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Abstract

Episodic-like memory is thought to be supported by attractor dynamics in the hippocampus. A possible neural substrate for
this memory mechanism is rate remapping, in which the spatial map of place cells encodes contextual information through
firing rate variability. To test whether memories are stored as multimodal attractors in populations of place cells, recent
experiments morphed one familiar context into another while observing the responses of CA3 cell ensembles. Average
population activity in CA3 was reported to transition gradually rather than abruptly from one familiar context to the next,
suggesting a lack of attractive forces associated with the two stored representations. On the other hand, individual CA3 cells
showed a mix of gradual and abrupt transitions at different points along the morph sequence, and some displayed
hysteresis which is a signature of attractor dynamics. To understand whether these seemingly conflicting results are
commensurate with attractor network theory, we developed a neural network model of the CA3 with attractors for both
position and discrete contexts. We found that for memories stored in overlapping neural ensembles within a single spatial
map, position-dependent context attractors made transitions at different points along the morph sequence. Smooth
transition curves arose from averaging across the population, while a heterogeneous set of responses was observed on the
single unit level. In contrast, orthogonal memories led to abrupt and coherent transitions on both population and single
unit levels as experimentally observed when remapping between two independent spatial maps. Strong recurrent feedback
entailed a hysteretic effect on the network which diminished with the amount of overlap in the stored memories. These
results suggest that context-dependent memory can be supported by overlapping local attractors within a spatial map of
CA3 place cells. Similar mechanisms for context-dependent memory may also be found in other regions of the cerebral
cortex.
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Introduction

The rodent hippocampus forms a neural representation of the

local environment using a dual rate and position code: Each

pyramidal neuron is active when an animal is located within a

distinct location in space [1], and its mean firing rate within this

location varies with contextual features like the color or shape of

enclosing walls [2]. These two coding schemes can be distin-

guished by observing how the network ’remaps’ in response to

changes in the local environment. Exposing the animal to a

physically different space has been shown to induce global

remapping, in which both location and firing rate of place cells

take entirely new values [2–5]. Different environments therefore

appear to be encoded by separate spatial maps [6]. In contrast,

manipulating contextual features like the color or shape of

surrounding walls [2], odors [7], or task [8] within the same

space can elicit substantial changes in firing rates while the

location of place fields is unaffected. Such ‘rate remapping’ can

affect behavioral decisions [8], and appears to reflect the presence

of multiple context-dependent memories stored within a single

spatial map.

According to current attractor network theory (e.g. [9–11]),

discrete attractor dynamics for contextual memory is expected to

manifest as an abrupt shift in the neural representation as one

context is morphed into the next, as is the case for global

remapping. Contrary to this prediction, a gradual transition in the

population activity of CA3 place cells was observed as a familiar

square arena was morphed into a familiar circular arena in six

steps following training in a rate remapping paradigm [12]. These

results imply that place cell firing rates are not dictated by

network-wide attractor dynamics of the Hopfield type [5,12].

On the other hand, both gradual and abrupt transitions were

observed on the single neuron level, and in CA3 the transition

points of single neuron firing rates also depended on the direction

of morphing, a form of hysteresis characteristic of nonlinear

systems [13]. We hypothesized that discrete attractors embedded

in the CA3 network might give rise to different dynamics than

those of Hopfield type networks due to effects of spatially

dependent connections between place cells. Building on previous

work on combining discrete and continuous attractor networks

[14–16], we demonstrate here that a network model in which local

attractors for contextual features are embedded in a continuous
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attractor for spatial position can account for the apparent conflict

in the evidence for attractor dynamics in experimental data on rate

remapping.

Results

Network model
To investigate the role of attractor dynamics in rate remapping

we considered a recurrent neural network model of hippocampal

area CA3 in which each position in the environment was

represented by a group of CA3 units. External synaptic input

from medial (MEC) and lateral (LEC) entorhinal cortices carried

information about rat position and external sensory cues (context)

respectively, in line with anatomical and physiological evidence

(Figure 1a) [17,18]. The activity of the ith hippocampal unit, ri,

evolved according to

d

dt
ri(t)~{ri(t)zf J

X
j

wijrj(t)zEsi(t)z(1{E)hi

 !
ð1Þ

where si(t) and hi denote the synaptic input at time t to the ith

hippocampal neuron from MEC and LEC respectively. E = 0.8 is

a constant determining the relative contribution of these two

inputs. The parameter J determined the strength of recurrent

feedback from stored memories.

Memories were stored using a Hebbian learning rule where the

synaptic weight between the ith and jth hippocampal neuron, wij,

depended both on the Euclidean distance between their place field

peak positions || (xi - xj, yi - yj) || and their peak firing rates (ji
m, jj

m)

in each of M stored context memories (Figure 1d):
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where n= 0.3 L defined the place field spatial scale in a square

arena of side length L = 75 cm.

