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RESEARCH ARTICLE

Structural modeling of ion channels using AlphaFold2, RoseTTAFold2, and 
ESMFold
Phuong Tran Nguyena, Brandon John Harrisa,b, Diego Lopez Mateosa,b, Adriana Hernández Gonzáleza,b, 
Adam Michael Murrayc, and Vladimir Yarov-Yarovoy a,d

aDepartment of Physiology and Membrane Biology, University of California School of Medicine, Davis, CA, USA; bBiophysics Graduate Group, 
University of California School of Medicine, Davis, CA, USA; cMonterey Peninsula College, Monterey, CA, USA; dDepartment of Anesthesiology 
and Pain Medicine, University of California School of Medicine, Davis, CA, USA

ABSTRACT
Ion channels play key roles in human physiology and are important targets in drug discovery. The 
atomic-scale structures of ion channels provide invaluable insights into a fundamental under
standing of the molecular mechanisms of channel gating and modulation. Recent breakthroughs 
in deep learning-based computational methods, such as AlphaFold, RoseTTAFold, and ESMFold 
have transformed research in protein structure prediction and design. We review the application 
of AlphaFold, RoseTTAFold, and ESMFold to structural modeling of ion channels using represen
tative voltage-gated ion channels, including human voltage-gated sodium (NaV) channel - NaV1.8, 
human voltage-gated calcium (CaV) channel – CaV1.1, and human voltage-gated potassium (KV) 
channel – KV1.3. We compared AlphaFold, RoseTTAFold, and ESMFold structural models of NaV1.8, 
CaV1.1, and KV1.3 with corresponding cryo-EM structures to assess details of their similarities and 
differences. Our findings shed light on the strengths and limitations of the current state-of-the-art 
deep learning-based computational methods for modeling ion channel structures, offering valu
able insights to guide their future applications for ion channel research.
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Introduction

Ion channels play key roles in human physiology 
and have been established as important targets in 
drug discovery [1,2]. The atomic-scale structures 
of ion channels provide invaluable insights into 
a fundamental understanding of the molecular 
mechanisms of channel gating and modulation. 
The recent advancements in cryo-electron micro
scopy (cryo-EM) produced a remarkable increase 
in the number of high-resolution structures of ion 
channels [3–7]. Multiple ion channel structures 
have been resolved in various putative physiologi
cal states and in complex with auxiliary subunits, 
small molecules, and natural peptides, providing 
crucial insights into the molecular mechanisms 
underlying their modulation.

In parallel to advancements in cryo-EM, break
throughs in deep learning-based computational meth
ods, such as AlphaFold [8] from Google’s DeepMind 

and RosetTTAFold [9,10] from David Baker’s 
Institute for Protein Design at the University of 
Washington, have been transforming research in pro
tein structure prediction. These methods utilize deep 
neural networks trained on co-evolution information 
from multiple sequence alignments derived from pro
tein sequence database (UniProt) [11] and protein 
structural data derived from Protein Data Bank 
(PDB) [12] to predict protein structures. AlphaFold 
and RoseTTAFold based methods have been applied 
to protein design and modeling of protein complexes 
[13–19]. Additionally, large language models of pro
tein sequences, such as Meta AI’s ESMFold [20], 
trained on millions of protein sequences and using 
billions of parameters, provide rapid protein structure 
predictions, although with slightly lower accuracy 
compared to AlphaFold and RosettaFold. The ability 
to predict protein structures with high accuracy holds 
tremendous promise in transforming the field of drug 
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discovery. Notably, the AlphaFold Structural Database 
currently contains over 200 million protein models 
predicted by AlphaFold [21] and the ESM 
Metagenomic Atlas contains more than 700 million 
protein models predicted by ESMFold [20].

Despite the remarkable achievements in protein 
structure prediction using deep-learning-based 
methods, the performance of these methods on 
challenging targets like ion channels remains to 
be determined. This is particularly significant 
when considering the structural heterogeneity of 
ion channel physiologically relevant states. To 
examine the structural modeling of ion channels 
using the deep-learning-based methods, we 
applied AlphaFold2 [8], RosetTTAFold2 [9], and 
ESMFold [20] to predict structures of representa
tive voltage-gated ion channels, including human 
voltage-gated sodium (NaV) channel – NaV1.8, 
human voltage-gated calcium (CaV) channel – 
CaV1.1, and human voltage-gated potassium (KV) 
channel – KV1.3. We compared AlphaFold2, 
RoseTTAFold2, and ESMFold structural models of 
NaV1.8, CaV1.1, and KV1.3 with corresponding 
cryo-EM structures of NaV1.8 [22], CaV1.1 [23], 
and KV1.3 [24] to assess details of their similarities 
and differences. Our findings shed light on the 
strengths and limitations of the current state-of- 
the-art deep learning-based computational meth
ods for modeling ion channel structures, offering 
valuable insights to guide their future applications 
for ion channel research.

