), changing with time.

For a small variation of the radius, as it is the case in the ascent problem, the following

formulation for the gravitational acceleration of g can be applied [110]:

g(r) = � µ

r3
r (5.10)

The performance index is selected to minimize the propellant consumption of the

vehicle at full throttle:

J =

Z
tf

t0

�Tmax

vex
dt = m(tf )�m(t0) (5.11)

Where Tmax is the constant maximum thrust of the rocket required to escape as

fast as possible during an emergency and vex is the escape velocity of the rocket on Earth.

This is equivalent to minimizing the propellant consumption during ascent.

A total of 7 algebraic equations are solved simultaneously by UPG+A to solve the

ascent guidance problem. These equations represent the orbital insertion conditions for the

final orbit and the corresponding reduced transversality conditions [111]. The following 3

equations specify the semi-major axis, eccentricity, and orbital inclination at the engine

cut-o↵ time tf (which is free):

(rf ⇥ V f )
T (rf ⇥ V f )� µa⇤(1� e⇤2) = 0 (5.12)
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V 2
f

2
� µ

rf

+
µ

2a⇤
= 0 (5.13)

1T

z
(rf ⇥ V f )� |rf ⇥ V f | cos i⇤ = 0 (5.14)

The final altitude and velocity vectors to be found by the optimization algorithm

are represented by rf and Vf , with their norms rf = ||rf || and V f = ||V f ||, respectively.

The prescribed values of semi-major axis, eccentricity, and inclination for the final orbit

are defined by a⇤, e⇤ 6= 0, and i⇤ 6= 0. The vector 1z is unit vector parallel to the polar

axis of the Moon pointing towards the North. The orbital conditions selected correspond

to a free-attachment-point case, where the final position and velocity of the spacecraft

is not specified. It is the duty of the algorithm to find the best position and velocity for

orbital insertion.

The 3 transversality conditions required to solve the indirect-method problem

are related to the 3 free orbital elements of the problem that are argument of perilune,

longitude of the ascending node and true anomaly at the insertion point [111]:

(p
rf
⇥ rf + p

Vf
⇥ V f )

T (rf ⇥ V f ) = 0 (5.15)

(p
rf
⇥ rf + p

Vf
⇥ V f )

T1z = 0 (5.16)
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pT

rf
V f �

µ

r3
f

pT

Vf
rf = 0 (5.17)

In these equations, the costate vectors for radius and velocity at the final time tf in

the optimal ascent problem are p
rf

and p
Vf
. A final transversality condition at tf related

to the Hamiltonian for free-time optimal control problems completes the set of 7 algebraic

equations that UPG+A needs to solve [111]:

pT

rf
V f � µpT

Vf
rf + Tmax

||p
Vf
||

m(tf )
� 1 = 0 (5.18)

The complete set of equations to solve the optimal ascent problem with the indirect-

method of optimal control are (5.12) - (5.18). Solving the problem with the direct-method

of optimal control only requires the orbital insertion conditions given by equations (5.12)-

(5.14).

It is important to recognize that the equations shown above are in dimensional form.

In numerical optimization, scaling optimization variables appropriately contributes to the

e�ciency of the algorithm [112]. Variables with similar orders of magnitude result in faster

convergence. In this investigation, scaling played an important role in the implementation

the ascent problem using the direct-method of optimal control, where the algorithm

takes longer to converge. Besides longer simulation time, incorrect scaling also caused

convergence issues in some cases. One way to accomplish this is by nondimensionalizing

the equations required to solve the optimal ascent problem. A common approach is to

normalize the distance by the equatorial radius of the planet, velocity by
p
g0Req, and
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time with
p

Req/g0 [103]. The complete set of normalized equations can be found on

Lu [103].

5.5.1 Optimal Ascent Guidance

Ascent guidance in this paper is accomplished by the the UPG+A algorithm [103].

In this subsection UPG+A is briefly reviewed. The reader is referred to Lu [103] and

Lu [22] for algorithmic details. UPG+A solves the optimal control problem subject to

the dynamics in Equations (5.1)–(5.3) and with a performance index of minimizing the

propellant consumption

J =

Z
tf

t0

[�T (t)/vex] dt = m(tf )�m(t0) (5.19)

where t0 is the time when the ascent phase starts, and tf is free. Since the

thrust T is fixed at the maximum value, the propellant-optimal problem is the same as

the time-optimal problem. While UPG+A allows any combinations of orbital insertion

conditions, the final constraints for the optimal abort-ascent problem are the orbital

insertion conditions into the target abort orbit specified by the given semi-major axis

a⇤, eccentricity e⇤ 6= 0, and orbital inclination i⇤ 6= 0. In terms of the final radius and

velocity vectors rf = r(tf ) and V f = V (tf ) at the engine cut-o↵ time tf , these terminal

constraints may be expressed in the following form:
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(rf ⇥ V f )
T (rf ⇥ V f )� µa⇤(1� e⇤2) = 0 (5.20)

V 2
f
/2� µ/rf + µ/2a⇤ = 0 (5.21)

1T

z
(rf ⇥ V f )� krf ⇥ V fk cos i⇤ = 0 (5.22)

where rf = krfk, Vf = kV fk, and 1z is a unit vector parallel to the polar axis of

the Moon (pointing to the North). Note that the insertion point into the specified orbit is

not specified (not at a particular point of the orbit, e.g., the perilune), but is left for the

guidance algorithm to optimize. This is a so-called free-attachment point case. Not limiting

the orbital insertion to occur at a particular point leaves much welcomed flexibility for

the ascent trajectory in the already highly stressful situation in a powered-descent-abort.

Depending on when abort happens during powered descent, the freedom to insert into the

specified orbit at a most suitable point for the case is important, as will be seen later.

Among the 6 classical orbital elements, the 3 that are free in this case are the

argument of perilune, longitude of the ascending node, and true anomaly at insertion. The

corresponding reduced transversality conditions are then [113]:

(p
rf
⇥ rf + p

Vf
⇥ V f )

T (rf ⇥ V f ) = 0 (5.23)

(p
rf
⇥ rf + p

Vf
⇥ V f )

T1z = 0 (5.24)

pT

rf
V f �

µ

r3
f

pT

Vf
rf = 0 (5.25)
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where p
Vf

and p
rf

are the velocity and radius costate vectors at the final time tf

in the optimal ascent problem [22]. The last condition is from the transversality condition

on the Hamiltonian at tf for free-time optimal control problems [103]:

pT

rf
V f � µpT

Vf
rf + TmaxkpVf

k/m(tf )� 1 = 0 (5.26)

In UPG+A, the costate vectors p
r
(t) and p

V
(t) have closed-form solutions as

functions of time t and the initial costate p
r0

and p
V0
. With given initial state at t0

and a piecewise-constant thrust profile (in this case it is all constant) the solution to

the state equations can also be approximated by numerical quadratures in closed form

as the functions of p
r0

and p
V0
. See References [103] and [22] for detail. The solution

to the optimal ascent problem is then determined by the 7 unknowns p
r0
, p

V0
and tf .

Equations (5.20)–(5.26) constitute the 7 constraints that must be satisfied by the 7

unknowns. UPG+A solves this zero-finding problem problem quickly and reliably. The

solution provides the optimal command for 1T (t) at the current time t as

1T (t) = p
V
(t)/kp

V
(t)k (5.27)

In the next guidance cycle, the problem is resolved with the actual trajectory

state at the time as the initial condition, and the updated command for 1T and the

time-to-insertion are obtained. In this way, closed-loop ascent guidance is e↵ectively

97



achieved by UPG+A. The orbital insertion conditions are typically attained with high

accuracy by the guidance (thus there is no need for targeting error budget for guidance).

It should be noted that even though UPG+A is used for descent-abort guidance in

this paper, the same algorithm/software is well suited for nominal lunar ascent. Hence no

added cost or software complexity would incur associated with using the same software

for abort guidance if it is already implemented for lunar ascent. Furthermore, since the

algorithm is model based, the same software/program would be used regardless of whether

the abort is performed with the descent-stage engine or ascent stage engine.

5.5.2 Direct-Abort Solutions

During the powered descent, at any particular instant when abort is commenced,

UPG+A is deployed immediately to guide the lander to ascent to the target orbit. In

Figure 5.7 a number of closed-loop guided ascent trajectories are plotted that correspond

to abort at di↵erent times after PDI which signifies the start of the powered descent.

These abort instants are at a 100-sec increment after PDI until 600 sec after PDI. Notice

that the ascent trajectories until around 300 seconds after PDI insert into the target orbit

at a higher altitude than the perilune altitude (about 12 km in geodetic altitude). This

is a manifestation of the fact that UPG+A finds the optimal insertion altitude to take

advantage of free-attachment-point in the orbital insertion conditions. After 300 sec since

PDI, the abort ascent trajectories all enter the target orbit at the perilune, again optimal

in these cases.

To show the validity of the solutions by UPG+A, the optimal ascent trajectories

from the closed-loop simulations guided by UPG+A are verified by an independent software
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named OpenMDAO [114]. OpenMDAO is an open-source optimization framework and a

platform to building new analysis tools for faster, more stable design optimization with

tight integration of high-fidelity analyses into system level models. A functionality of

OpenMDAO is to solve the trajectory optimization problem by the direct-method.

The same abort-ascent problems at di↵erent times since PDI are also solved by

OpenMDAO to minimize the fuel consumption (or equivalently, the flight time). Plotted

in Figure 5.7 in green dashed line are also the ascent trajectories obtained by OpenMDAO.

In all but one case the trajectories are practically the same in the scale of the figure. The

only case where some relative small di↵erences are visible is the case of abort at 600 sec

since PDI. This is the latest abort among all the cases (and the most challenging one).

Still, considering that the UPG+A trajectory is the result of closed-loop simulation, and

the solution by OpenMDAO is an open-loop trajectory, the di↵erences are quite reasonable.

Table 5.1 compares the propellant consumption between the two groups of the trajectories.

The di↵erences are in the range of 0.1%� 1.7%. Again, these small discrepancies can be

attributed predominantly to the di↵erences between the closed-loop simulated trajectories

under UPG+A and open-loop solutions from OpenMDAO.

Table 5.1. Propellant consumption comparison between UPG+A closed-loop solutions
and OpenMDAO open-loop solutions.

Abort Time since PDI (sec) Propellant Consumption (kg)
UPG+A guided OpenMDAO

100 808.58 823.21
200 1709.74 1723.94
300 2546.47 2556.99
400 3224.36 3234.16
500 3619.76 3623.54
600 3665.82 3681.30
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Figure 5.7. Abort trajectories during lunar powered descent from closed-loop
simulations guided by UPG+A and open-loop solutions from OpenMDAO.

So far the tests seem to suggest that direct-abort is viable. But a closer examination

of the ascent trajectories in late abort cases reveals a critical issue: the ascent trajectories

in some late abort cases risk to collide with the lunar surface before ascending to the orbit.

This problem can get significantly worse if abort takes place further late into the powered

descent. Figure 5.9 zooms in the final portion of the powered descent phase and illustrates

several direct-abort trajectories from 580 sec to 620 sec since PDI. It can be seen that

some of the abort-ascent trajectories indeed intersect the ground.

To eliminate the risk of colliding with the lunar surface in abort, a ground clearance

constraint may be imposed in UPG+A. But this will significantly complicates the algorithm

and adversely a↵ect the robustness of the algorithm. A simpler, fail safe, and propellant-

e�cient strategy is necessary to pull the lander out of descent and enable fuel-optimal

ascent into the target orbit. Such a necessity motivates the two-phase guidance strategy

developed in the next section.
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Figure 5.8. Late Abort Solutions using direct abort.

Figure 5.9. Single-phase (direct) abort solutions for late abort cases during lunar
powered descent.

5.6 Two-Phase Abort Guidance Strategy

To ensure a safe and propellant e�cient abort trajectory once abort is commanded

during lunar powered descent, a two-phase abort strategy is proposed. The abort problem

is separated in two phases: a pull-up maneuver and an optimal ascent guidance phase.

The pull-up maneuver is an additional segment of abort used to rotate the initial velocity

vector and position the vehicle in a suitable direction to start optimal ascent. This is

accomplished by the rapid change of a negative descent flight path angle towards a positive

flight path angle ready for ascent. After the completion of the pull-up maneuver, the

optimal ascent guidance (UPG+A) steers the vehicle from the end condition of the pull-up

phase to the insertion into the abort orbit.

5.6.1 Pull-Up Guidance Laws

The pull-up maneuver is intended to turn around the velocity vector of the vehicle

quickly during powered descent in preparation for ascent into a safe pericynthion orbit.
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Thus the pull up is characterized by the change of the flight path angle from a negative

value during descent to a positive targeted value at the end of the pull-up phase. The

guidance strategy for this phase should focus on changing the direction of the velocity

vector from a negative flight path angle during descent to a positive targeted value without

significantly changing the velocity magnitude. The requirement on not causing large

changes in the velocity magnitude is important because a way to change (increase) the

flight path angle quickly is to reduce the velocity, which makes changing the direction of

the velocity vector easier. But a lower velocity after the pull-up means more propellant

is needed to increase the velocity for orbital insertion. On the other hand the velocity

magnitude should not be increased significantly either in the pull up phase because the

direction of a velocity vector with a larger magnitude is more di�cult to change. Therefore,

objectives of the pull-up guidance are

1. Increase the flight path angle quickly from its initial (likely negative) value to a

specified positive value in getting ready for ascent into the orbit

2. Cause little or no change in the magnitude of the velocity

The derivations of the following guidance laws are motivated by these two objectives.

The engine thrust is always at full throttle for all the cases. The guidance laws will then

determine the direction of the thrust vector.

Pull-Up Guidance Law I

In this case the direction of the thrust vector is pointed upward in the vertical plane

(the plane formed by the position vector r and velocity vector V ) and is perpendicularly

102



Figure 5.10. Determination of the thrust acceleration vector aT for pull-up maneuver:
(a) aT is perpendicular to the velocity vector V .; (b) a = g + aT is perpendicular to V .;

(c) a↵ = ↵g + aT is perpendicular to V .

to V . See Figure 5.10(a). In this case where the full thrust vector is applied to change

the direction of V .

Define the unit vectors

1r = r/krk, 1h = r ⇥ V /kr ⇥ V k, 1H = 1h ⇥ 1r (5.28)

where 1H is the unit vector that defines the local horizontal direction in the vertical plane

(see Figure 5.10). Let � be the flight path angle. Then the unit vector perpendicular to V

and pointing upward is (cf. Figure 5.10)

1N = cos �1r � sin �1H (5.29)

The unit vector that defines the direction of the commanded thrust acceleration vector aT

then is given by the guidance law

1T = 1N = cos �1r � sin �1H (5.30)
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The magnitude of aT is Tmax/m(t) at the current time t.

Pull-Up Guidance Law II

The direction of aT is chosen so that the total acceleration vector a = g + aT ,

where aT = (Tmax/m)1T , is perpendicular to V and pointing upward, as illustrated

by Figure 5.10(b). The application of the law of cosines to the triangle formed by the

acceleration vectors a, g, and aT in Figure 5.10(b) leads to

a2 + (2g cos �)a+ g2 � a2
T
= 0 (5.31)

where a = kak, g = kgk, and aT = kaTk = Tmax/m(t). For aT > g (and |�|  ⇡/2)

this quadratic equation in a always has just one positive real root which is given by

a = �g cos � +
q
g2 cos2 � + a2

T
� g2 (5.32)

Clearly in this case

a = a1N (5.33)

Thus, the commanded direction of the thrust acceleration vector is

aT = aT1T = a� g (5.34)

By using g = �g1r, we have the guidance law for the thrust vector direction
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1T = (g/aT )1r + (a/aT )1N (5.35)

Because the total acceleration vector a is perpendicular to V , the magnitude of

the velocity vector will remain constant during the pull-up maneuver, as can be seen from

the fact that

dkV k/dt = V T V̇ /kV k = V Ta/kV k = 0 (5.36)

Pull-Up Guidance Law III

Here we develop a guidance law that is a more general form that includes both

guidance laws I and II as special cases. For a specified constant ↵ define an acceleration

a↵

a↵ = ↵g + aT , 0  ↵  1.0 (5.37)

Again, kaTk = aT = Tmax/m(t). The direction of aT is chosen so that the direction

of a↵ is in the direction of 1N . See Fig. 5.10(c). Similar to the derivation in guidance law

II, the law of cosines gives

a↵ = �↵g cos � +
q
↵2g2 cos2 � + a2

T
� ↵2g2 (5.38)

where a↵ = ka↵k. The guidance law then is

105



1T = (↵g/aT )1r + (a↵/aT )1N , 0  ↵  1.0 (5.39)

Evidently, when ↵ = 0, Guidance Law III in (5.39) is the same as Guidance Law

I in Equation (5.30); when ↵ = 1.0, Guidance Law III becomes Guidance Law II in

Equation (5.35). Hence Guidance Law III may be regarded as a nonlinear interpolation of

Guidance Laws I and II over ↵. The presence of ↵ o↵ers a flexibility to adjust the guidance

law for di↵erent vehicles and missions. For the vehicle model used in this paper (that of

Apollo 11 Lunar Module), there is little di↵erence for any ↵ 2 [0, 1], ↵ may have more

pronounced influence in other cases (especially when the thrust-to-weight ratio is low).

Note that guidance laws in Equations (5.30), (5.35), and (5.39) are closed-loop guidance

laws because 1r, 1N , a and a↵ are functions of the current state.

From Equations (5.29) and (5.39), it is clear that the pull-up guidance laws de-

veloped here (with any ↵ 2 [0, 1]) do not command a vertical rise – the thrust direction

always has a horizontal component in the 1H direction unless � = 0. If the powered

descent trajectory is steep, commanding a vertical rise would kill much of the velocity of

the vehicle before re-building the velocity for ascent. An extreme scenario is where the

powered descent is nearly vertical. The propellant penalty of commanding a vertical rise

at the beginning of abort in such a case can be non-trivial in comparison to turning the

velocity vector around by the pull-up guidance law in Equation (5.39) without reducing

its magnitude.

Under the guidance law (5.39), the flight path angle of vehicle will start to increase,

while the velocity changes little. The pull-up phase is terminated as soon as the flight path
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angle reaches a prescribed targeting value of �end > 0. The attainment of the targeting

condition by this simple guidance approach is guaranteed for any starting condition (that a

powered descent trajectory can possibly have) and any �end, provided that the vehicle has

a thrust-to-weight ratio greater than 1, a condition met by any lander. If the flight path

angle is already greater or equal to �end at the start of pull-up, the pull-up phase is skipped,

and the abort guidance directly enters the ascent phase. With the fuel optimal ascent

guidance and the set of orbital insertion conditions for the subsequent ascent trajectory in

Section 5.5.1, it is found that the combined propellant usage in pull-up and ascent phases

is always close to the minimum when �end has a small value, regardless where in powered

descent abort is initiated. Therefore, a positive constant �end may be used. It will be

shown in Section 5.6.3 that �end has a noticeable e↵ect in overall propellant consumption

in early aborts.

5.6.2 Two-Phase Abort Solutions

The two-phase abort guidance resulted in successful abort trajectories along the

entire powered descent trajectory. A set of abort cases throughout powered descent are

plotted in blue solid line in Figure 5.11. The value of �end = 3 deg is used in the simulations.

Also shown in Figure 5.11 are the abort trajectories in the same cases with direct-abort.

Consistent with the results in direct-abort cases, the two-phase guidance still results in

the spacecraft inserting into the target orbit at the perilune in late abort cases. However,

as a result of the pull-up maneuver, in aborts between 0 and 400 seconds after PDI, the

two-phase guidance strategy inserts the spacecraft into the orbit at an altitude higher

than the perilune altitude, and also higher than the insertion altitudes of the direct-abort
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trajectories, even though the spacecraft enters the same pericynthion orbit.

Figure 5.11. Altitude comparison between direct- and two-phase lunar abort solutions.

Figure 5.12. Two-phase abort solutions along powered descent trajectory.

The e↵ectiveness of the pull-up maneuver in ensuring safety during late aborts are

shown in Figure 5.13, where the same abort cases in Figure 5.9 are now guided by the

two-phase strategy. All cases clear the ground, in a sharp contrast with direct-abort.
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Figure 5.13. Two-phase abort solutions for late abort cases during lunar powered
descent.

5.6.3 Comparing Propellant Consumption

Direct-abort under UPG+A is propellant optimal. The two-phase guidance is

propellant optimal from the exit of pull-up to orbital insertion. But how does the total fuel

consumption from both phases of the abort compare to the optimal value? The answer

depends on the value of �end, the target flight path angle that defines the end of the pull-up

maneuver. Table 5.2 summaries the propellant consumption for several abort cases taking

place at points from early in powered descent to near touchdown with direct-abort and

two-phase abort. Two di↵erent values of �end are used in the closed-loop simulations, 3.0

deg and 0.1 deg, respectively. For �end = 3.0 deg, the propellant usage by the two-phase

guidance approach is noticeably higher than that by direct-abort for early aborts. But

the di↵erence shrinks as abort occurs later in powered descent, to the point of practically

nonexistent toward the end.

On the other hand, if �end = 0.1 deg is used, late abort trajectories still clear the
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Table 5.2. Propellant consumption comparison between single- (direct) and two-phase
abort solutions

Abort Time (s) Total Propellant Consumption (kg)
Direct-Abort Two-Phase Abort Two-Phase Abort

(�end = 3 deg) (�end = 0.1 deg)

100 808.58 1209.95 820.76
200 1709.74 2021.44 1738.65
300 2546.47 2821.90 2632.29
400 3224.36 3420.66 3332.84
500 3619.76 3730.45 3703.49
600 3665.82 3687.72 3685.21

ground, and the propellant consumption by the two-phase abort guidance approach comes

very close to the overall optimal values (by direct-abort) throughout the powered descent

phase, as can be seen in Table 5.2. This is not a surprise though. Recall that the pull-up

guidance law is developed with the realization that using the thrust vector to only change

the direction of the velocity vector in pull-up phase should be fuel e�cient. Here we

have demonstrated that with an appropriate choice of �end (likely a small positive value),

the overall propellant consumption of the two-phase guidance strategy is near optimal.

Hence, the proposed two-phase guidance approach not only e↵ectively addresses the ground

clearance concerns, but also can be made achieve practically minimum propellant usage.

Figure 5.14 depicts the abort trajectories with �end = 0.1 deg and �end = 3 deg

starting from the same conditions at a several points along the powered descent trajectory.

In early aborts, and larger �end results in a higher orbital insertion altitude. But for late

aborts, the e↵ects of di↵erent values of �end gradually diminish, eventually to a negligible

level. If necessary, a predefined table of �end as a function of the abort time since PDI may

be loaded into the guidance system to provide a means for shaping the abort trajectory.
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Figure 5.14. Ascent trajectory comparison for two-phase lunar abort with two di↵erent
flight-path-angle settings �end in pull-up maneuver.

5.7 Monte Carlo Testing of Two-Phase Guidance

To gain a better assessment of the performance and reliability of the two-phase

abort guidance method, Monte Carlo closed-loop simulations are performed. The initial

condition of the powered descent trajectory is dispersed randomly, resulting di↵erent

powered descent trajectory in each case. Furthermore, the initial mass of the vehicle

and the actual engine thrust are also dispersed, and the actual values are not known

to the guidance system system. The abort time is randomly chosen between 0 and 610

sec since PDI in each Monte Carlo simulation, signifying the fact that abort can happen

at any moment throughout the powered descent. Table 5.3 shows the distributions and

3-sigma/min-max values of the dispersions. These values represent “nominal dispersions”,

and they correspond to a factor of safety (FOS) of 1.0. The FOS is essentially a scaling

factor. At FOS of 2.0, all the 3-sigma values in Table 5.3 will be doubled (the range of

variations of the abort time is not a↵ected by FOS), FOS of 5.0 leads to 5 times as large
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dispersions, and so on and so forth. Therefore a larger value of FOS stresses the guidance

system more. All the dispersions except for the abort time are Gaussian with a zero mean.

The abort time is dispersed as a uniform distribution to simulate the fact that abort can

happen at any time during the powered descent.

