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Abstract A topology optimization problem in microelectromechanical res-
onator design is addressed in this paper. The design goal is to control the first
several eigen-frequencies of a microelectromechanical resonator using topol-
ogy optimization in order to improve the resonator’s quality of resonance. The
design variable is the distribution of mass in a constrained domain which we
model via (1) the Simple Isotropic Material with Penalization Model and (2)
the Peak Function Model. The overall optimization problem is solved using
the Method of Moving Asymptotes and a Genetic Algorithm combined with
a local gradient method. A numerical example is presented to highlight the
features of the methods in more detail. The advantages and disadvantages of
each method are discussed.

Keywords Topology optimization, Microelectromechanical resonator,
Eigen-frequency, Moving asymptotes, Genetic algorithm

1 Introduction

Microelectromechanical (MEMS) resonators are important elements in the de-
sign of on chip signal processing systems for many next generation communi-
cation and sensing devices; see, for example, (Li et.al 2007). In the design of
individual resonators, the so-called quality of resonance plays a major role. As
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pointed out in (Bindel and Govindjee 2005), it is desirable to control the loca-
tion of resonant poles in such systems — with better resonance properties being
obtained when the real parts of resonant frequencies are appropriately sepa-
rated from each other. The control of this separation is essentially a topological
optimization problem constrained by the equations of elastic wave propogation
in a semi-infinite domain.

Topology optimization or generalized shape optimization of structures has
been an active research area since at least the 1980s. One example that is
frequently encountered in microelectromechanical system design is to find op-
timally compliant mechanisms (Saxena and Ananthasuresh 2000). The prob-
lem is usually to seek an optimal topology in a specified domain so that the
structure can produce maximum displacements at some port. This is a typical
optimization problem of specific entries of the global stiffness of a linearly elas-
tic structure. A second important example occurs in car body design where
optimal material layout is desired to reduce interior noise (Ma et al. 1993).
This latter example is nearer to our area of interest as it involves the issue of
dynamics.

The central task in topology optimization is to determine which geomet-
ric points in the design domain should be material points and which points
should contain no material (i.e., are void). Based on a fine discretization ef
finite elements, one is faced with a large-scale “0/1” type integer optimization
problem. By employing a material interpolation function, one can transform
the discrete problem into a continuous problem which is relatively easier to
solve. First we will review three common material distribution models and
later we will focus on the use of two of them within our problem context.

An important but somewhat cumbersome material distribution model is
the homogenization method (Bendsoe 1995; Bendsoe and Kikuchi 1988; Bend-
soe 1989). In this method, each material point is looked on as a composite
material consisting of an infinite number of infinitely small holes and mater-
ial points which are periodically distributed. The effective material elasticity
tensor at a point is given by

1 3xkl
Cijui(x) = |_Y_|/Y [Cijkt(“’,y) - chqu(x,y)by—p dy. (1)
Pq 7

Here, x’;‘ is the microscopic displacement field solution to the (six) variational
cell equilibrium equations:
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where v are Y-periodic displacement variations, y = x/e represents fine scale
positions and e is a small parameter representing the ratio of fine scale to large



scale feature sizes. This theory, via the distribution of holes in the composite,
gives a functional relationship between the density of material in the composite
and the effective material properties. With this at hand, an optimal distribu-
tion of mass in the composite material in the design domain can be computed
and the result can be interpreted as an optimal topology by thresholding.

Simple Isotropic Material with Penalization (SIMP) is a second common
material interpolation model (Yin and Yang 2000). The elasticity tensor in
this model is given by

Cijrilz) = [P(x)]nC?jkb n>1 (3)

where p(x), the design variable, is a density-like function and C?jkl is the
elasticity tensor of a given solid isotropic material. The parameter n can be
used to penalize intermediate densities. The advantage of the SIMP model is
that we can avoid the microstructure analysis of the homogenization model
and the simplicity of the model can facilitate design. It also has been pointed
out that when 7 is greater than or equal to three, the SIMP model obeys
Hashin-Shtrikman bounds on the effective properties of composite materials
(Yin and Yang 2000, Hashin and Shtrikman 1963).