Structural modeling of voltage-gated sodium 
(Nav) channels

Voltage-gated sodium (NaV) channels are responsi
ble for initiating and propagating action potentials, 
the electrical signals facilitating communication 
between excitable cells [1,25–27]. There are nine 
NaV channel subtypes, from NaV1.1 to NaV1.9. The 
NaV1.1, NaV1.2, and NaV1.6 subtypes are predomi
nantly expressed in the central nervous system [28]. 
The NaV1.4 and NaV1.5 subtypes are mainly 
expressed in skeletal and cardiac muscles, respec
tively [28]. The peripheral nervous system primarily 
expresses NaV1.7, NaV1.8, and NaV1.9 subtypes 
[28]. Dysfunctions in these channels can lead to 
serious health issues, including epilepsy, cardiac 
arrhythmias, muscle weakness, and chronic pain. 

The advancement of cryo-EM has facilitated the 
resolution of mammalian NaV subtypes, ranging 
from NaV1.1 to NaV1.8, significantly enhancing 
our understanding of their structure, gating, and 
modulation [22,29–35].

The voltage-dependent gating, sodium conduc
tion, and modulation by natural peptides and 
small molecule drugs are performed by the NaV 
channel α subunit [1,25–27]. Auxiliary NaV chan
nel β subunits (β1-β4) are co-expressed with the α 
subunit and modulate the channel function [36]. 
We selected the NaV1.8 channel α subunit, as an 
example NaV channel, for structure prediction 
using AlphaFold2 [8] and ColabFold as the com
putational platform [37]. ColabFold’s AlphaFold2 
pipeline employs MMseqs2 multiple sequence 
alignment method [38,39], which is a more effi
cient alternative to Jackhmmer multiple sequence 
alignment method [40] used in DeepMind’s ori
ginal AlphaFold2 pipeline [8]. The MMseqs2 
method has considerably accelerated the 
AlphaFold2 protein structure prediction pipeline 
performance while maintaining comparable accu
racy [37]. The protein sequence of the SCN10A 
gene, which encodes the human NaV1.8 (hNaV 
1.8) α subunit (UniProt ID: Q9Y5Y9), was used 
as input into ColabFold’s AlphaFold_ 
mmseqs2 notebook for structure prediction. We 
assessed the quality of predicted AlphaFold2 
models of hNaV1.8 using predicted local distance 
difference test (pLDDT) confidence score. 
Generally, pLDDT values above 90 represent 
very high confidence, pLDDT values between 70 
and 90 represent good confidence, pLDDT values 
between 50 and 70 represent low confidence, and 
pLDDT values below 50 represent very low con
fidence [8]. We also compared similarities and 
differences to the resolved hNaV1.8 structures 
(PDB: 7WE4, 7WEL, 7WFR, and 7WFW) [22] 
using alpha carbon root mean square deviation 
(Cα RMSD). We assessed individual transmem
brane voltage-sensing domains (VSD-I, VSD-II, 
VSD-III, and VSD-IV), the pore domain, the 
extracellular loop (ECL) regions, and the overall 
model topology.

Our results showed that AlphaFold2 could pre
dict the majority of the hNaV1.8 domains with 
very high confidence scores (pLDDT >90), 
ESMFold could predict VSDs, the pore domain, 
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and ECL regions with good confidence (70 < 
pLDDT < 90), while RoseTTAFold2 predicted 
most transmembrane regions with low confidence 
(50 < pLDDT < 70) and predicted the pore domain 
with good confidence (Figure 1).

Relative to published structures, the overall topol
ogy of the models closest resembles the apo state 
(PDB: 7WFW), with AlphaFold2 having the lowest 
Cα RMSD at 2.0 Å (Figure 2(a)). This is exemplified 
by the AlphaFold2 model being able to predict VSD- 

