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Global pathogenomic analysis identifies
known and candidate genetic antimicrobial
resistance determinants in twelve species

Jason C. Hyun1, Jonathan M. Monk 2, Richard Szubin2, Ying Hefner2 &
Bernhard O. Palsson 1,2,3,4,5

Surveillance programs for managing antimicrobial resistance (AMR) have
yielded thousands of genomes suited for data-driven mechanism discovery.
We present a workflow integrating pangenomics, gene annotation, and
machine learning to identify AMR genes at scale. When applied to 12 species,
27,155 genomes, and 69 drugs, we 1) find AMR gene transfer mostly confined
within related species, with 925 genes in multiple species but just eight in
multiple phylogenetic classes, 2) demonstrate that discovery-oriented support
vector machines outperform contemporary methods at recovering known
AMR genes, recovering 263 genes compared to 145 by Pyseer, and 3) identify
142 AMR gene candidates. Validation of two candidates in E. coli BW25113
reveals cases of conditional resistance: ΔcycA confers ciprofloxacin resistance
inminimalmedia with D-serine, and frdD V111D confers ampicillin resistance in
the presence of ampC bymodifying the overlapping promoter. We expect this
approach to be adaptable to other species and phenotypes.

Antimicrobial resistance (AMR) remains a persistent problem in the
treatment of bacterial infections. With resistance having been
observed against nearly all major antibiotics1, 700,000 annual deaths
are currently attributable to AMR globally and is projected to increase
to as high as 10 million by 2050 without major interventions2. One
strategy for managing AMR is the large-scale sequencing of infection
isolates3, which has yielded tens of thousands of publicly-available
genome sequences for each major bacterial pathogen, frequently
paired with resistance metadata4.

This wealth of data has enabled global analyses on the genetics of
AMR, many of which employ machine learning (ML) to predict AMR
phenotypes directly from genetic variations5,6. Accurate AMR pheno-
type prediction models trained on thousands of genomes have been
developed for many pathogens such as Escherichia coli7,8, Klebsiella
pneumoniae9, Mycobacterium tuberculosis10, Salmonella enterica11, or
multiple species12–15, with numerous others developed from smaller
datasets. However, many of these studies report a significant fraction

of their models’ predictive genetic features to have no relationship to
known AMR mechanisms. This disconnect between statistically iden-
tified and mechanistically established genetic determinants of AMR
highlights the current gap in knowledge inAMRgenetics and remains a
challenge for the real world adoption of ML-based systems for rapidly
predicting AMR and informing treatment strategies16,17.

Data-centric efforts to close this gap have focused on genome-
wide association studies (GWAS), yielding tools for conducting the
statistical tests underlying GWAS such as PLINK18 and GEMMA19, with
some specializing in microbial GWAS by rigorously addressing popu-
lation structure such as DBGWAS20 and Pyseer21. However, the pre-
dictive features identified when training ML models to predict AMR
naturally provide another source of AMR gene candidates distinct
from GWAS. Such analyses can leverage the extensive body of ML
literature and tools to draw from a broader range of statistical and
algorithmic frameworks than those previously used for GWAS, and as
such, there is a growing effort towards developing ML workflows
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specifically aimed atmechanismdiscoverywithinAMRgenetics17,22 and
beyond23. Recent ML-aided GWAS have identified genetic and meta-
bolic mechanisms behind resistance in M. tuberculosis24, and demon-
strated ML’s competitiveness compared to typical statistical testing at
recovering known AMR genes for multiple pathogens25. These suc-
cesses demonstrate the potential for ML to carry out the role of GWAS
for the ever-growing public collection of bacterial genome sequences
and AMR data.

We present a machine learning analysis tailored towards AMR
gene discovery consisting of three components drawn from previous
workflows: 1) pangenome construction by sequence clustering to
enumerate biologically-interpretable genetic features26, 2) systematic
annotation of known AMR genes among those features with RGI27, and
3) training of support vector machine (SVM) ensembles to learn rela-
tionships between all genetic features and a given AMR phenotype25.
This workflow was evaluated for both phenotype prediction accuracy
and recovery of knownAMRgenes amongpredictive features across 12
pathogenic species spanning 127 species-drug combinations and
27,155 genomes. We find that this approach provides both a compre-
hensive overview of the distribution of known AMR genes and con-
sistently yields ML models that both accurately predict AMR
phenotype and outperform contemporary GWAS methods at reco-
vering known AMR genes. Functional analysis of strongly predictive
features yielded a set of 142 AMR gene candidates, of which two were
experimentally confirmed to impact resistance in E. coli.

Results
Assembly of twelve bacterial pathogen pangenomes and anti-
microbial resistance data
A total of 27,155 genomes across 12 species were downloaded from the
PATRIC database28 after filtering for assembly quality and availability
of AMR data (Supplementary Data 1). Pangenomes were constructed
and genetic features were enumerated for each species using a
sequence clustering approach26 with CD-HIT v4.629 (see Methods),
yielding six unique genetic feature types: 1) genes (protein sequence
clusters), 2) alleles (protein sequence variants), 3) 5’ variants (300 bp
ORF-flanking upstream variants), 4) 3’ variants (300 bp ORF-flanking
downstream variants), 5) noncoding feature clusters, and 6) noncod-
ing feature variants (Fig. 1a, b, Supplementary Table 1).

Experimentally derived susceptible-intermediate-resistant (SIR)
phenotypes for the genomes were assembled from directly reported
SIRs and SIRs inferred from minimum inhibitory concentrations
(MICs). MIC breakpoints for SIR inference were determined from
genomes with both SIR andMIC values for each species-drug-standard
combination (i.e. CLSI, EUCAST) to yield internally-consistent SIR data
(see Methods). From 169,693 MICs, 22,772 SIR inferences across 93
species-drug cases were generated for genomes without SIR data. In
total, 176,911 SIR phenotypes were assembled across 69 drugs, with
88.3% phenotypes from directly reported SIRs and 11.7% inferred from
MICs (Fig. 1c, d, Supplementary Data 2), comprising the largest
internally-consistent AMR dataset known to the authors at the time of
publication. The overall diversity of the combined genomic and AMR
data was evaluated by analyzing the distribution of MLST subtypes,
genome BioProject IDs, and susceptible/resistant genomes by drug
(Supplementary Fig. 1). Based on these evaluations, the genomes
represented here are diverse with respect to subtype, study of origin,
and resistance phenotypes, with cases of potentially lower coverage
limited to specieswith AMRdata for a smaller range of drugs (Neisseria
gonorrhoeae) or fewer genomes available in total (Campylobacter coli,
Campylobacter jejuni) (Supplementary Analysis).

Known AMR genes were identified in each pangenome through
direct annotation of alleles by RGI v5.2.0 with CARD ontology v3.1.327

and parsing PATRIC text annotations for drug-associated terms. 7710
AMR genes were identified across all species, spanning 95,491 gene-
drug mappings (Fig. 1e, Supplementary Data 3). The fewest number of

AMR genes (71) were identified in Campylobacter coli and the most in
Escherichia coli (1533), with the greatest number of AMR genes iden-
tified for major drug classes such as beta-lactams, aminoglycosides,
and quinolones.

