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Abstract

The relationships between cellular, structural and dynamical properties of tumors have traditionally been studied separately.
Here, we construct a quantitative, predictive theory of solid tumor growth, metabolic rate, vascularization and necrosis that
integrates the relationships between these properties. To accomplish this, we develop a comprehensive theory that
describes the interface and integration of the tumor vascular network and resource supply with the cardiovascular system of
the host. Our theory enables a quantitative understanding of how cells, tissues, and vascular networks act together across
multiple scales by building on recent theoretical advances in modeling both healthy vasculature and the detailed processes
of angiogenesis and tumor growth. The theory explicitly relates tumor vascularization and growth to metabolic rate, and
yields extensive predictions for tumor properties, including growth rates, metabolic rates, degree of necrosis, blood flow
rates and vessel sizes. Besides these quantitative predictions, we explain how growth rates depend on capillary density and
metabolic rate, and why similar tumors grow slower and occur less frequently in larger animals, shedding light on Peto’s
paradox. Various implications for potential therapeutic strategies and further research are discussed.
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Introduction

Tumor vasculature is a major target for cancer treatments.

Vascularization links together the host tissue, from which vessels

and blood are drawn, with the tumor mass and structure that is

permeated by the vascular branching that supplies tumor cells with

the necessary resources for its continued sustenance and growth.

Consequently, a complete picture of angiogenesis must unite

several disparate fields within tumor biology because it connects

diverse properties of tumor cells, host vasculature, tumor

metabolic rate and tumor growth. Understanding how these are

integrated and interconnected is crucial for developing strategies

for drug delivery and tumor treatment.

Tumors grow and are sustained by oxygen and resources

delivered via the interface of the two coupled, but essentially

autonomous, dynamical vascular networks of the host and the

tumor. It is a major theoretical challenge to understand

mechanistically the dynamics and geometry of this coupling. Part

of the difficulty is that all tumor properties depend on two mass

variables, that of the tumor and that of the host. Furthermore,

tumors typically have significant amounts of necrotic tissue so the

biologically active mass cannot simply be identified with the

physical mass.

Over the past decade, new quantitative theories for the structure

and hemodynamics of vascular networks in healthy mammalian

circulatory systems have been developed to explain allometric

scaling, with predictions that agree well with data [1,2]. These

models focus on the hierarchical, approximately self-similar

properties of the branching network and can be used to calculate

many physiological properties including blood flow rates in any

vessel, vessel sizes and densities, and network structures and

dynamics. The same framework has been successfully applied to

the respiratory system and even to plants, which differ greatly in

the physical structure and dynamics of their transport networks

[1,3]. Furthermore, it has been extended to quantitatively

understand ontogenetic growth across mammals, birds and fish

[1], and has inspired development of novel theory and collection of

novel data [4–6]. As such, it is natural to extend this paradigm to

address similar questions in tumor growth, structure and dynamics

in order to develop an analogous quantitative theory for

understanding many of their general growth and energetic

properties. Combining recent empirical data on tumors with

vascular modeling for healthy tissue provides an important method

for analyzing tumor vasculature.

In parallel with these new models for healthy vasculature,

models for tumor initiation and growth have emerged as a more

central part of cancer research [7–9]. Most similar to our

conceptual approach and goals are numerical simulations that

describe how bulk properties of tumor cells, vascular networks and

local host tissue control tumor growth [10–14]. These simulations

are performed by parameterizing systems of partial differential

equations and iterating them through time. Recent advances in

hybrid continuos-discrete models allow detailed modeling over a

wide range of spatial and temporal scales [10–14]. Within these

models, the spatial growth of tumors is simulated within their

microenvironment, and vascular networks are constructed by
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simulating the process of angiogenesis. Larger scales can be treated

by decreasing the amount of information and level of resolution of

cellular processes [13]. Such detailed modeling has produced a

rich picture of the spatial features of tumor growth.

In this paper we construct a quantitative, predictive framework

for understanding properties of tumor growth and vascularization

that can be viewed as an application of allometric theory to tumor

growth modeling. Specifically, we consider the relationship

between the architecture of vascular networks and the metabolic

and mitotic rates of individual cells. We focus on how key features

of tumor growth and metabolism depend on architectural

properties of tumor vasculature, such as vessel radii and lengths,

and how growth and metabolic rates change dynamically with

tumor size as well as with host size across species. We deliberately

simplify our model by parameterizing it in terms of average,

generic architectural properties of the tumor and host vascular

systems and the energetics of creating, maintaining and replacing

tumor cells. As such, our results are expressed in terms of relatively

few, independently measurable, operationally defined parameters

such as the average mass of a cell and the overall metabolic rate of

the host. Consequently, our model largely coarse-grains over

spatial heterogeneity, the physical interactions of the tumor cells

with each other and the environment, and effects of competition

between clonal lines of cancer cells. The benefit and power of our

approach, however, is that we obtain analytical solutions that

quantify and clarify the primary factors that affect tumor growth.