Figure 1. AlphaFold2, RoseTTAFold2, and ESMFold models of hNaV1.8. a) plot of pLDDT confidence score versus hNaV1.8 residue 
position for AlphaFold2 (AF), RoseTTAFold2 (RF2), and ESMFold (ESM) models. right panel, multiple sequence alignment of hNaV1.8 
sequence and its homologs identified by MMseqs2 method [38,39] and used for AlphaFold modeling of hNaV1.8. a total number of 
homologous sequences identified per hNaV1.8 residue position is shown by a black trace. b) transmembrane (left panel) and 
extracellular (right panel) views of AlphaFold model of hNaV1.8. c) transmembrane (left panel) and extracellular (right panel) views of 
RoseTTAFold2 model of hNaV1.8. d) transmembrane (left panel) and extracellular (right panel) views of ESMFold model of hNaV1.8. 
AlphaFold2, RoseTTAFold2, and ESMFold models are colored by confidence score (pLDDT) from very low confidence (red) to good 
confidence (yellow) to high confidence (blue).
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Figure 2. Comparison of AlphaFold2, RoseTTAFold2, and ESMFold models and cryoEM structures of hNaV1.8. a) transmembrane (left 
panel) and extracellular (right panel) views of AlphaFold2, RoseTTAFold2, and ESMFold models superimposed to cryoEM structures of 
hNaV1.8 (PDB: 7WE4, 7WEL, 7WFR, and 7WFW) [22]. Intrinsically disordered N- and C-termini predicted by AlphaFold2, RoseTTAFold2, 
and ESMFold with low confidence were removed for clarity. b) transmembrane view of AlphaFold2, RoseTTAFold2, and ESMFold 
VSD-I, VSD-II, VSD-III, and VSD-IV models superimposed to apo-state hNaV1.8 structure (PDB: 7WFW). c) extracellular view of 
AlphaFold2, RoseTTAFold2, and ESMFold domain III-IV intracellular linker models superimposed to apo-state hNaV1.8 structure. d) 
extracellular view of AlphaFold2, RoseTTAFold2, and ESMFold pore domain (PD) models superimposed to apo-state hNaV1.8 
structure.
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II, VSD-II, VSD-IV (Figure 2(b)), and the domain 
III-IV intracellular linker (Figure 2(c)) with less than 
2.0 Å Cα RMSD to the apo state structure (VSD-I is 
not resolved in the apo state). Notably, all methods 
produced pore domain Cα RMSD 2.0 Å or less 
relative to the apo-state, with AlphaFold2 having 
the lowest Cα RMSD at 0.72 Å (Figure 2(d)).

For all three methods, the N-terminal domain 
(NTD) residues from M1 to N11, domain I-II 
intracellular loop region residues from L442 to 
D602, domain II-III intracellular loop region resi
dues from S935 to L1092, and C-terminal domain 
(CTD) residues from N1875 to P1956 have low 
confidence scores (Figure 1). The low prediction 
confidence scores suggest that these regions are 
either highly flexible or inherently disordered in 
the absence of interacting intracellular partners. 
Notably, AlphaFold2 also predicted with good 
and high confidence scores parts of the NTD pre
ceding the VSD-I (residues from N12 to S130), 
domain II-III intracellular loop region residues 
from N908 to R934, domain III-IV intracellular 
loop region from K1427 to N1463 that contains 
the intracellular gate important for NaV channel 
fast inactivation, and segments of the CTD (resi
dues from T1733 to S1874). The NTD, domain I-II 
intracellular loop region, domain I-III intracellular 
loop region, and CTD regions are absent in cur
rently resolved structures of hNaV1.8 (PDB IDs: 
7WE4, 7WEL, 7WFR, and 7WFW) [22] but have 
been resolved in cryo-EM structures of other NaV 
channel subtypes [22,29–35]. The domain III-IV 
intracellular linker residues from K1427 to N1463 
consistently had the closest match between hNaV 
1.8 structures and AlphaFold2 models (Cα RMSD  
= 1.1 Å), compared to ESMFold models (Cα 
RMSD = 2.6–2.8 Å) and RoseTTAFold2 models 
(Cα RMSD = 5.5–5.6 Å) (Figure 2(c)).

Focusing on the pore region, the AlphaFold2, 
ESMFold, and RoseTTAFold2 models of hNaV1.8 
align closely with the experimentally resolved struc
tures of hNaV1.8 (Cα RMSD = 0.7–1.8 Å) Notably, 
the AlphaFold2 model exhibits only minor differ
ences over the selectivity filter, P1-helix, P2-helix, S5, 
and S6 segments (Figure 2(d)). One noticeable dif
ference is the conformation of domain I S6 segment 
(DI-S6). AlphaFold2’s model shows a slight devia
tion in the helical turn near F386 residue in DI-S6, 

