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Review Article
Waterborne Urinary Tract Infections: Have We Overlooked an Important Source of Exposure?

Jay P. Graham,1* Heather K. Amato,1 Renata Mendizabal-Cabrera,2 Danilo Alvarez,2 and Brooke M. Ramay2,3
1Berkeley School of Public Health, University of California Berkeley, Berkeley, California; 2Center for Health Studies, Universidad

del Valle de Guatemala, Guatemala City, Guatemala; 3Paul G. Allen School for Global Animal Health, Washington State University Pullman,
Guatemala City, Guatemala

Abstract. The presence of intestinal pathogenic Escherichia coli in drinking water is well recognized as a risk for
diarrhea. The role of drinkingwater in extraintestinal infections caused by E. coli—such as urinary tract infections (UTIs)—
remains poorly understood. Urinary tract infections are a leading cause of outpatient infections globally, with a lifetime
incidence of 50–60% in adult women. We reviewed the scientific literature on the occurrence of uropathogenic E. coli
(UPEC) inwater supplies to determinewhether thewaterborne routemay be an important, overlooked, source of UPEC. A
limited number of studies have assessed whether UPEC isolates are present in drinking water supplies, but no studies
havemeasured whether their presence in water may increase UPEC colonization or the risk of UTIs in humans. Given the
prevalence of drinking water supplies contaminated with E. coli across the globe, efforts should be made to characterize
UTI-related risks associated with drinking water, as well as other pathways of exposure.

INTRODUCTION

Urinary tract infections (UTIs) are the secondmost common
infection globally, and an estimated 150 million people are
diagnosed with UTIs each year, costing more than six billion
U.S. dollars in treatment.1,2 In the United States, the CDC
estimates that UTIs are responsible for nearly 13,000 deaths
every year.3 In addition, uropathogens producing extended
spectrum beta-lactamases (ESBLs), and showing resistance
to most antimicrobials, are steadily increasing.4,5

Exposure to Escherichia coli—a fecal indicator and a key
member of the normal intestinal microflora of humans and
other mammals—in drinking water, as well as recreational
water, has been linked to an elevated risk of carrying enteric
pathogens and diarrhea.6–8Much less research, however, has
been carried out to identify whether the presence of E. coli in
water supplies, or the environment where human exposures
occur (e.g., recreational water exposures like swimming), may
increase the risk for extraintestinal infections, including UTIs.
Some highly adapted E. coli strains have acquired specific
virulence factors that confer an increased capacity to cause a
spectrum of intestinal and extraintestinal diseases.9

Escherichia coli has the potential to cause three broad
categories of infection: enteric infections, UTIs, and sepsis/
meningitis.9 Infections can be further categorized as intestinal
pathogenic E. coli (IPEC), and extraintestinal pathogenic
E. coli (ExPEC), which includes uropathogenic E. coli (UPEC)
and meningitis-associated E. coli (Figure 1).10,11 Uropatho-
genic E. coli is the most common etiologic agent of UTIs and
causes 68–77% of recurrent UTI infections.12 There are dif-
ferences in virulence factors between UPEC and commensal
E. coli, whichmake upmost of theE. coli that populate the gut.

DEFINING UPEC

The features used to classify E. coli as UPEC vary signifi-
cantly. There are likely diverse, complementary groups of

genetic factors that allow E. coli to interact with the host,
resulting in UTIs. Progress in determining these mechanisms,
however, is being made. Escherichia coli is often identified
by serological typing: H (flagellar), O (lipopolysaccharide),
and K (capsular) surface antigens. The O serogroup ap-
pears to influence pathogenicity, and it has been identified
as a causal agent in most UTIs.13 Uropathogenic E. coli
isolates are typically found in phylogenetic group B2, and to
a lesser extent in group D.14 Although the E. coli isolates
that cause UTIs are often clonal, there is no single pheno-
typic profile that defines UPEC isolates, which are com-
pletely distinct for their lack of a defined set of genes that
distinguish them from non-UPEC isolates.15,16 Uropatho-
genic E. coli isolates typically have virulence factors, in-
cluding adhesins, siderophore systems, toxins, and
lipopolysaccharides that enhance their ability to survive out-
sideof the host, colonize humans, andcause infection.17Most
potential UPEC strains carry these virulence genes, but are
able to remain as commensals in our gut.16 Johnson et al.15

assessed a diverse set of predictors of virulence in a murine
sepsis model and found that various factors—phylogenetic
group, clonal complexes, and accessory genes—were im-
portant. Studies of putative uropathogenic E. coli (pUPEC) in
water have typically classified the isolates based on the
presenceof specificgenes or by their sequence type (ST).18–22