These solutions provide a baseline for characterizing and

understanding variation observed in empirical data and numerical

simulations, and facilitate comparisons with healthy vasculature

that lead to insights about optimization, altered growth rates and

treatment strategies. Furthermore, our model provides a quanti-

tative method for extrapolating parameters measured in mice and

rats to be used in numerical simulations for tumor growth in

humans. These numerical simulations, as mentioned above, can

include more details about variation in space and across cell

lineages.

We now detail our theoretical approach and data analyses.

Geometric properties of tumor vasculature are measured using

empirical data and compared against optimal predictions and

known results for healthy vasculature. Using these results, we

predict how tumor metabolic and growth rates depend on tumor

and host masses. We also derive growth equations for the various

phases of tumor development beginning with the diffusion driven

pre-angiogenesis of very small tumors to the pulsatile driven

angiogenesis of large, mature tumors. A major result of our theory,

not addressed by other models and simulations, is the derivation of

tumor metabolic rate and the recognition that the pulsatile nature

of blood flow can play an important role in the structure, dynamics

and growth of large tumors. Many specific quantitative predictions

are made that compare well with data. One major prediction of

our theory is to show how necrotic tissue necessarily arises from

vascular inefficiencies, and to explicitly calculate how necrotic

mass depends on tumor and host size.

Materials and Methods

Model
Derivation of tumor growth equation. The growth of a

tumor is controlled by nutrient supply and demand. Solid tumors

begin as avascular polyps dependent upon the diffusion of oxygen

and nutrients across the tumor surface. Further growth depends on

the recruitment and proliferation of blood vessels through

angiogenesis and is fueled by metabolic resources in the host

environment. In a process directly analogous to normal

ontogenetic growth, incoming metabolites supply the tumor with

energy and resources for creating new cells and maintaining

existing ones [15–17]. Conservation of energy requires that the

total metabolic rate of a tumor, BT , be apportioned between the

power required for maintenance and that for mitosis:

BT~NvBmzEc
dNc

dt
ð1Þ

where Nv is the number of viable cells at time t after growth

begins, Nc the total number of cells, Bm the power each cell

requires for maintenance, and Ec the energy to create a cell.

The rate of increase of the number of viable cells is the

difference between the total rate of mitosis and the rate of cell

death due to apoptosis and necrosis:

dNv

dt
~

d(Nc{Nd )

dt
ð2Þ

where Nd is the number of cells that have died by time t. Even

when the number of viable cells remains fixed (i.e., dNv=dt~0),

cells still die and are replaced by mitosis that requires tumor

resources. Moreover, apart from natural causes, cell death also

occurs due to nutrient deprivation because of inadequate or

compressed vasculature. Thus, dNd=dt has contributions from

different types of cell death, each potentially with its own

functional form. Nevertheless, we can define the inverse lifetime

of an average cell, C, by

dNd

dt
~CNv ð3Þ

Eqs. (2) and (3) closely resemble ones used in Macklin et al 2009,

but they invoke a dimensionless time by dividing by a fixed inverse

mitosis rate [10]. In contrast, we allow the inverse cell lifetime to

vary with tumor type, as determined from fits to tumor growth

data described below.

Combining Eqs. (2) and (3) we can re-express the growth

equation, Eq. (1), purely in terms of viable cells:

BT~(BmzCEc)NvzEc
dNv

dt
:BcNvzEc

dNv

dt
ð4aÞ

where Bc:BmzCEc is the average cellular metabolic power

required for maintenance and replacement. Note that the specific

metabolic rate of the tumor (i.e., per tumor cell) is proportional to

the oxygen concentration, such that BT=Nv~c0s, where s is the

oxygen concentration and c0 is a well-known conversion factor for

converting the volume flow rate of oxygen into power. Eq. (4a) can

then be expressed as

1

Nv

dNv

dt
~

1

Ec

(c0s{(Bmz
Ec

Nv

dNd

dt
)) ð4bÞ

showing explicitly how tumor growth depends on oxygen

concentration, easing the comparison with other models. In

Macklin et al 2009, for instance, the net proliferation rate (equal to

the volume rate of change) lp~s{A, where A is the rate of

apoptosis. Our equation for proliferation is similar, but is derived

mechanistically, from the energetics of the whole tumor, and thus

includes two additional terms not explicitly accounted for by

Macklin et al: Bm reflecting the oxygen used for maintaining

existing cells and Ec capturing the cost of cell creation.