causing its side chain to point toward the DI-IV 
fenestration and pack together with M1716 in DIV- 
S6 (Figure 3(a)). In contrast, the cryo-EM structures 
of hNaV1.8 resolved in complex with a small mole
cule-based compound (A-803467) and in the apo 
state show F386 pointing downwards and M1716 
oriented away from the fenestration. This difference 
between the AlphaFold2 model and the cryo-EM 
structure of hNaV1.8 may arise due to a different 
conformation of DI-S6 captured in the AlphaFold2 
model. Interestingly, AlphaFold2 predicted 
a conformation of the ECL in domain I (ECL-I) 
with high confidence, which was partially unresolved 
in the cryo-EM structures of hNaV1.8. Specifically, 
residues 279 to 282 and 289 to 297 in ECL-I adopted 
a helical conformation with high confidence in the 
AlphaFold2 model of hNaV1.8 but are unstructured 
in the cryo-EM structure of hNaV1.8 (Figure 3(a)). 
For the same residues in ECL-I, ESMFold adopts 
a helical conformation between residues 283 to 291 
with very low confidence (pLDDT <50), and 
RoseTTAFold2 adopts a loop conformation between 
residues 279 to 297 with very low confidence 
(Figure 3(a)).

The voltage sensor domains were predicted 
with high confidence in the AlphaFold2 model, 
good confidence in the ESMFold model, and low 
confidence in the RoseTTAFold2 model of hNaV 
1.8. However, the S3-S4 loop regions in VSD-I 
and VSD-II were predicted with good confidence 
in AlphaFold2, low confidence in ESMFold, and 
very low confidence in RoseTTAFold2, reflecting 
their flexibility (Figure 1). Despite the high con
fidence in the VSD predictions, comparison with 
the experimentally resolved hNaV1.8 structures 
revealed several key differences. The cryo-EM 
structures of hNaV1.8 in complex with A-803467 
revealed various conformations of VSD-I, repre
sented by class I, II, and III structures (PDB IDs: 
7WE4, 7WEL, and 7WFR) [22]. VSD-I was not 
resolved in the cryo-EM structures of hNaV1.8 in 
an apo state (PDB: 7WFW) [22]. However, con
formations of VSD-I in the AlphaFold2, 
ESMFold, and RoseTTAFold2 models of hNaV 
1.8 don’t align with the conformation of VSD-I 
in any of the cryo-EM structures of hNaV1.8 
(Figure 3(c)) (Cα RMSD = 2.5–3.8 Å). With 
a very high pLDDT confidence score, this 
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Figure 3. Comparison of specific regions in AlphaFold2, RoseTTAFold2, and ESMFold models to cryoEM structures of hNaV1.8. a) 
transmembrane (left and middle panel), and extracellular (right panel) views of F386 relative to M1716 at the domains I-IV (DI-IV) 
interface fenestration region in AlphaFiold2 model superimposed to apo-state hNaV1.8 structure (PDB: 7WFW). b) comparison of 
AlphaFold2, RoseTTAFold2, and ESMFold extracellular loop in domain I (ECL-I) model predictions relative to the partially resolved 
ECL-I in the apo-state hNaV1.8 structure. c) comparison of VSD-I S4 gating charges in AlphaFold2, RoseTTAFold2, and ESMFold 
models relative to cryoEM structures of hNaV1.8 (PDB: 7WE4, 7WEL, and 7WFR) [22]. d) comparison of VSD-II S4 gating charges in 
AlphaFold2, RoseTTAFold2, and ESMFold models relative to cryoEM structures of hNaV1.8 (PDB: 7WE4, 7WEL, 7WFR, and 7WFW) [22]. 
e) comparison of VSD-III S4 gating charges in AlphaFold2, RoseTTAFold2, and ESMFold models relative to cryoEM structures of hNaV 

1.8 (PDB: 7WE4, 7WEL, 7WFR, and 7WFW) [22]. f) comparison of VSD-IV S4 gating charges in AlphaFold2, RoseTTAFold2, and ESMFold 
models relative to cryoEM structures of hNaV1.8 (PDB: 7WE4, 7WEL, 7WFR, and 7WFW) [22]. Side chains of gating charge-carrying 
residues in the S4 segments are shown in stick representation and labeled.

6 P. T. NGUYEN ET AL.



discrepancy raises a possibility that AlphaFold2’s 
model of hNaV1.8 represents another apo state of 
VSD-I. The AlphaFold2 model of hNaV1.8 VSD- 
II appears to be in a fully “up” state, with the 
gating charges R1, R2, and R3 in the S4 segment 
of VSD-II positioned above the gating charge 
transfer residue F708 in the S2 segment of VSD- 
II. In contrast, the class I cryo-EM structure of 
hNaV1.8 in complex with A-803467 (PDB: 7WE4) 
shows the gating charge R3 in the S4 segment of 
VSD-II at the gating charge transfer, considered 
to be a “half-click” down from the VSD-II state 
observed in the AlphaFold2 model (see 
Figure 2(b)). These observations may explain the 
difference in S3-S4 region conformations in VSD- 
II between the hNaV1.8 structures and 
AlphaFold2 models (Figure 3(d)).