The last model to be discussed here is peak function model (Yin and Anan-
thasuresh 2001). In this model the elasticity interpolation is given as:

n 2
m Z) —HEm 0t
Cijui(x) = Z cijkl exp [_—[p( )20_2 ] ] + C?jk?: 4)
m=1 m

where n is the number of material phases. With a small parameter o,,, the
exponential function in the expression is a continuous approximation to the
é-function. The advantage of this model is that the design variable, p(x), can
take any value between —co and co. Furthermore, this model can include mul-
tiple materials without increasing the number of design variables.

All these models have been successfully applied in the topology optimiza-
tion of static problems, such as compliant mechanism design as mentioned
above, tunnel support design, stiff structure design, etc. Further, the homoge-
nization model has also been applied in the design of vibrating structures (Ma
et al. 1995). In this paper, the SIMP model and the peak function model will
be explored for use in dynamic problems of resonator optimization.

Choosing appropriate optimization algorithms is another important issue
in topology optimization. Due to a very large number of design variables,
conventional mathematical programming methods may result in a very poor
efficiency in topology optimization. As a result, a kind of Optimality Cri-
teria (OC) updating algorithm is often used instead (Bendsoe and Kikuchi
1988; Suzuki and Kikuchi 1991). It solves the necessary conditions for an op-
timal point iteratively. Even though it converges well in static problems, it



may not always work in dynamic problems. Thus some researchers have pro-
posed a Modified Optimality Criteria (MOC) algorithm for frequency response
optimization (Ma et al. 1993). This algorithm employs a shifted Lagrangian
function to make a convex approximation and then solves the convex problem
by using a dual method. In this paper, the Method of Moving Asymptotes
(MMA) (Svanberg 1987) will be used as the main algorithm. MMA is based
on a similar idea that deals with a non-convex problem by solving a sequence
of convex approximations. It can be looked on as a further generalization of the
widely used Convex Linearization method (CONLIN) (Fleury and Braibant
1986; Fleury 1989). In order to attempt to obtain a global optimum, Genetic
Algorithms in conjunction with local refinement (Hybrid GA) will also be em-
ployed in this paper.

In summary, a simple but effective material distribution model and an ef-
ficient optimization algorithm along with a well-posed objective function form
the key issues which must be addressed in topology optimization problems. In
what follows we discuss our approach to each of these issues as they pertain
to the problem of resonator quality optimization. This paper is focused on
the control of the first several eigen-frequencies of a resonator and no energy
dissipation is considered.

2 Material distribution models

The problem addressed here is to move the eigen-frequencies of a microelectro-
mechanical resonator using topology optimization. Two material interpolation
models are used in this paper: one is the SIMP model and the other is the
peak function model. For the SIMP model the material interpolation function
is repeated as follows:

C(z) = [p(=)]™ C°, (%)

where p is the design variable at point « and has a value between 0 and 1.
To avoid singularities in finite element analysis, p should have a lower bound
which is slightly greater than 0. The penalty factor n; is greater than 1. The
above function has been used in static problems for a long time. For dynamics
problems, a similar interpolation function is needed for the mass density:

p() = [p()]™ o°. (6)

The only difference is that penalty factor 1, has a different value than n;. The
values of the two penalty factors need to be chosen so that the problem can
be well approximated as the design variables approach their lower bound or
upper bound.
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For the peak function model, material interpolation functions for elastic
moduli and mass density are defined as follows:

C(z) = Clexp [-%1)12] + Cvod (7)
xz)]? .
ple) = exp | L] 4 o ©

Similarly, C***¢ and p"%*¢ are small positive numbers to avoid singularities. In
this paper,

Cuoid — CO x 10—15 (g)
puoid — pO x 10-16 (10)

and o, and o5 are small positive parameters so that the functions act as 6-
functions. An advantage of the peak function model is that we do not need
side constraints on the design variables,

3 Problem formulations

Based on a finite element discretization, where the “density”-like design vari-
ables p; are element-wise constant and the subscript 7 ranges from one to the
number of elements in a specified design domain, nelt, the eigen-frequencies
of the structure are then functions of p;. In order to unify the two material
distribution models, let us define another element-wise constant quantity:

6, =p!*, i=1, nelt (11)
for the SIMP model and
p?
0; = exp [——‘] , t1=1, nelt (12)
o1
for the peak function model. Then the general problem can be formulated as:
n —
min LrPi) — Wk (p_‘_? — (13)
i=l,::wlt k=1 Wk
subject to
nelt
g=) 6:(1-6;)=0. (14)

i=1
For the SIMP model, we further need to add bounds on the design variables:
005<p; <1, i=1,nelt, (15)



where 0.05 is used instead of 0 for lower bound to avoid singularities. In the
objective function, the @y, are pre-specified target eigen-frequencies. By adjust-
ing @y, we can cluster certain eigen-frequencies or make them well separated.
The constraint implies that in each element the quantity €; must be either 0
or 1.