Tumor Growth and Vascularization Theory
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Since the viable tumor mass, mv, is the product of the total

number of viable cells and the average mass of a cell, mc, we have

mv~Nvmc leading to

BT~(
Bc

mc

)mvz(
Ec

mc

)
dmv

dt
ð5Þ

This first-order differential equation, representing conservation of

energy, explicitly links properties of tumor cells (Bc, Ec, and mc)

with properties of the whole tumor (BT and mv). Consequently, it

provides a simple, but powerful, way to integrate important

features and results from different areas of cancer research.

Solving this equation to determine tumor growth requires

knowledge of how tumor metabolic rate, BT , depends on its

viable mass, mv, to which we now turn.

Model for tumor vascular system and the prediction of

metabolic rate. Tumor metabolic rate, BT , is proportional to

the sum of the rates of cellular fermentation and aerobic

respiration. For avascular tumors, BT depends on the diffusion

rate of nutrients and oxygen from the surrounding environment

[18]. For vascular tumors, BT is proportional to the total blood

volume flow rate to the tumor, _QQT , consistent with observations

that glucose and oxygen consumption rates vary linearly with

blood flow rate [19]. The dependence of _QQT on mv and host mass,

M, is determined by the structure, dynamics and interaction of the

tumor and host vasculatures. Here, we develop a complete

analytical model of tumor vascular networks applicable

throughout different phases of development by deriving the

allometric scaling of tumor rates and times with host body size

and capillary density. Although the importance of the vascular

interface between the tumor and the host has been previously

recognized, our work is a novel attempt to mechanistically model

its role in tumor growth [10–12,20].

Mounting evidence suggests that some tumor vascular networks

exhibit fractal-like properties similar to those of the circulatory

system [21–23]. To analyze tumor vasculature, we borrow from an

idealized framework that has proven successful for quantitatively

understanding the circulatory system. This framework assumes

that in healthy tissue the vasculature is space-filling, minimizes

energy loss and has invariant terminal units (capillaries) [1]. We

compare these optimal networks with measures of tumor

vasculature, while retaining the assumption of invariant capillaries.

To facilitate comparisons between healthy and tumor vascula-

ture, we introduce scaling ratios for radii and lengths of vessels

across levels, k, of the network. We treat all branches at the same

level, k, as having similar properties and assume a constant

branching ratio, n–the effective number of daughter vessels for

each mother vessel [1]. Following West et al 1997 and Gevertz et

al 2006, we model blood vessels as cylinders, similar to the Krogh

model [1,11]. The capillaries define the lowest level k~N while

the largest vessels feeding the tumor define k~0 (Fig. 1). We

introduce scale factors for the ratio of daughter to mother vessel

radii:

rkz1

rk

~n{a ð6Þ

and similarly for daughter to mother vessel lengths:

lkz1

lk
~n{b ð7Þ

The exponents, a and b, can be used as quantitative diagnostics for

comparison with healthy tissue, where theory predicts and data

support a~1=2 for large vessels and a~1=3 for small vessels (from

energy minimization) and b~1=3 for all vessels (from space filling)

[1]. Deviations from these values indicate the degree to which

optimization and space-filling are violated during tumor growth.

For healthy tissue, a and b are approximately independent of k,

indicating that the network has a fractal-like structure, as observed.

To determine if tumor vascular networks have similar geometric

structure, we observe that for vessel radii, rk

r0
~n{ka, where r0 is

the largest vessel in the hierarchy, and taking the log of both sides

and rearranging yields log rk~({a log n)kzlog r0, and similarly

for vessel lengths log lk~({b log n)kzlog l0, so plotting log rk

and log lk versus k should yield straight lines whose slopes are

{a log n and {b log n, respectively, if a and b are constant.

Figs. 2a, 2b show data from various tumors, indicating that tumor

vasculature does indeed exhibit approximately fractal behavior, in

agreement with other studies [22,24].

The metabolic rate of the tumor, determined by oxygen and

nutrient availability, depends on its capillary density, which is

controlled by the scaling factors a and b. In File S1 we derive the

relationship between the metabolic rate, tumor size and vascular

architecture:

BT~B0(M)mb
v ð8Þ

where b~1 if 2azbƒ1, but ~1=(2azb) otherwise, and B0(M)
is a normalization factor that depends on the host mass, M. For

healthy tissue, where capillary density is controlled by large-vessel

scaling, this gives b~3=4, in agreement with data (B!M3=4) for

large mammals [25]. For tumors too small to support significant

pulsatile flow, or whose host supply vessels are likewise too small,

theory predicts a&1=3. So, if their vasculature is space-filling,

b~1 and their metabolic rate scales linearly: BT~B0(M)mv [1].