Table 5.3. Dispersions and uncertainty values of 3000 Monte Carlo simulation runs of
lunar abort guidance with a factor of safety = 1.0.

parameter distribution 3-sigma (or [min, max])
PDI altitude (m) zero-mean, Gaussian 100
PDI longitude (deg) zero-mean, Gaussian 0.25
PDI latitude (deg) zero-mean, Gaussian 0.25
PDI velocity (m/s) zero-mean, Gaussian 3.3
PDI flight path angle (deg) zero-mean, Gaussian 0.1
PDI azimuth angle (deg) zero-mean, Gaussian 0.17
PDI mass (kg) zero-mean, Gaussian 49.84
engine thrust (N) zero-mean, Gaussian 450.0
abort time (s) Uniform [0, 610]

With the dispersions in Table 5.3, 3000 dispersed at runs at FOS = 1.0 were made

under the proposed two-phase abort guidance method. Figure 5.15 shows the 3000 abort

trajectories during powered descent. Table 5.4 lists statistics in the orbital insertion

conditions, propellant usages, and ascent times of the 3000 trajectories. Note that the

specified orbital insertion conditions are the eccentricity (0.0385), semi-major axis (1818.1

km) and inclination (90 deg) of the final orbit. Table 5.3 indicates that the specified

final orbit was accurately achieved in all cases. On the other hand, the insertion altitude,

velocity, and flight path angle are not specified and they are depend on where the ascent

trajectory enters the target orbit (therefore the data in Table 5.3 on these quantities

do not reflect any measure of accuracy). The statistics on propellant usage (or on the

insertion mass), as compared to the propellant mass in Table 5.2 suggest that there was

still propellant left at the orbital insertion, even in the worst case. Therefore, the vehicle

112



can successfully and safely abort throughout the powered descent.

Figure 5.15. Abort trajectories for 3000 Monte Carlo simulation runs of lunar abort
guidance with a factor of safety = 1.0.

Figure 5.16 shows the spread of the true anomalies at the orbital insertion along

the 3000 trajectories. It can be seen that earlier aborts entered the target orbits after

the perilune, with true anomaly as large as 30 deg; late aborts entered the target orbit

pre-perilune with negative true anomalies. When the aborts occurred after 500 sec since

PDI, the abort trajectories inserted right at perilune with a zero true anomaly. There are

a few cases for abort at about 210 sec that appear to have out-of-pattern true anomalies.

These cases will be investigated later in detail.

Table 5.4. Statistics of orbital insertion conditions in 3000 Monte Carlo simulation runs
of lunar abort guidance with a factor of safety = 1.0.

parameter mean standard deviation max min
ascent time (s) 1.5283E+02 7.2254E+01 2.4315E+02 2.0748E+01
altitude (km) 1.4431E+01 3.9175E+00 2.0029E+01 1.0003E+01
velocity (m/s) 1.7020E+03 3.6722E+00 1.7062E+03 1.6967E+03
flight path angle(deg) 5.5749E-01 5.2055E-01 1.1383E+00 -8.9695E-01
eccentricity 3.8500E-02 1.9880E-06 3.8586E-02 3.8436E-02
semi-major axis (km) 1.8181E+03 3.7472E-03 1.8183E+03 1.8180E+03
inclination (deg) 9.0000E+01 0.0000E+00 9.0000E+01 9.0000E+01
propellant usage (kg) 2.2549E+03 1.0661E+03 3.5876E+03 3.0613E+02
insertion mass (kg) 9.1603E+03 3.0610E+03 1.4386E+04 4.6981E+03
abort time (s) 3.0698E+02 1.7438E+02 6.0987E+02 2.0829E-01
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Figure 5.16. True anomaly at orbital insertion for 3000 Monte Carlo simulation runs of
lunar abort guidance with a factor of safety = 1.0.

Figure 5.17. Abort trajectories for 3000 Monte Carlo simulation runs of lunar abort
guidance with a factor of safety = 5.0.

Next, to really stress the abort guidance, 3000 Monte Carlo simulations were

performed at FOS = 5.0, that is, with 5 times the dispersions in Table 5.3. Figure 5.17

shows the 3000 dispersed abort trajectories. The e↵ects of significantly larger dispersions

are clearly visible as compared to Fig. 5.15. The fact that many of the abort trajectories

in Figure 5.17 started noticeably away from the nominal powered descent trajectory is

because the actually dispersed powered descent trajectories (where the aborts started) were

significantly o↵ from the nominal powered descent trajectory at FOS of 5.0. In contrast to
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Figure 5.15, Figure 5.17 also points to large spread of orbital insertion conditions due to

the dispersions of 5 times compared at FOS = 1.0.

Table 5.5. Statistics of orbital insertion conditions in 3000 Monte Carlo simulation runs
of lunar abort guidance with a factor of safety = 5.0.

parameter mean standard deviation max min
ascent time (s) 1.5288E+02 7.2334E+01 2.4839E+02 2.0850E+01
altitude (km) 1.4409E+01 3.9265E+00 2.1700E+01 1.0003E+01
velocity (m/s) 1.7020E+03 3.6807E+00 1.7066E+03 1.6952E+03
flight path angle(deg) 5.4801E-01 5.2773E-01 1.2216E+00 -9.5137E-01
eccentricity 3.8501E-02 1.0953E-05 3.9099E-02 3.8499E-02
semi-major axis (km) 1.8181E+03 2.0722E-02 1.8192E+03 1.8181E+03
inclination (deg) 9.0000E+01 0.0000E+00 9.0000E+01 9.0000E+01
propellant usage (kg) 2.2557E+03 1.0673E+03 3.6649E+03 3.0764E+02
insertion mass (kg) 9.1586E+03 3.0642E+03 1.4481E+04 4.5200E+03
abort time (s) 3.0698E+02 1.7438E+02 6.0987E+02 2.0829E-01

Table 5.5 contains the statistics of the orbital insertion conditions in these cases. It

is evident from the table that the orbital insertion conditions on eccentricity, semi-major

axis, and inclination were still accurately attained. The orbital insertion altitude (which is

not constrained) has a significantly large spread as compared to the cases with FOS = 1.0.

Figure 5.18 confirms this observation with the plot of the orbital insertion altitudes versus

abort time for both FOS = 1.0 and FOS = 5.0. The much larger spread for FOS = 5.0

is unmistakable. A manifestation of significantly larger dispersions is wider variations of

propellant usage as evidenced in Figure 5.19. In the worst case the propellant mass used

was about the same as the total propellant mass in Table 5.2, meaning that there was no

propellant margin left at FOS of 5.0. Nonetheless, the abort guidance held up really well

even in the presence of very large dispersions at FOS of 5.0, guiding every single abort

trajectory successfully into the specified target orbit.

Figures 5.20 and 5.21 illustrate the histograms of the instants when aborts happened

during the powered descent along the 3000 trajectories, and the times of flight for ascent
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Figure 5.18. Planetocentric altitude comparison at orbital insertion for 3000 Monte
Carlo simulation runs of lunar abort guidance with factors of safety = 1.0 and 5.0.

Figure 5.19. Propellant consumption at orbital insertion for 3000 Monte Carlo
simulation runs of lunar abort guidance with factors of safety = 1.0 and 5.0.

into the target orbit. As expected, the abort times were distributed uniformly throughout

the powered descent as they were so implemented in the Monte Carlo simulations. The

ascent times in more cases appear to cluster around the high end of 240 sec than other

values, perhaps a reflection of a nonlinear correlation between the abort times and ascent

times.

5.8 Summary

This work represents a first focused e↵ort in public domain since the Apollo program

on developing guidance strategy for abort during powered descent of a crewed lunar mission.

A novel guidance technique was developed to solve the problem of aborting into a safe
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Figure 5.20. Uniform distribution of abort trigger times along lunar powered descent
used in Monte Carlo simulation.

Figure 5.21. Total abort flight time of 3000 lunar powered descent Monte Carlo
simulation runs with a factor of safety = 1.0.

orbit directly from powered descent. Using a fuel-optimal ascent guidance based on the

indirect-method of optimal control, it was demonstrated that the problem can be solved

with a single-phase abort maneuver. However, this method fails to provide a solution with

enough ground clearance when an abort is called late in the descent. The introduction

of a pull-up maneuver to improve the initial conditions used by the fuel-optimal ascent

guidance results in a two-phase abort maneuver that solves the problem of ground clearance

e↵ectively. Uniform and well-conditioned trajectories towards a safe orbit were achieved by

the two-phase abort maneuver throughout the powered descent trajectory. Monte Carlo

simulations were used to demonstrate the e↵ectiveness of the abort solution in dispersed
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cases. Parametric studies on the target flight-path-angle at the end of the pull-up maneuver

showed that the total propellant consumption achieved by the two phase maneuver can be

similar to the fuel-optimal solution. The solutions obtained by the fuel optimal ascent

guidance were validated using the direct-method of optimal control. Finally, the discovery

of multiple optima during ascent from powered descent provided a new insight into the

behavior of an abort solution on the Moon that can aid contingency planning in case of

an emergency.

Chapter 5 is currently under review for publication as Abort Guidance during

Lunar Powered Descent at the Journal of Guidance, Control, and Dynamics. Sandoval,

Sergio; Lu, Ping; Hwang, John. The dissertation author was the primary investigator and

author of this material.
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Chapter 6

Multiple Optima in Abort-Ascent

6.1 Introduction

During the powered descent of a human mission on the Moon, terminating the

descent and ascending to a safe lunar orbit must be part of the abort strategy for

contingency. A recently developed abort guidance approach based on the indirect method

of optimal control has shown that a fuel-optimal ascent solution to this complex problem

can be found along the descent trajectory. A deeper examination of the abort guidance

solution identified a previously unknown phenomenon that caused some trajectories to

converge to lower altitudes than their neighboring solutions. The discovery of the existence

of multiple solutions in the optimal abort-ascent problem gives an explanation to this

phenomenon and is the focus of this work. The complete formulation of the problem

and method of solution are shown. The findings are pertinent to any optimal abort to

orbit during powered descent and it becomes an important topic for discussion regarding

mission planning and astronaut training. Validation and verification of the algorithm

and its results has been achieved with an implementation of the problem with the direct

method of optimal control.
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Despite the exiting results obtained, an unexplained phenomenon lingered among

the solutions. Almost all the trajectories obtained followed an altitude pattern that ended

at an orbit radius similar to its neighboring solutions. Yet amid the solutions, some of the

trajectories separated from the final altitude pattern and successfully converged to a lower

altitude where all the orbital insertion conditions were still met accurately. Figure 6.1

shows the resulting trajectories of 3000 abort cases along the powered descent trajectory

in a mission to land a spacecraft on the Moon. The figure demonstrates that some of

the abort cases appear to be inconsistent with the rest. At first sight, it appears that

these cases failed to meet the terminal conditions successfully, but a closer look shows

that each of the abort trajectories successfully delivers the vehicle to the specified final

orbit. Given that the safety of the crew is the most important part of the mission, gaining

an understanding of the potential outcomes during an abort is of vital importance. This

is particularly relevant during to astronaut training since a large portion of it involves

exercises to prepare for unexpected circumstances. Through careful exploration of the

solution, these inconsistent cases were analyzed to find the cause of the sudden discontinuity

in orbital insertion altitude. Analyzing the elements of the final orbit such as eccentricity,

semi-major axis, and inclination, demonstrated that the discrepant cases were indeed

inserted into the correct orbit. Furthermore, sampling some of these cases at di↵erent

true anomalies and recording the propellant consumption revealed that multiple optimal

solutions exist for most of the abort scenarios during powered descent. An inspection of

the true anomaly across the di↵erent cases uncovered that some of these cases end up at

local minimum rather than the global minimum of the ascent problem. It is the goal of
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this paper to demonstrate the rationale behind this phenomenon and to provide validation

and verification of this discovery using the direct and indirect methods of optimal control.

6.2 Abort Guidance Solution with Direct- and
Indirect-Methods of Optimal Control

As described in Section 2.3, an optimal control problem can be solved via direct or

indirect method. Since the abort guidance solution with UPG+A obtained in Chapter 5 is

based on the indirect method of optimal control, the direct method of optimal control will

be used to demonstrate that multiple optima exist regardless of the algorithm being used.

To solve numerically an optimal control problem, the numerical algorithm is based

on either the indirect or direct method. The indirect method works to solve the two-

point-boundary-value problem arising from the application of the necessary conditions

for the optimal control problem (aka Pontryagin’s Minimum Principle) [115]. There is no

direct minimization of the performance index (hence the “indirect” method). In the direct

method, the problem is transcribed into a nonlinear programming problem (NLP) by

discretization of the state and control functions [116]. The problem is solved using an NLP

algorithm to (directly) minimize the cost function subject to all imposed constraints. The

following are two examples of algorithms that implement the indirect and direct methods.

These algorithms were employed for the results of this paper.
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6.2.1 Implementation of the Indirect-Method with the Univer-
sal Powered Guidance (UPG)

The Universal Powered Guidance (UPG) is a three-dimensional optimal powered

guidance formulated on the indirect method of optimal control [22]. It is a multipurpose

optimal control algorithm that has been applied to various scenarios such as descent,

ascent, deorbit, and orbital transfers [104, 105, 106]. The ascent version of the algorithm

is labelled UPG+A, but it will simply be referred as UPG for the remainder of this paper.

Based on Pontryagin’s Maximum Principle, this method follows the necessary

conditions of optimal control. The dynamics and performance index of the problem are

as defined by equations (5.7)-(5.11). Seven nonlinear algebraic equations on the orbital

insertion conditions, transversality conditions and Hamiltonian for a final free-time problem

are specified in equations (5.12)-(5.18). Given some initial conditions and a final targeting

condition, the problem is formulated as a two-point boundary value problem (TPBVP).

The 7 nonlinear algebraic equations are solved simultaneously as a root-finding problem

in closed-form using the Powell’s dogleg optimization method. The optimization method

requires an initial guess to solve the problem. The optimal solution finds the control and

trajectory that satisfies all seven nonlinear algebraic equations. The thrust direction is

found as the optimal solution that minimizes the performance index.

6.2.2 Implementation of Direct-Method with OpenMDAO

OpenMDAO is a Multidisciplinary Design Optimization (MDO) framework used

to solve large-scale optimization problems e�ciently [117]. It was initially developed to

solve large-scale design problems with coupled numerical models. The need to implement
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modern algorithms with better e�ciency resulted in a new problem structure that improved

performance by taking advantage of hierarchical strategies, distributed-memory parallelism,

and high-performance computing [117]. Although OpenMDAO was initially developed for

large-scale design optimization problems, its e�ciency and simplicity facilitate the use in

multiple applications [117].

In this study, OpenMDAO was used to verify and validate the results obtained

previously with UPG in Lu [90] and new discoveries developed in this paper. A version

of the fuel-optimal ascent problem based on the direct method was implemented in

OpenMDAO. The problem was transcribed as an NLP and solved with gradient-based

optimization using Newton-type algorithms. Since transversality conditions and the

Hamiltonian are not required, only equations (5.7)-(5.14) are considered. The system

dynamics are defined as ordinary di↵erential equations (ODEs). Time steps are vectorized

by a parallel time integration algorithm, while a framework of linear methods is used for

numerical integration [118]. In the implementation, an Explicit Midpoint method was

utilized to solve the problem without sacrificing too much computational e�ciency.

6.3 Nominal Powered Descent Abort Mission

The lunar landing trajectory obtained in Chapter 5 is employed as the descent

trajectory from which abort will occur. The Apollo Lunar Module (LM) was used as the

vehicle in the simulations of this study [119]. The LM propulsion system is divided in a

descent propulsion system (DPS) and an abort guidance system (AGS) [80]. The descent

propulsion system (DPS) is used in both powered descent and abort guidance solutions to
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emulate a sudden emergency scenario. A total of 45,000 N of thrust are available with the

DPS. The specific impulse of the engine is of 311 sec. All the remaining fuel in the vehicle

at the time of abort is assumed to be available. The nominal powered descent part of the

mission was conducted by the Fractional Polynomial Powered Descent Guidance (FP2DG)

for lunar landing mission [109]. The landing location is at the South Pole of the Moon.

The initial conditions of the mission are the same as those in Lu [90] and listed in Table 4.1.

The pull-up maneuver was solved by the Universal Powered Guidance (UPG+A). The

fuel-optimal ascent guidance is the only part of the mission that is relevant to the results

of this paper. The powered descent and pull-up maneuver are necessary to obtain the

initial conditions for the fuel-optimal ascent guidance, but their terminal conditions do

not a↵ect the discovery of this investigation. The target orbit for all abort scenarios is a

10 km x 150 km pericynthion orbit around the Moon. The orbit has a 90 deg inclination

and a perilune altitude of 10 km. Simulations were performed in 3 degrees-of-freedom

(3DOF) with a guidance update rate of 2 Hz and a perfect navigation. UPG + A was

used to solve the fuel-optimal ascent guidance.

6.4 Discovery of Multiple Optima in Fuel-Optimal
Ascent Guidance

The novel abort guidance developed in Lu [90] has shown that a solution to the

complex problem of inserting a spacecraft safely into a specified final lunar orbit can be

found online. This can be achieved during the entire powered descent trajectory using the

indirect method of optimal control. The method utilizes an advanced propellant-optimal

guidance algorithm called UPG 3.3.2. In this methodology, the abort guidance problem is
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implemented as a two-phase maneuver: a pull-up phase and a fuel-optimal ascent guidance.

In both abort phases, thrust is kept at its maximum level to ensure a fast transition to the

final orbit. In the first phase, the pull-up maneuver is responsible of changing the velocity

vector of the vehicle from its current state towards a more favorable direction to begin

ascent. It does this by increasing the initial flight path angle from a negative initial value

to a positive value. In the second phase, the optimal ascent guidance UPG+A takes over

starting from the final state of the pull-up maneuver and guides the spacecraft towards a

safe pericynthion orbit around the Moon.

A set of “free-attachment” orbital insertion conditions are used to allow maximum

flexibility to achieve the specified orbit. The true anomaly at the orbital insertion point is

kept free for the guidance to find. This allowed the algorithm to select the optimal final

position and velocity regardless of where the actual insertion occurs in the orbit. The

advantage of the free-attachment point is that the algorithm is free to choose the best

orbital insertion condition in every abort scenario. Within UPG, a system of 7 nonlinear

algebraic equations is solved as a root-finding problem to find the thrust direction vector

and time-to-go (tgo = tf � t0) to reach the abort orbit [22]. Depending on the selection of

the targeting conditions, the 7 algebraic equations are a combination of orbital insertion

conditions and their corresponding transversality conditions [111]. The Powell’s trust-

region method is used to e↵ectively solve the system of equations. Simulations revealed that

UPG can achieve the desired orbit from anywhere along the powered descent trajectory

wherever it is physically feasible [90].

Despite the successful results obtained by the abort guidance algorithm, an unex-
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pected phenomenon appeared among the solutions without a clear explanation. In each of

the abort cases tested, the algorithm reached the orbital insertion conditions successfully.

In most cases, the altitude corresponding to the orbital insertion conditions followed a

consistent pattern, see Figure 6.1 from 0 to 200 seconds and 300 to 600 seconds. However,

a cluster of cases between 200 and 250 seconds converged successfully to a lower altitude

than the rest of the solutions. See the cluster in Figure 6.1 between 200 and 250 seconds.

A closer examination of the final conditions confirmed that the spacecraft ended in the

correct orbit in these “out-of-family” cases. Figure 6.2 shows the propellant consumption

of every abort case along the powered descent. In all cases, propellant increases as the

abort cases start later in the descent.

Figure 6.1. Abnormal cases in abort trajectories for 3000 Monte Carlo simulation runs
of lunar abort guidance with a factor of safety = 1.0.

The latest abort guidance approach solved the problem of a contingency during

descent; however, it left one question unanswered: Why are some of the solutions ending at
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Figure 6.2. Propellant consumption in abort trajectories for 3000 Monte Carlo
simulation runs of lunar abort guidance with a factor of safety = 1.0 with abnormal cases.

di↵erent altitudes? Looking at the results, it was evident that all trajectories successfully

converged to a correct solution. This was confirmed by the agreement found by the fuel

consumption comparison among neighboring solutions. In all cases, fuel consumption

increased as expected without any jumps or discontinuities. The abort cases converging

to a lower altitude followed the system dynamics and ended at a feasible solution. The

fact that the algorithm implemented a free attachment point raised some questions about

the way in which these points were being chosen by the algorithm. The first encounter of

a di↵erence in orbital insertion conditions was found in the true anomaly at the time of

orbit insertion. Figure 6.3 shows the true anomaly at insertion for each of the abort cases

studied.

This figure reveals two curves that encompass all the potential final true anomaly

angles for the abort cases in this study. An upper curve for cases that started an abort

between 0 and 340 seconds and a lower curve that includes cases for aborts from 340 to

600 seconds. The cases in the higher curve insert the vehicle at a true anomaly angle
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Figure 6.3. True anomaly in abort trajectories for 3000 Monte Carlo simulation runs of
lunar abort guidance with a factor of safety = 1.0 with abnormal cases.

between 10 and 30 degrees, while the lower curve inserts vehicles at true anomaly angles

between -25 and 3 degrees. Unexpectedly, some of the cases that were predicted to fall

under the upper curve ended in the lower curve. These cases were the same that formed

part of the out-of-family cluster found before!

The plot of true anomaly at insertion point gave an insight into one of the possible

reasons to the existence of a discontinuity. To understand the cause of the mismatch, a

new approach was developed to investigate this phenomenon. A fixed orbital insertion

point was selected instead of the free attachment point used previously. This allowed the

exact angle of insertion into the orbit to be chosen by the user. The new strategy consisted

in solving the ascent guidance problem at di↵erent true anomaly angles on the same

final orbit. The final orbit was defined by the known semi-major axis, eccentricity, and

inclination. These orbital insertion parameters along with the user-selected true anomaly

were used to calculate the final position, velocity, and flight path angle required to insert

the spacecraft into the abort orbit. Unlike the free-attachment solution that optimized for
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the orbit insertion point, in the fixed-point solution it is required to specify the position,

velocity, inclination and flight path angle of the desired final condition. Thus, leaving the

arguments of periapsis and ascending node as free parameters.

Abort cases activated at every 100 seconds along the powered descent trajectories

were selected and their initial conditions recorded. Using the initial conditions for each

case, a true anomaly scan between -100 deg to 100 deg was performed to investigate

changes in propellant consumption as the spacecraft entered the orbit at di↵erent points.

Each angle in this range was solved to generate a total of 201 solution points and optimal

fuel consumption at each true anomaly angle was recorded. This range was selected to

compare the behavior of the algorithm before and after perilune. Cases at di↵erent abort

times during powered descent were selected for testing. Figure 6.4 displays the propellant

consumption of the spacecraft at di↵erent insertion points along the final orbit caused by

changes in true anomaly.

Figure 6.4. Propellant consumption during lunar abort at di↵erent orbital insertion
points (true anomaly variation). Each curve represents a di↵erent abort start time during
Lunar Powered Descent starting from 150 seconds at the bottom to 500 seconds at the

top.
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Each curve in Fig. 6.4 represents the propellant consumption for an abort guidance

with the same initial conditions. The di↵erent points along the curve represent a di↵erent

orbital insertion true anomaly. The bottom curve represents an abort case activated at

150 seconds from PDI, while the case at the top represents an abort case activated at

500 seconds from PDI. As we move along the powered descent trajectory, contingencies

arise at later times and the optimal solution changes. The true anomaly scan shows the

evolution of the propellant curve as abort guidance is initiated at di↵erent times. Early

on, the curves are more pronounced and characterized by two minima, but they transform

into a global minimum as the abort guidance is activated afterwards. The fact that the

solution changes from two minima to a single global minimum can be explained by the

fact that early on the algorithm has more space and flexibility to decide which way to

go. That is, for some time, the flight time from the initial conditions to the two local

minima is roughly the same and the di↵erence in propellant consumption is negligible.

This surprising result shows that more than one local minimum exists for the same abort

cases at di↵erent orbital insertion conditions. Figure 6.5 is a representation of the two

guidance solutions available for abort cases early in the descent.