Global analysis of known AMR genes reveals potential phylo-
genetic limitations on cross-species gene transfer
To examine the distribution of known AMR genes, all AMRgene alleles
across all species were re-clustered with CD-HIT, yielding 6332 unified
AMR genes. Rates at which these genes were plasmid- or
chromosomally-encoded were predicted by labeling contigs contain-
ing AMR genes as plasmid or chromosomal with PlasFlow30 (Supple-
mentary Data 3). 925 AMR genes were observed in multiple species,
with more broadly distributed genes having a greater tendency to be
plasmid-encoded (95%of genes in >4 species wereplasmid-encoded in
a majority of occurrences) (Fig. 2a). Similarly, out of 68,324 unique
AMR alleles, 830 were observed inmultiple species and were primarily
plasmid-encoded (Supplementary Fig. 2a).

Compared against AMR gene categories, specific functions were
significantly enriched among both plasmid-encoded (over chromoso-
mal) and multispecies (over single species) AMR genes (Fig. 2b, Sup-
plementary Fig. 3, Supplementary Data 3). Dihydrofolate reductases/
dihydropteroate synthases and aminoglycoside modifying enzymes
were significantly enriched by both measures (n = 6332 AMR genes,
Fisher’s exact test, FWER <0.05, Bonferroni correction, 36 tests), with
log2 odds ratios (LORs) for plasmid over chromosomal genes of 3.0
and 1.8, and LORs for multispecies over single species of 1.5 and 1.3,
respectively. Other categories enriched in plasmid but not multi-
species genes include chloramphenicol acetyltransferases, ribosomal
protection proteins, rRNA methyltransferases, and beta-lactamases
(plasmid LOR> 1.0, multispecies LOR < 1.0) (Supplementary Table 2).
Generally, multispecies AMR genes tended to be plasmid-encoded and
vice versa, with the exception of rpoB variants (Fig. 2b). As rpoB is a
highly conserved chromosomal bacterial gene31, this exceptionmay be
due to many rarely observed rpoB fragments on short contigs being
misclassified as plasmid-encoded (Supplementary Data 3).

The 925 multispecies AMR genes and 830 AMR alleles were
predominantly sharedwithin species of the same phylogenetic class,
especially within Gammaproteobacteria (Fig. 2c, Supplementary
Fig. 2b). Only 68 (7.4%)multispecies AMR genes and 38 (4.6%) alleles
spanned more than one class. Of these, just 8 genes and 5 alleles
were observed in at least 10 genomes in each of at least two different
phylogenetic classes (Fig. 2d, Supplementary Fig. 2c). These 8 multi-
class genes are functionally varied, including TEM family beta-
lactamases (blaTEMs), ribosomal protection proteins tetM, tetO, and
tet(W/N/W), 23S rRNA methyltransferase ermB, aminoglycoside 3’-
phosphotransferase aph(3’)-IIIa, and lincosamide nucleotidyl-
transferase lnuG. The blaTEMs were observed exclusively on plas-
mids, while all other multi-class AMR genes were observed on both
plasmid and chromosomal DNA. Given the prevalence of blaTEMs,
we conducted a case study on the distribution of complete blaTEM
alleles across all species. One variant, TEM-116, was found in gram-
positive strains (11 Staphylococcus aureus strains), predicted to be on
a plasmid shared with Salmonella enterica strains, and found among
S. aureus strainsmost strongly resistant to cefoxitin (Supplementary
Figs. 4–6, Supplementary Table 3, Supplementary Data 4, Supple-
mentary Analysis).

A GWAS-oriented machine learning approach for the identifi-
cation of AMR-associated genes outperforms contemporary
statistical methods
To identify AMR-associated genetic features, a ML framework was
developed to train models for both accuracy at predicting AMR phe-
notypes and biological relevance, i.e. ability to assign high feature
weights to known AMR genes (Fig. 3a). For a given species-drug case,
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we started with the support vector machine (SVM) ensemble design
described in our previous study25. SVM ensembles were trained to
classify genomes as susceptible or non-susceptible based on the pre-
sence or absence of the genetic features (grouped into six types
described previously). Four hyperparameters (HPs), parameters not
learned from the data but fixed in advance to control the learning
process andmodel complexity, were varied to evaluate their impact on
model performance. Ensembles under various HP combinations were

evaluated over 5-fold cross validation (5CV) for 1) accuracy, as the
Matthews correlation coefficient (MCC) on test set genomes to
account for class imbalance, and 2) biological relevance, through a
“GWAS score” defined as a weighted sum of the rankings of known
AMR genetic features after sorting model features by feature weight
absolute value. A featurewas labeled as a knownAMRgenetic feature if
its corresponding gene cluster was a known AMR gene for the drug of
interest as annotated by RGI and PATRIC.
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HP optimization was first carried out on a set of 10 species-drug
test cases, testing 256 HP combinations to eliminate consistently
suboptimal HP combinations before scaling to other species-drug
cases (Supplementary Figs. 7, 8, Supplementary Tables 4–7, Supple-
mentary Analysis). These results were also used to assess the gen-
eralizability of the GWAS score by randomly hiding half of knownAMR
genes and computing correlations betweenGWAS scores derived from
visible vs. hidden AMR genes. Results across 100 iterations of ran-
domly hiding AMR genes suggests that the GWAS score generalizes
well to hidden AMR genes, with Spearman correlation between GWAS
scores from visible vs. hidden AMR genes exceeding 0.4 in 6/10

species-drug cases and 0.6 in 4/10 cases (Supplementary Fig. 9, Sup-
plementary Data 5, Supplementary Analysis).

HP optimization was then applied to 127 species-drug cases with
at least 100 SIRs, 10 known AMR genes, and minority phenotype >5%.
For each case, models under each HP combination were ranked by
meanMCC and GWAS score from 5CV, and the HP set with the highest
average of the two ranks was selected as optimal. Among the final
models, 41 (32%) achievedMCC>0.9 and 78 (61%) achievedMCC>0.8
on the test set during 5CV, and 103models (81%) recovered at least one
known AMR genetic feature among the top 20 features (Fig. 3b, Sup-
plementary Data 5). Broadly, a high MCC was necessary but did not
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guarantee better recovery of known AMR genetic features, i.e. accu-
racy did not guarantee biological relevance. Certain dataset para-
meters were weakly but significantly associated with one or both
performance metrics: dataset size, species, fraction of “intermediate”
resistant genomes, and number of known AMR genes (n = 127, Spear-
man R or Kruskal–Wallis test, FWER <0.05, Bonferroni correction, 12
tests, see Supplementary Analysis) (Supplementary Table 8, Supple-
mentary Fig. 10). Finally, relative to models with fixed HPs closest to
those in our previous work25, optimizing HPs offered modest but
consistent improvements to both accuracy and known AMR gene
recovery. 5CV experiments showed a mean increase in test MCCs and
known AMR genes recovered among the top 20 features of 0.035 and
0.230, respectively (Supplementary Fig. 11, Supplementary Data 5).
Visualizations of the top 20 model-selected features are available for
three example cases (Supplementary Figure 12), and the top 50 fea-
tures for all 127 models are available in Supplementary Data 5 along-
side their associated sequences in Supplementary Data 6.