With this type of objective function, it is possible to obtain non-physically
realizable checkerboard topologies. In order to avoid checkerboard patterns or
one-node connected hinges in structures if four-node square finite elements are
used, we need to add another constraint, as done in (Poulsen 2002):

H(p) =0, (16)
where

H(p) =Y h(B:, Ois1,j, 641, Oir1,i41) (17)
i3
is a descriptor function for one-node connected hinges. Here the sum effectively

runs over all nodes and the double indexing of § implies the four elements
topologically connected to the node of concern. The local function

h(a,b,c,d) = m(a,b,d) x m(a,c,d) x m(b,a,c) x m(b,d,c) (18)
is defined at each node and
m(a,b,c) = [b—a|+lc—b] —|c—al. (19)

If we assume that §; has reached either 0 or 1 in each element, then each
one-node connected hinge will make the local function h = 16. Note that local
functions are non-negative and they can never be canceled out from node to
node.

In summary, the problem formulation consists of Equations (13, 14, 16).
If the SIMP model is used, the constraint shown in Equation (15) should be
included as well.

4 Optimization algorithms

Two types of algorithms will be used to solve the optimization problems posed
above. One is a Genetic Algorithm and the other is the Method of Moving As-
ymptotes (MMA) (Svanberg 1987; Svanberg 1995; Bruyneel et al. 2002). Due
to the probable large size of the topology optimization problem, the conven-
tional Genetic Algorithm must be combined with local refinement by gradient
methods (Hybrid GA) to improve efficiency. In this paper, Hybrid GA is ap-
plied in conjunction with the peak function model. The constraint condition



is satisfied using a penalty method. The problem formulation is then slightly
modified as:

n -—
min wk(Pi? — W,
Pi D

i
i=lnelt 1

+w; X g+wp x H. (20)

The performance of the penalty method depends strongly on the choice of
penalty factor and this actually constrains the wide application of the method.
However, it is not a problem in our case because we clearly know how large
each term on the right hand side of Equation (20) should be in a useful design.
The first term is set based on the tolerance of the problem (about 0.05 in this
paper). The second term g should be almost zero and the third term H must
be zero. The penalty factors in this paper were chosen as:

wy = 108 (21)

The factors should be chosen such that the values of w; x g and wy x H are
comparable. GA here is combined with the gradient method BFGS for local re-
finement. One or two iterations of BFGS were applied to each sampling point.
This can greatly improve the performance of GA in the numerical experiments.

The second algorithm used here is MMA, which was particularly devel-
oped for structural optimization. It solves a sequence of convex approximating
subproblems. Due to their convexity and separability, the subproblems can be
efficiently solved by a dual method. This makes MMA a good choice for large
scale problems in topology optimization. In our case, MMA is applied along
with the SIMP model. The formulation was slightly modified as:

n —
min 3 [“6(P) ~ (23)
=lmelt by Wk
subject to
g+H=0 (24)
005<p;: <1, i=1 nelt. (25)

One difficulty in topology optimization is that the nearest local minima have to
be avoided (Sigmund and Petersson 1998; Sigmund 1997). Local minima may
make the MMA iteration stop very quickly and return an unacceptable result.
Some techniques have been developed to deal with the problem (Sigmund and
Petersson 1998; Sigmund 1997; Hilding 2000). The technique used here is a
heuristic homotopy one. The constraint was relaxed first and then gradually
made strict. As a result, many (non-feasible) intermediate “densities” would
appear in the beginning of the optimization process, but this allowed the al-
gorithm to avoid local minima and achieve better results to some extent. As
the feasible domain becomes exact, all the intermediate “densities” go to their
limiting values, either 0 or 1.