Notice that both solutions end at the same orbit despite entering at a di↵erent true

anomaly angle. In each curve, one of the solutions is a local minimum and the other is

a global minimum. The global minimum appears to favor a positive true anomaly after

perilune. Further analysis showed that the global minima is always associated with the

solution at the highest altitude, but that the propellant consumption di↵ers by a very

small amount. The fact that in some cases the solution ends at a di↵erent altitude means
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Figure 6.5. Representation of multiple optimal ascent solutions in abort scenario at the
Moon.

that the algorithm found the local solution instead of the global solution. It is evident

that the previously unanswered phenomenon is a result of this property. The altitude

pattern that most abort trajectories follow corresponds to the global minimum from the

propellant consumption curve. However, there are some cases that end up trapped in the

sphere of influence of the other local minimum that has a similar propellant consumption.

Furthermore, as the descent progresses, aborting from a lower altitude becomes

more challenging and the algorithm starts to lose some leeway. Eventually, there is only

one clear optimal solution, and the algorithm must choose that orbital insertion point.

The orbit perilune, defined as 10 km for this problem, is the closest point from the orbit

to the Moon. The latest cases start abort at an altitude below perilune, therefore the only

possible solution is to abort to perilune. Only abort cases that begin after 400 seconds

are guaranteed to find a unique global minimum. These cases begin ascent at an altitude

below perilune, and the only possible solution is to target perilune. It should be recognized

that perilune is not fixed to a specific point relative to the Moon and can be changed
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by the guidance solution. Given that abort is such an important safeguard of a landing

mission, exploring the solution and getting answers to all the unknown behavior is the

focus of this work. The implications of this discovery are important to understand any

potential drawbacks or unexpected situations that might arise from abort maneuvers. In

addition, future missions to the Moon can take advantage of this discovery for mission

planning or astronaut training. Since the possibility to abort into the same orbit at a

di↵erent altitude is present for a big part of the descent, it is important to be aware that

such a situation might emerge. Should there be any question about the expected ending

conditions during a particular mission to the Moon, the information revealed here has the

potential to influence the selection of the best decision given a particular scenario.

6.5 Verification of Multiple Optima in Lunar-Abort
Solution using Direct-Method of Optimal Con-
trol

Validation and verification (V&V) of the algorithm was performed to establish

confidence in the results. The solution to the abort guidance problem was obtained by UPG,

an optimal control guidance algorithm based on the indirect method of optimal control.

Considering that a spacecraft landing on the Moon would require onboard computation to

perform all the maneuvers, the indirect method finds a fast and reliable solution to the

abort problem. However, replicating these results with a di↵erent method would confirm

the accuracy and validity of the solution.

To corroborate these results, we resorted to the direct method of optimal control

in which the problem is solved as a nonlinear programming problem. The goal is to
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provide a comparison with a clear agreement between the direct and indirect method

solutions. For the direct method approach, the abort guidance problem was solved using

an open-source software named OpenMDAO. Solving with both methods would allow us

to trust that the algorithm is finding the correct solution. Since both methods solve the

problem di↵erently, matching the solutions would signify that we can trust both algorithms

with great confidence.

In testing, the free-attachment problem was implemented to allow the algorithm

to optimize the orbital insertion condition. The formulation with the direct method

consisted in implementing the equations (5.7)-(5.14) in the abort guidance problem. The

transversality conditions and the Hamiltonian are not required to solve the problem with

the direct method of optimal control. OpenMDAO was able to successfully obtain a

solution to all the abort scenarios analyzed, thus giving confidence that the formulation

with both methods was appropriate and that the solution is trustworthy. Furthermore, it

was shown that most abort scenarios converged to the same solution and followed the same

trajectory in both methods. The outcomes of the analysis demonstrated the e↵ectiveness

of UPG to find an optimal solution. Notwithstanding, an unexpected revelation showed

that some of the abort scenarios analyzed with OpenMDAO converged successfully to

di↵erent final conditions than those from UPG. This was surprising since this behavior

was only evident in selected abort cases solved with UPG. In Fig. 6.1, this outcome is

shown for two cases that initiated abort at 200 and 250 seconds after PDI.

In Fig. 6.6, the solution with UPG inserts the vehicle at an altitude of 19 km,

while the solution with OpenMDAO does the same but ends at an altitude of close to
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Figure 6.6. Optimal ascent trajectory for an abort start time of 200 seconds after
powered descent initiation.

Figure 6.7. Optimal ascent trajectory for an abort start time of 250 seconds after
powered descent initiation.

15.5 km. The di↵erence between both solutions is of more than 3 km. Similarly, in Fig.

6.7, the solution obtained by UPG enters orbit at close to 18.4km, while OpenMDAO

ends at 14.6 km. In this case, the di↵erence is of almost 4 km. Note that in both cases,

even though the solution ends at di↵erent altitudes, the total flight time is essentially the

same. Since thrust is always at full throttle, this means that the propellant consumption

is indistinguishable in both trajectories. The reason this result is surprising is because
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the solution that gives the highest altitude in both cases alternates between UPG and

OpenMDAO. Before this comparison, the multiple optima were noticed in the solution

with UPG. Since each one of these methods converged to a viable solution, detecting

multiple solutions with the direct and indirect methods implies that this behavior is not

dependent on the implementation, or the method used. E↵ectively, any method that finds

an optimal solution to the abort guidance problem will encounter this phenomenon. This

reiterates the belief that this discovery is an important tool for contingency planning in

preparation for future missions to the Moon.

Motivated by this new discovery and certain that the results found with the

indirect method could be replicated with the direct method. A new true anomaly scan

was performed using the direct method of optimal control to examine the propellant

consumption obtained with this method. The propellant curve for varying true anomalies

is presented in Fig. 6.8.

Figure 6.8. Propellant consumption during lunar abort at di↵erent orbital insertion
points (true anomaly variation) using OpenMDAO. Each curve represents a di↵erent

abort start time during lunar powered descent starting from 150 seconds at the bottom to
300 seconds at the top.
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The resulting propellant consumption at di↵erent orbital insertion points exhibited

the same behavior with OpenMDAO. Albeit more computationally expensive, a closer

look revealed that the propellant curve matched exactly the curves obtained with UPG.

The existence of multiple optima is evident in both cases and confirms the results obtained

previously. In Fig. 6.9, a glance at the abort solutions for cases throughout the descent

exposes their ascent trajectories.

Figure 6.9. Comparison of abort solution between UPG and OpenMDAO at di↵erent
abort start times along the lunar powered descent trajectory.

Starting from a powered descent trajectory generated by FP2DG, abort can begin

at any time during the descent. The complete abort solution presented in Lu [90] performs

a pull-up maneuver to align the vehicle and a fuel-optimal ascent guidance to determine the

best orbital insertion condition. The black line represents the powered descent guidance

without any abort and the red portion is the pull-up maneuver. The fuel-optimal ascent

guidance is di↵erentiated by a continuous blue line for UPG and a dashed green line

for OpenMDAO. In this paper, only the fuel-optimal ascent guidance is involved in the

multiple optimal solution.

136



Abort cases initiated at the first or final portion of the descent converge to the

same solution. At the beginning, the initial conditions and initial guess of the optimization

algorithm favor the global minimum. Although the propellant curve reveals a more

pronounced minima for earlier cases, it seems that the position of the vehicle and the

direction of the ascent trajectory benefit an insertion into the orbit before perilune. On

the other hand, cases closer to the end of the descent are bound to only one solution at

perilune. The middle portion of the trajectory contains all the cases that exemplify the

subject of having multiple solutions to the same problem. Cases in the middle are more

complex, as they depend on the initial conditions of the problem, the initial guess and the

type of optimization method used. Using the final ascent conditions, the true anomaly at

insertion can be calculated for each case. Figure 6.10 combines the true anomaly calculated

with the propellant curve for 3 di↵erent abort cases and unveils important information

about the orbital insertion altitude as a function of true anomaly.

Figure 6.10. Comparison of true anomaly at orbital insertion point between UPG and
OpenMDAO at di↵erent abort start times along the lunar powered descent trajectory.

Propellant curves for abort cases starting at 200, 250 and 300 seconds are plotted.
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These cases were selected because they are part of the cluster cases for both UPG and

OpenMDAO. Each of these cases clearly shows the two local minima. Adding the true

anomaly resulting from the orbital insertion conditions for these cases demonstrates that

the di↵erence in altitude is related to the true anomaly at insertion point, with a higher

altitude entering at a negative true anomaly, while the lower altitude enters orbit at a

positive true anomaly. The uncovering of multiple solutions gives reassurance on the

nature of this phenomenon. Every abort scenario has at most two solutions and neither of

them are arbitrary. Understanding the solution helps predict the outcome of an emergency

before it happens. Furthermore, knowing that both solutions are near fuel-optimal allows

the manipulation of the solution to be forced to enter the orbit at a specific location.

The last component of this investigation involved a more detailed inspection on

the nature of the cluster cases in the middle. A comparison of the results obtained by

OpenMDAO and UPG would give an insight on the similarities and di↵erences among

these cases. A comparison of the ascent trajectories for some abort cases between 200 and

300 seconds after PDI is shown in Fig. 6.11.

In the case of OpenMDAO, it appears that the cluster of cases ending at a lower

altitude starts a little bit later. The ascent solution by UPG converges to a lower solution

in cases that started abort at 200 and 225 seconds, while OpenMDAO converges a higher

altitude in the same cases. On cases that started abort at 250, 275 and 300 seconds,

OpenMDAO converges to a lower altitude, while UPG enters orbit at a higher altitude.

Due to the computational time expense of the direct method, 3000 Monte Carlo simulations

were not performed with this method. But a small experiment with UPG revealed that
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Figure 6.11. Comparison of abort trajectories in cases converging to a di↵erent altitude
using UPG and OpenMDAO.

changing the initial guess of the optimization method influences the range of the cluster

cases. For instance, the nominal ascent guess time for UPG is of 200 seconds. Reducing

the ascent guess time caused the cluster cases to shift to the left, while increasing the guess

time caused them to move to the right. Changing the initial guess time did not eliminate

the cluster. Although OpenMDAO utilizes a vector of normalized times rather than an

initial guess, it is possible that the mechanism used to solve the solution acts similar than

the initial guess implemented in UPG. This would explain the di↵erent ranges found for

each method. This is merely an observation that goes beyond the scope of this paper.

Additionally, velocity profiles for each abort case revealed similar patterns among

all solutions. Figure 6.12 shows a velocity profile comparison for the cluster cases tested.

This demonstrated that the velocity is the same using both methods, regardless of the final

altitude achieved. The implication of this result means that the propellant consumption

should be very close among solution to the same case using di↵erent methods. The fact that

the velocity profiles were identical, implied that the total ascent time must be similar since
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Figure 6.12. Comparison of relative velocity in cases converging to a di↵erent altitude
using UPG and OpenMDAO.

both implementations are running at full throttle. This was confirmed by the propellant

comparison in Fig. 6.13.

Figure 6.13. Comparison of propellant consumption in cases converging to a di↵erent
altitude using UPG and OpenMDAO.

Propellant consumption increases as the abort occurs later in the descent. Since the

vehicle gets closer to the ground as it moves through the descent trajectory, it requires more

propellant to ascend into the final orbit. The propellant consumption among the cluster

cases tested is indistinguishable between the two methods. This means that both solutions
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are near-optimal despite entering the final orbit at a di↵erent altitude. Knowing that either

solution is near-optimal, there is no impact in propellant e�ciency by the selection of a

specific final altitude. The discovery of the two minima in the propellant curve indicates

that at every point before 400 seconds, multiple fuel-optimal ascent solutions exist. This

is an important discovery for crewed lunar landing missions on the grounds that in case of

a contingency, the crew and support team should be prepared to encounter this type of

behavior. The only concern is to be able to predict the altitude that the algorithm will

choose at any given time. This could be predicted by testing di↵erent initial conditions in

Monte Carlo simulations.

Although a spacecraft insertion to a lower altitude is also a safe solution to the

abort ascent problem, it is not ideal to deviate from the rest of the solutions. This is

especially concerning if the propellant consumption is the same and there is no added

benefit to take a di↵erent route. Furthermore, being unaware of the expected result is

an idea that goes opposite to the principle of contingency. Perhaps a better solution is

to require the guidance to end above a specific altitude in case of abort. This can be

accomplished by forcing the solution to insert the vehicle at a negative true anomaly.

Multiple methods can be implemented to ensure that the guidance selects a particular

solution. The important takeaway is that knowledge of the two possible solutions enables

multiple approaches to influence the result. The fact that the final condition can now be

predicted is the greatest advantage of this discovery.
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6.6 Summary

In any human mission, the priority is the safety of the crew. A great deal of attention

is spent on the guidance, navigation and control systems to reduce the risks involved in

space missions. One such component of is the abort capability that the spacecraft possess

to take a spacecraft from an emergency situation during lunar powered descent into a safe

orbit around the Moon. The problem of abort guidance during lunar powered descent was

resolved with an innovative approach that updated abort guidance methods that were

in place since the Apollo missions. Among the set of solutions obtained from this new

algorithm, an unexplained phenomenon arose where some of the abort trajectories converge

to a di↵erent altitude than anticipated. In this paper, an analysis of the abort solutions

provide the answer to the unsolved mystery. A new fixed-point formulation allowed the

discovery of multiple optima on many of the abort guidance solutions. This realization

gives a better understanding of the characteristics of an abort trajectory and allows future

missions to plan in advance for this phenomenon. The results found in this study are

not unique to this implementation and will emerge in similar optimal control approaches.

The implications of this finding pertain the contingency planning in future missions to

the Moon. Validation and verification of the algorithm is performed to demonstrate the

e�cacy of the algorithm and the reliability of the solution.

Chapter 6 is currently under review for publication as Abort Guidance during

Lunar Powered Descent at the Journal of Guidance, Control, and Dynamics. Sandoval,

Sergio; Lu, Ping; Hwang, John. The dissertation author was the primary investigator and
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author of this material.
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Chapter 7

Integration of Entry and Powered
Descent for Human-Scale Mars Land-
ing Mission

7.1 Introduction

The entry and powered descent guidance algorithms can be integrated to produce

an end-to-end simulation from the moment the spacecraft enters the atmosphere and

all the way to the landing point. Large uncertainty in atmospheric conditions at Mars

make entry, descent, and landing a challenging task for human-scale missions that require

safe and precise landing. Since the knowledge of the actual conditions is limited by the

navigation system of the vehicle, guidance algorithms capable of accommodating these

types of dispersions are critical to develop future human missions to Mars. This paper

focuses on the performance comparison of two state-of-the-art numerical predictor-corrector

(NPC) entry guidance algorithms and guidance approaches: one uses direct-force control

and the other the conventional bank-angle control. The algorithms are applied to a

reference human-scale Mars mission. Both algorithms are implemented in the Program

to Optimize Simulated Trajectories II (POST2) at the Langley Research Center. Three
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degree-of-freedom end-to-end simulations of the low lift-to-drag ratio NASA reference entry

vehicle are used to compare the performance of both algorithms. Monte Carlo simulations

enable performance comparison by introducing dispersions that the guidance algorithms

must accommodate. The results from this study provide a comparative assessment of the

current EDL guidance capability for human-scale Mars Mission.

7.2 Description of Entry and Powered Descent
Guidance Algorithms

7.3 Entry Guidance Algorithms

The entry guidance algorithms that will be tested in this study are of the numerical

predictor-corrector (NPC) type. The NPC process consists of predicting a vehicle trajectory

to generate a control command to target a final constraint from the current state or initial

constraint. Using this prediction, the algorithm compares the resulting trajectory to the

final constraint and calculates the error in the prediction. Finally, a correction is issued by

updating the control command to minimize the error.

To obtain a measurement of performance by the supporting entry and powered

descent algorithms used in this investigation, a comparison with a state-of-the-art entry and

powered descent algorithm was performed. This resulted in two entry and powered descent

guidance combinations that can be better visualized in Table 7.1. The first combination

uses FNPEG as entry guidance (described in more detail in Section 3.2.1) and FP2DG as

the powered descent guidance (described in Section 3.3.1). For the second combination, an

algorithm named the Numerical Predictor-Corrector Entry Guidance (NPCG) o↵ers both
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an entry guidance solution and a powered descent solution via an augmented gravity turn.

NPCG is a generalized NPC algorithm designed to permit the user wide flexibility

in designing and implementing guidance laws for a variety of mission segments such as

aerocapture, entry, and powered descent. Generally, it is up to the user to define the

vehicle, environment, and steering algorithms in the NPCG framework. The NPCG

prediction phase then consists of integrating the 3-DOF translational equations of motion

from an initial navigated state towards the predefined targeting condition using an initial

control vector. For the correction phase, a gradient-based targeting algorithm is used to

select a control vector that meets the final conditions with the least amount of error. A

command generated by the control solution found is issued at every guidance call and

updated as necessary to minimize targeting errors. For this vehicle, the NPCG drives the

vehicle using Direct Force Control (DFC) by maneuvering the angle of attack and angle

of sideslip. Usually, this is accomplished by control surfaces on the vehicle. Along the

trajectory, multiple segments with distinct targeting conditions can be defined and the

guidance satisfies the final constraint in each segment before moving on to the next one.

For HIAD powered descent, the NPCG is programmed to use an Augmented

Gravity Turn. Nominally, a pure gravity turn consists of pointing the thrust vector in the

opposite direction of the velocity vector. Thrust forces acting on the vehicle reduce the

total velocity over time. Aided by the gravity of the planet, the vehicle rotates as the

velocity diminishes in the horizontal direction. Eventually, only velocity in the upward

direction remains and the vehicle is naturally aligned at -90 degrees. A gravity turn

is useful because it is not complex and constructs a clean solution to the soft-landing
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problem. Improvements, or augmentations, of the gravity turn are changes to the simple

method described above to produce a more capable solution. The Augmented Gravity

Turn applied to this study is able to target a specific landing location. NPCG is a complete

EDL guidance algorithm that has entry and powered descent capability. An Augmented

Gravity Turn works in conjunction with the entry phase in NPCG to solve the EDL

problem as one single algorithm. This cooperation improves the e�ciency of the powered

descent by presenting an adequate PDI condition.

7.4 Integration of Entry and Powered Descent

Entry and powered descent guidance can be independent algorithms that produce

a solution based on the current navigated state and the corresponding target condition at

every phase. However, it is known that powered descent can achieve better performance

given a proper PDI condition [61, 22]. When entry and powered descent guidance are

constructed to collaborate by targeting an appropriate PDI point during entry, improved

success rate and propellant consumption can be attained. For instance, in this study,

NPCG is the only algorithm that was optimized to produce an optimal propellant solution

and an appropriate PDI condition.

7.5 Nominal End-to-End Mars-Landing Trade
Studies

From a polar orbit of 33793 km apoapsis altitude by 250 km periapsis altitude, a

deorbit burn is commanded on the spacecraft at apoapsis to coast until the beginning of

the atmospheric entry interface at an altitude of 125 km and a velocity of 2650 m/s. The
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landing site selected is located at 25.25 deg latitude and 5.04 deg longitude. During the

entry phase, the atmospheric and aerodynamic models are activated to give the vehicle

maneuverability with its the control surfaces. The entry algorithms require certain level

of force to be able to operate, therefore they are activated at specific values of sensed

acceleration or dynamic pressure, NPCG activates at a sensed acceleration of 0.15 g’s

while FNPEG activates when a dynamic pressure of 15 Pa is reached. Once entry guidance

is activated, commands for angle of attack and angle of sideslip, in the case of NPCG,

or bank angle, in the case of FNPEG, are generated throughout the entry phase to

control the vehicle until the start of powered descent. These guidance commands give

authority to the vehicle’s control surfaces to direct the vehicle towards a specific target

while reducing the downrange and crossrange error. A PDI condition is selected to start

powered descent, and it is usually the same as the target condition for entry. When

powered descent is initiated, supersonic retropropulsion rockets with di↵erential throttling

are used to slow down the vehicle rather than the atmosphere alone. During powered

descent, atmosphere and aerodynamic models are deactivated because it is assumed that

the supersonic retropropulsion forces outweigh the aerodynamic forces. The goal of the

powered descent is to guide the vehicle towards the landing site and reach an altitude of

12.5 m and with a velocity of 2.5 m/s. The terminal phase of powered descent consists of

a 5 second vertical descent at a constant 2.5 m/s. The vehicle touches the ground at the

end of the vertical descent and the EDL portion of the mission is completed.

The HIAD vehicle, one of the candidate vehicles in development under EDLAS,

was selected to perform this investigation. The vehicle is a low L/D ratio inflatable capsule
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with a diameter of 16m and a height of 4.3 m. The ballistic coe�cient and L/D ratio of

the vehicle are 155 kg/m2 and 0.15, respectively. The total weight is approximately 57 t

at launch and 49 t at the entry interface. It possesses a set of aerodynamic flaps necessary

during entry to control angle of attack, angle of sideslip or bank angle. Eight engines

producing a total of 800,000 N of force are grouped in the middle portion of the heat

shield in a doublet formation. The thrust generated is su�cient to slow down the vehicle

throughout the powered descent phase. Figure 1 illustrates the complete EDL mission

concept of operations with HIAD. Figure 7.1 illustrates the complete EDL mission concept

of operations with HIAD obtained from Cianciolo [120].

Figure 7.1. Entry, descent, and landing concept of operations using the hypersonic
inflatable aerodynamic decelerator entry vehicle.

The nominal EDL trajectory consists of two segments: entry and powered descent.

The entry guidance algorithm controls the vehicle from the end of the deorbit phase

until it reaches a predetermined targeting condition suitable to start Powered Descent.

Aerodynamic forces are used to control the vehicle during entry to reach the final conditions.

In powered descent, the guidance algorithm produces a thrust vector command composed

of thrust magnitude and direction. Utilizing the algorithms described in the “Background”
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section, the two trade studies on Table 7.1 were proposed to test the performance of the

vehicle using di↵erent approaches for the same mission.

Table 7.1. Entry, descent, and landing guidance trade studies for a human-scale Mars
mission.

Trade Study Entry Guidance Powered Descent Guidance

1 NPCG NPCG
2 FNPEG FP2DG

Each trade study represents a combination of entry and powered descent guidance

approaches. The first trade study consists of the NPCG approach for entry and powered

descent. The NPCG suite has been largely tested at LaRC for EDL missions to Mars,

and more information on the performance of this method is reported in Lu [64]. The

second trade study brings together FNPEG and FP2DG for entry and powered descent,

respectively. Both guidance algorithms have been tested extensively in other studies, an

example of an application of FNPEG and FP2DG to a crewed Mars mission can be found

on Cianciolo [26]. Although these trade studies have been examined in the past, this

is the first time that these comparisons have been realized under the same conditions

and simulation environment. Thus, this gives a first look into the performance of these

algorithms using the same settings as they complete the mission.

A critical component of this study was the selection of an appropriate PDI condition

to satisfy both trade studies. An optimal PDI condition for NPCG had already been found

by optimizing the simulation of a 3-DOF Mars mission in POST2. Since the goal is to

provide a comparison under similar conditions, the optimal PDI condition for NPCG was

selected to activate powered descent in all trade studies. This decision was made on the
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basis that the optimization of NPCG sets Trade Study 1 as the performance benchmark.

Table 7.2 lists the PDI condition selected to start powered descent in all trade studies.

Table 7.2. Nominal powered descent initiation conditions in entry, descent, and landing
guidance trade studies for a human-scale Mars mission.

Geodetic Altitude Target (m) 5000.0
Relative Velocity Target (m/s) 550.0

Range-To-Go Target (m) 11500.0

FP2DG is called twice, the first time during a braking phase that starts at the

PDI condition and a second time during an approach phase as the spacecraft gets closer

to the landing site. The braking phase is the longest part of powered descent, it is the

section that slows down the vehicle the most before reaching the approach phase and

landing. The purpose of the approach phase is to serve as a vehicle alignment phase in

the case that onboard instrumentation needs to be pointed in a certain direction before

touchdown. Additionally, a vertical descent phase was added at the end of all powered

descent trajectories to guarantee that the vehicle’s velocity vector is perpendicular to the

ground and to avoid any involuntary horizontal velocity towards the end caused by the

improper alignment of the lander.