As tumor vasculature becomes increasingly inefficient and/or

attaches to host supply vessels sufficiently large to deliver pulsatile

Figure 1. Schematic of tumor growth model. (a) Vascularized
tumor supplied by blood siphoned from host vasculature. White area
represents viable tissue, while grey represents necrotic core. (b)
Schematic of vascular network composed of tubes. (c) Topological
model of tumor and host network beginning with feeding vessel (k = 0)
and terminating at the capillary level (k = N).
doi:10.1371/journal.pone.0022973.g001

Tumor Growth and Vascularization Theory
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flow, BT?B0(M)mb
v with b&1=(2azb)v1, ultimately decreas-

ing towards 3/4, similar to whole body scaling [2]. Indeed,

changes in this scaling exponent have been observed by Guiot et al

who determined b by matching the general form of our growth

equation to empirical data and speculated these changes were tied

to the fractal dimension of the vasculature [26]. To the extent that

a tumor network deviates from optimized space-filling architec-

ture, it will exhibit a secondary reduction in blood flow leading to

hypoxia and necrosis determined by the value of (2azb). This is

related to the development of avascular areas due to the irregular

space-filling properties observed in tumor vasculature growth [27].

During growth, tumor blood flow shows a reduction in mass-

specific blood flow rate resulting in increased necrosis [28–31],

consistent with this theory.

Model for interface of tumor and host vascular

systems. We now examine how the host vasculature

interfaces with the tumor to determine the dependence on

host mass, M, and the degree of necrosis. While previous work

has suggested relationships between host size, tumor growth

and metabolism [17,32,33], little underlying theory has been

developed, especially concerning the role of vascularization.

Many tumor growth models that consider vasculature track

how blood flows and oxygen diffuses to the tumor from a host

parent vessel. Our model goes significantly further by

considering the entire flow through and structure of both

networks, thereby showing how the blood supply from the host

changes with host body size, the size of the parent supply

vessels, and the nature of the blood flow (whether it is laminar

or pulsatile). Almost all previous investigations presume a

simple laminar flow given effectively by the classic Poisseuille

formula with time-invariant blood pressure. Our model

includes the critical role of pulsatile flow for large tumors and

considers its consequences for tumor growth and metabolism,

leading to novel and substantially different predictions than

models based purely on laminar flow.

For very small tumors, resources for metabolism are supplied by

host capillaries that have been incorporated and displaced from

the surrounding tissue. In File S1, we derive how, in this case,

capillary density and tumor metabolic rate depend on tumor and

host size, yielding

BT&½mT=M�B!mT=M1=4 ð9Þ

where B is the metabolic rate of the host. Thus, the tumor

metabolic rate, BT increases linearly with total tumor mass, mT ,

but decreases with host mass as M{1=4. However, from our

network analysis for small tumors, we had B~B0(M)mv. Equating

these gives B0(M)mv&½B=M�mT , mv&mT and B0(M)&
B=M!M{1=4. This predicts that, initially, little necrotic tissue

develops and that tumors begin growth approximately exponen-

tially as mT!ect=M1=4
, where c is a constant depending on tumor

type and microenvironment. Consequently, similar tumors grow

systematically slower in larger animals due to their lower mass-

specific metabolic rate, as noted for humans [17]. More generally,

growth rates are predicted to depend on host capillary density and

metabolic rate in the tissue surrounding the tumor, in agreement

with previous models [10–12].

As tumors grow further, an anastomotic network forms from the

local host vasculature, usually at the arteriole level, eventually

either penetrating the tumor surface or becoming incorporated

into it [34]. Further growth leads to and is stimulated by

recruitment of increasingly larger supply vessels. The host tissue

from which the tumor draws blood is effectively a shell whose

thickness depends on the distance t that tumor angiogenic factors

penetrate into the surrounding host tissue. This distance depends

on production and consumption rates of angiogenic factors as they

diffuse into the local tissue environment [10–12]. Rather than

simulating this process numerically using a detailed reaction-

Figure 2. Properties of tumor vascular networks. (a) Plot of log rk

versus k. The absolute value of the slope represents the exponent a, defined
as the ratio of radii between consecutive levels: rkz1=rk~n{a . Tumor 1:
Mammary Carcinoma 1 (red line/squares): a~0:24½{0:28; {0:21�,
r2~0:96. Tumor 2: Colorectal Carcinoma (blue line/diamonds):
a~0:39½{0:44; {0:36�, r2~0:98. (b) Same as (a) but for the ratio of
lengths between consecutive levels: lkz1=lk~n{b . Tumor 1: Mammary
Carcinoma (red line/diamonds): b~0:35½{0:39; {0:24�, r2~0:94. Colo-
rectal Carcinoma (blue line/circles): b~0:27½{0:40; {0:12�, r2~0:67. (c)
Plot of the logarithm of flow rate versus logarithm of vessel diameter,
showing the predicted idealized cubic law (blue line y~3xzy0,
y0~{2:36½{2:44,{2:28�,r2~0:71) and the best linear fit (red line
y~pxzy0, p~2:7½2:37; 3:0�, y0~{1:93½{2:33; {1:53�, r2~0:73). Da-
ta from [21] and [57].
doi:10.1371/journal.pone.0022973.g002
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diffusion model as others have done, we employ a classic diffusion