As a baseline level of AMR gene recovery, for each species-drug
case, both Pyseer21 and Fisher’s exact testswere applied to estimate the
strength of association between each genetic feature and the AMR
phenotype, yielding population-adjusted and unadjusted p-values,
respectively. Based on the number of known AMR genetic features
recovered among the top20 features (either by featureweight for SVM
or p-value otherwise), the SVM ensemble approach broadly out-
performed both Pyseer and Fisher’s exact test. SVM ensembles iden-
tified more known AMR-associated features than Pyseer in 73 cases
(57%), the same number in 38 cases (30%), and fewer features in just 16
cases (13%) (Fig. 3c, Supplementary Data 5). Nearly half of the equal
performance cases (16/38, 42%) were instances where neither method
could recover any known AMR features, and similar differences in
performance were observed when comparing SVM ensembles and
Fisher’s exact tests (Supplementary Fig. 13a, Supplementary Data 5).
Across all 127 cases, SVM ensembles recovered 263 known AMR gene-
drug mappings of which 123 were not recovered by either Pyseer or
Fisher’s exact tests, compared to just 27 mappings missed by SVM
ensemble but recovered by Pyseer or Fisher’s exact test (Fig. 3d,
Supplementary Data 5). Similar proportions between the number of
known AMR gene-drug mappings recovered per method were
observed when examining the top 10 or top 50 features (Supplemen-
tary Figure 13b, c). Examining SVM ensemble feature rankings, known
AMR genes were distributed throughout the full range of ranks among
the top 20 features permodel, whereas those thatwere also recovered
by other methods were concentrated among the top 3 features (95/
138, 69%) with nearly half being the top weighted feature of the cor-
responding SVMmodel (62/138, 45%) (Fig. 3e). This result suggests that
concordance between these three methods is mostly limited to fea-
tures with the strongest statistical signals. Finally, a detailed analysis of
the 30 gyrA alleles identified by SVM as associated with fluor-
oquinolone resistance finds all such variants to be consistent with the
current literature on gyrA-mediated resistance; all positively-
associated alleles carried at least one known resistance-conferring
substitution, while all negatively-associated alleles carried no such
mutations (Supplementary Analysis, Supplementary Data 5).

An examination of the 12 genes recovered by Fisher’s exact test
but not by SVM ensemble suggests several possible failure modes of
the SVM approach (Supplementary Table 9). First, in 4/12 cases, the
missed gene is captured slightly outside of the top 20 feature thresh-
old for recovery,with three genes ranked21 andone ranked33bySVM.
Second, in another 4/12 cases, many of the top features in the corre-
sponding model were perfectly correlated, saturating the top ranks
with these correlates and preventing recovery of additional AMR
genes. Third, for 3/12 cases, the corresponding model was not very
accurate, with mean test MCC ranging from 0.43 to 0.77. The final
remaining case (arlR for ciprofloxacin resistance in S. aureus) couldnot
be explained by these previous failure modes.

Identification of 142 candidate AMR-conferring genes through
cross-drug and functional analysis of AMR-predictive features
Wenext applied several filters to translate the best performingmodels
to a smaller set of high-confidence, AMR-conferring gene candidates
(Fig. 4a). Starting with the 78models achieving test MCC>0.8, the top
10 features from each model were filtered for those that were not
already known AMR genes, occurred in at least 10 genomes with SIR
data, and had both positive feature weight and LOR for resistant
genomes, yielding 347 features predictive of AMR without known
associations to AMR. These candidates were scored based on the
number of drugs in the same class for which the feature enriches for
resistance and the extent of co-occurrence with known AMR genes.
Taking the top 10 features by this score for each species-drug class pair
yielded 142 AMR gene candidates (see Methods and Supplemen-
tary Data 7).

43 candidates were functionally well-characterized and consisted
of four feature types: 16 genes (protein sequence clusters, Table 1), 14
gene alleles (protein sequence variants, Table 2), and 13 gene 5’/3’
flanking region variants (Supplementary Table 10). The candidates
spanned 8 species and 7 drug classes and majority beta-lactam asso-
ciated (26/43) due to the relative abundance of beta-lactam AMR data
(Fig. 4b). The candidates span many genetic functions, and two func-
tions occurredmore than twice. Candidates related to small multidrug
resistance (SMR) efflux transporters (qacE, qacEΔ1, sugE) typically
associated with resistance to quaternary ammonium compounds32,
were linked to resistance against aminoglycosides, beta-lactams, dia-
minopyrimidines, and sulfonamides across four species, consistent
with previous studies that find SMR transporters associated with
resistance against a broad range of antibiotics beyond antiseptics33,34.
Additionally, three different formate dehydrogenase genes (fdhF, fdsA,
fdnG) were associated with beta-lactam resistance in Klebsiella pneu-
moniae, suggesting the importance of formate metabolism in AMR,
possibly with respect to stress response35. Finally, a majority of the
sequence-variant level candidates (16/27), especially those related to
flanking regions (10/13), were the most common variant of their
respective gene clusters, suggesting thatmost observed perturbations
to these genes may be deleterious with respect to AMR.

We selected two allele candidates related to E. coli core genes for
experimental validation: The wildtype D-serine/D-alanine/glycine
transporter (cycA) allele associated with quinolone resistance, and
fumarate reductase subunit D (frdD) allele with a V111D substitution
associated with beta-lactam resistance (see Supplementary Analysis
for details on candidate selection). E. coli BW25113 was chosen as the
base strain for validation to make use of the Keio knockout
collection36, which is genetically identical to K12 MG1655 across all
positions within 40 kb of frdD and cycA based on reference genomes
NZ_CP009273.1 and U00096.3. Wildtype (WT) cycA and frdD were
defined as the most common allele of the respective genes observed
across all E. coli genomes in this study, which were also the alleles
present in the BW25113 and K-12 MG1655 reference genomes.

Experimental validation 1: Loss of amino acid transporter CycA
confers limited quinolone resistance in minimal media with
D-serine
TheWT cycA allele, the fifth highestweighted feature in the E. coliAMR
model for levofloxacin, had the highest LOR for resistance among all
cycA alleles in 2/4 quinolone drugs (Fig. 5a). To assess the impact of
cycA on quinolone resistance, maximum cell density wasmeasured for
BW25113 (WT) and corresponding ΔcycA mutant (KO, from the Keio
collection36) under 60 conditions based on three variables: con-
centration of ciprofloxacin (CIP), supplementation with known sub-
strates of the D-serine/D-alanine/glycine transporter encoded by
cycA37, and choice of rich vs. minimal media (cation-adjusted
Mueller–Hinton Broth CA-MHB vs. M9 media with glucose) (Supple-
mentary Data 8). 6/60 tested conditions resulted in significantly
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differentfinal densities betweenWTandKO (nWT=nKO = 3,Welch t-test,
FDR <0.05, Benjamini–Hochberg correction, 60 tests), three of which
involved D-serine and M9 media (Fig. 5b). In conditions involving D-
serine, while increasing CIP concentration reduced final density for
both strains, the KO strain was conditionally less sensitive. The KO
strain achieved higher densities thanWT for 16–125μg/L CIP, but only
in M9 media and not in CA-MHB (Fig. 5c).