5 Sensitivity analysis

Both Hybrid GA and MMA require efficient gradient evaluations. Fortunately,
for the problem which we address the gradient can be computed analytically.
For the derivative of eigen-frequencies, consider the following standard eigen
problem:

(K = AnM)o, =0, (26)

where A, = w2 and K and M are global stiffness and mass matricies from
a finite element discretization. The eigen-vectors will be assumed to be mass
orthonormal. The sensitivity of A, to design variable p; can be written as (Ma
et al. 1995; Ma and Hagiwara 1991):

A, r (0K 3M
i = (3}7 ) #n
Ok; 3m,
¢n i (3p1 —3—;) ¢n,:’, (27)

where ¢, ; stands for the component of the nth eigen-vector pertaining to the
ith finite element and k; and m; denote the element stiffness and mass ma-
trices, respectively. The sensitivity of the element stiffness and mass matrices
can be calculated in a stra.ight-forwa.rd manner:

/ BTaD B.d2
3p,

omy 9p; T
—-— = N; N;d. 28
Op; o, Opi (28)
For plane stress problems, the material matrix in the ith element is given as:
2hip 2744
Ait+2ui + 2p; Ait2p 0
= 2Aipg 2Aeps
Dz - ANit+2p4 r\,--i-‘2y.,' + 2#' 0 . (29)
0 0 i
For the SIMP model
A = Ao (30)
pi = pop* (31)
pi = p’p[? (32)
and
oD; m
o _Mip, 33
opi  pi (33)
Opi _m . (34)




For the peak function model

p? )
A = Al exp [—-'-J 4 Aveid (35)
o1
0 A id
=y [ 2] -
71
0 P? i
pi = p°exp [——’J +pverd (37)
o2
and
oD; _ 2p;
T 3%)
Opi _  2pi
% = o2 Pi, (39)

where the terms with superscript “void” were ignored in the calculation of
sensitivities.

It should be noted that the sensitivity calculation is different for repeated
eigen-frequencies. In fact, the sensitivity analysis for repeated eigenvalues and
the associated eigenmodes has been discussed frequently (Chen and Pan 1986;
Dailey 1989; Juang et al. 1989; Mills-Curran 1988; Ma and Hagiwara 1994;
Kenny and Hou 1994). Assume that ¢; and ¢, are a pair of eigenvectors asso-
ciated with the (doubly) repeated eigenvalue A, Then any linear combination
of ¢, and ¢q, y1¢; + y2¢,, is also the eigenvector associated with A. The
derivatives of a repeated eigenvalue A can be obtained as the solution to the
new (2 x 2) eigenvalue problem:

- O\ -
(K - @-M) y; =0, (40)
where
_ oK oM
K = [¢1»¢2]T (5;7 - /\79?) [¢1: 4’2]
M = (¢, 05)" M[¢y, b5 (41)

and y; = [y1, 2] is a 2 x 1 vector.

We further need to calculate the sensitivities of the descriptor function
which has been addressed in (Poulsen 2002). Consider the local function h
defined in Equation (18), its derivative with respect to the 1lst entry can be
written as:

8h _ 9m(a,b,d)
3= e X m(a,c,d) x m(b,a,¢c) x m(b,d, ¢) +
%ﬂ x m(a, b, d) x m(b,a,c) x m(b,d,c) +
a
dm(b,a,c)

e x m(a,b,d) x m(a,c,d) x m(b, d, c). (42)
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Then the sensitivity of H to 6; ; is:

min(i,n;—1) min(j,ng—1)

OH
e Z Z hi(8ii 35, Giit1,55» 0i j 415 Giig1 5541 ), (43)
B ii=max(i—1,1) jj=max(j—1,1)
where

k=i—ii+2(j—jj)+1 (44)

and h j stands for the derivative with respect to the kth argument. Here it is
assumed that the design domain is discretized into n; X ng square four-node
finite elements. The sensitivity of H to design variable p; can then be calcu-
lated by using the chain rule.

The sensentivity analysis of constraint (14) is trivial and omitted here.