equation argument and take the diffusion distance, t, to vary

inversely with endothelial cell density. This density, in turn, is

determined by the surface area of host vasculature (see also

Macklin, Chaplain and Gevertz et al. [10–12]). In File S1, we

derive relationships between tumor blood flow rate, _QQT , diffusion

distance t, endothelial cell density, and tumor and host size,

yielding

_QQT!
tm

2=3
T

M1=4
ð10Þ

From the analysis of large tumors given above, we had
_QQT!BT~B0(M)mb

v with b&1=(2azb). Equating this with Eq.

(10) then gives

tm
2=3
T

M1=4
!B0(M)mb

v ð11Þ

Furthermore, from Eq. (6) in File S1, t!M1=4, so Eq. (11) implies

B0(M)!M0 ð12Þ

That is, B0(M) is independent of M, and

mv!m
2=(3b)
T :m

c
T ð13Þ

where c~2=(3b). Consequently, when the tumor develops its own

vascular system, this predicts the non-intuitive result that the

metabolic rate of tumors of similar size no longer depends on host

size. Thus, as tumors grow, the effects of host vessel density and

shell size compensate each other, dampening the dependence of

tumor metabolic rate on the host properties. Intriguingly, this

finding, Eq. (13), also predicts that viable tumor mass increases at a

slower rate than total tumor mass, necessarily implying the

development of necrotic regions within the tumor.

In summary, when tumors are small, their metabolic rate is

limited by host capillary density, which decreases with host size as

M{1=4, whereas when tumors are large, this effect is counteracted

by the tumor’s access to more and larger host vessels. This result

embodies basic constraints arising from the interface of the host

and tumor vasculature. It has important consequences for

determining the dynamics of various properties, such as the

degree of necrosis, as we now see by examining two limiting phases

of growth.

Tumor growth dynamics. Having determined how tumor

metabolic rate scales with viable tumor mass, we discuss its

consequences for tumor growth dynamics by returning to Eq. (5).

Using BT~B0(M)mb
v from Eq. (8), the conservation of energy

equation can be rearranged into a growth equation:

dmv

dt
~Amb

v {Dmv ð14Þ

where the parameters A~B0(M)mc=Ec and D~Bc=Ec embody

generic properties of tumor cells whereas properties of the host

physiology are reflected in B0(M).

As articulated above, these coefficients and the exponent b
potentially change (in a calculable way) with time as the tumor

evolves through different phases of development. For simplicity, as

well as for illustrative purposes, we consider here the exponential

and sigmoidal phases of growth as distinct regimes where the

parameters remain fixed. The general solution to Eq. (14) is

mv

Mv

� �1{b

~1{ 1{
mv(0)

Mv

� �1{b
" #

e{ 1{bð ÞDt ð15Þ

where Mv is the asymptotic viable mass of the tumor, as computed

below in Eq. (18), and mv(0) is the initial malignant mass. Since

mv!m
c
T , these equations can be transformed into identical

equations for the total tumor mass, mT , but with different values

of the parameters. This leads to the following important result: the

viable and total tumor masses both satisfy growth equations of the

same form as healthy tissue but with different exponents and

coefficients.

In the initial stages of tumor growth when delivery of resources

is via diffusion from nearby capillaries, the total and viable tumor

masses are linearly related (Eq. (9)). Furthermore, b&1 (see File

S1). Substituting these into Eq. (15) leads to exponential growth for

both the total and viable tumor masses:

mv&mT~mT (0)eat ð16Þ

with a~A{D~(mcB0{Bc)=Ec, determined by both cellular

and host properties.

In the early non-pulsatile regime, our model still predicts that

b&1, so from Eq. (15) exponential growth continues for the viable

mass. However, in this regime, viable and total tumor mass are

now non-linearly related, according to Eq. (13), so the total tumor

mass grows exponentially at a faster rate than the viable mass,

leading to a monotonically increasing proportion of necrotic tissue.

This can be expressed as

mv&m
2=3
T &mv(0)eat ð17Þ

So, for small tumors that can neither support nor are supplied by

pulsatile blood flow, this predicts exponential growth for the

viable tumor mass.