One explanation consistent with this conditional increase in CIP
resistance by cycA KO involves the toxicity of D-serine, its transport by
CycA, and interaction with quinolones through the SOS response
(Fig. 5d). D-serine, which inhibits L-serine and pantothenate bio-
synthesis, can be bacteriostatic in minimal media38. D-serine uptake
can be impaired by cycA KO but also through competitive inhibition of
CycA by other substrates in rich media37, and its toxicity mitigated by
direct uptake of L-serine and pantothenate in richmedia. With respect
to CIP, both D-serine39 and fluoroquinolones40 induce SOS response
but to differing extents. As systematic alterations in SOS response
induction have been shown to reducefluoroquinolone resistance41, the
presence of both D-serine and CIP may result in a SOS response that is
neither optimized for D-serine nor CIP, and consequently results in
greater susceptibility to CIP.

Experimental validation 2: The V111D substitution in FrdD con-
fers beta-lactam resistance solely through altering expression of
the overlapping beta-lactamase gene ampC
Next, the frdDV111D allele was selected for validation as it was the third
highest weighted feature in the E. coli AMRmodel for ampicillin, in the
top 10 for four E. coli beta-lactam models, and enriched for resistant
strains (LOR > 3) in 7/14 beta-lactam drugs with AMR data (Fig. 6a).
Given the proximity of frdD to the adjacent beta-lactamase geneampC,
this mutation occurs in the −35 box of the ampC promoter42 and
coincides with ampC overexpression mutations known to increase
beta-lactam resistance43,44 (Fig. 6b). This proximity was confirmed

globally, with 3,698 (96%) E. coli genomes harboring both frdD and
ampC on the same contig with ORFs spaced by exactly 63 bp (see
Supplementary Analysis). Appropriately, an ampC 5’ variant containing
the equivalent mutation was ranked 5th in the model for amoxicillin-
clavulanate, though no other 5’ variants with the mutation were in the
top 50 hits of any other beta-lactam model. To assess whether frdD
V111D is simply a byproduct of an ampC promoter mutation or con-
tributes separately to beta-lactam resistance, we examined two frdD
mutations both resulting in the V111D substitution but with different
effects onampC transcription as predictedby Promoter Calculator45: 1)
332 T >A, predicted to increase ampC transcription 2.6-fold, or 2)
332TC >AT, predicted to have minimal effect on ampC (Fig. 6b). Six E.
coli strains were examined, based on frdD variants (WT or either
mutation) generated in either BW25113 or corresponding ΔampC
mutant (from theKeio collection36).Maximumcell density achieved by
these strains were measured under increasing concentrations of
ampicillin in either rich (CA-MHB) or minimal (M9 + glucose) media
(Supplementary Data 8).

Across all strains, only the mutant with both ampC and the over-
expression mutation was able to grow at ≥2mg/L ampicillin in either
media, and final densities were not impacted even at 8mg/L (Fig. 6c).
The mutant with ampC and the non-overexpressing frdD mutation
grew at 2mg/L inCA-MHBonly, but this growthwas delayed by at least
8 h in all three replicates, and may have resulted from acquiring the
single point mutation necessary to yield the known ampC over-
expressing promoter. Furthermore, all ΔampC mutants failed to grow
at ≥2mg/L ampicillin regardless of frdD status and reached lower
densities than their corresponding ampCWT strain in 17/18 conditions
with <2mg/L ampicillin and significantly so in 15/18 cases (nWT=nKO = 3,
FDR <0.05, Welch t-test, Benjamini–Hochberg correction, 18 tests,
Supplementary Data 8); the only exception was between strains with
WT frdD at 1mg/L ampicillin in M9 in which both the ampC and ampC
KOstrains exhibited very little growth (OD<0.1). These results suggest

1,000,000s of genetic features + SIR data

347 non-AMR features
Evidence from related 

drugs, correlation 
analysis

GWAS-oriented machine learning,
feature selection by weight

886 AMR-predictive genetic features

Preliminary filters: Remove known
AMR genes, very rare features

a

142 initial
candidates

43 Well-characterized AMR gene candidates

0 1 2 3 4 5 6 7 8
number of candidates

A. baumannii
C. coli
E. coli

E. faecium
K. pneumoniae

S. aureus
S. enterica

S. pneumoniae

Distribution of 43 AMR gene candidates
by species and drug class

beta-lactam
quinolone

aminoglycoside
other

27 under-
characterized

candidates

34 MGE-
associated
candidates

29 AMR genes
for other drugs

9 correlates
16 gene clusters

14 coding variants (frdD and cycA selected for validation)

13 flanking noncoding variants (9 5'-variants + 4 3'-variants)

b

Fig. 4 | Identification of AMR gene candidates frommachine learning models.
a Candidate identification workflow. From each trained AMR-MLmodel, the top 10
predictive featureswere identified, filtered for features that are neither knownAMR
genes nor very rare, ranked based on statistical evidence for resistance in other
related drugs, and finally categorized by functional annotation. When multiple

features related to the same genewerepredictive of resistance, the featurewith the
strongest evidence was selected and the others were labeled as correlates. Mobile
genetic element is abbreviated MGE. b Distribution of 43 well-characterized AMR
gene candidates by species and drug class.
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that frdD mutations yielding the V111D substitution requires ampC to
confer beta-lactam resistance and is unlikely to contribute to resis-
tance through any ampC-independent mechanism.

Discussion
The exponential growth of publicly-available bacterial genome
sequences and resistance metadata provides valuable opportunities
for applying statistical methods to elucidate the genetics of AMR at a
global scale. By applying workflows in pangenome construction, sys-
tematic AMR gene annotation, and machine learning to 27,155 gen-
omes, 12 species, and 176,911 SIR phenotypes, we have characterized
the current interspecies distribution of known AMR genes and
demonstrated the broad capability of ML to carry out GWAS analyses
of AMR, surpassing contemporary statistical methods at recovering
known AMR genes. From the most accurate ML models, we have
identified 142 AMR genetic feature candidates, two of which we have
experimentally verified to impact resistance in E. coli. Many of these
results depend on the reliable recovery of rare biological features and
events and were enabled by the scale of this analysis, operating on the
largest internally-consistent AMR phenotype dataset known to the
authors at the time of publication.

First, an analysis of 6332 known AMR genes revealed 925 (14.6%)
genes to be present in multiple species, which tended to be plasmid-
encoded over chromosomally-encoded in a function-dependent
manner. This result is consistent with previous studies finding plas-
mids frequently responsible for cross-species46 and cross-genera47

transfer of AMR genes in clinical environments. However, we also find
that AMR gene transfer is much rarer between species differing at
higher phylogenetic ranks, with just 8 AMR genes observed in at least
10 genomes outside their main phylogenetic class. It has been sug-
gested that transfer of AMR genes between unrelated species such as
between gram-positive (GP) and gram-negative (GN) species is rare but
possible, having been inferred for tetracycline resistance proteins,
ermB, aph(3’)48, and observed for some beta-lactamases49.