Wehypothesize that drinkingwater represents an important
source of UPEC (Figure 1), especially in low- and middle-
income countries (LMICs), where fecally contaminated drink-
ing water is more prevalent. The application of advanced
genotyping methods in these countries is often more limited,
and research has likely missed this important pathway of ex-
posure, in contrast to high- and upper-middle–income
countries. A growing body of research, primarily in high-
income countries, is rapidly building on foodborne UTIs
(FUTIs).23–28

Tofind relevantdocumentsdescribing theevidenceofpUPEC
in waters used as sources for drinking or recreation that may
cause UTIs or potentially other extraintestinal infections, we
searched PubMed (https://pubmed.ncbi.nlm.nih.gov/) using
the following search terms: (“urinary tract infection” OR
“Extraintestinal pathogenic E. coli” OR “ExPEC” OR
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“uropathogenic E. coli” OR “UPEC”) AND “water.” We also
searched the resulting reference lists to identify additional
articles.

EVIDENCE OF PUTATIVE UPEC IN WATER

We identified 20 studies of 394 search results that assessed
the roleofwater, orwastewater, asa reservoir ofExPECorUPEC.
The studies which used genotyping methods are summarized in
Table 1, and they indicate that fecally contaminated water—
mainly surfacewaters andwastewater—are an important source
of UPEC.20,29–37 Zhi et al.38,39 identified pUPEC by screening
wastewatersamples fromtreatmentplants inAlberta,Canada, for
E. coli containing at least three of five UPEC virulence genes.
When the researchers comparedpUPECwith knownUPEC from
UTIs from international databases, they found > 96% whole ge-
nome similarity; one isolate demonstrated 99.5% genome simi-
larity. In a studyof 308E. coli isolates fromsurfacewater samples
collected from diverse aquatic ecosystems in the United States,
researchers used DNA microarray technology and found that
most E. coli isolates were putative ExPEC pathotypes and
belonged to phylogenetic groups B2 and D.21 Johnson and
others18 characterized 280 E. coli isolates from seven surface
water sites and found that 5%of isolateswerepExPECstrains. In
Japan, researchers studied 531 E. coli isolates from the Yamato
River and found 58 pExPEC isolates that belonged to lineages of
human UPEC (ST95, ST127, ST12, ST14, and ST131).40,41 A
study of household drinking water in India applied multi-locus
sequence typing (MLST) to identifypUPEC; they found fourE.coli
STs, ST648, ST92, STc23, and ST58, that are often found to
cause UTIs.20 Similarly, a study of surface water in Georgia used
MLST to identify ST131, a common ST associated with UTIs
globally, in surfacewaters.22 In Southeast Queensland, Australia,
researchers tested 200 E. coli isolates from 22 rainwater tank
samples for 20 virulence factors associated with ExPEC; the re-
searchers also classified E. coli by their phylogenetic groups.
PutativeExPECwere identified in 15of the 22 tanksbasedon the
prevalence of ExPEC-associated virulence genes.42 In a study of
constructedwetlands in theUnitedStates, researchersexamined
whether crowswere carriers of ExPEC and if wetland roost areas
contribute to their spread. The study found that 11.2% of the
E. coli isolates identified in impacted waters were pExPEC.19 In
India, researchers have studiedE. coli fromcoastal estuaries and
found that ∼16%were pExPEC, and approximately one-third of
isolates contained antimicrobial resistance genes.43,44 In France,
researchers evaluated the prevalence of ExPEC in effluents of a
municipal wastewater treatment plant receivingwastewater from
a slaughterhouse; ExPECwasmore prevalent in city wastewater
(8.4%) than inslaughterhousewastewater (1.2%).45A fewstudies
have used serotyping to identify pUPEC in drinking water and
environmental water sources.46–48

Sanitation and hygiene likely play important roles in expo-
sure to fecal pathogens such as UPEC. In some contexts,
hands have been found to be a more important pathway of
exposure to E. coli than water, although no study to date has
looked at whether they are potentially UPEC isolates.49 Ac-
cess to improved sanitation and clean water also impact
menstrual hygiene management practices, which may affect
the risk of UTIs among women.50,51 Overall, however, there is
a paucity of research investigating the impacts of sanitation
and hygiene on exposures to UPEC or the risk of UTIs.