Note that, if b=1, the initial growth for small times is

mv*t1=(1{b). However, if b&1, this is almost indistinguishable

from an exponential, so most tumors are expected to begin growth

approximately exponentially. As long as large host supply vessels

that support pulsatile flow do not develop, this behavior will

continue until other physical constraints become limiting or the

vascular supply is exhausted or interrupted. When angiogenesis

begins and tumor vasculature develops, resource supply does not

match demand because c&2=3, and the relative rate of increase of

mT is a factor 1=c&3=2 greater than for mv. Thus, the proportion

of viable tissue, mv=mT , decreases exponentially quickly.

In later stages we showed above that bv1; from Eq. (15) this

leads to classic sigmoidal growth with the viable mass reaching a

fixed asymptotic value given by

Mv~(A=D)1=(1{b)~(B0(M)mc=Bc)1=(1{b) ð18Þ

This is reached when t&(Ec=Bc)=(1{b); mv(0)~mv(ttransition) is

the corresponding mass at the time of transition from exponential

growth to the initiation of the sigmoidal phase being considered. In

the later vascular phase dominated by pulsatile flow, b&3=4 and

c&8=9, so Eq. (15) leads to sigmoidal growth with Mv!M, with

viable mass directly proportional to host mass. The asymptotic

mass of the whole tumor is MT!M9=8, suggesting proportionately

larger tumor sizes in larger animals, consistent with the limited

available data.

Tumor Growth and Vascularization Theory
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Results

Many tumor vascular properties can be derived and compared

with experiment, as well as with observed data for healthy

vasculature. For example, total vascular surface area, SA, is

predicted to scale linearly with the total number of capillaries, and

therefore linearly with the total blood volume flow rate, giving

SA!m
b
T , consistent with experimental observations [31,35].

Furthermore, in an optimized network, the blood volume flow

rate in a vessel at level k is predicted to follow a cubic law: _QQk!r3
k.

Figure 2c depicts measurements from carcinomas that are

consistent with this prediction, although the greater variance

suggests tumor vasculature is less well-formed than healthy

vasculature. In addition, the total hydrodynamic resistance of

the network, Rtot, is predicted to vary inversely with the total

number of capillaries, and hence inversely with total blood flow

rate giving

Rtot!N{1
cap ! _QQ

{1

T !m
{2=3
T ð19Þ

This equation can be rearranged to predict mT Rtot!m
1=3
T (see File

S1). Data for this relationship gives an exponent of 0.36, in good

agreement with the prediction of 1/3 [36].

The predictions for the increase in size of the necrotic core and

viable mass, (Eq. (17)), are also consistent with both available data

(Fig. 3), and with numerical simulations [10]. Indeed, tumors

develop significant amounts of necrotic tissue both in their core

and in regions throughout the tumor as a result of insufficient

angiogenesis, vascular collapse and an underdeveloped lymphatic

system for the clearance of dead cells [37,38]. Finally, since the

rate constant for growth in Eq. (15) is D~Bc=Ec!M{1=4, similar

to that in normal ontogeny, typical tumor time-scales such as

doubling time, cell cycle time, and time to death are all predicted

to scale with host mass as M1=4, consistent with the limited

available data (doubling time exponent ~0:30, 0:22,0:39½ �N~5,

cell cycle time exponent ~0:31, 0:23,0:39½ �N~4) [39,40].

To investigate the accuracy of our growth models and the

transition between different growth regions, we fitted Eq. (15) to

tumor growth data from the literature, as shown in Fig. 4. Data are

insufficient to distinguish statistically between combined exponen-

tial and sigmoidal fits to different growth phases versus a single

sigmoidal fit to the entire dataset. Nevertheless, our fits are in good

agreement with empirical data and show the clear transition from

early exponential growth to late sigmoidal growth.

Discussion

Our model mechanistically and quantitatively connects prop-

erties of tumor cells to multiple properties of the whole tumor.

Although previous models have reproduced the sigmoidal

behavior of tumor growth, our derivation of the growth equations

is novel because it allows the extraction of observable, metabolic

quantities from our data fits that can be used to compare

metabolic properties of different tumor lines with each other and

with normal tissue [13,41]. It is notable that the confidence

intervals for parameter values estimated from our fits to sigmoidal

growth overlap with the range observed for normal growth. This

finding suggests that tumor cells retain the gross metabolic features

of normal cells, which is consistent with earlier work by Skehan

who used a large number of statistical models to conclude that the

gross properties of tumor growth are almost indistinguishable from

normal tissue growth [42]. The model also allows us to predict that

whole tumors will grow faster if their constituent cells have low Ec,

high Bc or both. This is consistent with the observation that many

aggressive tumors are inchoate and poorly differentiated, and that

their cells exhibit elevated metabolic rates. Similarly, relatively

benign tumors are expected to show higher levels of differentiation

and lower mass-specific rates of energy use. If Bc=Ec is not

significantly different from its value for healthy cells, this suggests

that at late stages such tumors grow at relative rates comparable to

that of healthy organs during ontogeny.