6 Numerical examples
6.1 Description of problem

The example problem considered in this paper is the design of a square bounded
microelectromechanical resonator. The goal is to adjust the first several eigen-
frequencies using topology optimization. The white part in the center of Figure
1 is the design domain. The chocolate colored part represents existing material,
The material of the resonator is poly-silicon, with the following properties:

E =150 GPa. (45)
v =022 (46)
p = 2330 kg/m3, (47)

The structure has an in-plane vibration mode and a plane stress solid model
is assumed in the whole structure. Four-node bi-linear elements were used to
discretize the domain. The finite element analysis was performed using HiQLab
(Bindel 2005). After discretizing the design domain into finite elements, one
needs to determine the material density in each element. In other words, one
needs to determine which elements are void and which are filled.

6.2 Validity of material distribution models

The validity of the material distribution models was examined first. For the
models to be physically useful, the parameters 91, 12 in the SIMP model or
o1, 02 in the peak function model must be chosen so that as 6 goes to the
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104

Fig. 1 Design domain of a microelectromechanical resonator (interior white part). Choco-
late colored part represents existing material. Dimensions are in meters.

limiting values 0 or 1, the resulting eigen-frequencies approach those from a
pure discrete problem. In this paper these parameters were set as:

m = 6 ) ne = 11
o1 =0.01, o5 = 0.005. (48)

In Figure 2 and 3, the first several eigen-frequencies of the domain shown in
Figure 1 were calculated from a pure discrete model for the cases of § = 0 (i.e.,
the interior part is void) and = 1 (i.e., the interior part is completely filled),
otherwise they were calculated from the continuous mass distribution models.
Note that the case of § = 0 produces the eigenvalues solely associated with the
Jboundary conditior, We can see that the continuous mass distribution models
converge well to the two limiting cases. This implies that each element can be
simply interpreted as “on” or “off” as long as material density in it is close to
1or0.

6.3 Results by Hybrid GA

As the main advantage, Hybrid GA can find global optima, but it is still expen-
sive as compared to MMA due to a very large number of objective evaluations.
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Fig. 4 Optimal topology by Hybrid GA (irregular but accurate in terms of objective func-
tion value). Dimensions are in meters.

As mentioned before, in this paper Hybrid GA is applied in conjunction with
the peak function material model. It can be applied on a coarse mesh resolu-
tion to get a preliminary result. Figure 4 shows an optimal topology obtained
by Hybrid GA, where the goal was to cluster the first two eigen-frequencies
around 1.04 GHz and the design domain was discretized into 121 finite ele-
ments. We obtained w; = 1.0400 GHz and w; = 1.0434 GHz. The result is
wery accurate in terms of frequencies, but it demonstrates an irregular topol-
ogy and is certainly not good from the point of view of manufacturing.

6.4 Utility of local refinement in Hybrid GA

The efficiency of local refinement in Hybrid GA was examined as well. Starting
from each sampling point in the previous example, one or two BFGS itera-
tions were conducted. Figure 5 shows that local optimization highly improves
the efficiency of GA. Both the objective function value and 1st order optimal-
ity decrease significantly in only five or six function evaluations, so it greatly
saves overall computing time. Table 1 shows a comparison of the overall per-
formance between conventional GA and Hybrid GA when the design domain
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Table 1 Comparison between GA and Hybrid-GA.

Conventional GA  Hybrid-GA

Function evaluations 11817 1060
Generations 500 10
Computing time 350 mins 115 mins
Objective function value attained 0.072 0.010
1400 T T — T T — T T
© 1200‘r -
H
S 1000t 4
]
5 800
g ]
< e00f
£
§ 400f .
: 3
° 200 b
o L N L o L ) )
o 02 0.4 0.6 08 1 1.2 14 16 18
iteration number
x 10°
P T — T T T T v -
2151 L
]
E
& b ]
:
o
5 osr ]
0 . ) . . L L L L
0 0.2 0.4 0.6 08 1 1.2 14 16 18

iteration number

Fig. b Efficiency of local refinement in Hybrid GA, with both objective function value
(upper graph) and first order optimality (lower graph) going down significantly after two
iterations of BFGS.

is discretized into 676 elements.