In contrast to the models of hNaV1.8 VSD-I and 
VSD-II, AlphaFold2 conformations of VSD-III 
and VSD-IV appear to align closely with confor
mations of corresponding VSD-III and VSD-IV in 
the cryo-EM structures of hNaV1.8 (VSD-III: Cα 
RMSD = 0.6–0.8 Å, VSD-IV: Cα RMSD = 1.2–1.3 
Å) (Figure 2(b)). ESMFold and RoseTTAFold2 
both performed worse in comparison to 
AlphaFold2 (ESMFold VSD-III: Cα RMSD = 1.5 
Å, ESMFold VSD-IV: Cα RMSD = 1.8–1.9 Å, 
RoseTTAFold2 VSD-III: Cα RMSD = 1.8–1.9 Å, 
RoseTTAFold2 VSD-IV: Cα RMSD = 2.4 Å). The 
backbone conformations of VSD-III in the 
AlphaFold2 model almost identically match those 
in the resolved structure (PDB: 7WE4), with gat
ing charges consistently at the same position rela
tive to the gating transfer (Figure 3(e)). Similarly, 
the gating charges in the S4 segment of VSD-IV in 
the AlphaFold2 models and cryo-EM structures of 
hNaV1.8 also occupy similar positions 
(Figure 3(f)). However, the S3-S4 conformations 
in VSD-IV are significantly different between the 
AlphaFold2 models and cryo-EM structures of 
hNaV1.8. As with VSD-I, there is heterogeneity 
observed in the S3-S4 region of VSD-IV, with 
multiple conformations resolved in cryo-EM 
structures of hNaV1.8 (PDB: 7WE4, 7WEL, and 
7WFR, and 7WFW) [22]. Similar to the observa
tions with VSD-II, the high confidence prediction 
of the VSD-IV S3-S4 region conformations by 
AlphaFold2 suggests a potentially different confor
mation of this region of hNaV1.8.

Structural modeling of voltage-gated calcium 
(Cav) channels

Voltage-gated calcium (CaV) channels mediate 
Ca2+ influx upon depolarization of cell membrane 
potentials [1,2,25,41,42]. Ten subtypes of CaV 

channels are divided into three main subfamilies, 
CaV1, CaV2, and CaV3, each serving distinct and 
crucial roles in physiological functions [28]. The 
CaV1 channels are responsible for muscle contrac
tion, hormone secretion, and integrating synaptic 
inputs. The CaV2 channels play a key role in rapid 
communication in nerve cells. The CaV3 channels 
are crucial for the repetitive firing of action poten
tials in rhythmically firing cells, such as cardiac 
myocytes and thalamic neurons, contributing to 
regulating heart rhythm and synchronizing neural 
activities.

Cav1.1 structure is composed of α1, α2, β, γ, 
and γ subunits with α1 subunit responsible for 
voltage-dependent gating, calcium conduction, 
and modulation by small molecule drugs 
[23,43,44]. The protein sequence of CACNA1S 
gene encoded human CaV1.1 (hCaV1.1) α subunit 
(UniProt ID: Q13698) was used as input into 
AlphaFold2, RoseTTAFold2, and ESMFold for 
structure prediction. We assessed the quality of 
predicted models using the pLDDT confidence 
score, compared how close they are to the resolved 
rabbit CaV1.1 structure (rCaV1.1) (PDB: 5GJV) 
[43], and discussed the structural variations.

Our results showed that most of hCaV1.1 struc
ture was predicted with high confidence by 
AlphaFold2 (overall pLDDT = 71.4) and 
ESMFold (overall pLDDT = 70.6) and with low 
confidence by RoseTTAFold2 (overall pLDDT =  
54.1) (Figures 4 and 5). Specifically, hCaV1.1 
VSD-I, VSD-II, VSD-III, and VSD-IV, pore 
domain, and ECL regions are predicted with 
high confidence (pLDDT >90) by AlphaFold2 
and ESMFold and with good confidence by 
RoseTTAFold2 (60 < pLDDT < 90). However, 
most of the N-terminal domain formed by resi
dues from M1 to K18, part of domain I-II intra
cellular loop region residues from L386 to A402, 
part of domain II-III intracellular loop region 
residues from L705 to E768, and most of the 
CTD regions formed by residues from Y1546 to 
S1780 and from G1835 to L1837 have been 
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predicted with low confidence (pLDDT <50) by 
AlphaFold2, ESMFold, and RoseTTAFold2 
(Figure 4(a)). This low confidence prediction sug
gests that these regions are either highly flexible 
or inherently disordered in the absence of 

interacting intracellular partners (Figure 4(a)). 
Interestingly, AlphaFold2 also predicted parts of 
the NTD from P19 to K51, part of domain I-II 
intracellular loop region residues from R347 to 
K385, part of domain II-III intracellular loop 