Our framework makes several predictions that relate to the

diagnosis and treatment of solid tumors. First, it clearly

distinguishes between different growth regimes: 1. Pre-angiogen-

esis/diffusion regime, 2. Early angiogenesis/smooth, laminar non-

pulsatile blood flow regime, and 3. Late angiogenesis/pulsatile

flow. In regimes 1 and 2, we predict that growth rates are

systematically much faster in smaller mammals (Eq. (9)), whereas

in regime 3, growth rates are independent of host body size (Eq.

(12)). This suggests that early detection of tumors is even more

critical than currently recognized because that is the regime during

which tumors in humans exhibit proportionately slower growth

rates than in smaller mammals. Moreover, these results also

suggest that different treatments should be developed for, and

tailored to, these different growth regimes.

Our results have potentially important consequences for scaling

up experimental findings from mice to humans. One testable

prediction of our model, confirmed by preliminary evidence, is

that human to mouse tumor xenografts will grow at a rate similar

to endogenous mouse tumors, as opposed to human tumors

[39,40]. Differing predictions for different growth regimes derived

above suggest that treatment and drug dosages obtained from

mice studies must be properly scaled up and applied to humans

only after careful consideration of both the mouse’s and patient’s

tumor growth regimes.

Resolving questions about cancer incidence rates in different

species, and thus Peto’s paradox, may also be possible by

considering scaling consequences as a function of body mass and

metabolic rate [43–45]. Tumors must develop a number of specific

mutations along a single cell lineage to become malignant,

probably in a specific order [7,46]. Although the total number

of cells in the body increases almost linearly with body size, the

number of cell-generations increases only logarithmically with

body size [47]. If most cancer-causing events occur during cell

division, the whole-body probability of developing a lineage of

Figure 3. Scaling of tumor viable mass, mv, as a function of the
total tumor mass, mT . Theory predicts that mv!m

2=(3b)
T :m

c
T . In this

case, log mv~c log mTzlog mv(0); c~0:78½0:76; 0:78�, r2~0:99, so that
for these tumors b&0:85, implying a high blood-flow/metabolic rate.
However, since these data are drawn from multiple tumors, it
represents an estimate. Data from [58].
doi:10.1371/journal.pone.0022973.g003
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mutations is then proportional to the product of the number of

generations of cell division and the probability of mutation per cell

generation. The power density driving biochemical reactions

within a cell scales as Bc!M{1=4, and if these biochemical

reaction rates drive mutation rates, for instance through the

production of reactive oxygen species, then overall cancer

incidence rates would scale as M{1=4 log M, which becomes

dominated by the M{1=4 term after the first couple orders of

magnitude [48]. Indeed, this leads to the sensible prediction that

cancer incidence rates scale inversely to maximum lifespan, which

scales approximately as body size to the quarter power (M1=4)

[49]. Thus, smaller mammals are systematically expected to have a

greater incidence rate of a given tumor than larger mammals.

In addition, our theory sheds light on how a large number of

rates and time-scales considered in numerical models, such as

tumor angiogenic factor production, cell-cycle time, rate of

apoptosis and necrosis, and oxygen concentration, should be

adjusted with tumor and host size. For some of these parameters,

such as tumor angiogenic factor production rate _TT , we can

immediately predict how they scale with host and tumor size: early

on for small tumors, as _TT!mT=M1=4 whereas, later for large

tumors, as _TT!M0m
c
T .

Although we made simplifying assumptions to reflect existing

quantitative knowledge of tumor kinetics, the framework can be

straightforwardly extended to capture more complex details of

tumor growth. For example, tumor metabolic scaling will vary

Figure 4. Fits of the growth equation to empirical data for tumor growth. Exponential, from Eq. (16), and sigmoidal, from Eq. (15), regimes
of the growth equation, where mT is the tumor mass at time t, m(0) is the initial mass, MT is the asymptotic mass, a~A{D~ mcB0{Bcð Þ=Ec is the
rate of exponential growth, c is the viable mass scaling exponent, and D~Bc=Ec is a characteristic time constant for tumor cells that is given by the
ratio of the metabolic rate of a tumor cell to the energy to create a tumor cell. Fits to several types of tumors implanted in mice and rats yield the
parameter values with corresponding confidence intervals of: (a) EMT6 exponential: m(0)~0:036g, a

c ~0:11d{1 ; EMT6 sigmoidal: MT~1:38g,
D~0:14d{1 . (b) KHJJ exponential: m(0)~0:04g, a

c ~0:1d{1 ; KHJJ sigmoidal: MT~1:5g, D~0:29d{1 . (c) NCTC2472 exponential: m(0)~0:25g,
a
c ~0:1d{1; NCTC2472 sigmoidal: MT ~13g, D~0:05d{1 . (d) C3H exponential: m(0)~0:20g, a

c ~0:036d{1 ; C3H sigmoidal: MT~8g; D~0:03d{1.
Using c~0:78 based on the fit from Fig. 3, we compute that for the tumor types in panels (a)–(d), a~0:09d{1 , 0:09d{1 , 0:03d{1 , and 0:1d{1

respectively, which is remarkably consistent given the amount of error in the data. Data from [40].
doi:10.1371/journal.pone.0022973.g004
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depending on how the architecture of specific tumor vascular

networks deviate from optimality. Therefore, no single power law

will exactly describe the host size dependence across all tumors.