7.6 Simulation of Nominal Trade Studies

Complete end-to-end, 3DOF simulations were performed in POST2, a simulation

tool at NASA’s Langley Research Center. Perfect navigation is assumed with an update

rate of 1 Hz for entry and 10 Hz for powered descent. The update rate on the Augmented

Gravity Turn was set to 1 Hz. The nominal results show the complete trajectories of the

trade studies formulated for this investigation. Plots comparing similarities and di↵erences
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among di↵erent guidance approaches allow the clear observation of trajectory shape,

control command and propellant performance.

Figure 7.2. Comparison of end-to-end trajectories in entry, descent, and landing
guidance trade studies for a human-scale Mars mission.

Figure 7.3. Comparison of powered descent trajectories in entry, descent, and landing
guidance trade studies for a human-scale Mars mission.

Nominal EDL trajectories for each trade study are illustrated in Figures 7.2 and 7.3.

The complete end-to-end trajectory is presented in Figure 7.2, where entry is represented by
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a dotted line and powered descent by a solid line. The plot shows the actual height above

the ground and the relative velocity experienced by the spacecraft. From this perspective,

it is clear that the entry phase represents a bigger portion of the entire EDL trajectory.

By comparison, the entry portion of EDL lasts up to 400 seconds, while powered descent

is between 50 - 70 seconds. Also, it is interesting to note that although two di↵erent entry

guidance approaches are used, the trajectories are close together in velocity-altitude space

as the vehicle slows down through the atmosphere. At higher altitudes, aerodynamic

forces are smaller, and the velocity reduction is smaller in comparison to the rest of the

entry phase. A considerable reduction in speed occurs at when maximum aerodynamic

acceleration reaches 30 m/s2 around 3000 m/s. Figure 7.3 gives a closer look at the powered

descent trajectories of each case. The first thing to notice is that the PDI conditioned

achieved by both entry guidance algorithms is di↵erent, this happens because although

NPCG and FNPEG are targeting the same starting point for powered descent, the way the

achieve it is di↵erent. For instance, NPCG activates once this target has been achieved,

while FNPEG targets an energy-like equation containing the target parameters. The

di↵erence in PDI condition between these two approaches is related to the formulation of

each guidance and not an error in the targeting condition.

Both approaches reach a reasonable condition to start PDI. Figure 7.4 shows the

PDI starting conditions achieved by each method. Trade Study 1 uses NPCG and starts

PDI at a Mach number of 2.47, while FNPEG starts at a slightly lower Mach number of

1.34. Another important aspect of this plot is the fact that the FP2DG guidance flies at a

higher altitude than the NPCG powered descent approach. Depending on the selection
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Figure 7.4. Comparison of powered descent initiation conditions in entry, descent, and
landing guidance trade studies for a human-scale Mars mission

of the tuning parameters on FP2DG, di↵erent propellant consumption and trajectories

can be obtained. Trajectory shaping has important applications for instrument alignment,

propellant consumption, and limits imposed for the safety of the crew. The nominal

parameters selected for FP2DG in this study are listed in Table 7.3.

Table 7.3. Nominal FP2DG parameter selection for entry, descent, and landing guidance
trade studies on a human-scale Mars mission.

Time-To-Go (s) 55.0
� Tuning Parameter 1.5
kr Tuning Parameter 12

These parameters were selected to provide a powered guidance solution that achieved

the final conditions successfully with the PDI condition given. These parameters can

also be tuned for performance and trajectory shaping. For the nominal case, the goal is

to provide a comprehensive comparison of these three approaches without jumping into

any guidance tuning. A section on FP2DG’s guidance tuning and trajectory shaping is
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included later in this paper.

Figure 7.5. Comparison of entry guidance angle of attack in entry, descent, and landing
guidance trade studies for a human-scale Mars mission.

Figure 7.6. Comparison of entry guidance angle of sideslip in entry, descent, and landing
guidance trade studies for a human-scale Mars mission.

The two control methods used in entry guidance are DFC of angle of attack and

angle of sideslip, and bank angle control. The NPCG approach uses DFC to guide the

vehicle, while FNPEG uses bank angle control. Figures 7.5, 7.6, and 7.7 show a comparison
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Figure 7.7. Comparison of entry guidance bank angle in entry, descent, and landing
guidance trade studies for a human-scale Mars mission.

of angle of attack, angle of sideslip and bank angle during entry and powered descent.

The control angles used during the entry phase are represented by dotted line

segments. Figures 7.5 and 7.6 show a comparison of the planet relative angle of attack and

angle of sideslip, the control angles used for the NPCG entry guidance approach. Although

these angles are not used as controls by FNPEG, they still vary with the dynamics of

the vehicle as it moves relative to the atmosphere. A trim angle of attack of -10 deg was

chosen for FNPEG to produce a suitable combination of lift and drag, and to maintain

a constant vehicle direction as it maneuvers with bank angle control. Albeit it appears

that the angle of attack is constant in both entry guidance algorithms, NPCG is doing

active angle of attack modulation in Trade Study 1 and is predicting the vehicle dynamics

well in the nominal sense, resulting in an essentially constant angle of attack. The angle

of attack commanded by NPCG is smaller than the trim angle of attack selected for

FNPEG. An important observation is that the angle of sideslip shown Figure 7.6 is in the
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planet-relative frame, while the commands are sent in the wind relative frame. Hence, the

angle of sideslip shown for FNPEG deviates from being zero throughout entry guidance.

Again, since FNPEG is not commanding angle of sideslip, this angle is just following the

natural motion of the vehicle as it maneuvers using bank angle control. The bank angle

control used by FNPEG is visible in Figure 7.7, where the guidance algorithm performs

the 4 predefined bank reversals while NPCG stays at 0 deg. One advantage of using bank

angle control is that the same results can be obtained by using only one control angle. This

comes at a cost as bank angle control generates greater crossrange errors. An important

discussion point is the fact that during the entry maneuvers, the Reaction Control System

(RCS) is constantly working to maintain the correct roll/bank attitude of the vehicle.

The work on this paper focuses on 3DOF simulations, where RCS control is not modeled.

Other studies have shown that accounting for RCS control for DFC can increase propellant

consumption up to 1 ton [40]. A greater crossrange with bank angle control suggests that

more propellant consumption might be required with RCS thrusters to maintain the bank

attitude of the vehicle. However, a complete 6-DOF simulation is necessary to provide

accurate estimates of propellant consumption with bank angle control.

Even though the atmosphere starts to make an impact at high altitudes, it is not

until a specific threshold is reached that the guidance system is commanded to react. This

is clear in Figure 4a where the angle of attack for all the trade studies reacts sometime

after entry has commenced. As mentioned before, entry guidance starts generating a

control command when a sensed acceleration of 0.15 g’s for NPCG and a dynamic pressure

of 15 Pa for FNPEG are achieved.
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Variation in angle of attack during powered descent occurs because the thrust direc-

tion is changing constantly to mitigate crossrange and downrange errors as it approaches

the landing site. In the AGT, the thrust vector is pointed directly opposite to the velocity

vector and the angle of attack is kept near 0 deg. When using FP2DG, the thrust vector

is in a di↵erent direction than the negative of the velocity vector and the angle of attack

of the vehicle changes as this happens. This is not an issue in 3-DOF simulation, but it

needs to be considered in 6DOF as it would require additional propellant consumption to

point the vehicle in the correct direction using RCS and di↵erential throttle. Bank angle

a↵ects the position of the vehicle with respect to the landing site, especially if horizontal

velocity has not been mitigated completely close to the landing. The rockets on the HIAD

are fixed to the vehicle, therefore bank angle during powered descent is controlled by the

RCS.

Figure 7.8. Comparison of powered descent thrust profile in entry, descent, and landing
guidance trade studies for a human-scale Mars mission.

The thrust profiles of each trade study are shown in Figure 7.8. A slight di↵erence

in PDI is caused by the distinct targeting approach used by each entry guidance algorithm.
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The target entry condition for all trade studies is the same given in Table 7.2. This

di↵erence is not concerning as each guidance algorithm found an appropriate solution to

start PDI. FP2DG used a slightly higher maximum thrust for a couple of seconds but

quickly lowered thrust for the remaining of its engine burn. Even though there are clear

di↵erences between each method used, the area under the profile for each trade study is

alike. FP2DG is based on the polynomial curve of the Apollo Powered Descent Guidance,

hence the curved shape of the thrust profile. The gravity turn approach uses a constant

thrust while keeping zero angles of attack and sideslip. Both approaches include a vertical

descent phase that can be found in the last 5 seconds of the thrust profile. The vertical

descent phase maintains a constant velocity of 2.5 m/s to take the vehicle from an initial

altitude of 12.5 m to the ground.

Thrust saturation occurs when the engine throttle is at the maximum level allowed

by the engine. To prevent saturation, the augmented gravity turn approach in Trade

Studies 1 is designed to nominally use 80% thrust throughout powered descent. This is

noticed in the near constant throttle in Figure 7.8. On the other hand, FP2DG’s absence

of a thrust limit allows the possibility for saturation and could cause problems if the

guidance needs to command a higher thrust to accommodate for dispersions. Additionally,

if there is a need for di↵erential throttling to change the direction of the vehicle with

thrust alone, there would be no margin to perform that maneuver if saturation is present.

To avoid this, it is possible to reduce the thrust limit that the guidance perceives to be

less than the actual thrust limit, this would make the guidance work with a lower thrust

limit value and compensate for that with a longer burn time.
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Figure 7.9. Comparison of powered descent propellant consumption in entry, descent,
and landing guidance trade studies for a human-scale Mars mission.

Even though each trade study has a di↵erent thrust profile and burn time, the

propellant consumption for each method is similar. A comparison of the propellant

consumed by each trade study is pictured in Figure 7.9. A total of 8867.32 kg of propellant

were used by FNPEG and FP2DG in Trade Study 2 making it the EDL approach with the

least propellant consumed in the nominal case. It was followed by NPCG in Trade Study 1,

using 8983.78 kg of propellant. The di↵erence is approximately 117 kg. As a reminder, the

total propellant consumed for this 3-DOF study does not account for the RCS propellant

consumed during entry maneuvering, which would increase the propellent used by FNPEG

given that the bank angle maneuvers require more vehicle attitude control. It is worth

noting that Trade Study 1 is the only optimized guidance combination and that both

trajectory and PDI condition were optimal for this mission scenario.

7.6.1 Monte Carlo Simulations of Nominal Trade Studies

In addition to the nominal cases, Monte Carlo simulations were performed to test

the algorithms under more stringent situations. Each trade study was subject to a set of
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random dispersions in initial conditions, mass, atmosphere, aerodynamics, and propulsion.

The purpose of these uncertainties is to try to replicate random atmospheric conditions

that might occur during a mission and to evaluate how each algorithm will react with

these o↵-nominal parameters. From these simulations, statistics for each trade study are

generated that help investigate advantages and disadvantages of each method. The list of

dispersion parameters for this study is presented in Table 7.4.

The main segments of interest are the conditions at the start of PDI and at

touchdown. The start of PDI is a critical factor for the success of the mission, an

appropriate condition allows the powered descent phase to perform the landing in a safe

and e�cient form. For this problem, PDI condition is composed of altitude, relative

velocity and range-to-go to the landing site. Generally, these values are predetermined

from the optimization of the algorithm using a program like POST2. This could be useful

for a nominal case, but a static PDI condition may result in reduced performance in

dispersed trajectories. Lu [22] presents an adaptive PDI logic that predicts a near-optimal

PDI condition to start powered descent and explains the importance of this selection in

Mars EDL mission. The crossrange and downrange are important metrics that reveal the

alignment of the vehicle with respect to the landing site at the end of entry. A comparison

of the Monte Carlo statistics at PDI is shown in Figures 7.10, 7.11, 7.12, and 7.13.

The success criteria in Table 7.5 were applied to the results from the Monte Carlo

simulation to define when the mission was accomplished e↵ectively. In both Trade Studies,

the success rate was 100%, indicating that both guidance implementations and tuning

parameters were e↵ective in achieving a safe landing.
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Table 7.4. Dispersions and uncertainty values of 8000 Monte Carlo simulation runs of a
human-scale Mars landing mission with a factor of safety = 1.0.

Category Parameter Dispersion Distribution

Initial Conditions Inclination 0.01 deg (1�) Normal
Longitude of the
Ascending Node

0.01 deg (1�) Normal

Periapsis Altitude 0.01 km (1�) Normal
Apoapsis Altitude 0.01 km (1�) Normal
True Anomaly 0.01 deg (1�) Normal
Argument of Periapsis 0.01 deg (1�) Normal
Deorbit Burn Bias 0.135 m/s (3�) Normal

Mass Dry Mass 500 kg (3�) Normal
Xcg O↵set 0.05 m (3�) Normal
Ycg O↵set 0.05 m (3�) Normal
Zcg O↵set 0.05 m (3�) Normal
Ixx Multiplier 0.05 kg-m2 (3�) Normal
Iyy Multiplier 0.05 kg-m2 (3�) Normal
Izz Multiplier 0.05 kg-m2 (3�) Normal

Atmosphere Density MarsGRAM –
Winds MarsGRAM –
Dusttau 0.1 : 0.9 Uniform

Aerodynamics
Aerodynamic database uses coe�cient multipliers and

adders for di↵erent aerodynamic regimes based on CFD,
wind tunnel tests, and flight data from similar shapes

Propulsion Peak Thrust Scale Factor: 1% (3�) Normal
Peak Isp Scale Factor: 1% (3�) Normal
Oxidizer Flow Rate Scale Factor: 1% (3�) Normal
Startup Rate Scale Factor: 1% (3�) Normal
Main Phase Rate Scale Factor: 1% (3�) Normal
Shutdown Rate Scale Factor: 1% (3�) Normal
Start Time 0.0 : 0.2s Uniform

Table 7.5. Success criteria for trade studies in Monte Carlo simulations for a
human-scale Mars landing mission with a factor of safety = 1.0.

Total Range at PDI Start < 1.0E7 km
Relative Velocity at Vertical Descent  3.0 m/s

Height Above the Ground at Vertical Descent Start > -1.0 m
Horizontal Velocity at Touchdown  3 m/s

Pitch at Touchdown  -87.0 deg

162



Figure 7.10. Height above ground at start of PDI for 8000 Monte Carlo cases in a
human-scale Mars landing mission with a factor of safety = 1.0.

Figure 7.11. Relative velocity at start of PDI for 8000 Monte Carlo cases in a
human-scale Mars landing mission with a factor of safety = 1.0.

Figures 7.10, 7.11, 7.12, and 7.13 show statistics on the dispersions at the start

of PDI conditions. On Figure 7.10, the altitude above the ground for all cases is displayed.

The mean altitude of all cases is of 6.8 km, with a di↵erence of 140 meters between the
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Figure 7.12. Crossrange at start of PDI for 8000 Monte Carlo cases in a human-scale
Mars landing mission with a factor of safety = 1.0.

Figure 7.13. Downrange at start of PDI for 8000 Monte Carlo cases in a human-scale
Mars landing mission with a factor of safety = 1.0.

highest and lowest mean starting point. This relation is maintained when looking at the

lower and maximum altitude values achieved in all cases. A lower relative velocity at PDI

facilitates the e↵ort exerted by the powered descent guidance to slow down the vehicle
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before landing. The relative velocities achieved by NPCG and FNPEG are 566.4 m/s and

538.37 m/s, respectively, as displayed on Figure 7.11. The di↵erence in velocity is not as

significant, but the spread of the velocity with FNPEG is reduced to a smaller area.

The shape of the altitude and velocity spreads by FNPEG can be explained by

the targeting technique used by this method. FNPEG targets an energy-like equation

that is a function of final altitude and velocity. The algorithm tries to achieve the final

conditions by satisfying this equation with slightly higher or lower values of altitude and

velocity. Although relative velocity at the start of PDI carries a bigger weight on powered

descent, its impact increases when it is in a good combination with the altitude at PDI.

This explains that the distribution of altitude and velocity appears to be less uniform. In

this equation, the final velocity has a bigger weight than the altitude, therefore altitude

varies the most to favor the velocity target.

Measurements of crossrange and downrange at the start of PDI measure the distance

from the vehicle to the landing site. The downrange measures the arc length from the

current latitude and longitude to that of the landing site. Interestingly, both entry guidance

algorithms activate PDI around a 12km downrange. Crossrange indicates the distance

perpendicular to the direction of flight pointing towards the landing site. In the case of

Trade Study 1, the use of DFC for entry control has a minimal e↵ect on crossrange, a mere

30 meters to the side of the landing site. Trade Study 2 shows a maximum crossrange

distance of 260 meters with the use of bank angle control. The bigger crossrange in the

second case needs to be mitigated by the powered descent guidance, and FP2DG is shown

to manage crossrange dispersions well.
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Figure 7.14. Total range at touchdown for 8000 Monte Carlo cases in a human-scale
Mars landing mission with a factor of safety = 1.0.

Figure 7.15. Pitch at touchdown for 8000 Monte Carlo cases in a human-scale Mars
landing mission with a factor of safety = 1.0.

The touchdown conditions in Figures 7.14, 7.15, and 7.16 show the overall per-

formance of the guidance combinations at the end of the mission. All successful cases

reached the landing site inside 90 meters. Trade Study 2 reached the landing site within 1
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Figure 7.16. Propellant consumed at touchdown for 8000 Monte Carlo cases in a
human-scale Mars landing mission with a factor of safety = 1.0.

meter, with a negligible 3-sigma variation. Trade Study 1 maintained a 3-sigma variation

of 10 meters. The zeros in the statistics indicate that the value is below three decimal

numbers, and the numbers are rounded to zero. At touchdown, horizontal velocity must

be mitigated with the vehicle needs to be pointing in a vertical direction for safe landing.

A pitch of -90 deg represents the vertical direction of the vehicle with the engines pointing

down towards the ground. The pitch at touchdown for both cases is close to the desired

target of -90 deg. In Trade Study 1 , the gravity turn aligns the vehicle as it finds a

solution during powered descent. The thrust is pointed in the opposite direction of the

velocity vector and naturally ends up in the vertical direction. An instantaneous pitch

control of -90 deg was designed for Trade Study 2 to guarantee a pitch of -90 deg during

the vertical descent. In a 6-DOF simulation, the vertical attitude of Trade Study 2 might

change once pitch rate limits and RCS control are applied to the vehicle.
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The smallest propellant consumption was obtained using the configuration in Trade

Study 2, where FNPEG and FP2DG take control of the vehicle. The mean propellant

consumption by this approach was of 8880.19 kg with a 3-sigma variation of 440.93 kg.

Trade Study 1 used an average of 8920.83 kg, just 40 kg below Trade Study 2, with a

3-sigma variation of 719.86 kg. Recall, however, that these simulations do not account

for RCS propellant consumption, and Trade Study 2 will likely require more propellant

consumption to execute bank reversals that are not required for DFC used in Trade Study

1. Although there is not a set propellant limit to this vehicle yet, it is desired that the

propellant consumption does not exceed 10 tons. Propellant loads larger than 10 tons

would require a vehicle redesign.

Both DFC and bank angle control provide the powered descent guidance with an

appropriate PDI condition to complete a successful landing. The powered descent guidance

approaches supplied by NPCG and FP2DG could bring the vehicle to the landing location

safely. FP2DG’s success was not a↵ected by the larger crossrange values, a convenient

advantage when large uncertainty might deviate from a small crossrange.

7.7 Fractional-Polynomial Powered Descent Guid-
ance Tuning and Trade Studies

Additional trade studies on FNPEG + FP2DG were performed under di↵erent

setup conditions to illustrate trajectory shaping and propellant performance. These studies

were performed on the same mission as the nominal trade studies. On the nominal cases,

Trade Study 2 was implemented without any kind of optimization. This left some room

for improvement considering that FP2DG is readily available for parameter tuning to
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cause an e↵ect in trajectory shaping and propellant consumption. The ability to adjust to

unexpected circumstances is a desired characteristic of any powered descent guidance and

FP2DG demonstrated that this is possible without many adjustments. Another reason for

further investigation of FP2DG is that with some changes in trajectory shape and better

PDI conditioning, propellant consumption improvements can be achieved.

The main tuning parameters in FP2DG are the time-to-go from the start of PDI to

the landing site, and two parameters, � and kr, that a↵ect trajectory shaping. In addition,

changing the PDI condition might benefit the e�ciency of the algorithm by providing a

better starting condition. A set of modifications were applied to PDI condition and the

tuning parameters in FP2DG to reach lower levels of propellant consumption. Two new

test cases were created to compare the results, with their details presented in Table 7.6.

Table 7.6. PDI conditions and tuning parameters in FNPEG + FP2DG trade studies for
a human-scale Mars landing mission.

Case Study Targeting PDI Conditions Tuning Parameters

FNPEG + FP2DG Nominal Geodetic Altitude = 5000.0 m Time-To-Go = 55 s
Relative Velocity = 550 m/s � = 1.5
Range-To-Go = 11.5 km kr = 12.0

FNPEG + FP2DG Trade 1 Geodetic Altitude = 3000.0 m Time-To-Go = 64 s
Relative Velocity = 350 m/s � = 1.0
Range-To-Go = 9.5 km kr = 12.0

FNPEG + FP2DG Trade 2 Geodetic Altitude = 3000.0 m Time-To-Go = 50 s
Relative Velocity = 550.0 m/s � = 1.0
Range-To-Go = 0.0 km kr = 12.0

FNPEG + FP2DG Nominal is the same as Trade Study 2 in the previous section,

this was used as the new baseline for this comparison. In FNPEG + FP2DG Trade 1,

the PDI condition was lowered to start closer to the landing site and at a lower velocity.
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Table 7.7. Actual PDI condition at entry hand-o↵ in FP2DG trade studies on a
human-scale Mars landing mission

Case Study Targeting PDI Conditions Tuning Parameters

FNPEG + FP2DG Nominal Geodetic Altitude 5000.0 m
Relative Velocity 550 m/s
Range-To-Go 11.5 km

FNPEG + FP2DG Trade 1 Geodetic Altitude 3000.0 m
Relative Velocity 350 m/s
Range-To-Go 9.5 km

FNPEG + FP2DG Trade 2 Geodetic Altitude 3133.3 m
Relative Velocity 439.92 m/s
Range-To-Go 7.5 km

Altitude was also reduced to achieve the desired lower velocity. FNPEG + FP2DG Trade

2 was created to push the algorithm to the limit. This was achieved by reducing the

speed and altitude at PDI as much as possible. In this case, FNPEG is configured to fly

a low trajectory that ends above the landing site. Not that a target relative velocity of

250 m/s with entry alone is not attainable, but because FNPEG will always try to get

as close to the target condition as possible, it will find the smallest velocity achievable.

This guarantees that there will always be a solution, even if it is not exactly the targeting

condition. As a reminder, this is only for the purpose of testing the guidance to the limit,

FNPEG can reach targeting conditions that are more reasonable, just as it was shown

in the nominal trade study. In previous cases, PDI activates when FNPEG reaches an

energy value related to the targeting conditions. In this case, although a lower trajectory

is flown, a di↵erent targeting condition to start PDI at a near-optimal condition. This

was accomplished by using a PDI Logic based on a propellant-optimal powered descent

guidance called the Universal Powered Guidance (UPG) [61, 22]. With the aid of this
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algorithm, a better PDI starting condition was selected. In this sense, FNPEG flies a

trajectory that is independent of the PDI condition. The PDI condition activates at a

point along the trajectory even though the trajectory target has not been reached. This

has been tested previously in the literature, where it has been shown that PDI plays an

important part in the e�ciency of powered descent guidance. The actual trajectory flown

by FNPEG + FP2DG Trade 2 is based on the “Entry Trajectory PDI Target” values on

Table 7.6 and the “Actual PDI Condition” on Table 7.7 defines the point along the entry

trajectory when powered descent is initiated [61, 22].

Figure 7.17. Complete end-to-end EDL trajectories in FP2DG trade studies for a
human-scale Mars landing mission.