Figure 4. AlphaFold2, RoseTTAFold2, and ESMFold models of hCaV1.1. a) plot of pLDDT confidence score versus hCaV1.1 residue position for 
AlphaFold2 (AF), RoseTTAFold2 (RF2), and ESMFold (ESM) models. right panel, multiple sequence alignment of hCaV1.1 sequence and its 
homologs identified by MMseqs2 method [38,39] and used for AlphaFold modeling of hCaV1.1. a total number of homologous sequences 
identified per hCaV1.1 residue position is shown by a black trace. b) transmembrane (left panel) and extracellular (right panel) views of 
AlphaFold model of hCaV1.1. c) transmembrane (left panel) and extracellular (right panel) views of RoseTTAFold2 model of hCaV1.1. d) 
transmembrane (left panel) and extracellular (right panel) views of ESMFold model of hCaV1.1. AlphaFold2, RoseTTAFold2, and ESMFold 
models are colored by confidence score (pLDDT) from very low confidence (red) to good confidence (yellow) to high confidence (blue).
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region residues from G689 to K704, domain III- 
IV intracellular loop region residues from G689 
to K704 from E1073 to P1106, and CTD region 
residues from N1383 to G1545 with good 

confidence (70 < pLDDT < 90) and high confi
dence (pLDDT >90) (Figure 4(a,b)).

In the AlphaFold2, ESMFold, and 
RoseTTAFold2 models of hCaV1.1, the 

Figure 5. Comparison of AlphaFold2, RoseTTAFold2, and ESMFold models and cryoEM structures of hCaV1.1. a) Transmembrane (left 
panel) and extracellular (right panel) views of AlphaFold2, RoseTTAFold2, and ESMFold models superimposed to cryoEM structure of 
hCaV1.1 (PDB: 5GJV). b) transmembrane view of AlphaFold2 model of hCaV1.1 superimposed to cryoEM structure of hCaV1.1 (PDB: 
5GJV). c) transmembrane view of RoseTTAFold2 model of hCaV1.1 superimposed to cryoEM structure of hCaV1.1 (PDB: 5GJV). d) 
transmembrane view of ESMFold model of hCaV1.1 superimposed to cryoEM structure of hCaV1.1 (PDB: 5GJV). AlphaFold2, 
RoseTTAFold2, and ESMFold models are colored by confidence score (pLDDT) from very low confidence (red) to good confidence 
(yellow) to high confidence (blue). e) transmembrane view of AlphaFold model of hCaV1.1 VSD-I, VSD-II, VSD-III, and VSD-IV colored 
in blue superimposed with cryoEM structures of hCaV1.1 (PDB: 5GJV) colored in purple. Side chains of gating charge-carrying 
residues in the S4 segments are shown in stick representation and labeled.
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extracellular regions of the pore relatively closely 
match the cryo-EM structure of rCaV1.1 [43], 
exhibiting only minor differences over the selec
tivity filter, P1-helix, P2-helix, and ECL regions 
(Cα RMSD = 1.09 Å) (Figure 5(a-d)). However, 
conformations of the intracellular half of the S6 
segments are captured in a different state in the 
AlphaFold2, ESMFold, and RoseTTAFold2 model 
of hCaV1.1 compared to the cryo-EM structure 
of rCaV1.1 (Cα RMSD = 4.96 Å) (Figure 5(a-d)).

The voltage sensor domains were predicted 
with high confidence (pLDDT >90) in the 
AlphaFold2 model of hCaV1.1. However, 
a significant drop in confidence was observed 
in the S3-S4 regions, reflecting their higher 
flexibility (Figure 5(b,e)). Notably, VSD-I state 
in the AlphaFold2 model of hCaV1.1 is match
ing closely VSD-I state in the cryo-EM structure 
of rCaV1.1 (Figure 5(e)). Similarly, the gating 
charges in the S4 segment of VSD-I in the 
AlphaFold2 model of hCaV1.1 and cryo-EM 
structures of rCaV1.1 also occupy similar posi
tions (Figure 5(e)). VSD-II state in the 
AlphaFold2 model of hCaV1.1 has the S4 seg
ment positioned a “half-click” down compared 
to VSD-II state in the cryo-EM structure of 
rCaV1.1 (Figure 5(e)). VSD-III state in 
AlphaFold2 model of hCaV1.1 has the S4 seg
ment positioned a “half-click” up compared to 
VSD-III state in the cryo-EM structure of rCaV 
1.1 (Figure 5(e)). VSD-IV state in AlphaFold2 
model of hCaV1.1 matches closely VSD-IV state 
in the cryo-EM structure of rCaV1.1 
(Figure 5(e)). Similarly, the gating charges in 
the S4 segment of VSD-IV in the AlphaFold2 
model of hCaV1.1 and cryo-EM structures of 
rCaV1.1 also occupy similar positions. The S3- 
S4 loop regions in VSD-I, VSD-III, and VSD-IV 
have not been resolved in the cryo-EM struc
ture of rCaV1.1 (PDB: 5GJV) [43]. Notably, the 
S3-S4 loop regions in VSD-I, VSD-III, and 
VSD-IV AlphaFold2 models of hCaV1.1 have 
good confidence (pLDDT >70) (Figure 5(e)).