A case study of blaTEM revealed one variant, TEM-116, to be pre-
sent in the GP species S. aureus and found among S. aureus strains with
the highest levels of resistance to beta-lactams. TEM-116 was observed
on three plasmids of which plasmid NZ_AJ437107.1 was observed in
both GP and GN strains, suggesting a potential route of transfer. While
blaTEM was only recently reported in S. aureus50, the S. aureus gen-
omes we identified to harbor TEM-116 were isolated as early as 2009,
suggesting that this transfer may be a much older phenomenon.
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Fig. 5 | D-serine-dependent impact of amino acid transporter CycA on quino-
lone resistance. a Enrichment for resistant over susceptible genomes across
observed cycA variants for four quinolone drugs, based on log2 odds ratio (LOR).
Number of genomes with AMR data is shown for each drug, and only variants
observed in at least 100 genomes are shown. b Maximum cell density (OD600)
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Further analysis of isolation dates may enable the reconstruction of
timelines for the spread of multispecies AMR genes, and help identify
whether specific species act as reservoirs for enabling interspecies
AMR gene transfer. Given these observations, the transfer of AMR
genes between GP and GN strains should be treated as a potential
significant contributor to the spread of resistance, and large-scale
analyses will likely be necessary to continue capturing these rare
events of AMR gene transfer between unrelated strains.

We then developed aMLworkflow for identifying AMR-associated
genetic features by optimizing models for both phenotype prediction
accuracy and biological relevance, with the latter quantified through a
score based on the rankings of known AMR genes among a model’s
predictive features.Amongcaseswithover 1000SIRsandmany known
AMR genes, the GWAS score was found to generalize well to unseen
known AMR genes, based on experiments randomly hiding known
AMRgenes fromGWAS score calculation. Next, in a systematic analysis
of four HPs, we found that the optimal ensemble size rarely exceeded
50 estimators, much lower than previous works and suggesting that
smaller, more computationally efficient models are sufficient at this
scale. Feature subsampling was also confirmed to improve the recov-
ery of knownAMRgeneswithout compromising accuracy in amajority
of cases. However, HP optimization offered only modest improve-
ments over using fixed HPs, in contrast to a previous GWAS analysis
with neural networks on datasets of comparable scale which found HP

optimization to significantly improve performance51. Additional ana-
lyses are needed to explore the practical limits of HP optimization for
SVMs and AMR genetics, especially regarding how the competing
metrics of accuracy and biological relevance may limit
performance gains.

Applying this approach to 127 species-drug cases yielded models
that were both accurate and reliably recovered known AMR genes.
Compared with Pyseer and Fisher’s exact test, SVM ensembles recov-
ered nearly twice as many known AMR genes in total and near super-
sets of what could be recovered by the other methods. AMR genes
recovered by multiple methods were concentrated among the top 3
features of the corresponding SVM ensemble, suggesting that only
genes with the strongest statistical signals are reliably recovered by
Pyseer or Fisher’s exact test. Additionally, these results confirmed at a
larger scale that accuracy is necessary but does not guarantee biolo-
gical relevance25. This is likely due to strong population structure
resulting from the clonal nature of bacteria, which can lead to sig-
nificant correlations between causal and hitchhiker mutations that are
difficult to distinguish using statistical approaches52. Though the SVM
approach presented here does not directly address population struc-
ture, it was previously shown that attempting to do so through
weighted sampling of strain subtypes did not improve AMR gene
recovery over random sampling25. While other tools with different
approaches for addressing population stratification may outperform
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Fig. 6 | ampC-dependent beta-lactam resistance conferred by the V111D sub-
stitution in fumarate reductase subunit FrdD. a Enrichment for resistant over
susceptible genomes from the presence of frdDmutations resulting in the V111D
substitution across 14 beta-lactam drugs, based on log2 odds ratio (LOR). Number
of genomes with AMR data is shown for each drug. b Overlap between the frdD
coding region and ampC promoter in E. coli BW25113 and predicted ampC tran-
scription rates for various frdD mutations affecting V111. c Maximum cell density

(OD600) achieved by ampC and frdD mutants under increasing ampicillin (AMP)
concentrations in rich (CA-MHB) or minimal (M9) media. Error bars indicate stan-
dard deviations centered around means from biologically independent triplicates.
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frdD affecting V111 in either the BW25113 wildtype (WT) or corresponding ampC
knockout (KO) strain. Starred case indicates growth was not observed until at least
8 h after inoculation for all replicates.
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those tested here,ML approaches can supplement AMRgene recovery
without requiring the often computationally expensive task of defining
population structure in advance. These results suggest that even small
SVM ensembles with limited HP tuning can reliably carry out GWAS
analyses for AMR genetics.

Analysis of the most accurate models yielded 142 AMR gene
candidates, two of which were selected for experimental validation:
amino acid transporter CycA vs. quinolone resistance, and fumarate
reductase subunit FrdD vs. beta-lactam resistance. Testing the effects
of cycAKO vs. WT in E. coli in various environments, we found the cycA
KO confers modest but significant, conditional resistance against CIP,
specifically in minimal media supplemented with the CycA substrate
D-serine. One possible explanation of this result involves the 1) toxicity
of D-serine38, whichmay bemitigated by reducing uptake through loss
of CycA or competitive inhibition by other CycA substrates in rich
media37, and 2) the SOS response, which is triggered to differing
extents by both D-serine39 and fluoroquinolones40 andmay result in an
SOS response induction no longer optimal to either stress and ulti-
mately greater CIP susceptibility41. As neither CycA nor D-serine
directly influence CIP’s mechanism of action yet ultimately impact
growth under CIP exposure, these results provide an example of
separate environmental stresses and related genes measurably influ-
encing AMR. Further investigation into D-serine may continue to shed
light onto clinically relevant conditional resistance, asD-serine has also
been shown to sensitize S. aureus to various beta-lactams53 and con-
centrations of D-serine similar to those tested here may be encoun-
tered in various host environments39,54. CycA substrate glycine has also
been shownto sensitize serum-resistant E. colibut notΔcycAmutants55,
suggesting that CycA plays a role in multiple cases of environment-
dependent resistance.

Similar experiments on the effect of the frdD V111D substitution
on beta-lactam resistance revealed that resistance was conferred only
in the presence of beta-lactamase encoding ampC, and comparing
synonymous codons found this was likely due to overexpression of
ampC as its promoter overlaps with the frdD open reading frame42.
This substitution was previously associated with ampicillin resistance
in E. coli induction experiments but not discussed in relation to
ampC56, while a similar synonymous mutation yielding V117V was
previously shown to be enriched in amoxicillin resistant E. coli and
attributed to ampC overexpression57. Given the prevalence of over-
lapping genes in bacterial genomes58, future GWAS analyses that
identify candidate genes associatedwith a phenotypewill benefit from
incorporating the genetic context of such genes into their analysis.