Our model does not explicitly treat spatial features of tumor

growth. Moreover, many parameters that are explicit in other

models are implicit components of our model, including _TT , blood-

tissue oxygen transfer rates, the oxygen diffusion coefficient and

the oxygen concentration threshold for quiescence and necrosis

[10]. Currently, the cellular energetic parameters Bc, Ec and

B0(M), and the scaling exponents, subsume the average effects of

spatial processes such as cell motility. More detailed models would

allow the decomposition of these parameters into underlying

microscopic processes constraining tumor growth that are

considered explicitly in numerical approaches. For example, a

reaction-diffusion model for angiogenic factor gradients and host

vessel recruitment, or a lattice-model of cellular motility and cell-

cell adhesion, would allow for more fine-grained simulations of

spatially resolved tumor vasculature and growth co-development

[10,12–14,50]. Cell motility could be expressed in terms of the

energy used by cells to move and thus be connected to the cell’s

energy budget. Because of energetic constraints, the cell velocity or

number of motile cells in a spatial-version of our model would thus

be constrained by the blood supply and hence tumor and host size.

Furthermore, many models of tumor growth include three

distinct layers: proliferating, quiescent and necrotic [10,13,14,50].

In our model, we combine the proliferating and quiescent layers.

Modeling proliferating and quiescent cells as separate layers with a

transition region would involve the expansion of our theory to

capture the effect of oxygen concentration on cell state, as

influenced by tumor and host size. Because oxygen concentration

in the tumor is the main determinant of the balance between the

number of proliferating and quiescent cells, we expect the number

of proliferative cells to decline across host species with increasing

host mass as M{1=4 during the early growth stage and then scale

only with tumor size as the tumor grows larger. Hence, studies in

small mammals (e.g., mice) of therapies such as chemotherapy and

radiation, which are targeted at actively dividing cells in relatively

small tumors, may result in an effect larger than what should be

expected in humans.

We assumed that the inverse cellular lifetime, C, is independent

of time or tumor size, consistent with the constant mitotic rate

assumed in other models such as Macklin et al 2009. A more

detailed model could account for dependencies on viable mass due

to factors such as heterogeneous spatial distribution of blood flow

and interstitial fluid pressure [51]. As long as these effects are

small, our theory gives a leading-order description of tumor

necrosis, although it cannot predict its spatial distribution.

Additionally, while the cellular energetics parameters Bc and Ec

may vary during tumor growth due to a changing environment

and the emergence of new cell phenotypes, we have suppressed a

sum over cell types and clonal populations and have made the

simplification that tumors are composed of average cells.

Extending our model to include growth parameters that evolve

with emerging clonal populations may prove useful in under-

standing how drug dosages in chemotherapy could be dynamically

adjusted [52]. Accurate in vivo measurements of tumor metabolic

and mitotic rates, increasingly feasible with advances in imaging

technology, would also allow us to provide more precise

predictions for the behavior of growing tumors, and may also be

useful in describing effects of the approach of normalizing and

then destroying tumor vasculature [53]. More exact measurements

of tumor growth rates would allow for tighter bounds on the values

of Bc and Ec derived from growth fits, and conversely, more

detailed and accurate measurements of tumor cellular metabolic

properties would allow for the quantitative prediction of tumor

growth.

To summarize: we have presented a general quantitative

framework that captures many of the essential features of tumor

vascularization and growth, and how these are influenced by the

host organism. We derived predictions for many rates. times and

sizes of both solid tumors and their vascular networks as they grow

and interconnect. In addition, we predict how many of these

properties depend on host body size, thus laying groundwork for

resolving the long-debated issue of how cancer incidence rates

scale from mice to humans [54]. Similarly, these results may help

us understand how to scale results from experiments on model

organisms up to humans, possibly through scaled parameteriza-

tions of numerical models, and also how drug dosages are affected

by tumor metabolic rate, vascularization and growth stage [55,56].

By focusing on metabolic rate, our integrative model allows for

quantitative comparisons between tissue and cellular level growth

for tumors, as well as comparisons of these quantities among

different types of normal tissue and solid tumors.
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