The nominal trajectories for the FNPEG + FP2DG trade studies are shown in

Figures 7.17 and 7.18. In Figure 7.17, the complete end-to-end trajectory shows a similar

profile for all three cases. The only di↵erence appears towards the end, where PDI

conditions change. Figure 7.18 shows the powered descent trajectories of these 3 cases,

where the di↵erent PDI conditions can be noticed. The trajectories in Trades 1 and 2

start PDI at lower values than the nominal by more than 3 km in geodetic altitude and
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Figure 7.18. Powered descent trajectories in FP2DG trade studies for a human-scale
Mars landing mission.

by almost 100 m/s in relative velocity. An interesting observation is that the di↵erence

in PDI condition between Trades 1 and 2 is minimal, this is because the optimal PDI

condition is very close in both cases.

Figure 7.19. Comparison of angle of attack for FP2DG trade studies for a human-scale
Mars landing mission.

Figures 7.19, 7.20, and 7.21 show the angle of attack, angle of sideslip, and bank

angle during entry and powered descent. The figures show similar behavior than the

nominal cases. The only control used by FNPEG is bank angle, with a trim angle of
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Figure 7.20. Comparison of angle of sideslip for FP2DG trade studies for a human-scale
Mars landing mission.

Figure 7.21. Comparison of bank angle for FP2DG trade studies for a human-scale Mars
landing mission.

attack of -10 deg. Changes in angle of sideslip result from the angle commands sent on the

wind-relative frame in POST2, this causes a small variation in the planet-relative angles.

Figure 7.21 shows the bank angle profile of the three trade cases and how FNPEG adapts

to fly di↵erent trajectories. Relatively small changes in bank angle make a significant

di↵erence in the trajectory flown and the conditions achieved.

In Figure 7.22, the final conditions attained by each trade study are compared.
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Figure 7.22. Comparison of PDI starting conditions in FP2DG studies for a
human-scale Mars landing mission.

The nominal case starts PDI at an altitude close to 6 km and a Mach number of 2.34.

The FNPEG + FP2DG Trade 1 PDI condition started at 3 km, while Trade 2 started at

2.8 km. Regarding relative velocity, Trade 1 started at a Mach number of 1.96, against

a Mach number of 1.93 for Trade 2. Trades 1 and 2 o↵er a significant improvement in

velocity reduction versus the nominal case. The goal of lowering the PDI conditions and

trajectory targets in Trade 1 and Trade 2 was to slow down the vehicle as much as possible

to improve propellant e�ciency. A PDI with lower velocity requires less propellant because

the powered descent guidance will run for a shorter time.

A comparison of the throttle profile generated by these trade studies is presented

in Figure 7.23. As a reminder, the maximum thrust capacity of the HIAD is of 800,000

N. The total powered descent run time of the nominal case is of 55 seconds, a total of

64 seconds for Trade 1 and 50 seconds for Trade 2. Notice that Trade 1 consumes less

propellant than the nominal case despite having a longer flight time, this highlights the

importance of an appropriate PDI condition.
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Figure 7.23. Throttle profile comparison in FP2DG trade studies for a human-scale
Mars landing mission.

In terms of total throttle, the nominal case operates significantly below 90% of

the maximum thrust allowed, while the trade studies su↵er from saturation in the early

part of powered descent. It is desirable to avoid any saturation to maintain full control

of the spacecraft since maneuvering is performed using di↵erential throttling. However,

having some saturation is expected for this scenario since we are pushing the guidance to

the very limit of what is physically possible to attain. The propellant-optimal powered

descent solution produces a bang-bang profile [22]. A bang-bang profile consists of three

segments: a first segment at the maximum allowable thrust, a middle segment at the

minimum allowable thrust, and a final segment at the maximum allowable thrust again.

By doing this, the flight time is the smallest possible and the velocity reduction is increased

using the maximum thrust. In the case of FP2DG, optimization is not playing a part,

but the saturation at the beginning involves the same principle. To reduce velocity to

achieve a safe landing, some portion of powered descent needs to perform at maximum

thrust. In this study, no thrust limit was added to FP2DG. It is possible that adding
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a limit at 90% thrust would eliminate saturation, but at the cost of more propellant

consumption. Additionally, it is important to consider that although throttle control is a

very important mechanism for the control of the vehicle, the thrust direction vector also

plays an important part in the e�ciency and control of the spacecraft.

Figure 7.24. Mass consumption in FP2DG trade studies for a human-scale Mars landing
mission.

The resulting mass from the nominal runs is shown in Figure 7.24. It is clear that

there is a significant propellant reduction in Trades 1 and 2 that results in a higher final

mass. The nominal propellant consumption by the nominal case is of 8867.3 kg, with

Trade 1 and 2 using 8051.2 kg and 7665.6 kg, respectively. The di↵erence in propellant

consumption between the nominal case and Trade 1 is of 816.1 kg, a di↵erence of almost

1 metric ton. Furthermore, a di↵erence of 1201.7 kg was attained by Trade 2 against

the nominal case, a di↵erence of 1.2 metric tons. A considerable decrease in propellant

spending can be achieved by changing the PDI condition and tuning some of the powered

descent guidance parameters.
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7.7.1 Monte Carlo Simulations for Fractional-Polynomial
Powered Descent Guidance Trade Studies.

In the same way as the previous study, 8000 Monte Carlo runs were performed on

the FNPEG + FP2DG study to give a better idea of the performance of the algorithm

with di↵erent configurations. The dispersions applied to these simulations are the same

provided in Table 7.4. Because targeting conditions were di↵erent for FNPEG in Trades

1 and 2, some variation in the PDI conditions was expected. The final values reached

by the entry guidance in the 3000 cases of the Monte Carlo simulation can be seen in

Figures 7.25, 7.26, 7.27, and 7.28.

Figure 7.25. Height above ground at start of PDI for 8000 Monte Carlo cases in a
human-scale Mars landing mission with a factor of safety = 1.0.

The first thing to notice is that all three cases obtained a 100% success rate

regardless of the entry trajectory flown or the powered descent configuration. Satisfying

the stringent conditions in Table 7.5 demonstrates the robustness of the algorithm even

when flying a more aggressive trajectory. Figure 7.25 shows the geodetic altitude at the

start of PDI. The mean altitude at PDI for both Trades 1 and 2 is close to 3 km, while
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Figure 7.26. Relative velocity at start of PDI for 8000 Monte Carlo cases in a
human-scale Mars landing mission with a factor of safety = 1.0.

Figure 7.27. Crossrange at start of PDI for 8000 Monte Carlo cases in a human-scale
Mars landing mission with a factor of safety = 1.0.

the nominal case starts PDI at 6.84 km. The relative velocity comparison in Figure 14b

displays the greater speed reduction obtained from using lower entry guidance targets.

At PDI, relative velocity in Trades 1 and 2 are 90.87 m/s and 97.37 m/s slower than

the nominal case, respectively. Even though this appears to be a small reduction in

comparison to the initial relative velocity of 2650 m/s, it causes an significant di↵erence

in propellant consumption. The di↵erence in downrange among the three cases can be

observed in Figure 7.28. The mean downrange for the nominal case is of 12.06 km, Trade
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Figure 7.28. Downrange at start of PDI for 8000 Monte Carlo cases in a human-scale
Mars landing mission with a factor of safety = 1.0.

2 reaches a downrange of 10.12 km and Trade 2 a downrange of 7.85 km. From this

image, a discrepancy between the target range-to-go in Trade 2 and the actual downrange

achieved can be perceived. The target range-to-go was selected to be at the landing site,

while Trade 2 is 7.85 km from the landing site in downrange. Although FNPEG targets

altitude, velocity and range-to-go, PDI occurs before reaching the targeting conditions.

The target altitude and velocity are used as the trigger to start PDI, while range-to-go

is targeted by the bank angle parametrization. This means that PDI can be triggered

by altitude and velocity alone. This mechanism is useful because altitude and velocity

usually contribute more to a better PDI condition. The reduction in relative velocity goes

alongside a reduction in altitude. The di↵erence in relative velocity at PDI between the

nominal case and Trades 1 and 2 is a significant reduction caused by the need to fly for a

longer period. To obtain the desired velocity reduction, the vehicle needs to fly longer.

Similarly, range-to-go needs to be reduced to accommodate this additional flight time

during entry. Interestingly, flying a longer entry trajectory also results in a reduction in
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crossrange error at PDI. The bank reversal logic of FNPEG calculates when to perform a

bank reversal to reach the predefined number of bank reversals selected by the user. As

the vehicle advances through the entry phase, FNPEG minimizes the crossrange error with

each bank reversal. The additional flight time allows FNPEG to reduce the crossrange

error as it approaches the lower targeting conditions.

Figure 7.29. Total range at touchdown for 8000 Monte Carlo cases in a human-scale
Mars landing mission with a factor of safety = 1.0.

Figure 7.30. Pitch at touchdown for 8000 Monte Carlo cases in a human-scale Mars
landing mission with a factor of safety = 1.0.

Figures 7.29, 7.30, and 7.31 show the Monte Carlo statistics when the vehicle

arrives on the ground. A measure of the total range to the landing site is gathered in
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Figure 7.31. Propellant consumed at touchdown for 8000 Monte Carlo cases in a
human-scale Mars landing mission with a factor of safety = 1.0.

Figure 7.29. The total range evaluates the distance from the vehicle to the landing site.

At touchdown, all three cases achieve total ranges that are in the order of 10�3. The total

range values appear as zero because the statistics shown in the plot only allow up to 2

decimal places. In Trade 2, the maximum value is of 20 meters away from the landing site.

This is expected since Trade 2 is flying a very low trajectory with more restricted control.

Even in these situations, the total range is so small that it is not a cause for concern.

During vertical descent and at touchdown, it is necessary to point the vehicle in the correct

direction to avoid any horizontal velocity. A -90.0 degree pitch corresponds to the correct

position to start vertical descent. Figure 7.30 shows the resulting pitch at touchdown

in this Monte Carlo test. All three cases were able to achieve a vertical descent with a

pitch near -90.0 deg. The mean pitch angle in all cases deviates from -90.0 deg by 0.03

degrees, which is essentially a straight vertical descent. Finally, propellant consumption

using FNPEG and FP2DG with di↵erent configurations is compared in Figure 7.31. In this

figure, the e↵ect of PDI condition and tuning parameters on propellant consumption can
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be appreciated. The propellant consumed by all three cases followed a similar trend than

what was observed in the nominal cases. The smallest mean propellant consumed was of

7720.7 kg by Trade 2, while the greatest propellant consumed was a total of 8880.2 kg by

the nominal case. Trade 1 obtained a propellant consumption of 8013.3 kg, a considerably

lower propellant consumption against the nominal case given that the only di↵erence was

a reduction in entry target conditions. Trade 2 also holds a more conservative propellant

spread with a 426.09 kg 3-sigma variation. Trade 3 spent a little more fuel in some cases,

bringing the variation to 737.61 kg. Again, this is attributed to the fact that the guidance

is flying a more limiting trajectory.

The importance of these trade studies is to show the ability of FNPEG + FP2DG

to accommodate rigorous dispersions. Additionally, tuning the entry and powered descent

guidance o↵ers a reduction in propellant consumption that bring the total mass of the

vehicle down by up to 1.1 tons. Naturally, this comes at the cost of rigorous flying

conditions that might need to be revised to make sure it meets the requirements of a

crewed mission. The important takeaway is that this test allows the discovery of the

maximum performance that can be attained by the algorithm before other constraints

are included. Using the full potential of the entry guidance algorithm to target a better

PDI condition is fundamental for the acquisition of these results. A better PDI condition

reduces the amount of flight time and thrust setting, resulting in a smaller amount of

propellant needed to accomplish the mission successfully.
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7.8 Summary

Trade studies on entry and powered descent guidance using the HIAD vehicle on

a crewed mission to Mars were completed successfully. Despite all the e↵ort to develop

new guidance algorithms, it is not often that multiple of these algorithms are tested

and compared under similar conditions. Di↵erent simulation environments, atmospheric

models, computational power, and other factors a↵ect the reproduction of the results under

the same circumstances. A comprehensive evaluation of two entry guidance algorithms

and two powered descent guidance algorithms has been realized to assess the performance

of modern EDL control methods. Three trade studies were generated by a combination

of these algorithms and the result of this analysis provides some feedback about the

current capability available when tested under similar conditions. The studies performed

demonstrate that both direct force and bank angle control during entry can supply a

proper PDI condition to allow a successful landing by the powered descent guidance. The

e↵ectiveness of the NPCG and FP2DG powered descent approaches was demonstrated under

randomized uncertainty in Monte Carlo simulations. All guidance approaches exhibited

similar propellant consumption characteristics in 3-DOF simulation. Furthermore, updates

on the PDI condition and tuning parameters of the FP2DG approach produced an overall

reduction of propellant reduction in 3-DOF and Monte Carlo simulations. The outcome of

this study provides a better understanding of the characteristics given by each approach

and encourages further development on parameter tuning and optimization to extract

better performance.
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Most importantly, the ability to integrate a robust entry guidance algorithm with

a propellant-optimal powered descent guidance algorithm successfully leads to a strong

foundation required for the complete EDL optimization achieved in Chapter 8. Particularly,

the FP2DG studies in Section 7.7 reveal that the hand-o↵ point between entry and powered

descent can lead to a worse propellant consumption if not properly selected, even when

using a propellant-optimal powered descent guidance. This is the motivation for the fully

optimized EDL trajectory in the following chapter.

Chapter 7, in full, is a reprint of the material as it appears in Simulation Comparison

of Entry and Powered Descent Guidance Algorithms for a Human-Scale Mars Mission,

2022. Sandoval, Sergio; Lugo, Rafael; Lu, Ping; Cianciolo, Alicia. The dissertation author

was the primary investigator and author of this paper.
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Chapter 8

Optimization of End-to-End Human-
Scale Mars Landing Mission

8.1 Introduction

In Section 7, the demonstration of a human-scale Mars landing mission was shown.

Integration of the entry and powered descent guidance algorithms resulted in a complete

EDL trajectory that successfully delivered a vehicle from the entry condition to the landing

location on the ground. To satisfy the safety and accuracy requirements, the guidance

algorithms were exposed to the most stringent conditions. One of the main goals of

Section 7 was to evaluate the performance and strengths of each algorithm and validate

that a complete EDL trajectory can be achieved with the integration of both algorithms.

The use of a PDI logic, described in Section 3.3.4, helped identify the near-optimal powered

descent starting condition to minimize the propellant-consumption during powered descent

subject to the entry trajectory produced by the entry guidance. However, the EDL

trajectory falls short of being optimal given the lack of optimization during the entry

phase. Using the PDI logic propellant consumption can be improved, but it does not mean

that the complete EDL solution is optimal in any sense.
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In this chapter, a new approach is presented for the end-to-end optimization of an

EDL problem. By taking advantage of the strong foundation that the entry and powered

descent algorithms implemented, and transforming the problem into a hybrid-optimal-

control problem, it is possible to obtain an EDL solution with near-optimality. The

development of this approach, all the assumptions to guarantee convergence and extensive

demonstrations of robustness will be shown in the following sections.

8.2 End-to-End Fuel-Optimal Entry and Powered-
Descent Problem

8.2.1 Entry-Flight Dynamics for a Gliding Vehicle About an
Oblate Planet

In general, the equations of motion for entry flight are of the same form as Equa-

tions 2.1-2.6. However, the terms for velocity, flight-path-angle, and heading angle rates

do not take into account the oblateness of the planet. To increase model fidelity, the

3-dimensional equations of motion for a gliding vehicle on a rotating, oblate planet, using

non-dimensional variables, are as follows:
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ṙ = V sin � (8.1)

✓̇ =
V cos � sin 

r cos�
(8.2)

�̇ =
V cos � cos 

r
(8.3)

V̇ = �D � gr sin � � g� cos � cos + ⌦2r cos� (sin � cos�� cos � sin� cos ) (8.4)

�̇ =
1

V

⇥
L cos � +

�
V 2/r � gr

�
cos � + g� sin � cos + 2⌦V cos� sin 

+ ⌦2r cos� (cos � cos�+ sin � cos sin�)
⇤

(8.5)

 ̇ =
1

V


L sin �

cos �
+

V 2

r
cos � sin tan�+ g�

sin 

cos �

�2⌦V (tan � cos cos�� sin�) +
⌦2r

cos �
sin sin� cos�

�
(8.6)

with the same variable definitions and nondimensionalization technique as described

in Section 2.2.1. The only additional terms are gr and g� described in the following way:

gr =
1

r2

"
1 + J2

✓
1

r

◆2 �
1.5� 4.5 sin2 �

�
#

(8.7)

g� =
1

r2

"
J2

✓
1

r

◆2

(3 sin� cos�)

#
(8.8)

In equations 8.7 and 8.8, J2 is defined as the planet zonal gravitational coe�cient.

The value of J2 varies depending on the planet under investigation, for Mars J2 =

1.96045⇥ 10�3 while for Earth J2 = 1.08263⇥ 10�3.
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The high nonlinearity of the entry guidance problem has been previously mentioned,

and the addition of the gravitational components in Equations 8.7-8.8 do not make the

problem any simpler. However, it will be shown that for an entry guidance such as FNPEG,

the addition of these terms do not jeopardize its fast convergence and reliability. Therefore,

the additional fidelity helps create a more accurate simulation environment.

Given the entry dynamics defined in Equations 8.1-8.6, the entry state will be

defined as follows:

xe = (r, ✓,�, V, �, ) 2 R6 (8.9)

The initial condition xe(0) is assumed to be given. The entry guidance problem

consists in obtaining the bank angle control �(t) on the time interval t 2 [t0, tPDI ]. The

initial time t0 starts at the entry interface, while tPDI is the to-be-determined time at

the end of entry. The bank angle control is subject to the constraint in Equation 2.18.

Other path constraints on the trajectory such as heat rate, dynamic rate, or load limit

can be included as exemplified in Lu [21]. The application of this control should result in

a trajectory with a final state xe(tPDI) that permits the safe and successful landing of the

vehicle using a propellant-optimal powered descent guidance.

The entry guidance algorithm used to generate the entry trajectory will be FNPEG,

described in more detail in Section 3.2.1. The variable e is used as the independent variable

in the formulation of FNPEG and in this work.
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8.2.2 Powered Descent Guidance Equations of Motion

In the powered descent guidance problem, the three-dimensional equations of motion

in a Cartesian coordinate frame over a flat planet surface when the aerodynamic forces

are ignored are represented by Equations 2.19 - 2.21 defined in Section 2.2.2. The initial

conditions for the powered descent problem are given by:

r(tPDI) = rPDI (8.10)

V (tPDI) = V PDI (8.11)

m(tPDI) = mPDI (8.12)

The variables r, V , and g are the position, velocity, and gravitation acceleration

vectors in the topocentric reference frame. The gravitational acceleration vector is defined

as a constant with magnitude g0. tPDI is the time when the powered descent phase starts,

the PDI condition that needs to be determined and that corresponds to the final condition

of entry phase. At PDI, a smooth transition between entry and powered descent must

occur. The rocket jet engine thrust, T , is constrained by the following upper and lower

bounds:

Tmin  T  Tmax (8.13)

Operationally, it is di�cult to turn back on an engine during the powered descent
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phase and it should only be allowed to change throttle within a specified range. To

avoid the complete shut down of the engine during the short duration of powered descent,

Tmin > 0. The rocket exhaust velocity is defined as a constant and must adhere to

the constraint Ve > 0. The last remaining constraint for powered descent is on throttle

direction:

1T

T
1T = 1 (8.14)

Where 1T 2 R3 is the unit vector that defines the thrust direction. Te state and

control vectors for the powered descent phase will be denoted by:

xp = (rT ,V T ,m)T 2 R7 (8.15)

up = (T,1T

T
)T 2 R4 (8.16)

A topocentric frame with the origin at the landing location will be used for powered

descent. Figure 3.2 is an illustration of the topocentric coordinate system. The targeting

conditions in powered descent are those of the “pinpoint landing” defined on Section 2.2.2.

With Equations 3.14 and 3.15 defining the terminal position and velocity conditions at

the landing site. In the topocentric frame, a final position of r⇤
f
= 0 indicates a landing at

the predefined landing location. The time tf > tPDI is the final time to be determined.
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8.3 Hybrid-Optimal-Control Problem

To design the complete EDL optimization problem it is necessary to understand that

entry and powered descent have di↵erent states, constraints and final conditions. Solving

the end-to-end trajectory optimization problem requires that each guidance problem be

treated separately while solving the same minimization problem together. In order to

smoothly transition from one guidance algorithm to the other, it is necessary to design the

problem in such a way that current state is transmitted between the two phases. When

this transition point is added, the problem becomes an Hybrid-Optimal-Control (HOC)

Problem. The HOC problem allows both phases to be considered in the overall problem

description while keeping their individual dynamics and constraints separated during the

optimization process. In this formulation, the entry dynamics will be denoted by Equations

8.1 - 8.6 and the following entry trajectory constraints:

ẋe = f
e
(xe, �), xe(0) = xEI (8.17)

he(xe(t), �(t))  0, t 2 [0, tPDI ] (8.18)

where xEI defines the known state at entry interface (EI) or at a point after EI; and

tPDI > 0 is the to-be-determined time for powered descent initiation (PDI), when powered

descent begins. The constraints in the entry phase consist of Equation (2.18) and any other

trajectory constrained imposed for safety, operational or mission dependent considerations.

Examples of possible constraints are aerodynamic load, heat rate, and dynamic pressure
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limits. Lu [21] describes how these constraints are implemented in FNPEG.

For powered descent, a similar approach is taken to define the system dynamics and

constraints. In this case, the initial point begins at PDI after the entry phase is complete.

In mathematical terms, this would be defined during the time interval [tPDI , tf ], where

tf > tPDI is the final time to be determined. The following equations define the system

during powered descent:

ẋp = f
p
(xp,up) (8.19)

hp (xp(t),up(t))  0, t 2 [tPDI , tf ] (8.20)

s (xp(tf )) = 0 (8.21)

in which the state equations are defined by Equations 2.19 - 2.21 and the initial

conditions by Equations 8.10 - 8.12. The inequality constraints include Equations 8.13

and 8.14. Equation 8.14 can be included using the fact that equality constraints of the

form f(x) = 0 can be separated into two inequality constraints of the form f(x)  0 and

�f(x)  0. An additional inequality constraint on the thrust pointing direction can be

added for further attitude control. Lu [107] provides details on the implementation of such

a constraint. The “pinpoint landing” constraints in Equations 3.14 and 3.15 represent the

terminal constraints at tf .

At the transition point between entry and powered descent, the state in both phases

must be equal. The initial condition for xp, also known as the PDI condition, is defined as:
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xp(tPDI) = q(xe(tPDI)) := xPDI (8.22)

The term q(·) : R6 �! R7 is a nonlinear coordinate transformation or mapping from

xe to xp. This transformation is necessary to convert the state variables in the entry

system to the variables that will be used in powered descent. Since mass was constant

during entry, the term q7(·) was added as m(tPDI) = mPDI = m0 for powered descent.

In this case, there was no jettison of an aeroshell or any mass depletion before powered

descent. If jettison of any spacecraft structure is planned, then mPDI < m0.

Hybrid-Optimal-Control Problem Definition

The solution to the hybrid-optimal-control problem consists in finding: the transition

time tPDI , the final time tf where tf > tPDI , a piecewise continuous �(t) for t 2 [0, tPDI ],

and a piecewise continuous up(t) for t 2 [tPDI , tf ], such that the trajectory constructed by

the entry system in Equations 8.17 - 8.18 in [0, tPDI ], and then by the powered descent

system in Equations 8.19 - 8.21 with the initial condition in Equation 8.22, minimizes the

propellant consumption in the powered descent phase during [tPDI , tf ] and represented by

the performance index

J = m0 �m(tf ) (8.23)
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8.4 Solution via Bi-Level Optimization Approach

8.4.1 Bi-Level Optimization Problem and Algorithm

The entry dynamics in Equations (8.1) - (8.6) are complex and highly nonlinear.