Overall, combining pangenomics, systematic gene annotation,
and ML provides a workflow for efficiently uncovering patterns of
known and candidate AMR genes at the scale of 10,000 s of genomes
with potentially greater reliability than contemporary statistical
methods such as Pyseer or Fisher’s exact test. The flexibility of ML
provides numerous opportunities to continue improving this work-
flow, such as the direct integration of the known AMR gene recovery
into the loss function, use of different model architectures beyond
SVMs, input of additional genetic feature types such as SNPs, or
benchmarking against other phenotypes beyond AMR. As the number
of genome sequences continues to grow, periodic updates to this
analysis with improved techniques will likely be able to capitalize on
the benefits of scale and steadily deepen our understanding of AMR
across the phylogenetic tree. Continued development is necessary to
bringML into the currentGWAS toolboxwhenmining sequencing data
for previously unknown genetic determinants underlying complex
phenotypes.

Methods
Genome selection
An initial set of genomes was taken from the PATRIC database
RELEASE_NOTES (ftp.patricbrc.org/RELEASE_NOTES/, 2021-07-21) and

filtered by taxon ID to 12 species among the ESKAPEE pathogens or
WHO global priority pathogens released in 2017. For each species,
genomes were filtered to those meeting four criteria26: 1) genome
status is “WGS” or “Complete”, 2) number of contigs is within 2.5 times
themedian number of contigs across all assemblies for that species, 3)
number of annotatedCDSs iswithin 3 standarddeviations of themean,
and 4) total genome length iswithin 3 standard deviations of themean.
Genomes were further filtered for those having EvalCon fine
consistency59 of at least 87%60. Drugs with at least 100 experimental
antimicrobial (AMR) measurements were identified per species, and
genomes were filtered to those with data for at least one of those
drugs. Selected PATRIC Genome IDs are available in Supplementary
Data 1. Genome MLST subtypes were annotated using mlst v2.18.0
(https://github.com/tseemann/mlst), and BioProject IDs were taken
directly from metadata available on PATRIC, with distributions avail-
able in Supplementary Data 2.

Pangenome construction and genetic feature identification
For each species, genes (protein sequence clusters), alleles (protein
sequence variants), and ORF-flanking sequence variants were identi-
fied using a sequencing clustering approach26. All unique protein
sequences across all genome assemblies (as annotated by PATRIC)
were clustered using CD-HIT v4.6 with minimum identity 80% and
minimum alignment length 80%29. Each cluster was treated as a gene,
clustermembers as alleles, and the 300bpupstreamof the start codon
of each occurrence of the gene as 5’ variants (and analogously the
300bp downstream of stop codons as 3’ variants). 5’/3’ variants of a
gene were identified by locating all occurrences of all alleles across all
genome assemblies and extracting the 300bp directly flanking those
occurrences. Cases in which a 300bp flanking region is interrupted by
a contig break were ignored (for ML purposes, such genomes were
treated as not having any specific 5’/3’ variant). A similar clustering
analysis was conducted for non-coding features (annotated by PATRIC
as “transcript”, “tRNA”, “rRNA”, or “misc_binding”) to identify non-
coding feature clusters and nucleotide sequence variants, using CD-
HIT-EST v4.6 with the same parameters29. The species-wide genetic
variation covered by these six feature types was represented as a
binarymatrix based on presence/absence calls of each feature for each
genome.

Processing antimicrobial resistance phenotypes and SIR phe-
notype inference from MICs
Species-drug cases with at least 100 experimental susceptible-
intermediate-resistant (SIR) phenotypes or minimum inhibitory con-
centration (MIC) measurements among selected genomes were iden-
tified. For each pair, the most common SIR testing standard (i.e. CLSI,
EUCAST) was identified from either the metadata or manual curation
of BioProject accession IDs (Supplementary Data 2), referred to as the
species-drug case’s primary standard.

MIC values were mapped to SIRs by first filtering MICs for exact
values mg/L values (opposed to bounded MICs) derived from one of
the following laboratory typing methods: agar_dilution, agar_dilutio-
n_or_etest, bd_phoenix, bd_phoenix_and_etest, broth_microdilution,
etest, mic, mic broth microdilution, liofilchem, sensititre, vitek_2. For
each species-drug case, MIC-SIRmappings were generated for all MIC-
SIR value pairs reported in at least three genomes under the primary
standard. Ambiguous mappings (MIC value mapped to multiple SIRs)
and inconsistent sets of mappings (instances where a susceptible MIC
is greater than an intermediate or resistant MIC, or where a resistant
MIC is less than an intermediate or susceptible MIC) were removed. A
MIC-to-SIR inference scheme was developed as follows:

• Exact MICs: Mapped directly to the corresponding SIR if
possible.

• Upper bounded and unmapped exactMICs: If MIC ≤ largest MIC
mapped to susceptible, it is mapped to susceptible.
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• Lower bounded and unmapped exact MICs: If MIC ≥ smallest
MIC mapped to resistant, it is mapped to resistant.

• Other unmapped exactMICs: If theMIC value is within the range
of MICs mapped to intermediate, it is mapped to intermediate.

MICs used and MIC-SIR mappings are available in Supplementary
Data 2. Reported and inferred SIRs were combined for subsequent
analyses. For genomes with multiple conflicting SIRs for a single drug
(i.e. measured by different methods), the most common SIR across all
methods and inferences was selected, with directly reported SIRs
breaking ties and perfect ties ignored. The final set of SIRs are available
in SupplementaryData 2. SIRswerebinarized into susceptible andnon-
susceptible by converting “susceptible”, “susceptible-dose depen-
dent”, and “non-resistant” to 0 s, and “resistant”, “intermediate”, “non-
susceptible” and “IS” to 1 s for subsequent analyses.

Identification and classification of known AMR genes
All protein sequences for each specieswere annotated using RGI v5.2.0
with CARD ontology v3.1.327. To link AMR genes identified by RGI to
specific drugs, a directed graph was constructed from the CARD
ontology using ARO accession IDs as nodes and adding directed edge
“U ->V” whenever:

• U corresponds to a gene and U has the relationship “is_a” to V.
• U corresponds to a drug and V has the relationship “is_a” to U.
• U has the relationship “part_of”, “regulates”, “confers_resistance_

to_antibiotic”, or “confers_resistance_to_drug_class” to V.
• V has the relationship “has_part” to U.

A gene was labeled as conferring resistance to a drug if there
exists a path from the gene’s node to the drug’s node in this graph. 23S
rRNAs, 16S rRNAs, and 50S rRNAs were manually identified from
PATRIC text annotations of noncoding features and were similarly
linked to specific drugs using the graph, starting from nodes
ARO:3000336, ARO:3003211, and ARO:3005003, respectively.