ANTIMICAROBIAL RESISTANCE IN UPEC

Antimicrobial-resistant E. coli—many harboring genes
that allow them to produce ESBLs and avoid the effects of

FIGURE 1. Conceptual illustration of the exposure pathway for wa-
terborne urinary tract infections (WUTIs). E. coli includes commensals,
intestinalpathogenicE.coli (IPEC), andextraintestinal pathogenicE.coli
(ExPEC), which include meningitis/sepsis-associated E. coli (MNEC)
and uropathogenic E. coli (UPEC), the most common infecting agent in
the urinary tract. This figure appears in color at www.ajtmh.org.
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TABLE 1
Examples of studies that identified putative uropathogenicE. coli (pUPEC) or extraintestinal pathogenicE. coli (pExPEC) inwater samples based on
multi-locus sequence typing or the presence of virulence genes17

Reference Country Source of samples
Virulence genes and their function used to identify

pUPEC or pExPEC Findings

Müller et al.37 Switzerland 207 E. coli from surface waters,
freshwater fish, fresh vegetables,
retail poultry meat, fecal samples
of livestock, healthy humans, and
primary care patients

Iron uptake (fyuA, chuA, and yfcv),
toxin (vat), pathogenicity island
(PAI), and protectins/serum
resistance (traT)

Overlaps in E. coli genotypes were
found for some pUPEC isolates
from water and humans

Ahmed et al.42 Australia 200 E. coli from 22 rainwater tanks
used for potable and non-potable
purposes

Adhesins (bmaE, papG allele II, papG
allele III, papAH, papEF, and focG),
toxins (cdtBa and cvaC), invasins
(ibeA), siderophores (iutA), capsule
synthesis (kpsMT allele III and
kpsMT allele K1), pathogenicity
island (PAI), and protectins/serum
resistance (traT)

Fifteen of 22 rainwater tanks were
positive for pExPEC

Hamelin
et al.21

United
States

308 E. coli from surface water
collected from two large river
systems

P pilus-encoding gene (hlyA); Iron
uptake (chuA, fepC,cnf1, irp1, irp2,
fyuA, iroN, and usp)

E. coli pathotypes were mostly
pExPEC and belonged to
phylogenetic groups B2 and D

Rayasam
et al.20

India 104 E. coli from 51 drinking water
samples collected from elevated
storage reservoirs that are piped to
households

STs known to cause UTIs in humans Nineteen of the E. coli STs (18.3%)
belonged to known lineages of
human UPEC

Amato et al.35 United
States

337 E. coli from streams draining 15
small watersheds of the
Chesapeake Bay

Adhesins (papA, papC, and afaC),
siderophores (iutA), and capsule
synthesis (kpsMII)

Fifty-six isolates (17%) were pExPEC

Sen et al.19 United
States

134 E. coli from wetlands
contaminated by corvids

Siderophores (iutA, iroN, and iutA),
capsule synthesis (iss, kpsMTII,
and traT), adhesins (papEF, pap A/
C, papG, sfa/foc, and afa/dra),
toxins and hemolysins (cnf1, stx1,
stx2, hlyA, and hlyF), and invasion
(ibeA)

Fifteen of 134 isolates (11.2%) were
pExPEC

Cho et al.22 United
States

34 Antimicrobial-resistant E. coli
identified from a mixed-use
watershed

STs known to cause UTIs in humans Three of the 34 isolates were ST131,
which are known lineages of
human UPEC

Divya et al.43 India 300 E. coli from tropical estuarine
water

Adhesins (papAH, papC, and sfa/
foc), capsule synthesis (kpsMT II),
and siderophore (iutA)

Forty-nine isolates (16.3%) were
pExPEC, and approximately
34.6% of those isolates had
antibiotic-resistant genes

Johnson
et al.18

United
States

280 E. coli from seven surface water
sites

Type 1 fimbriae (fimA), hemolysin
(hlyD), P fimbriae (papAH and
papC), S and F1C fimbriae (sfa/
focDE), Dr-binding adhesins (afa/
draBC), group 2 capsule (kpsM II),
and aerobactin system (iutA)

Twenty-six isolates (5%) fulfilled the
molecular criteria for pExPEC

Gomi et al.40 Japan 531 E. coli isolates obtained from
Yamato River

STs known to cause UTIs in humans Among 58 pExPEC isolates, several
lineages of human UPEC were
found (ST95, ST127, ST12, ST14,
and ST131)

Franz et al.53 Netherlands 170 ESBL-producing E. coli from
Dutch wastewater (n = 82) and
surface water (n = 88)

Afimbrial adhesion (afa), F1C fimbriae
(focG), cytolytic protein toxin
(hlyD), iron acquisition system
(iutA), group 2 polysaccharide
capsule (kpsMII), P fimbriae (papA),
and S fimbriae (sfaS)

Fifteen of the ESBL-producing E. coli
(8.8%) were pExPEC

Diallo et al.45 France 1,248 E. coli from effluents of a
municipal wastewater treatment
plant receiving wastewater from a
slaughterhouse