6.5 Results by MMA

As mentioned before, in this paper MMA is applied together with the SIMP
material model. MMA is a local optimization algorithm, so it is prone to get-
ting stuck in local minima. To avoid this, we have used a kind of continuation
method mentioned above. By firstly applying a relaxed constraint and then
making it stricter and stricter, instead of directly enforcing the exact con-
straint condition, one can achieve a satisfactory optimal design. In this case,
the constraint function in (24) is rewritten as

g+H<e (49)
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Fig. 6 First constrained problem solved by MMA, with small objective function value
attained (upper graph) but large constraint function value (lower graph).

In the very beginning of the optimization process, € is given a large positive
value so that the constraint is essentially redundant. In the next step, the value
of € is lowered and a new sequence of MMA iterations is performed again to
solve the new and stricter constrained problem. We repeat this procedure un-
til the original constraint was satisfied, which means that all the intermediate
variables reach their limiting values 0 or 1. Figure 6 shows how MMA works
in the first step when the constraint condition is relatively weak; the upper
curve plots the objective function values versus iteration number while the
lower curve plots the constraint function values during the iterations. Figure
7 shows the case in the following step, where a smaller value of ¢ makes the
optimal point in the first step infeasible. It will then converge to a new opti-
mal point from outside the feasible space defined by the current e. During this
period, the objective function value has to go up but the constraint function
value goes down. In Figure 7 it eventually stops at an interior point near the
boundary. After solving a sequence of constrained optimization problems we
can obtain a good optimal design. Figure 8 shows the terminal step where the
objective function value can not go down inside the feasible domain, which
implies that it converges to an optimal point that lies on the boundary. Both
objective function value and constraint function value are reasonably small at
the end of the process.
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Some optimal topologies obtained using MMA are shown below. In these
numerical examples there are 1024 elements in the design domain. The related
parameters used in our MMA had the following value for each variable:

s0 = 0.0001 (50)
U; =1.00 (51)
L; =005 (52)
5 =08 (53)

(refer to Svanberg 1987 for more detail of these parameters). These values
were appropriate for our example problem as they made asymptotes close to
iteration points and thus the program became more stable. This was neces-
sary when the objective function value changed rapidly. For each value of ¢,
100 iterations of MMA were executed to solve the corresponding constrained
problem. In the next main iteration ¢ was decreased by a factor of 0.8 (i.e,
€41 = 0.8 X ¢ with 7 denoting main iteration number). The process was
repeated until both the objective function value and the constraint function
value became small enough. As the starting point of optimization, the material
density was uniform over the whole domain and roughly equal to 0.5.

Figure 9 shows an optimal topology for setting the fundamental eigen-
frequency. The target eigen-frequency is 1.5 GHz and the structure obtained
has a fundamental eigen-frequency of 1.4 GHz. Figure 10 shows an optimal
topology for clustering the first two eigen-frequencies around 1.04 GHz and we
obtained w; = wz = 1.03 GHz. The corresponding eigen-modes are displayed
in Figure 11 and Figure 12. Figure 13 shows the case where the first two eigen-
frequencies are clustered around 1.04 GHz and well separated from the third
one. The first five eigen-frequencies for this topology are

w; = wy = 1.0230 GHz,
wy = 1.2300 GHz, w, =1.6879 GHz, ws=19348GHz.  (54)

7 Summary and recommendations

We have presented a few options for topological optimization for eigen-frequencies
of microelectromechanical resonators. As the first material distribution model,
the peak function model was applied and the resulting optimization problem
was solved using a Hybrid Genetic Algorithm. Local refinement was conducted
using MATLAB’s built-in function “fminunc” which implements the BFGS al-
gorithm. The peak function model does not need side constraints for design
variables, so we only need to solve an unconstrained optimization problem in
local refinement and this improves efficiency. As the second material distribu-
tion model, the SIMP model was also applied and the resulting problem was
solved using MMA. MMA can usually find an optimal structure with some
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Fig. 9 Optimal topology for setting fundamental eigen-frequency to 1.4 GHz by MMA.
Dimensions are in meters.

regularities, but it may stop at local minimum. Hybrid GA can lead to bet-
ter result in terms of objective function values but the resulting structures
are usually irregular due to its stochastic characteristic. Thus for our problem
class, we find the MMA algorithm to be superior.
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Fig. 13 Optimal topology for clustering the first 2 eigen-frequencies around 1.04 GHz and
separating from others. Dimensions are in meters.