Structural modeling of voltage-gated 
potassium (Kv) channels

Voltage-gated potassium (KV) channels mediate 
K+ efflux upon membrane depolarization and 

regulate membrane potential [1,2]. There are 40 
subtypes of KV channels divided into 12 main 
subfamilies, from KV1 to KV12 [28]. Differently 
from NaV and CaV channels, KV channels are 
tetramers where each VSD-PD pair forms 
a separate subunit. The KV1.3 channels regulate 
membrane potential and calcium signaling in 
lymphocytes and oligodendrocytes [45]. These 
channels form homotetramers with the VSDs 
and PDs forming the membrane-spanning region 
and a cytosolic tetramerization (T1) domain [24]. 
The protein sequence of KCNA3 gene encoded 
human KV1.3 (hKV1.3) (UniProt ID: P22001) was 
used as input into AlphaFold2, RoseTTAFold2, 
and ESMFold for structure prediction. We 
assessed the quality of predicted models using 
the pLDDT confidence score, compared how 
close they are to the resolved hKV1.3 structures 
(PDB: 7SSX and 7SSY) [24], and discussed the 
structural variations.

Our results showed that AlphaFold2 predicted the 
transmembrane region of hKV1.3 formed by VSDs 
and pore domain with high confidence (pLDDT >90), 
as illustrated in Figures 6 and 7. The first part of the 
N-terminal region formed by residues from M1 to 
E104 was predicted with low confidence (pLDDT 
<50) (Figure 6(a)). The second part of the 
N-terminal region that comprises the T1 domain 
formed by residues from R105 to S230 was predicted 
with good confidence (70 < pLDDT < 90) or high 
confidence (pLDDT >90) and closely matched cryo- 
EM structures of hKV1.3 [24] N-terminal region 
formed by the same region (Cα RMSD = 1.4 Å) 
(Figure 6(a)). All of the pore region formed by resi
dues from M395 to T491 was predicted with good 
confidence (70 < pLDDT < 90) or high confidence 
(pLDDT >90) and closely matched cryo-EM structure 
of hKV1.3 [24] pore region (PDB: 7SSX) (Cα RMSD  
= 1.4 Å) (Figure 6(a,b)). C-terminal region formed by 
residues from E492 to V575 has low confidence 
(pLDDT <50) (Figure 6(a)). This low prediction con
fidence suggests that this region is either highly 
flexible or inherently disordered in the absence of 
interacting partners. Most of the VSD region formed 
by residues from P232 to S381 was predicted with 
good confidence (70 < pLDDT < 90) or high confi
dence (pLDDT >90) and closely matched cryo-EM 
structure of hKV1.3 [24] VSD region (Cα RMSD =  
1.9 Å) (Figures 6(a) and 7(c)). However, the S1-S2 
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and S3-S4 loop regions were predicted with low 
confidence (pLDDT <50), reflecting unstructured 
nature of these regions that have not been resolved 
in the cryo-EM structures of hKV1.3 [24] 

(Figure 7(c)). The relative position of the gating 
charges in the S4 segment revealed a similar state 
for the modeled VSD as the one observed in the 
cryo-EM experimental structures (Figure 7(c)).