Additional drug-specific AMR genes were identified from PATRIC
text annotations. Sequences with annotations containing a drug name
or identical to the annotation of an RGI-identified AMR gene were
identified and manually curated for probable known AMR genes
(curated annotations are available in Supplementary Data 3). For
machine learning purposes, all features associated with a gene cluster
containing a sequence linked to resistance for a drug by RGI or PATRIC
text annotation were treated as known AMR features. The distribution
of AMR phenotypes for genomes carrying features annotated as
known AMR is available in the Supplementary Analysis (Supplemen-
tary Fig. 14).

AMR gene cross-species comparison, location prediction, and
TEM beta-lactamase analysis
All alleles of identified AMR genes across all species were combined,
de-duplicated, and re-clustered with the same CD-HIT parameters for
cross-species analysis. Gene-level functional annotations for re-
clustered AMR genes were inherited from corresponding allele-level
annotations from RGI and PATRIC. AMR gene functional categories
were assigned based on RGI annotations when available and PATRIC
annotations otherwise, with categories occurring less than 50 times
grouped as “other” (Supplementary Data 3).

All contigs from all assemblies were labeled as plasmid or chro-
mosomal based on de novo predictions from PlasFlow v1.1 on default
settings30. Contigs were also mapped to known plasmids in PLSDB
version 2021_06_2361 using MASH v2.3 with minimum shared kmers
500/100062. For a given AMR gene cluster, each instance of each allele
was assigned a location basedon the PlasFlowprediction for the contig
containing that instance (chromosome, plasmid, unassigned). The
overall location of a gene or allele was assigned as 1) “chromosome” if
>90% of instances were chromosomal, 2) “plasmid” if >90% of

instances were plasmid, 3) “chromosome-leaning” if >50% of instances
were chromosomal, 4) “plasmid-leaning” if >50% of instances were
plasmid, and 5) “ambiguous” otherwise (Supplementary Data 3).

Complete TEM-family beta-lactamases (blaTEMs) were identified
by filtering all AMR alleles for mention of “TEM” in the RGI or PATRIC
annotation, and for length at least 272aa (95% length of TEM-1).
Mutations were called from pairwise global alignment of each allele to
TEM-1 using the Biopython Align module63 with scores match= 1,
mismatch= −3, open_gap_score = −5, and extend_gap_score = −2. N/C-
terminal deletions were ignored. Known TEM variants were identified
based on exact matches in the CARD database. Presence of specific
blaTEM plasmids in individual genomes was determined by filtering
the previous MASH results against PLSDB for mappings with MASH
distance <0.025 (Supplementary Data 4). For the S. aureus analysis,
cefoxitin was identified as the only drug for which MIC data was
available among blaTEM-carrying S. aureus genomes. Known AMR
genes among S. aureus genomes with cefoxitin MIC data were identi-
fied from exactmatches to entries related to beta-lactams in the CARD
database.

Implementation, evaluation, and hyperparameter optimization
of SVM ensembles
For each species-drug case, SVM ensembles were trained to classify
genomes as susceptible or non-susceptible (intermediate or resis-
tant, referred to as “resistant”) based on the species’ genetic feature
presence/absence matrix. To accelerate training, feature count was
reduced in three stages: 1) features present or missing in less than 3
genomes were removed, 2) perfectly correlated features were
merged, and 3) remaining features were sorted by log odds ratio
(LOR) for resistant genomes, and features with the 25,000 highest
and 25,000 lowest LORs were retained (variations to this input filter
were tested in the Supplementary Analysis, Supplementary Fig. 15,
Supplementary Data 5). SVM ensembles were implemented using
scikit-learn v1.0.1 classes LinearSVC and BaggingClassifier64, with
square hinge loss (loss = ‘squared_hinge’) weighted by class fre-
quency (class_weight = ‘balanced’) to address class imbalance issues
and L1 regularization (penalty = ‘l1’) to enforce sparsity in feature
selection.

Model performance was evaluated in 5-fold cross validation
experiments. Phenotype prediction accuracy was scored as the mean
Matthews correlation coefficient (MCC) on the test set. Biological
relevance was scored using the following equation:

GWASScore=
X

r2known

0:5 r�1ð Þ=10
ð1Þ

where r corresponds to the ranks of known AMR features associated
with the specific drug when sorted by feature importance, with r = 1
corresponding to the highest feature importance. Feature importance
was computed as the absolute value of the mean of the feature’s
coefficients across all SVMs in the ensemble with access to the feature
(i.e. selected during feature subsampling). For ties, the average rank
was assigned to all tied features.

Hyperparameter (HP) ranges for SVM ensembles were first eval-
uated on 10 test species-drug cases (Supplementary Table 4). These
were selected by first filtering for cases with substantial available data
(at least 1000 SIRs and 50 known AMR genes), then sampling for even
representation of drug classes and species phylogenetic classes. 256
HP combinations from fourHPswere tested for each test case: number
of estimators per ensemble, fraction of samples per estimator (with
replacement), fraction of features per estimator (without replace-
ment), and the SVM regularization term C, corresponding to para-
meters ‘n_estimators’, ‘max_samples’, and ‘max_features’ in
BaggingClassifier and ‘C’ in LinearSVC, respectively. For each test case,
the highestMCC (mean test setMCC from5-fold CV) andGWAS scores
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were computed across models for all HP combinations. The smallest
subset of HP combinations was identified such that the best scores in
the subset were within 90% of the best scores across all combinations,
across all test cases. The initial and reduced HP ranges are available in
Supplementary Table 6.

SVM ensembles were trained for each HP combination in the
reduced HP set across 127 species-drug cases with at least 100 SIRs, 10
known AMR genes, and minority phenotype frequency >5%. For each
case, the optimal HP set was selected by ranking all HP combinations
by either MCC or GWAS score, taking the average of the two ranks as
the HP set’s overall rank, and selecting the HP set with the highest
overall rank. Finalmodel performance and selectedHPs are available in
Supplementary Data 5.

Comparison between SVMensembles, Pyseer, and Fisher’s exact
test at recovering known AMR genes
For each of the 127 species-drug cases tested, the top 10, 20, and 50
genetic features associated with the AMR phenotype were identified
for each GWAS approach. For SVM ensembles, features were sorted by
feature importance as previously defined. For Fisher’s exact test, the
test was applied between each genetic feature and the binary AMR
phenotype (susceptible/non-susceptible), and features were sorted by
p-value. For Pyseer21, distances were first computed between each pair
of genomes using MASH v2.3 with default parameters62. Pyseer v1.3.10
was then run using binary AMR phenotypes for the --phenotype
parameter, genetic feature presence/absence calls for the --pres
parameter,MASHdistances for the --distances parameter, and all other
parameters default, and features were sorted by population structure-
adjusted p-value “lrt-pvalue”.