Adding a powered descent phase to produce a complete EDL problem is more challenging,

but possible, as shown in Section 7. To solve an entry trajectory optimization problem is

a di�cult operation that requires many assumptions and problem manipulation. However,

uniting entry and powered descent in a complete EDL trajectory optimization problem is

a very ambitious objective that has hardly ever produced any results in the literature. The

reason is that transforming the equations of the problem into any optimization systems

requires the introduction of a large number of new variables and an immense amount

of algebraic manipulation. Wan [121] is an example of the transformation of the EDL

problem into a quadratic-polynomial system. If the problem is able to be transformed

into a QCQP problem, it will be a large-scale problem with a long convergence time.

Furthermore, the problem is highly simplified demonstration of a 2-dimensional solution

and not a trajectory that can be readily flown by a real vehicle. It exposes the di�culty

of finding the optimal solution of the EDL problem. Another method of optimization is

to use an entry and powered descent guidance in a high-fidelity simulation environment

to calculate thousands of trajectories and recording the propellant consumption in each

trajectory. The propellant consumption is compared and the trajectory that produces the

least amount of propellant is selected as the optimized trajectory. Multiple parameters in

the entry and powered descent guidance can be changed as the optimization is occurring to

provide better trajectory shaping and propellant consumption. The argument against this
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method is that it is an arduous undertaking as it requires a lot of computational power

and it can only predict one optimized trajectory. During flight, any changes in initial or

atmospheric conditions have the potential of making the trajectory unattainable.

The options to solve a problem of this magnitude are limited. A di↵erent approach

o↵ers a fast and robust solution to the EDL optimization problem. Rather than optimizing

the entry algorithm itself, it is possible to leverage the strengths of a highly reliable entry

guidance algorithm to produce a better trajectory to start powered descent. The high

dependency of powered descent on the initial condition point towards the final entry

condition as the most important aspect of optimization. However, as important as the

PDI condition is to start powered descent, the trajectory flown by the vehicle also a↵ects

its position and velocity, making it crucial in the propellant-minimization process. The

method developed in this work is a bi-level optimization approach that uses FNPEG,

an entry guidance algorithm demonstrated to be accurate and highly robust [31] and

G-POLAR, a propellant-optimal powered descent guidance [107] to produce an optimized

end-to-end EDL solution rapidly and e�ciently.

Given a PDI condition xp(tPDI) produced by the entry guidance, the fuel-optimal

powered descent guidance algorithm finds a solution to the problem posed in Equations

(8.19) - (8.21) that minimizes the performance index in Equation (8.23). The solution to

the hybrid-optimal-control problem defined in the previous section is found by determining

the best PDI condition xp(tPDI) to start powered descent. In other words, the solution

consists in finding the final entry phase state xe(tPDI) that leads to the overall minimum

propellant consumption in the powered descent phase. The propellant-optimal powered
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descent guidance already find the minimum propellant consumption possible during

powered descent using GPOLAR. However, there is no optimization of the entry guidance

trajectory computed by FNPEG. To optimize the entry trajectory, and subsequently the

complete EDL trajectory, the problem is formulated as a bi-level optimization problem.

In the bi-level optimization approach, an inner optimization loop in obtains the powered

descent trajectory with the least fuel consumption given a PDI condition xp(tPDI), while an

outer loop optimizes the entry trajectory to provide a terminal state xe(tPDI) of the system

defined by Equations (8.17) - (8.18) such that the corresponding xp(tPDI) from Equation

8.22 results in the smallest propellant consumption by the inner loop optimization.

In order to select the entry trajectory that minimizes the propellant consumption

during powered descent, multiple trajectories need to be produced and compared. There

are two ways to accomplish this using FNPEG. The first option is to change the target

altitude and velocity, consequently changing the final energy ef at which the target range

is achieved. The second, and less obvious option, is to modify the final bank angle target

�f to alter the linear bank angle profile. This is a simple parameter that is usually selected

as a constant, but that can influence the entry trajectory enormously. In this work, it

was discovered that changing the final bank angle target results in a greater propellant

consumption reduction and was used for the demonstration of results in the following

sections. In addition, Section 8.9 provides evidence showing that changing the final altitude

and velocity targets achieves minimal changes in propellant consumption if the adaptive

PDI logic is active.

In the bi-level optimization approach, the parameter �f is determined by the outer
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loop optimization. The outer optimization is an unconstrained univariate minimization

problem on sigmaf to minimize the cost function J . FNPEG is run in a closed-loop

simulation to find �0 and determine the guidance command � for entry flight. The

dynamics and constraints in the entry system are satisfied by the closed-loop simulation.

The optimization is an iterative process to determine for which value of �f the trajectory

produced will yield the lowest propellant consumption. Each cost evaluation in the outer

loop corresponds to a di↵erent value of sigmaf . To successfully achieve the desired result,

appropriate bounds on the entry control �f of the form �min � �fmin and �fmax  �max

need to be added such that the bank angle limit in Equation 2.18 is satisfied.

During entry-flight, changes in initial and atmospheric conditions a↵ect the course

of the trajectory. Therefore, it is unrealistic to assume that the nominal trajectory will

be flown. Multiple studies have shown that the PDI condition depends significantly on

the entry trajectory flown. Consequently, the starting condition for powered descent

determines how much propellant can be saved. To account for these changes, an adaptive

PDI logic is implemented. As the trajectory flies towards the designated entry final

condition in the closed-loop simulation, the adaptive PDI logic examines the current state

to decide the best PDI condition to start powered descent. When an appropriate PDI

condition is found, a signal is sent to handover the vehicle from the entry guidance to the

powered descent guidance immediately. Besides making a di↵erence between success and

failure of the mission, the predicted time-to-go for optimal soft-landing solution powered

descent is calculated by the PDI logic, providing the best starting point to initiate powered

descent [109]. Notice that by adding the PDI logic, the transition time tPDI is not found
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explicitly by the optimization loop. The adaptive PDI logic is a more e↵ective way of

transitioning between entry and powered descent, with the added benefit of providing a

custom PDI condition during every mission scenario. More details on the working principle

of the adaptive PDI logic can be found on Section 3.3.4.

Once the PDI logic has identified an appropriate PDI condition, the entry phase

terminates and the powered descent takes over. Thus, the inner loop optimization begins.

In the inner loop, optimization of the powered descent guidance is performed to obtain

the optimal propellant consumption. In this work, the G-POLAR algorithm is used

to calculate the fuel-optimal powered descent solution from the PDI condition. The

dynamics and constraints for powered descent are satisfied by G-POLAR. The minimum

propellant consumption is obtained given the initial conditions provided by the entry

guidance trajectory and the PDI logic. More details on how the inner optimization loop

is performed can be found on Sections 3.3.2 and 3.3.3. The cost function J is assigned

the value of the optimal propellant consumption. The outer optimization is solved by the

Golden-Section search method [122] in the interval [�fmin , �fmax ].

Once a complete iteration from entry to powered descent is completed, a cost

function evaluation with respect to the optimization variable �f in the outer loop is

completed. Subsequent evaluations calculate the optimal propellant consumption for

multiple values of �f according to the process of the outer optimization algorithm. At

some point, the optimal value of �f that yields the lowest value of J by G-POLAR will be

found. A near-optimal solution to the HOC problem has been found once the outer loop

optimization converges. For better visualization, an optimization step using the bi-level
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optimization approach developed in this work can be seen in Figure 8.1

Figure 8.1. Flowchart of EDL trajectory generation in bi-level optimization approach
iterations.

The solution of the bi-level optimization approach is near-optimal, rather than

strictly optimal. To understand the reasoning behind this assumption it is important to

analyze two important factors in the development of this problem and its solution:

• The low-dimension of the univariate parameterization of the bank angle magnitude

profile

• The determination of a near-optimal PDI point by the adaptive PDI logic

Both of these factors provide approximations that facilitate the solution of the

problem and are justified by the following logic. The low dimensionality of the univariate

parameterization arises from the fact that in entry-flight the bank angle is executed by

the attitude control system of the vehicle. Higher-order representations of the bank angle
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profile can have rapid and large variations that might make it harder to control the vehicle

precisely. Therefore, a monotonic and slow-varying bank angle magnitude profile provides

is preferred. The simplest form of a bank angle profile with those characteristics is a

linear profile such as the one in Figure 3.1. There is no substantial loss of performance

by the selection of the linear profile, instead it is more operationally desirable. The

other factor concerns the use of the adaptive PDI logic to find the transition point at

tPDI . As mentioned before, the PDI condition found by this technique is a result of the

propellant-optimal soft-landing powered descent solution. The propellant consumption in

the soft-landing problem is the lowest possible propellant consumption among the three

di↵erent landing problems stated in Section 3.3.2. The approximated time-to-go and

PDI condition predicted by the soft-landing solution is a close as possible to the optimal

time-to-go in the pinpoint landing solution. Because the time-to-go is not exactly the

same in these two problems, it can only be inferred that the solution is near-optimal. The

algorithmic description of the complete bi-level optimization process is shown in Figure 8.2.

Since both FNPEG and G-POLAR have been successful in extensive testing, the

strengths of these algorithms are immediately transferred to this method. An advantage

of the proposed method is that no major changes in the algorithms and software are

necessary for on-board implementation. The capability of optimizing an end-to-end EDL

trajectory is readily available with the same algorithms that might be already resting in

the guidance system on-board the vehicle.
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Figure 8.2. Bi-level optimization algorithm description.

8.4.2 Guaranteed Convergence in Bi-Level Optimization
Algorithm

A critical consideration of this algorithm is its reliability to convergence. In such a

sensitive environment such as space exploration, it is necessary to have an assurance that

a solution will be found that meets the minimum requirements for a safe and successful

mission. To provide such a guarantee, the following assumptions need to be taken into

consideration:

Assumptions

1. For the given initial condition on the entry phase and vehicle models:

9 [�fmin , �fmax ] ⇢ [�min, �max] s.t. 8�f 2 [�fmin , �fmax ], there is an end-to-end
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entry and (fuel-optimal) powered descent trajectory, found by FNPEG and G-

POLAR, as described in the outer optimization loop of Figure 8.2.

2. The models for the atmosphere, aerodynamic coe�cients, and any other parameters

used to find the FNPEG guidance solution and closed-loop simulation are C1 (i.e.,

they have continuous first-order partial derivatives with respect to the trajectory

state variables).

3. Any numerical integration errors in the closed-loop simulation are su�ciently small

and can be ignored for analysis purposes.

Analysis

Assumption 1 implies not only that FNPEG will generate a feasible entry trajectory

for every �f 2 [�fmin , �fmax ], but also that the adaptive PDI logic will produce along this

entry trajectory a PDI condition that allows G-POLAR to successfully find a pinpoint-

landing solution. The first part of this implication is very reasonable, both from the hysics

of the entry problem and the proven capability of FNPEG. The second part is supported by

the extensive emprical evidence of tens of thousands of Monte Carlo closed-loop simulations

in Lu [107], Sandoval [62], and Lu [61], where the PDI logic has been demonstrated to

produce successful PDI conditions in all of those dispersed entry trajectories.

Assumption 2 is already the normal setting in a well prepared entry trajectory

optimization problem.

Assumption 3 allows us to focus on the central tenet of generating the entry

trajectory without being buged down on non-essential factors.
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Proposition

Under the previous assumptions, a conclusion on the existence of the minimum

of the bi-level optimization problem and the convergence of the bi-level optimization

algorithm is presented as follows:

There exists a minimum for the bi-level optimization problem at some �⇤
f
2

[�fmin , �fmax] with the guaranteed convergence of the algorithm proposed in
Figure 8.2.

Proof

The reasoning behind Assumption 1 has been already analysed in the previous

section, where a feasible entry trajectory can be generated for every �f 2 [�fmin , �fmax ].

From the physics of the entry problem, this is a reasonable assumption that can be

accomplished with the linear bank angle magnitude profile from Figure 3.1. The proven

capability of FNPEG in exhaustive testing testifies that such an assumption is guaranteed.

Similarly, extensive testing of the powered descent guidance on thousands of dispersed

closed-loop simulations defend this assumption when an adequate PDI condition is provided.

The adaptive PDI logic ensures that an appropriate PDI condition is always selected.

Thus, making it possible to generate a complete end-to-end trajectory successfully.

Assumption 2 indicates that the right-hand sides of the entry dynamics equations

(8.1) - (8.6) are continuously di↵erentiable with respect to the state vector xe for xe 2

S 2 R6, where S is a set that includes all reasonably possible values of xe along the entry

trajectory, that is, nothing close to r = 0, V = 0, � = ±⇡/2, or similar. Furthermore, the

right-hand sides of Equations (8.5) and (8.6) are continuously di↵erentiable with respect
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to � represented in FNPEG by:

|�| = �0 +
e� e0
ef � e0

(�f � �0) (8.24)

If the bank reversals in entry-flight are ignored and only the absolute value of � is

considered in Equation 8.24, then the right-hand sides of the entry dynamic equations

are also continuously di↵erentiable with respect to �f . By the theory of continuous

dependence of solutions of ordinary di↵erential equations (ODEs) on parameters [123],

the entry trajectory generated by FNPEG is continuously dependent on �f . That is, the

state xe(t) at any point on the entry trajectory is a continuous function of �f .

Given that the models and initial condition for the closed-loop simulation and

FNPEG are the same for the entry phase, Assumption 3 implies that the FNPEG solution

can be used directly to represent the entry trajectory.

In G-POLAR, the optimal thrust magnitude T ⇤ is represented by a continuously

di↵erentiable function that closely approximates the bang-bang optimal thrust magni-

tude [107]. The optimal thrust direction 1⇤
T
is also a continuously di↵erentiable vector

function [107]. Both T ⇤ and 1⇤
T
are C1 functions of certain solution parameters that

depend on the initial condition xPDI of the powered descent phase in a continuously

di↵erentiable fashion. Therefore, the right-hand sides of the powered descent dynamic

equations are continuously di↵erentiable with respect to the state vector xp and those

solution parameters. By repeated use of the theory of continuous dependence of solutions

of ODEs on initial condition and parameters [123], we conclude that the final state of the

G-POLAR solution xp(tf ), in particular the final mass m(tf ), is a continuous function of
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the PDI condition xp(tPDI .

The adaptive PDI logic in Figure 3.3 uses the final ground-range traveled in the

soft-landing solution from G-POLAR starting from a point on the entry trajectory. By

combining the continuous dependence of the final state of the soft-landing trajectory on the

initial condition, and the continuous dependence of the state at any point along the entry

trajectory on �f , we have that the state xe(tPDI on the entry trajectory where the PDI logic

declares PDI is a continuous function of �f . The nonlinear coordinate transformation q(·)

in Equation 8.22 is continuous, hence the PDI condition xPDI = xp(tPDI) is a continuous

function of �f .

Using the standard result in calculus that a composite function formed by two

continuous functions is also continuous with respect to the independent variable, we

conclude that the cost function of the outer optimization in Equation 8.23 is a continuous

function of �f . By the Weierstrass Theorem [124], J has a minimum with respect to �f

in the closed interval [�fmin , �fmax ]. The second part of the Proposition, the convergence

of the outer optimization loop, follows the fact that just like the bi-section search, the

Golden-Section search in the outer optimization is guaranteed to converge to an extreme

of a continuous univariate function in a closed interval.

To complete the argument, let us consider the e↵ects of the bank reversals in

FNPEG. With the instantaneous bank reversals, the right-hand sides of Equations 8.5

and 8.6 are piecewise continuously di↵erentiable with respect to �f , and the state xe(t)

is continuous at the instants of bank reversals. Therefore, by applying the continuous

dependence arguments along each continuously di↵erentiable segment sequentially on the
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entry trajectory, we can still arrive at the conclusion that the state xe(t) is continuously

dependent on �f at any point along the entry trajectory, thus the claims in the Proposition

can be proved in the same way.

⌅

The Proposition does not assert that the solution the Golden-Section search con-

verges to is necessary the solution that results in the (global) minimum of J in [�fmin , �fmax ].

This is because if J has multiple local minima in [�fmin , �fmax ], the Golden-Section search

can potentially converge to a local minimum of J . On the other hand, if J is uni-modal

(in minimum) in [�fmin , �fmax ] (which will be true if (�fmax � �fmin) is su�ciently small, or

the interval [�fmin , �fmax ] happens just to bracket only the minimum), the Golden-Section

search will be guaranteed to converge to the minimum of J in [�fmin , �fmax ].

Corollary

In addition to the three assumptions highlighted above, if the cost function of the

outer optimization loop in the bi-level optimization algorithm is uni-modal in minimum

with respect to �f 2 [�fmin , �fmax ], the bi-level optimization algorithm is guaranteed to

converge to the minimum of the cost function in [�fmin , �fmax ].

8.5 End-to-End Trajectory Simulation Strategy

The FNPEG algorithm will guide the vehicle during the entry phase. For powered

descent, G-POLAR will calculate the thrust and thrust direction to reach the landing

location. Each algorithm is able to produce a feasible trajectory internally given the initial
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condition, in this sense, FNPEG and G-POLAR are independent components that are

integrated together for a complete EDL optimization process.

One benefit of using FNPEG in closed-loop simulation is that the adaptive PDI

logic can be readily applied as the vehicle flies the entry trajectory. For our purposes, it is

important to determine the PDI condition appropriately for the optimization to work. The

PDI logic is an important component of the bi-level optimization approach as it dictates

the near-optimal transition point between entry and powered descent. However, since

FNPEG generates a complete 3-DOF feasible entry trajectory in the solution process, it is

possible to apply the PDI logic to the stored entry trajectory without using closed-loop

simulation. The true advantage emerges when a higher-fidelity simulation environment is

desired.

To generate a trajectory rapidly, as is it would be required for on-board generation of

trajectories, the optimization time inside the guidance algorithms needs to be significantly

reduced. Usually, models inside the entry and powered descent guidance algorithms are

simplified to improve e�ciency. However, reducing the fidelity of the models might diverge

from a realistic recreation of the environment. In the description of the bi-level optimization

approach, it was mentioned that to generate the entry trajectory, a closed-loop simulation

was utilized. While it is possible to generate a complete 3-DOF feasible entry trajectory

without closed-loop simulation, implementing a closed-loop simulation during entry o↵ers

multiple advantages that were exploited in this investigation.

For a realistic aerospace system, higher fidelity models such as those for aerodynamic

coe�cients, atmospheric parameters, or propulsion subsystems, result in more accurate
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predictions. Simpler models usually converge faster, but this may come at the cost of

lower fidelity and trajectories that are far from realistic. If the trajectory produced

by simpler models is far from a realistic model, the trajectory may even lack su�cient

fidelity to ensure full feasibility, capture important physical characteristics, or inform

accurately on the performance. One of the main advantages of using closed-loop simulation

is to capitalize on the use of high-fidelity models for trajectory optimization. When

higher-fidelity models are used, there is greater confidence in the solution. However, a

drawback of high-fidelity models is that they can be data and computationally intensive,

and possibly complex to the point of being algorithms on their own [125]. Implementing

these models inside the algorithm becomes computationally prohibitive as these models

need to be called repeatedly in the optimization process. This problem is similar to one

that arises in Multidisciplinary Design Optimization when high-fidelity models are part of

the optimization [126, 127].

FNPEG is an iterative process that requires numerical integration of multiple

trajectories to find the final guidance solution. When simple low-fidelity models for

environment and systems parameters are used, for example, those for atmospheric density

and aerodynamic coe�cients, the guidance solution is found quickly. If higher-fidelity

models are introduced, it is not necessary to add them internally as part of the algorithm,

they can simply be added as part of the closed-loop simulation and called every step of the

way. The bi-level optimization algorithm presented in Figure 8.2 benefits from this approach

as higher-fidelity models for aerodynamic coe�cients and atmospheric environments may

be used. An outstanding example is to use the Mars Global Reference Atmosphere Model
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(Mars GRAM) [128]. Mars GRAM is a large software that containts an engineering-

level atmospheric model of Mars. It is used for many diverse applications including

mission simulations, systems design, performance analysis, and traejctory planning for

EDL, aerobraking, and aerocapture missions [128]. If Mars GRAM was included as part

of FNPEG, every iteration on the inside would need to call this big software and the

computation time would increase. Instead, a simple aerodynamic model is used internally

and Mars GRAM is added as part of the closed-loop simulation. Thus, the complex

subsystem and environment models are only integrated once at every closed-loop iteration

step along the entry trajectory, rather than multiple times in multiple trajectories. This

approach is taken to e↵ectively generate a high-fidelity entry trajectory without su↵ering

from the computational cost from multiple calls to the high-fidelity models.

An additional benefit of running the simulation in closed-loop is that the solution

to the optimized end-to-end EDL trajectory and its performance are similar to what can

be expected in actual flight if the same guidance algorithm is used. In this case, since

FNPEG is designed as an entry guidance algorithm, the trajectory it generates is free

of unrealistic flight features such as getting too close to the ground or allowing phugoid

oscillations. On the other hand, solutions from an optimal control software can include

undesirable and/or unrealistic trajectories in search of all the allowable performance. If

not properly managed, the optimal entry guidance problem might produce an unsafe

trajectory or one that does not have any control margin left. Basically, most trajectories

that extract the most performance try to reach the control limits. Trajectories of this sort

are not of practical interest since they cannot be used in actual flight.
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The aforementioned advantages on closed-loop simulation can be applied to the

powered descent phase to produce a trajectory guided by G-POLAR. The needs during

powered descent are di↵erent than those seen in entry. A look into the dynamics exhibits

how many of these di↵erences depend on the behavior of flight. For instance, a high-fidelity

atmospheric model during entry makes a considerable di↵erence in the resulting trajectory.

Generally, aerodynamic forces are ignored in the process of solving the powered descent

solution. From an optimal control point of view, solving the powered descent dynamics

with aerodynamic forces makes the problem too complex to solve or generate a solution

reliably. Instead, the optimal powered descent problem can be solved using the indirect

method of optimal control and a larger and/or more complex model can be called regularly

in a closed-loop simulation. This simple trade-o↵ between internal or external calling of a

higher-fidelity model results in a slightly larger computational time with the advantage of a

more accurate prediction of the trajectory and the total propellant consumption. Allowing

G-POLAR to maintain its simplicity results in fast and reliable convergence of the solution.

Similarly, other more complex models can also be used, for instance, a model for the SRP

to include the transient response of the engine thrust to the throttle command or more

sophisticated modeling of the specific impulse Isp. Realizing that some performance might

be lost for the benefit of a more realistic trajectory is such an important discovery because

it allows us to steer away from believing that extracting the most performance is always

the best outcome. Realistic models and practical solutions supersede unrealistic solutions

with superior performance. Extensive demonstrations of the concepts discussed in this

sections will be presented in Sections 8.10 and 8.11.
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8.6 EDL Optimization Mission and Vehicle

The simulation of a human-scale Mars EDL mission was selected for the demon-

stration of the bi-level optimization algorithm. The challenging entry and powered descent

conditions of Mars o↵er valuable information on the capability of the algorithm. End-to-

end simulations in a 3DOF simulation environment are performed from EI at an altitude

of 125 km to touchdown at the landing location. The vehicle’s inertial velocity at EI

is 4700 m/s, while the downrange to the landing site is 1200 km. Perfect navigation is

assumed with an update rate of 1 Hz for entry and 10 Hz for powered descent. The entry

flight starts from the South and heads towards the North. A slender-body aeroshell called

the Mid lift-to-drag ratio Rigid Vehicle (MRV) is the model used for the three-dimensional

simulations. MRV has a total mass of 61,838 kg at EI. The MRV is equipped with an

SRP system with 8 engines producing a total of 800,000 N of thrust and a specific impulse

of 360 s. The minimum throttle allowed is 20% and the maximum is 100%. The vehicle

model used represents one of the proposed concepts for a human-scale Mars landing

mission [129] and it is one of many updated iterations of a previous ellipsled concept for

a human-scale Mars mission [3]. The hypersonic lift-to-drag ratio of the MRV is 0.54,

and it lands horizontally. In this configuration, the MRV does not require jettison of

a structural component, hence, keeping the mass constant between entry and powered

descent. The ballistic coe�cient of the vehicle is 379 kg/m2. An illustration of the vehicle

can be observed in Figure 8.3 during entry and powered descent. More details on vehicle

data and characteristics can be found in Cerimele [129], Johnson [130], and Johnson [131].
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Figure 8.3. Artist representation of the Mid Lift-to-Drag Rigid Vehicle used for
human-scale landing missions on Mars.