S and F1C fimbriae (sfa/focDE),
group 2 capsule (kpsMT K10),
hemolysin (hlyA), P fimbriae
(papEF), adhesins (afa/draBC),
toxins, and hemolysins (clbN,
f17A, and cnf)

ExPECwas significantly higher in city
wastewater (8.4%) than in
slaughterhousewastewater (1.2%)

Anastasi
et al.36

Australia 264E. coli isolatescollected from129
receiving water sites in a 20-km
radius surrounding sewage
treatment plants

P fimbriae (papAH, papEF, and
papC), siderophore (iroNE.coli),
toxins, and hemolysins (cnf1, hlyA,
eltA, estII, eaeA, stx1, and stx2)

ExPECvirulence geneswere found in
11%of the15most commonE. coli
types identified

E. coli = Escherichia coli; ESBL = extended spectrum beta-lactamases; ST = sequence type; UTI = urinary tract infections.
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third-generation cephalosporins—have been identified in
different sources of drinking water, including drinking water
in high-income countries.30–32,52 In studies of pUPEC in
environmental water samples, antimicrobial resistance
genes, including ESBL genes, have been identified.38

Rayasam et al.20 found that six of 19 pUPEC were resistant to
more than three classes of antimicrobial agents. Hamelin
et al.21 found that the river sampling site most impacted by
urban municipal wastewater also had a higher prevalence of
pUPEC-carrying antimicrobial-resistant genes. A study of
ESBL-producing E. coli from Dutch wastewater (n = 82) and
surface water (n = 88) found that 8.8% of the 170 isolates
studied were pExPEC.53 A study of 22 environmental ESBL-
producing E. coli found that six of the isolates were able to
colonize bladder cells.54

CONCLUSION

Defining the features that make up UPEC in a local geo-
graphic context or for a specific population will be an impor-
tant step forward. Research that studies a combination of
factors (e.g., phylogenetic group, clonal complex, and ac-
cessory genes) will be needed, and next-generation se-
quencing will be essential for assessing the role of fecally
contaminatedwater, or fecally contaminated environments, in
casesof humanUTIs.Given rapid changes in circulatingE. coli
clones, human and nonhuman host factors, and resistance
phenotypes, our ability to predict what features define UPEC
will remain a challenge. As noted earlier, UPEC belongs to a
wide variety of serogroups andSTs, andmay consist of a large
variety of virulence factors. Future studies will need to identify
the STs, serogroups, phylogenetic groups, and virulence
genes associated with UTIs in local contexts to understand
the full landscape of UPEC’s defining features. Furthermore, a
local set of multiplex panels could be used to understand the
relationship between water quality and UTIs.
This report highlights a need to investigate the occurrence

of pUPEC in drinking water sources to better understand the
importance of waterborne UTIs (WUTIs). Given that antimi-
crobial resistance is predicted to reverse decades of progress
in increasing longevity around the world,55 research of WUTIs
should test for susceptibility to antimicrobials in assessments
of pUPEC.Research has shown the spread of clonal groups of
multidrug-resistant E. coli linked to the food supply that cause
UTIs in theUnitedStates.56 Similar to research that is clarifying
FUTIs,23,27,57 we suggest that a similar effort is needed for
WUTIs. Drinking water across the globe is commonly con-
taminated with E. coli, and this pathway deserves more fo-
cused investigation. Studies that integrate spatiotemporally
matched samples of drinking water and human fecal or urine
carriage of pUPEC would provide initial evidence to estimate
risks associated with exposures to contaminated drinking
water. In addition, case–control studies of UTIs that assess
UPEC isolates in both human cases (i.e., urine samples) and
pUPEC in household drinking water will clarify the importance
of UPEC in drinkingwater as a risk factor for UTIs in humans.50

This study design has been used to characterize the role of
domestic animals in pediatric enteric diseases.58 Advanced
molecular methods will be essential for characterizing the
genotypic relationships of pUPEC in drinkingwater andUPEC
in humans to elucidate mechanisms of transmission and host
invasionpathways. Studies should also consider the effects of

sanitation and hygiene on UPEC in drinking water and UTIs.
Conducting this research in areas where water supplies are
unimproved or poorly managed, such as LMICs, will be im-
portant to understand the burden of disease and would likely
facilitate gaining a better understanding of this exposure
pathway.Even if a small fractionofUTIs or other extraintestinal
infections—especially drug-resistant ones—are from con-
taminated drinkingwater, the relevance of this exposure to the
global burden of disease will likely be substantial, and may
generate additional support for efforts that aim to reduce ex-
posures to fecal contamination from drinking water supplies
and poor sanitation and hygiene.59
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