Identification of candidate antimicrobial resistance
determinants
Themodels for each of the 127 species-drug cases were filtered down
to those achieving mean test MCC >0.8 during 5-fold cross valida-
tion. From each remaining model, the top 10 features by feature
weight absolute value were identified, and filtered for those that 1)
were not already known AMR genes, 2) occurred in at least 10 gen-
omes with SIR data for the corresponding drug, and 3) had positive
feature weight and LOR for resistance. Remaining feature-drug pairs
were tested for whether the feature was significantly associated with
resistance, applying Fisher’s exact test for SIRs and Brunner-Munzel
tests for MICs. Tests were applied for the specific drug and drugs of
the same class for which at least 5 SIRs (for Fisher’s exact) or 5 MICs
(for Brunner-Munzel) were available, and significance was deter-
mined at FWER < 0.05 with Bonferroni correction (2008 Fisher’s
exact tests and 1393 Brunner-Munzel tests were conducted, with
significance thresholds of p < 2.5*10−5 and p < 3.6*10−5, respectively).
To evaluate co-occurrence with known AMR genes, AMR features
found in predominantly in resistant strains were identified for each
drug, defined as those occurring in at least 5 genomes of which at
least 90% are resistant. Each candidate feature-drug pair was
assigned a score based on the sum of 1) number of drugs with sig-
nificant association based on SIR data, 2) number of drugs with sig-
nificant association based on MIC, and 3) number of drugs for which
at least one resistant genome with the feature does not also have any
AMR features found predominantly in resistant strains. Candidate
scores are available in Supplementary Data 7.

The top 10 features by score for each species-drug class pair were
identified, yielding 142 candidates whichwere categorized by function
as annotated by PATRIC and additionally by eggNOG-emapper v2.1.6-
4365. Genes that were poorly annotated, related to mobile genetic
elements (transposases, insertion elements, phage elements, inte-
grases, plasmid maintenance), or known to be associated with a spe-
cific AMR mechanism for an unrelated drug class were their own
categories, and the remaining genes were categorized as well-

characterized candidates. For perfectly correlated features, coding
features were selected over noncoding features. For variant-level fea-
tures,mutationswere determined against themost commonvariant of
the parent gene cluster using the Biopython Align module63. Inter-
pretationof E. coli candidateswas conductedusing reference genomes
U00096.3 [https://www.ncbi.nlm.nih.gov/nuccore/U00096.3] for K-12
MG1655 and NZ_CP009273.1 [https://www.ncbi.nlm.nih.gov/nuccore/
NZ_CP009273.1] for BW25113.

Generation of frdD and cycA E. coli mutants
E. coli BW25113 knockout mutants ΔcycA and ΔampC were taken from
the Keio collection36. The frdDmutations referred to in this study were
introduced into both BW25113 and ΔampC using a Cas9-assisted
Lambda Red homologous recombination method. Golden gate
assembly was first used to construct a plasmid vector harboring both
Cas9 and lambda red recombinase genes under the control of an
L-arabinose inducible promoter, a single guide RNA sequence, and a
donor fragment generated by PCR which contained the desired
mutation and around 200bp flanking both sides of the Cas9 target cut
site as directed by the guide RNA. After allowing the transformed cells
to recover for 2 h at 30 °C, L-arabinosewas added to themedia and the
cells were allowed to grow for 3–5 h at which time a portion of the
culturewasplated. Single colonieswere screened usingARMSPCR and
amplicons spanning the mutation site, generated with primers
annealing to the genome upstream and downstream of the sequence
of the donor fragment contained in the plasmid, were confirmed with
Sanger sequencing. Confirmed isolates were cured of the plasmid by
growth at 37 °C. Both of the frdD mutations that were introduced in
this study fell within a guide RNA target sequence. Because Cas9 has a
tolerance for some single basemismatches in the guide RNA, a second
mismatch was engineered into the guide RNA so that the guide RNA
had two mismatches with respect to the successfully mutated target
sequence and only one toleratedmismatchwith respect to the starting
strain. In one case, an intermediary strain was first constructed in
which all of the codons falling within the guide RNA target sequence
were switched to synonymous ones maximizing the base changes. A
second round of Cas9-assisted Lambda Red homologous recombina-
tion was then used to restore those codons to their original sequences
and introduce the desired mutation at the same time.

Cell growth conditions and measurements
Two media were used for both cycA and frdD experiments: 1)
Mueller–Hinton Broth (Sigma-Aldrich, SKU: 70192-500G) supple-
mented with 49mM MgCl2 and 69mM CaCl2, and 2) M9 minimal
medium (47.8mM Na2HPO4, 22mM KH2PO4, 8.6mM NaCl, 18.7mM
NH4Cl, 2mMMgSO4, 0.1mMCaCl2) supplemented with 2 g/L glucose.
For cycA experiments, media were also supplemented with either
10mM glycine, D-serine, D-alanine, L-alanine, DL-alanine (50:50 mix-
ture of D- and L-alanine) or nothing, for a total of 12 possible
supplemented media.

Cell densities for strain-media-antibiotic combinations were
measured in biological triplicates as follows: Fresh culture samples
were prepared (OD600 = ~0.05) in each relevant media. Sample
solutions were loaded to Costar flat-bottom 96-well plates (Corning,
catalog no. 3370), with antibiotics added to varying concentrations
(8, 16, 31, 62, or 125 μg/L ciprofloxacin for cycA experiments, and
0.25, 0.5, 1, 2, 4, or 8mg/L ampicillin for frdD experiments). Plates
were incubated in a microplate reader (Tecan Infinite200 PRO) with
shaking at 37 °C, and ODs were read every 15min. Maximum cell
density for each condition and replicate was calculated as the
maximum OD600 over 12 h after inoculation minus the minimum
OD600 observed for the corresponding media without inoculum.
Significant differences in cell density between pairs of strains or
conditions was determined with Welch t-tests (FDR < 0.05,
Benjamini–Hochberg correction).
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Statistics & reproducibility
No statistical methodwas used to predetermine sample size. Sample
size was limited to the set of all publicly available genomes with AMR
metadata passing quality thresholds (seeMethods). Genomes failing
any of five assembly quality thresholds were excluded from the
analysis (see Methods). No exclusions were made in validation
experiments. AMR validation experiments were conducted with
biological triplicates and combinatorial condition design, and all
attempts at replication were successful. The experiments were not
randomized. Experiments were designed to test hypotheses gener-
ated by statistical analysis regarding the effect of specific genetic
alterations and environments on AMR, and all possible combina-
tions of conditions were tested. This is in contrast to a broader
screening experiment for which comprehensive testing would be
impossible and randomization would be required. The Investigators
were not blinded to allocation during experiments and outcome
assessment. Allocating all combinations of E. coli mutants/condi-
tions to different investigators was infeasible, and not blinding is
unlikely to interfere with the analysis or alter the results.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All genomes used in this study are publicly available on the PATRIC
(now BV-BRC, https://www.bv-brc.org/) database. Accession IDs are
available in Supplementary Data 1. Culture density data generated
from validation experiments are available in Supplementary Data 8.
Additional databases used during analysis are CARD database ontol-
ogy v3.1.3 (https://card.mcmaster.ca/) and PLSDB v2021_06_23
(https://ccb-microbe.cs.uni-saarland.de/plsdb/). Processed data types
used to generate figures and tables are available within the Supple-
mentary Information and Source Data. Source data are provided as a
Source Data file. Source data are provided with this paper.

Code availability
Representative code for analyses in this study are available at https://
github.com/jhyun95/pangenomix/releases/tag/1.0.0.
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