8.7 Independent Benchmark Solution

With the aim of creating a benchmark solution with the minimum propellant

consumption possible for a mission of this category, the human-scale Mars EDL landing

mission was solved using a state-of-the-art pseudospectral optimal control software [132].

The knotting techniques developed in Ross [133] where used to adhere to the hybrid control

problem defined above. Results from this independent method served as a benchmark for

comparison and verification of the solution obtained by the bi-level optimization approach.

One aspect that makes solutions with the direct method not adequate for rapid

generation of trajectories is the time limitation. On a desktop computer with a 3.8GHz

8-Cor Intel Core i7 processor, the CPU time needed to obtain a solution ranges from

one thousand to nine thousand seconds. This range is dependent on minor variations

in the parameter settings of the software. In some cases, small changes in apparently

inconsequential settings, such as bounds on variables that are not close to the solution,

would result in the software not finding a solution altogether or a↵ecting severely the
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computational time. This is a testament to the di�culty of the problem and how even a

state-of-the-art software might struggle to find a feasible solution.

Given enough time, the pseudospectral method will obtain a solution with the

lowest propellant consumption possible with the given conditions. As such, the algorithm

with do any maneuver available within the legality of the dynamics of the problem and the

constraints added. In an EDL trajectory optimization problem, the best solution is the

one that reduces the speed the most without using any propellant consumption. Therefore,

if velocity is reduced as much as possible during entry, then powered descent flight time

will be reduced accordingly. Generally, the higher density levels in the atmosphere are at

lower altitudes, making the aerodynamic drag is higher. As a result, the entry trajectory

gets as low to the ground as possible as it tries to slow down the vehicle. Furthermore, to

reduce the velocity even more, the trajectory might make use of phugoid oscillations to

increase the drag reduction during entry. Even though the propellant reduction is greater

by this approach, flying a vehicle close to the ground at high speeds and in a phugoid

oscillatory pattern is risky and posses a threat to the structural stability of the vehicle

due to the high load and heat rate limits.

To eliminate the risk of flying the vehicle too close to the ground, a regularization

term in the performance index (Equation 5.19). This technique is very e↵ective in shaping

the trajectory to reduce altitude monotonically. The modified performance index becomes:

J̃ = J + k

Z
tPDI

0

�
ṙ2
�
dt = m0 �m(tf ) + k

Z
tPDI

0

�
ṙ2
�
dt (8.25)

where k > 0 is a penalty coe�cient and the integration portion of the equation is
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only using during the entry phase. In contrast, the bi-level optimization problem does not

include a regularization term during entry because FNPEG is equipped with a mechanism

to prevent phugoid oscillations from happening [21].

In addition, it is necessary to change the formulation of the entry-flight problem

to generate an operational trajectory. This mainly pertains the control authority of the

vehicle to produce a bank angle profile that can be realized by the flight control system of

an entry vehicle. To overcome this, the following first-order dynamics are introduced to

the entry guidance problem:

�̇ = �1

⌧
(� � u) (8.26)

where ⌧ > 0 is a chosen time constant and u is the bank angle command to

be optimized. In this work and the numerical results obtained, ⌧ = 10 was selected.

Moreover, a bank angle rate-limit was added to avoid immediate changes in the control

command. A typical bank angle rate for an entry vehicle must not exceed 5 deg/s. The

following inequality constraint was added to the magnitude of the bank angle dynamics in

Equation 8.26:

|�̇| = 1

⌧
|� � u|  �̇max (8.27)

The optimal end-to-end EDL control problem was solved with and without the

regularization terms in Equation 8.25. In both cases, the following constraint to the lower

altitude limit is added as a safeguard against finding a solution that goes below the ground
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(hmin = 0):

hmin � h(t)  0, t 2 [0, tPDI ] (8.28)

A comparison of the altitude profiles for the problem solved with and without

regularization is shown in Figure 8.4. The entry trajectory exhibits a clear phugoid

oscillation pattern and flies considerably close to the ground for a relatively large period of

time. At one point, the vehicle appears to be grazing the ground, a maneuver that cannot

be flown in any realistic scenario. This behavior is expected, as it depletes a significant

portion of the velocity when flying close to the surface. PDI starts at a low velocity close

to 370 m/s and a very low altitude of 1.2 km. The PDI condition can be seen in more

detail in the insert of Figure 8.4.

Figure 8.4. Entry trajectories in the end-to-end fuel-optimal EDL solutions using a
pseudospectral optimization software with and without the regularization term in

Equation 8.25.

The resulting propellant consumption from the powered descent phase given these
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initial conditions is of 6,825 kg for the unregularized solution. However, this trajectory

is operationally unacceptable considering the collision risks and safety concerns on aero-

thermal and aerodynamic loads caused by flying near the ground at hypersonic speeds.

This corroborates the idea that not all “optimal” solutions may produce a readily applicable

solution. Undesirable trajectory behavior needs to be accounted for and dealt with caution.

Nonetheless, the solution to the unregularized problem is still important for academic

purposes as it provides a limit on what can be “physically” achieved if risk was not taken

into consideration. It is always good practice to calculate the best case scenario and then

move forward to more realistic cases. In this case, moving from such a dangerous maneuver

is required for operational applicability. It is tempting to believe that simply raising

the altitude limit from a non-zero value (hmin > 0) in the constraint of Equation 8.28

would eliminate the problem. However, increasing the value of hmin simply raises the

entry trajectory above the ground, overlooking the existing phugoid oscillations near hmin.

Constraining hmin also impacts the choice of PDI condition and the propellant performance.

Since the altitude is now limited, the guidance needs to find a new trajectory at a higher

altitude and possible higher velocity to start PDI. In fact, the propellant consumption

calculated with the regularization term is of 8,462 kg, a di↵erence of 1,637 kg from the

unregularized solution. The considerably higher propellant is expected given the nature of

the new trajectory. In the new solution, the vehicle flies a more realistic trajectory than

the unregularized solution.

When the regularization term k in Equation 8.25 is su�ciently large (k > 0), it

e↵ectively damps out the phugoid oscillations utilized by the unregularized trajectory to
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slow down the vehicle. The optimal end-to-end solution results in a significantly more

benign entry trajectory with the expected behavior from typical entry-flight. Besides

removing the phugoid oscillations, the trajectory ends at a PDI condition with an altitude

of 2.1 km and a velocity of 477 m/s. The slighly higher velocity is a result of flying at

higher altitudes and consequently results in the higher propellant consumption by the

regularized trajectory. The computational times for these two solutions are about 2,000

and 4,700 seconds, respectively.

Even tough the regularization tries to approximate the optimal solution to a realistic

solution, it is still much simpler than a guidance solution like the one provided by FNPEG.

For instance, the implementation in the pseudospectral control software omits inequality

constraints on heat rate, load limits and dynamic pressure limits that might be necessary

for operational purposes. Despite this shortfal, it is still a good comparison for the bi-level

optimization approach. The regularized solution is the chosen benchmark solution for

comparison.

The bank control found by the direct method approach with unregularized and

regularized terms can be devised on Figure 8.5. It is clear that the regularization has an

e↵ect on the bank angle control. In the unregularized control, there is only one change

from zero to around 125 degrees and then back to zero. On the other hand, the regularized

control has a total of three bank reversals with opposite signs. It is interesting that in

both cases, the final entry bank angle is zero. This indicates that the guidance control

happens between 100 and 400 seconds. Then, it tries to fly with full lift-up (� = 0deg)

all the way to the end. Again, this is the best possible scenario in which the vehicle flies
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the optimal solution. To take advantage of every bit of control, the optimization software

decides to eliminate any last second control. However, this behavior is undesirable because

the vehicle is left with no control margin to eliminate any dispersion near the end. A

non-zero final bank angle is a better choice for entry-flight as it allows some additional

control in o↵-nominal cases [99]. In a more realistic scenario, it is good to assume that

there will be some kind of dispersion toward the end.

Figure 8.5. Bank angle control for entry in the end-to-end fuel-optimal EDL solutions
using a pseudospectral optimization software with and without the regularization term in

Equation 8.25.

8.8 Demonstration of Bi-Level Optimization Algo-
rithm

8.8.1 Solution from Bi-Level Optimization

The bi-level optimization algorithm described in Section 8.4 is applied to the same

EDL mission to land a spacecraft on the surface of Mars. In this approach, the algorithm

takes about 12 seconds to find a solution on the same computer. This is 1/400 of the time
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required by the general-purpose optimization software used to calculate the regularized

benchmark solution. Additionally, the computational time remains similar despite changes

in problem settings, such as adding dispersions to the EI condition. In contrast, the

general-purpose trajectory optimization software had widely varying computational times

depending on the problem settings. To present the results, the optimized trajectory

generated by the bi-level optimization approach will be compared to a solution with a fixed

�f = 40 deg in FNPEG. The powered descent phase is still fuel optimal as it is obtained

by G-POLAR. This comparison will establish the impact of the bi-level algorithm.

In Figure 8.6, the bank angle profiles for the fixed and optimized sigma are shown.

The bi-level optimized solution yields a �⇤
f
= 23.5 deg, as opposed to the 40 deg in the fixed

final bank angle. The di↵erent �⇤
f
values is evident towards the end of the bank profile,

were both trajectories end at di↵erent bank angle values. In both cases, the solution

prodduced by FNPEG results in a nonzero bank angle towards the end of the profile. This

is in agreement with the design of FNPEG to leave control margin towards the end [21, 99].

The number of bank reversals is predefined in FNPEG, this contributes to the

similarities in both profiles. However, the time at which reversals occur and the magnitude

of the bank angle explain the bigger di↵erences in the entry trajectory. The entry

trajectories for both of these cases are in Figure 8.7. The flight time of the bi-level

optimized trajectory is slightly higher than the flight time of the regularized benchmark

solution in Figure 8.4. The solid line represents the entry-flight, while the dotted line is

the powered descent phase. It is clear from Figure 8.4 that the powered descent phase is

significantly shorter than the entry-flight.
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Figure 8.6. Comparison of bank angle profile during the entry phase of a human-scale
Mars landing mission using the bi-level optimization approach and a fixed final bank

angle �f = 40 deg.

Figure 8.7. Comparison of entry trajectories on a human-scale Mars landing mission
using the bi-level optimization approach and a fixed final bank angle �f = 40 deg.

An advantage of using FNPEG is that the algorithm is designed to generate a safe

and gentle trajectory that takes care of possible harmful features such as phugoid oscillations

or flying at a low altitude. No additional tuning is necessary for its implementation in

the bi-level optimization algorithm. Despite damping phugoid oscillations, the optimized
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solution results in a longer entry trajectory that allows the vehicle to reduce its speed

even further. Figure 8.8 is a closeup image of the final entry condition before starting

powered descent. It is clear that the additional seconds of flight and di↵erence in bank

profile yields a PDI velocity of 578 m/s for the fixed trajectory as opposed to 496 m/s for

the optimized trajectory. The PDI altitude is essentially the same for both cases. For the

same mission, the propellant consumption found by the bi-level optimized solution is of

8,899 kg. Conversely, the propellant consumption for the fixed �f solution is of 10,132

kg. This represents a di↵erence in propellant of 1,233 kg when compared to the optimized

solution, a 13.9% reduction led by the outer optimization on the entry phase. The main

contributor to the di↵erence in propellant consumption is the lower velocity at PDI that

resulted from flying the optimized entry trajectory.

On the other hand, this result is slightly higher than the regularized benchmark

solution by 437 kg, a di↵erence of only about 5% from the benchmark solution, but without

the significantly costlier computation of two or more orders of magnitude. A di↵erence

this small accounts for less than 1% from the total weight of the vehicle. Being that

the result from the bi-level optimization approach is so close to the regularized optimal

solution, the optimized solution can be considered to be ”near-optimal.” On top of that,

with the bi-level optimization method, finding a solution is predictable and reliable, and

the trajectory obtained is what is expected of a guided trajectory without the need of any

additional complex or large software.

In Braun [14], it is approximated that the mass fraction requirement for an entry

vehicle such as the MRV for a Mars EDL mission is of 28%. The resulting propellant
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consumption of the bi-level optimization approach is equivalent to a mass fraction of only

14.5%, a reduction of nearly 50% from the non-optimized estimate that far exceeds the

expected propellant-mass ratio of a Mars vehicle. The simplicity of the approach emerges

from the robustness of the entry and powered descent algorithms that sit at the core of

the optimization mechanism.

Figure 8.8. Comparison of altitude-versus-velocity profile during the entry phase of a
human-scale Mars landing mission using the bi-level optimization approach and a fixed

final bank angle �f = 40 deg.

From the PDI point and onward, G-POLAR delivers the vehicle safely to the

landing location. A fuel-optimal powered descent solution is obtained as part of the inner

optimization loop of the algorithm. In Figure 8.9, the three-dimensional powered descent

guidance in the topocentric frame can be appreciated. The landing location is at the

coordinates (0, 0, 0).

The throttle and planet-relative velocity along the powered descent trajectory are

shown in Figure 8.10. The smooth transition of the throttle between the lower-bound and
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Figure 8.9. Powered descent trajectory in the end-to-end bi-level optimization EDL
solution in the topocentric coordinate frame of Figure 3.2.

upper-bound is a characteristic of the fuel-optimal powered descent solution produced by

G-POLAR. The optimal powered descent solution results in a bang-bang thrust profile

that instantaneously shifts between the lower-bound and upper-bound. In a typical fuel-

optimized end-to-end EDL trajectory, the PDI condition is driven as close as possible to

the landing location. A consequence of this is that the optimal throttle in the powered

descent phase is not exactly the bang-o↵-bang structure exhibited in Lu [22]. Instead, the

optimal throttle stays at the maximum, when the only remaining flight time is at the

last arc of the bang-o↵-bang structure; or, almost at the moment of the second switch as

seen in Figure 8.10. In G-POLAR, a new method of solution makes this transition more

realistic to how an actual engine operates [107]. With the throttle setting at close to 100%,

velocity decreases from 496 m/s to 2.5 m/s in 42 seconds of powered descent flight.
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Figure 8.10. Engine throttle and relative velocity profiles in the powered descent phase
of the end-to-end bi-level optimization EDL solution.

8.8.2 Robustness Demonstration of Bi-Level Optimization
Algorithm using Monte Carlo Dispersions

The Monte Carlo simulation demonstrates the the bi-level algorithm is e↵ective at

finding an overall optimized solution to the minimum-fuel problem even under dispersed

EI conditions. The results from the previous section are promising as they establish that

the bi-level approach is e↵ective in finding an optimized solution to the minimum-fuel

problem. However, to demonstrate that the method is capable of solving the problem

reliably in any feasible cases, a complete optimization was performed on 3000 cases with

randomly dispersed initial conditions at the start of entry. Table 8.1 lists the dispersion

parameters for the Monte Carlo simulation [107]. For the complete EDL optimization, only

the EI conditions are dispersed since these alone cause significant variation throughout
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the trajectory, including the PDI condition for powered descent. Therefore, each one of

the dispersed cases is entirely di↵erent than the rest.

Table 8.1. Dispersions and uncertainty values of 3000 Monte Carlo simulation runs of the
bi-level optimization of a human-scale Mars landing mission with a factor of safety = 1.0.

Parameter Distribution 3-Sigma Min 3-Sigma Max

EI planetodetic altitude (m) Gaussian -300.0 300.0

EI longitude (deg) Gaussian -0.75 0.75

EI planetodetic latitude (deg) Gaussian -0.75 0.75

EI inertial velocity (m/s) Gaussian -10.0 10.0

EI inertial flight-path-angle (deg) Gaussian -0.3 0.3

EI inertial azimuth (deg) Gaussian -0.5 0.5

EI vehicle mass (percentage) Gaussian -1.0% 1.0%

CL (percentage) Uniform -10.0% 10.0%

CD (percentage) Uniform -10.0% 10.0%

Atmospheric density Mars GRAM 2010 Mars GRAM 2010 Mars GRAM 2010

Mars GRAM 2010 dusttau Uniform 0.1 0.9

Total SRP max thrust (percentage) Gaussian -1.0% 1.0%

A total of 3000 dispersed cases were successfully optimized with the bi-level opti-

mization method. The successful convergence of all cases is a testament to the robustness

of the algorithm. The statistics on propellant consumption, the optimized values for the

final bank angle target �f , and computational times on the same desktop computer are

summarized in Table 8.2.

Table 8.2. Statistics on the performance of 3000 Monte Carlo end-to-end bi-level
optimization runs of a human-scale Mars landing mission with a factor of safety = 1.0.

Mean Standard Deviation Max Min

Propellant Consumption (kg) 8,881.61 122.34 9,249.25 8,408.42
Optimized �⇤

f
(deg) 20.25 3.0 28.89 11.80

CPU Time (s) (on a desktop) 13.88 1.25 28.73 10.58

Remarkably, the mean propellant consumption of 8,881 kg in the table accounts

for a propellant mass fraction of only 14.4% for the MRV, a substantially lower value

than the estimated 30% in Braun [14]. On the study, however, optimization for the class
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of vehicles like the MRV were not considered. Taking advantage of the tools available

for EDL guidance and optimization if the biggest contribution of this work. It is worthy

to highlight that a complete EDL optimization that can reliably produced an optimized

solution in a matter of seconds is a groundbreaking achievement.

Surprisingly, the optimization approach works extremely well by changing just one

parameter in FNPEG. Despite that, it is necessary to go through the optimization process

to find the correct �⇤
f
for each specific case. Figure 8.11 shows the spread of the optimized

values for �⇤
f
in the 3000 dispersed cases. As seen from the figure, the optimized �⇤

f
is

dependent on the actual EI condition and varies between 12 and 29 degrees. There is no

single value of sigma⇤
f
to optimize all 3000 cases. A similar phenomenon is found in the

distribution of PDI conditions across all cases, where not a single time-to-go (total powered

descent flight time) resulted in a good PDI condition or even a successful case. Section 4

covers more on the importance of the PDI condition even when there is no atmosphere.

Figure 8.11. Value distribution of 3000 optimized �f solutions from the bi-level
optimization approach on a human-scale Mars landing mission.
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For comparison, if the bi-level optimization approach is not used and the same 3000

cases are run with a fixed �f = 40 deg in entry, the mean propellant consumption without

entry optimization is 9,999.6 kg, over one metric ton more than the mean propellant

consumption that the bi-level algorithm is able to achieve. Note that G-POLAR still

calculates the optimal powered descent solution given the non-optimized entry trajectory.

This highlights the fact that even with an optimal powered descent guidance, the trajectory

flown during entry impacts the result greatly.

The bank angle profiles during the entry phase for 100 of the 3000 optimized cases

are shown in Figure 8.12. Only 100 cases are shown for visibility. The profiles that are

shown, demonstrate that in this optimization approach, with a di↵erent �⇤
f
value for

each case, FNPEG still generates a typical bank angle profile flown by an operational

entry vehicle, rather than an unrealistic or undesirable solution from a generic trajectory

optimization tool. For instance, Figure 8.13 shows the resemblance to the typical Space

Shuttle bank angle profile taken from Harpold [36]. The concept of the bank reversal has

been used throughout the years as a dependable technique to reduce crossrange dispersions

towards the end. Equally important is the non-zero bank angle leading to the end of

entry-flight to leave some control capability.

Figure 8.14 shows the altitude versus velocity variations in the entry phase. The

repercussions of varying the EI condition are displayed in this figure. An example of the

changes that can occur is in the di↵erence in altitudes at the same velocity among di↵erent

entry trajectories. At some point, this di↵erence reaches up to 5-6 km at a velocity of

1000-1500 m/s (Mach 4-6).
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Figure 8.12. Optimized bank angle profile solutions from bi-level optimization approach
to a human-scale Mars landing mission (only 100 entry trajectories shown for better

visibility).

Figure 8.13. Space shuttle bank angle profile from Monte Carlo analysis.

The complete altitude profiles from entry through powered descent are plotted in

Figure 8.15 and the altitude versus velocity profiles are plotted in Figure 8.16. The PDI

velocities range from 460 to 530 m/s, while the PDI altitudes are between 2.2 and 3.4 km.

The variation on EI conditions propagates throughout entry, resulting in a di↵erent PDI

condition for each trajectory. Despite using the PDI logic to calculate the best PDI point,
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Figure 8.14. Altitude versus velocity profiles in entry phase along 100 optimized
end-to-end trajectories (the portion at higher altitude is cut o↵ for better view of the

trajectories).

it is clear that even with an optimization setup such as the bi-level optimization approach,

the PDI condition depends on the trajectory itself and it cannot be a single point for all

cases.

Figure 8.15. Altitude profiles along 100 optimized end-to-end trajectories (the portion
at higher altitude is cut o↵ for better view of the trajectories).
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Figure 8.16. Altitude versus velocity profiles in powered descent phase along 100
optimized end-to-end trajectories.

The powered descent trajectory is noticeably di↵erent as well, mainly because the

starting condition is di↵erent in all cases. The same powered descent trajectories in a

three-dimensional view in the topocentric coordinate frame (Figure 3.2) are displayed in

Figure 8.17. All of the trajectories in the 3000 dispersed cases successfully reached the

predefined landing location.

Finally, Figure 8.18 shows the throttle variations for the optimized powered descent

trajectories. The throttle profile is similar to the nominal case shown in Figure 8.10.

However, in this case, the PDI start time is di↵erent in each case and can vary as much as

20 seconds.

Under Monte Carlo dispersions of the entry conditions, the bi-level optimization

algorithm cleary demonstrates its robustness and its advantage over a conventional nominal

trajectory. The algorithm successfully finds a solution to all the dispersed cases of the

extensive testing. Furthermore, it cannot be ignored that the computational cost of finding
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Figure 8.17. Three-dimensional powered descent trajectories along 100 optimized
end-to-end EDL trajectories in the topocentric coordinate frame in Figure 3.2.

Figure 8.18. Engine throttle profiles in powered descent phase along 100 optimized
end-to-end trajectories.

one solution is just a fraction of a generic optimization tool. In fact, a 3000 Monte Carlo

demonstration would be impossible with current computational power. This demonstration

clearly solves a very important problem in EDL. The bi-level optimization approach is an

e↵ective tool for solving teh EDL optimization problem fast and reliably.

231



8.9 Selection of �f as the optimization variable

One of the characteristics that makes the bi-level optimization approach successful is

that the entry guidance algorithm is left untouched. This guarantees that fast convergence

and robustness in FNPEG are maintained and that a smooth trajectory will be generated.

To achieve this, the optimization of the entry guidance was implemented as an outside

loop that only required changing one targeting parameter. As a user, the initial and final

conditions can be specified, as well as the constraints that will be utilized. The initial

conditions are set by the problem and cannot be modified. The constraints in heat rate,

load rate, and dynamic pressure rate are also defined by the limits imposed for astronaut

or spacecraft protection. The only remaining tuning parameter is the targeting condition.

The usual entry targeting conditions are on the final altitude, velocity, and range to the

landing site. Additionally, it is possible to modify the final bank angle target in the control

parameterization profile of FNPEG shown in Figure 3.1.

To select the value to be used for optimization, a couple of tests were done in

individual simulations with each potential variable. In FNPEG, the terminal conditions for

altitude and velocity are combined through the energy equation used as the independent

variable in Equation 3.1. This means, that multiple combinations of altitude and velocity

can produce the same energy value. For that reason, one parameter can be left constant

while the other is allowed to vary. Since the dominant term in Equation 3.1 is the velocity

term, final altitude was left constant while velocity was the variable. Interestingly, the

propellant consumption did not experience big e↵ects on propellant consumption as a
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consequence of the variation in velocity. The reason is that with the adaptive PDI logic

active during the entry trajectory, a proper PDI was selected at a point in the trajectory

with a similar propellant consumption. Utilizing the range to the landing site is more

complicated since it is the variable used in FNPEG as the stopping parameter to reach the

final energy level by design. However, selecting the range-to-go would experience the same

e↵ect than the altitude or velocity parameters because of the active adaptive PDI logic.