Figure 6. AlphaFold2, RoseTTAFold2, and ESMFold models of hKV1.3. a) plot of pLDDT confidence score versus hKV1.3 residue 
position for AlphaFold2 (AF), RoseTTAFold2 (RF2), and ESMFold (ESM) models. right panel, multiple sequence alignment of hKV1.3 
sequence and its homologs identified by MMseqs2 method [38,39] and used for AlphaFold modeling of hKV1.3. a total number of 
homologous sequences identified per hKV1.3 residue position is shown by a black trace. b) transmembrane (left panel) and 
extracellular (right panel) views of AlphaFold model of hKV1.3. c) transmembrane (left panel) and extracellular (right panel) views 
of RoseTTAFold2 model of hKV1.3. d) transmembrane (left panel) and extracellular (right panel) views of ESMFold model of hKV1.3. 
Unstructured N- and C- terminals are not shown for clarity in AlphaFold, RoseTTAFold2 and ESMFold models. AlphaFold2, 
RoseTTAFold2, and ESMFold models are colored by confidence score (pLDDT) from very low confidence (red) to good confidence 
(yellow) to high confidence (blue).
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RoseTTAFold2 prediction for KV1.3 showed the 
expected architecture with the transmembrane 
domains, building up the VSDs and PDs, and the 
intracellular T1 domain (Figure 6(a)). The 

confidence of the prediction was good at the well- 
structured regions (80 < pLDDT < 90), but lower 
compared to the AF models, while it presented low 
confidence (pLDDT <50) at the N and C terminal 

Figure 7. Comparison of specific regions in AlphaFold2, RoseTTAFold2, and ESMFold models to cryoEM structures of hKV1.3. a) 
extracellular view of AlphaFold2, RoseTTAFold2, and ESMFold models of hKV1.3 superimposed with cryoEM structures of hKV1.3 
(PDBs: 7SSX and 7SSY). b) superimposition of AlphaFold, RoseTTAFold2, and ESMFold models. The yellow arrow indicates the tilt 
observed in the ESMFold model of the T1 domain. c) transmembrane view of AlphaFold, RoseTTAFold2, and ESMFold models of hKV 

1.3 VSD. The side chains of the gating charges located in the S4 segment are shown in stick representation and labeled. d) 
intracellular view of AlphaFold2, RoseTTAFold2, and ESMFold models of hKV1.3 T1 domain after superimposition of the full models 
with the cryoEM structures of hKV1.3 colored in purple (PDB: 7SSX) and cyan (PDB: 7SSY). e) superimposition of individual T1 
domains from AlphaFold2, RoseTTAFold2, and ESMFold models with the T1 domains from cryoEM structures of hKV1.3. f) 
extracellular view of AlphaFold2, RoseTTAFold2, and ESMFold models of hKV1.3 pore domain superimposed with cryoEM structures 
of hKV1.3 pore.
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regions, as well as at the S1-S2 and S3-S4 unstruc
tured loops of the VSDs (Figure 6(a,c)). ESMFold 
prediction resulted in a similar model that also had 
good confidence prediction (80 < pLDDT < 90) at 
the well-structured transmembrane domains and 
T1 domain, and low (pLDDT <50) at the N and 
C terminal regions and VSD extracellular loops 
(Figures 6(a,d)). The predicted state of the VSDs 
was similar to the one in the AF models 
(Figure 7(c)).

Notably, the ESMFold model of KV1.3 pre
sented a different arrangement of the T1 
domains, in which the domain independently 
has the expected fold when compared to the 
available cryo-EM structures (Figure 7(e)) 
(RMSD <1 Å), but the domain of each subunit 
shifts outwards (Figure 7(b), yellow arrow) break
ing the interactions among the four subunit T1 
domains that are observed in AlphaFold2 and 
RoseTTAFold2 models and solved structures 
(Figure 7(d)). The predicted structure for the KV 
1.3 pore in AlphaFold2, RoseTTAFold2, and 
ESMFold models closely matched the one 
observed in experimental structures (RMSD = 1.5 
Å) (Figure 7(f)).

Conclusions

Deep learning-based methods, such as AlphaFold 
[8], RosetTTAFold [9,10], and ESMFold [20] are 
useful for predicting structures of transmembrane 
regions of ion channels, including the voltage- 
sensing and pore domains, with high confidence. 
The extracellular and intracellular loop regions 
and intracellular N- and C-termini regions can be 
potentially predicted with high confidence if they 
are formed by α-helical or β-sheet secondary struc
ture. Deep learning-based methods may predict 
alternative conformations of ion channels com
pared to known structures of identical or homo
logous ion channels. However, the accuracy of 
alternative ion channel conformations is only 
determined once confirmed by structural and 
experimental data. Modeling unstructured extra
cellular and intracellular loop regions and intracel
lular N- and C-termini regions remains 
challenging in the absence of potential protein 
partners to stabilize specific conformations of 

these regions. Structure prediction of ion channels 
using deep learning-based methods might be use
ful for designing therapeutics and molecular 
probes targeting specific ion channel subtypes. 
Finally, structural modeling of ion channels in 
complex with other proteins deep learning-based 
methods might reveal molecular mechanisms of 
ion channel modulation by extracellular, trans
membrane, and intracellular proteins.
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