Interestingly, the selection of di↵erent final bank angle made a more substantial

di↵erence in the entry trajectory and the propellant consumption during powered descent,

even when the adaptive PDI logic is active. Initially, �f = 40.0 deg was selected to run all

the complete EDL simulations and a propellant consumption of 10,047 kg. For comparison,

running the simulation with �f = 30.0 deg resulted in a propellant consumption of 9,137

kg, already a considerable reduction. Compared to the other parameter options, �f has the

biggest e↵ect on the trajectory and the propellant consumption during powered descent.

Therefore, the final bank angle target for the linear bank angle parameterization in FNPEG

was chosen as the optimization variable in the bi-level method. The results from optimizing

the complete EDL trajectory have been demonstrated in Sections 8.8.1 and 8.8.2.

To corroborate that the selection of �f was appropriate. A series of simulations

using the bi-level optimization approach were conducted on the 3000 cases simulated for

the Monte Carlo test in Section 8.8.2. In each simulation, a di↵erent velocity target would

be selected while the altitude was kept constant at 2km. The range-to-the landing site is

zero, with the objective of ending the entry trajectory at the landing site. The selection of

the zero range-to-go is by design, since it is known that the adaptive PDI logic will select
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a point along the trajectory before the landing site is reached. The range for the velocity

target was between 200 and 450 m/s, to show a wide range of solutions. In Figure 8.19,

the comparison of the average propellant consumption for the optimized cases at di↵erent

velocities is shown. Between 200 and 400 m/s, the propellant consumption remains close

to 9000 kg. Only after 400 m/s, the propellant consumption starts to go up, victim of a

higher PDI velocity, altitude and range, as it can be seen from Figure 8.20. The associated

values that result from the bi-level optimization can be found in Table 8.3

Table 8.3. Statistics on 100 optimized results from bi-level optimization approach for
di↵erent final entry velocity targets

Target Velocity (m/s) 200.0 250.0 300.0 350.0 400.0 450.0

Optimized Bank Target (deg) 19.89 19.20 22.38 22.38 19.87 34.88
Optimized Propellant (kg) 9026.8 9008.3 9011.9 8996.5 9004.7 9718.8
Total Optimization Time (s) 18.66 18.98 18.60 18.53 19.35 11.57

PDI Velocity (m/s) 496.21 494.82 496.76 495.78 493.69 550.30
PDI Altitude (km) 2.79 2.78 2.70 2.69 2.75 3.09
PDI Range (km) 10.87 10.80 10.88 10.83 10.79 12.78
PDI Crossrange (m) 146.20 26.81 -53.79 -67.35 126.24 -123.06
PD Flight Time (s) 42.1 41.97 42.03 41.93 41.94 45.26

A closer look at the results between 400 and 450 m/s details the moment changing

the velocity starts to increase propellant consumption, Taking a look at Table 8.4, after

Vf = 420 m/s a change in propellant consumption, pdi velocity, pdi altitude, and pdi

range starts to occur. At this point, the beginning of powered descent starts to happen

farther and farther from the landing location. This stresses the powered descent because

now the flight time needs to be longer, causing the propellant consumption to increase.

However, the optimization is still trying to find the final bank angle that will minimize

this propellant consumption. A large change in bank angle also occurs at around Vf = 420
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Figure 8.19. Propellant consumption when final velocity target is varied in bi-level
optimization approach.

Figure 8.20. PDI range to landing site when final velocity target is varied in bi-level
optimization approach.

m/s, at that point the optimization is doing its best at keeping propellant consumption

low.

The resulting optimized final bank angle targets can be seen on Figure 8.22. Unlike

the rest of the plots, the bank angle changes constantly to adapt the trajectory to the
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Table 8.4. Statistics on results from bi-level optimization approach for di↵erent final
entry velocity targets from 400 to 450 m/s

Target Velocity (m/s) 410.0 420.0 430.0 440.0 450.0

Optimized Bank Target (deg) 17.64 17.64 26.39 31.75 34.88
Optimized Propellant (kg) 9034.1 9087.1 9228.6 9463.3 9718.8
Total Optimization Time (s) 20.62 20.46 17.11 14.21 11.57

PDI Velocity (m/s) 494.75 500.36 513.73 531.83 550.30
PDI Altitude (km) 2.86 3.16 3.16 3.10 3.09
PDI Range (km) 10.85 10.86 11.30 12.02 12.78
PDI Crossrange (m) 99.22 133.70 90.50 1.81 -123.06
PD Flight Time (s) 42.14 42.38 43.09 44.14 45.26

Figure 8.21. Powered descent flight time when final velocity target is varied in bi-level
optimization approach.

needs of powered descent.

The results from these studies determined that the selection of the final bank angle

target was appropriate to solve the complete EDL optimization problem. It would seem

that changes to the final altitude, velocity or range would cause a bigger e↵ect on the

propellant consumtion, however, since an adaptive PDI logic is implemented in the bi-level

optimization approach, it is inevitable that the PDI condition will be chosen before the
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Figure 8.22. Optimized final bank angle when final velocity target is varied in bi-level
optimization approach.

final condition is reached. The PDI condition selected is usually similar in propellant

consumption, given that G-POLAR finds the optimal solution to the soft-landing problem,

which is very similar since no targeting condition is imposed. Furthermore, the linear bank

parameterization profile allows this simple option. A more complicated parameterization

would require the optimization of multiple parameters.

8.10 Inclusion of High-Fidelity Atmospheric Model
in the Entry Phase

In entry-flight, simple deterministic models were used for the atmospheric density

and speed of sound at Mars as a function of altitude. The optimized end-to-end trajectories

obtained in Section 8.8.2 successfully found a feasible trajectory with these simplified

models. Usually, entry guidance is fitted with such simplistic models to be able to

rapidly generate a trajectory. However, some of the important details of a complete
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atmospheric model are missing and might cause simple models to deviate from reality.

More complex models for the Mars atmosphere can better and more accurately capture

the complex variations of Mars atmospheric parameters, albeit at a higher computational

cost. Such a tool is the Mars Global Reference Atmospheric Model (Mars GRAM), an

engineering-oriented atmospheric model developed over the years to estimate mean values

and statistical variations of atmospheric properties for Mars [128]. The software itself is

a large FORTRAN program that needs to be called as a subroutine. The user is able

to give specific altitude, location, date and time of day, dust level, and other variables

and receive the value of the atmospheric density and speed of sound as an output. It can

also produce dispersed atmospheric parameters based on a collection of measured data on

the actual atmosphere of Mars. It is desired to incorporate a high-fidelity tool such as

Mars GRAM as part of the entry guidance. However, including the complete atmospheric

model into the simulation is not as simple and the high computational cost that might

be counterproductive to the purpose of finding a trajectory promptly. Any attempt at

interrogating the large program in every iteration of an entry guidance such as FNPEG

will result in a more intensive and far longer computational time.

In this section, a di↵erent approach is taken at the implementation of a high-

fidelity model. Instead of directly implementing the model as part of the entry guidance

iterations, the high-fidelity model will be used in the closed-loop simulation to generate the

trajectory as shown in the bi-level optimization algorithm on Figure 8.2. The di↵erence

in this approach is is that a call is made to Mars GRAM a single time each simulation

step. Nevertheless, the entry trajectory generated from the closed-loop simulation carries
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the full fidelity of Mars GRAM. This is because in each simulation step, the guidance

command generated by FNPEG using a simple model gets transmitted to the integration

in closed-loop simulation where the high-fidelity model is used.

Another Monte Carlo simulation was setup in which Mars GRAM and Mars GRAM

dispersions are active in the closed-loop simulations of the entry phase. Everything else

on the bi-level optimization approach is unchanged. Table 8.5 shows the statistics of

the resulting propellant consumption, optimized �⇤
f
, and computation time on the same

desktop computer.

Table 8.5. Statistics of 3000 Monte Carlo end-to-end optimized EDL trajectories using
Mars GRAM in entry phase.

mean standard deviation max min

Propellant Consumption (kg) 9,067.12 281.46 9,898.09 8,080.51
Optimized �⇤

f
(deg) 13.43 2.87 25.29 10.03

CPU Time (s) (on a desktop) 22.23 4.04 42.87 12.22

The most visible change from Table 8.2 is the di↵erence on the mean �⇤
f
value.

When the e↵ects of Mars GRAM are present, the mean value of �f = 13.43 deg instead of

20.25 deg without Mars GRAM. The propellant consumption increased by a mere 185 kg.

The similar average propellant consumption is attributed to the outer loop optimization of

sigmaf , even though the atmospheric density by Mars GRAM is very di↵erent from the

model used in the previous section. Another observation on the propellant consumption is

that the spread between the minimum and maximum values is larger. Even though the

increase is minimal, it can be accounted to the higher-fidelity of the atmospheric model.

By adding Mars GRAM, accuracy during entry-flight increases. The slight increase in

propellant consumption is a small price to pay in comparison to the benefit of flying a
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trajectory that closely assimilates true flight conditions. All the previous observations

point to the importance of carrying out a repeated optimization of the entry phase based

on the current condition. The trajectory planning and guidance will take care of the

uncertainty as the vehicle flies the entry trajectory, adapting as needed to produce a

performance similar to the nominal one.

In the bi-level optimization approach proposed, it is possible to increase the fidelity

of the atmospheric model without increasing the computational time an unreasonable

amount. The average computational time with Mars GRAM in closed-loop simulation

is less than double. It is important to remember that Mars GRAM is a program itself

composed of multiple subroutines. Being able to obtain a solution in under 23 seconds is

already an enormous undertaking when compared to the 4,700 seconds that it can take with

the direct method approach. Similarly, if Mars GRAM was directly used in the iterations

of trajectory optimization rather than closed-loop simulations, the computational time for

finding the solution would have been easily one to two orders of magnitude longer. For

onboard purposes, the bi-level approach can be called multiple times during an actual

flight to find a new optimized trajectory based on the current conditions.

8.11 Inclusion of Aerodynamic Forces in Powered
Descent

Flying at supersonic speeds on Mars has significant e↵ect on the aerodynamic forces

of the vehicle. The flow field around the vehicle that results from the initiation of the SRP

and the chemical reaction while it is active presents complex dynamics that often are hard

to determine and are di↵erent from those seen on a ”clean” vehicle [27]. The interactions
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among propulsion and aerodynamic forces increase uncertainty, causing important changes

on flight control and trajectory [65]. Even though the powered descent starts at supersonic

speed in a high-mass EDL Mars mission, the aerodynamic e↵ects are usually ignored in

the dynamics of powered descent to simplify the problem. When aerodynamic forces are

present, the dynamic equation for velocity in the powered descent problem (Equation 2.20

becomes:

V̇ =
T

m
1T + g �D1V + L1L (8.29)

where 1V = V /||V ||, 1L is a unit vector defining the direction of the aerodynamic

lift force, and L and D are the aerodynamic lift and drag accelerations. Since the MRV

vehicle lands horizontally, the thrust direction 1T will be assumed to be perpendicular to

the body longitudinal axis and in the direction of the negative body z-axis. The symmetric

plane of the vehicle is formed by 1T and 1V to suggest that the vehicle is in a coordinated

turn with a zero sideslip angle. Then, the body y-axis may be defined by the following

equation:

1y = 1V ⇥ 1T (8.30)

Lastly, the direction of the lift force is:
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1L = 1y ⇥ 1V (8.31)

Adding aerodynamic forces increases the nonlinearity in the dynamics of the

problem, making it more di�cult to solve. To find the optimal powered descent solution

with the indirect method, it is necessary to use the general simplified dynamics to be able

to solve the problem with the minimum principle, otherwise it can be challenging to reach

convergence of the solution. However, it is possible to use closed-loop simulation to generate

a near-optimal trajectory that incorporates more complex dynamics to solve the bi-level

optimization problem. The powered descent phase in the bi-level optimization algorithm

is now run in closed-loop simulation. The G-POLAR algorithm remains unchanged and

is used to calculate the optimal control solution. The closed-loop solution dynamics

are updated to include aerodynamic forces in a process similar to the one described in

Section 8.10. The solution from G-POLAR is optimal to the problem without aerodynamic

forces. The control obtained from G-POLAR is then used to integrate the dynamics with

aerodynamic forces. Since the optimal control is for a di↵erent problem, the solution

is not theoretically fuel optimal because the solution to G-POLAR does not include

the aerodynamic e↵ects. Nonetheless, a comparison of a G-POLAR guided trajectory

with an open-loop solution that includes the aerodynamic forces by the general-purpose

optimization tool in Ross [132] revealed that the fuel consumption increase by the G-

POLAR guided trajectory is less than 300kg. The loss of performance is below 3.5% for
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the same conditions. Even though the solution cannot be considered theoretically optimal

anymore, the propellant consumption is very close to the actual optimal value. The total

propellant consumption in the bi-level optimization when the aerodynamic forces are

included is of 8,129 kg.

The inclusion of aerodynamic forces results in a reduction in propellant consumption

of 8.6% or 770 kg. The propellant reductions arises from the e↵ect of some aerodynamic

forces actually producing lift and drag that reduced the velocity of the vehicle before

touchdown. This is confirmed by the throttle di↵erence between the vacuum solution and

the solution with aerodynamic forces in Figure 8.23. The lower throttle through most

of powered descent exhibits the areas where aerodynamic forces help reduce the velocity.

Even though the solution from G-POLAR is based on the vacuum model, the nature of the

closed-loop guidance is to incorporate all the constraints of the problem with aerodynamic

forces. The final constraints on the trajectory are met exactly using this method.

Additionally, the same 3000 dispersed cases run in previous sections were optimized

with the bi-level approach and added aerodynamic forces in the powered descent closed-loop

solution. All the trajectories land successfully in the designated are within a fraction

of a meter and at the desired final velocity. A summary of the statistics on propellant

consumption and optimized �⇤
f
is presented in Table 8.6.

Table 8.6. Statistics of 3000 Monte Carlo end-to-end optimized EDL trajectories with
aerodynamic forces included in powered descent.

mean standard deviation max min

Propellant Consumption (kg) 8,119.20 165.42 8,600.62 7,558.08
Optimized �⇤

f
(deg) 20.39 3.19 30.00 11.69
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Figure 8.23. Engine throttles in powered descent by G-POLAR when aerodynamic
forces are included in closed-loop simulation and when the flight is assumed to be in

vacuum.

The introduction of aerodynamic forces has a positive e↵ect in propellant consump-

tion, reducing it by 762kg when compared to the results in Table 8.2. The value of �⇤
f

has a negligible change. In Section 8.10, the change in �⇤
f
was more significant since the

addition of Mars GRAM directly a↵ected entry guidance. In the case of the aerodynamic

e↵ects in powered descent, the entry trajectory does not need to change much. Figure 8.24

shows the histogram comparison of the propellant consumption when aerodynamic forces

are present against the vacuum solution. A similar comparison on the distribution of �⇤
f

among all 3000 cases is shown in Figure 8.25.

Including aerodynamic forces in powered descent increments the accuracy of the

powered descent solution by adding more realistic dynamics to the problem. No major

changes to the main optimal powered descent algorithm are necessary owing to the fact

that only the dynamics on the closed-loop simulation are changed. The accuracy of the

244



Figure 8.24. Comparison of propellant consumption in the same 3000 cases with and
without consideration of aerodynamic forces in powered descent.

Figure 8.25. Comparison of optimized �⇤
f
in the same 3000 cases with and without

consideration of aerodynamic forces.

problem is not a↵ected since the terminal conditions are still met. Moreover, even though

the solution is not theoretically optimal, there is a reduction in propellant consumption

caused by the e↵ects of the aerodynamic forces reducing the velocity of the vehicle during

powered descent. The Monte Carlo simulations demonstrated that the solution is robust
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when solved with the bi-level optimization approach.

8.12 Summary

The overall success of the algorithm emerges from two very reliable entry and

powered descent algorithms. The rapid generation of trajectories is a result of the

combination of the robust entry guidance algorithm FNPEG and the optimal control

solution of G-POLAR with the indirect method of optimal control. The end-to-end EDL

problem is defined as a hybrid optimal control problem that minimized the total propellant

consumption. The problem is solved using a bi-level optimization approach that consists

in an inner optimization of powered descent guidance to obtain the lowest propellant

consumption possible given the initial conditions, and an outer optimization on the entry

guidance algorithm to modify the trajectory to produce a better PDI condition. The

algorithm was tested in Monte Carlo dispersions with a 100% success rate and a near-

optimal solution was found in under 30 seconds. Furthermore, high-fidelity models can be

added in closed-loop simulation to produce solutions based on more realistic atmospheric

parameters or aerodynamics.

Chapter 8 is based on the paper coauthored with Lu, Ping and Davami, Christopher

and under review for publication as Fast and Robust Optimization of Full Trajectory From

Entry Through Powered Descent at the Journal of Guidance, Control, and Dynamics. The

dissertation author was the primary author of this chapter.
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Chapter 9

Concluding Remarks

9.1 Objective and Approach

The goal of this investigation was to produce an optimized end-to-end EDL tra-

jectory capable of safely landing a spacecraft on the surface of another planetary body,

particularly the Moon and Mars, with the least amount of propellant possible. To this end,

the investigation was divided in multiple segments to test each one of the EDL components

individually, then add them together to produce a complete EDL algorithm, and finally

take advantage of the robustness of the developed algorithms to lead to an optmization

technique to obtain a fast and optimized trajectory.

To build the foundation of the completely optimized EDL algorithm. The fast

and robust entry guidance approach FNPEG was rigorously tested in multiple settings,

including as an integrated component with a propellant-optimal powered descent guidance

named UPG. Multiple scenarios on the Moon and Mars where set up to point out the

minimum required tuning of the parameter and vehicle settings on the algorithm, making it

ideal for their simplicity. Furthermore, a completely integrated EDL mission was integrated

in a high-fidelity simulation environment to show the e↵ectiveness at completing all the
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mission requirements and to demonstrate the importance of the powered descent initiation

condition as a key element in the reduction of overall mission propellant consumption. The

results demonstrated the capability of these algorithms and their convergence e↵ectiveness

to find a solution. Integration of entry and powered descent using an optimal powered

descent guidance solution o↵ered the opportunity of improving the propellant consumption

during powered descent.

Lastly, the culmination of this work is the complete optimization of an EDL

trajectory taking advantage of both entry and powered descent guidance. Combining a

state-of-the-art entry guidance algorithm to provide the entry trajectory and an optimal

powered descent guidance algorithm to land the vehicle safely on the ground using

supersonic retropropulsion it is possible to generate a complete EDL trajectory. In

addition, taking advantage of the optimal solution to the soft-landing powered descent

guidance problem it is possible to calculate the approximate time to start powered descent.

A bi-level approach is introduced by using a lower level optimization loop during powered

descent and an upper-level optimization loop on a key parameter on the entry guidance.

Combining these two techniques with a newly developed bi-level optimization approach, it

is possible to obtain near-optimal propellant consumption.

9.2 Conclusions

The results obtained from this research have implications in the design of guidance,

navigation, and control (GNC) systems for spacecraft in future exploration missions. These

results will help identify solutions to propellant e�ciency problems during EDL. It is very

248



important that missions take advantage of resources intelligently. By exploring di↵erent

scenarios and discovering the most e�cient ones for propellant usage, resources can be

allocated e�ciently and mission cost can be reduced. Furthermore, creating new guidance

solutions to known problems encourages the comparison of the best methods available. In

doing this, it will be possible to demonstrate that more powerful and e�cient guidance

algorithms can be created with the help of optimization that can help reduce the cost

of space exploration for longer and more complex missions. The presentation of this

suite of algorithms will benefit the guidance community by creating new and innovative

space technologies to explore and understand our solar system. By improving current

capabilities, focus on newer technologies that will expand our knowledge of the solar

system are encouraged. The fundamental discoveries and developments of this work are

summarized as follows:

Appropriate PDI condition is required for Optimal Propellant Performance

The importance of a proper PDI condition to start powered descent is stressed in

multiple occasions throughout this work. Utilizing a mechanism to predict the optimal

PDI condition for the powered descent soft-landing solution, a near-optimal powered

descent pinpoint landing solution can be obtain on the Moon and Mars. The PDI adaptive

logic has been demonstrated to produce near-optimal solutions even for powered descent

algorithms that are not optimized in any sense. Furthermore, the selection of a proper

PDI condition can be the di↵erence between the success and failure of a mission, as shown

in Section 4. The adaptive PDI logic serves as an excellent transition between entry and
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powered descent, and it is later used as the mechanism that makes the complete EDL

optimization possible.

Optimal Abort Guidance during Lunar Powered Descent

To truly implement an abort guidance during an emergency, the system must be

completely automated. The reaction time during an emergency is many times faster than

the speed at which a human can operate. To this end, a new guidance approach was

developed as a safety mission for future human landings on the Moon. The approach

consists in using an optimal abort guidance solution during lunar powered descent to insert

the vehicle into a safe orbit away from any obstacles. To safely keep astronauts away from

the ground, a pull-up maneuver is implemented in which the velocity vector is quickly

turned towards the safe orbit, avoiding the lower altitude that can sometimes appear as

part of the optimal solution. The resulting algorithm provides the only means available

to safely and accurately guide a vehicle from any point during powered descent towards

a safe orbit. Moreover, the resulting trajectory is truly autonomous and optimal in fuel

consumption.

Complete EDL Optimization can be achieved with a Bi-Level Optimization
Approach

One of the main goals of this work was to produce an optimized entry, descent,

and landing trajectory using the reliable tools that are available today. The aim was to

produce a completely optimized end-to-end solution that produced an EDL trajectory with

the least amount of propellant possible and in a short amount of time. Usually, optimal or
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optimized solutions are obtained using optimization software that not necessarily produce

an operational trajectory. Even so, obtaining a solution might take an extended period of

time or have convergence issues. In this work, novel approach was developed to produce

complete optimized EDL trajectory. The method is a bi-level optimization approach

in which an inner-loop obtains an optimal powered descent solution and an outer loop

optimizes the entry guidance to deliver the ideal PDI condition. The Adaptive PDI logic is

implemented as the transition point that predicts the best PDI condition given the entry

trajectory flown. Furthermore, studies demonstrated that high-fidelity models can be

implemented in the closed-loop simulation without su↵ering from high computational cost,

allowing for more accurate trajectory predictions. The approach was tested extensively

and demonstrated that a fast and reliable EDL solution with near-propellant consumption

can be obtained with this method.

9.3 Recommendations for Future Work

• The abort scenario investigated in this work was to a safe orbit around the Moon. In

future missions to the Moon that will rely on a Gateway station, it will be important

to plan sending the spacecraft to a di↵erent orbit during an abort. The algorithm is

able to calculate the thrust, thrust direction, and flight time required to reach an

orbit that is defined by the orbital parameters. Further studies on the limits of the

algorithm need to be studied.

• Investigation into potential abort scenarios on the surface of Mars to find out what

would be necessary for the vehicle to be able to safely remove astronauts from a
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dangerous situation. The atmosphere and the weight of the vehicle make an abort

mission to Mars more complicated. Taking a look at the problem and understanding

the minimum requirements for an abort-ascent solution during an EDL mission on

Mars is worth the e↵ort.

• An area of research with potential for uncovering interesting results is in Multi-

disciplinary Design Optimization. An investigation into the combination of EDL

and vehicle optimization using large-scale design optimization might o↵er appealing

results that reveal unique results about an optimal EDL vehicle and its corresponding

trajectory.

• This investigation was purely in 3DOF, thus no attitude control consideration. The

resulting trajectories assume that the landing vehicle is a point mass, thus, the

propellant consumption does not include the propellant that should be accounted

for a Reaction Control System (RCS) taking care of the attitude of the vehicle.

• The current simulation setup assumes perfect navigation in 3DOF simulations. This

provides an advantage to the guidance as it is always receiving accurate information

about the current state of the vehicle even under dispersed initial conditions. In

future work, it is recommended that simulations take into account some level of

navigation uncertainty to produce a more realistic solution.
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