Activity was passed through a non-linear activation function f(u)

with divisive normalization [19]:

f (ui)~
½ui�z

1z
P
k

½uk�z
ð3Þ

Where [ ]+ denotes rectification.

Each LEC input, hi, was spatially homogeneous and indepen-

dent of time, but had a distinct firing rate for each context, e.g.

hi = ji
1 for context A and hi = ji

2 for context B (Figure 1c, top row;

Methods). The number of overlapping units in rate vectors j1 and

j2 for each position was denoted by the parameter a.

Each MEC input, si(t) had a unimodal spatial profile (Figure 1c,

middle row) that was identical for all contexts, approximating the

sum of input from grid cells and other spatially modulated cells

[20,21]

si(t)~e
{ xi{x(t)ð Þ2z yi{y(t)ð Þ2
� ��

s2

where (x(t), y(t)) denotes the position of the rat at time t in units of

bins, (xi, yi) is the preferred firing location of the ith hippocampal

neuron, and s = 0.3 L denotes the width of the MEC input relative

to the side length, L = 75 cm, of the arena. MEC input controlled

the position of the hippocampal output without significantly

affecting place field size.

Rat behavior was simulated by letting the peak of s(t) visit every

position in the 15-by-15 bin environment once, following a smooth

trajectory. The resulting place cells had single place fields with

differing positions and firing rates (Figure 1c, bottom row). The

identity of the active CA3 neurons encoded rat position as in

standard continuous attractor models, whereas the specific pattern

of firing rates within the active cell ensemble represented discrete

contextual information stored at that particular location (Figure1b,

bottom panel).

Rate remapping
To investigate the effect of recurrent collaterals on rate

remapping, we stored two contextual memories representing the

square and circular enclosures of the rate remapping experiments

in the synaptic weight matrix (Eq. 2). We focused our investigation

on the effect of two parameters: (1) The strength of the recurrent

feedback, J, and (2) the similarity between the two stored

memories, measured by the number of overlapping units, a, per

position in the environment. To illustrate primary characteristics

of these parameters we contrasted a feed forward model (J = 0)

with two feedback models that either had orthogonal memories

(a = 0 overlapping units per position) or memories with 67% neural

overlap (a = 12 out of 18 overlapping units per position).

Robust rate remapping was observed in response to a change in

LEC input for a wide range of parameters. Peak firing rates of

simulated place fields differed substantially between the two

contexts, as measured by the correlation between the vectors of

peak rates for each context (feedback model, a = 12: r = 0.08,

N = 1784; feedforward model: r = 0.01, N = 2693). The positions of

model place fields were similar for both LEC contexts, as

measured by a spatial correlation measure both for the feedback

model with overlapping memories (r = 0.7460.004; mean 6

s.e.m.) and feedforward model (r = 0.8160.003). Experimental

measurements from the CA3 are similar to the feedback model

(r = 0.7460.05 [12]), while empirically measured CA1 neurons

have lower spatial correlation (r = 0.4660.03 [12]) likely reflecting

the multiple place fields of CA1 place cells. The fact that rate

Author Summary

The activity of ‘place cells’ in hippocampal area CA3
systematically changes as a function of the animal’s
position in an arena as well as contextual variables like
the color or shape of enclosing walls. Large changes to the
local environment, e.g. moving the animal to a different
room, can induce a complete reorganization of place-cell
firing locations. Such ‘global remapping’ reveals that
memory for different environments is encoded as separate
spatial maps. Smaller changes to features within an
environment can induce a modulation of place cell firing
rates without affecting their firing locations. This kind of
‘rate remapping’ is still poorly understood. In this paper we
describe a computational model in which discrete mem-
ories for contextual features were stored locally within a
spatial map of place cells. This network structure supports
retrieval of both positional and contextual information
from an arbitrary cue, as required by an episodic memory
structure. The activity of the network qualitatively matches
empirical data from rate remapping experiments, both on
the population level and the level of single place cells. The
results support the idea that CA3 rate remapping reflects
content-addressable memories stored as multimodal
attractor states in the hippocampus.

CA3 Rate Remapping
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remapping can be performed both by feedback and feedforward

architectures is in agreement with experimental data and other

modeling reports [22].

The morph experiment
If discrete episodic-like memories are stored as attractor states in

a recurrent network, feedback connections should affect network

responses when inputs are gradually morphed from memory A to

memory B. To simulate the morph experiment [12,13] we linearly

changed the LEC input pattern from context A to context B in six

steps

hm
i ~

7{m

6
j1

i z
m{1

6
j2

i ; m~1::7 ð3Þ

For each of the seven LEC input patterns, hm, the virtual rat

explored each position of the environment once, following a

contiguous path. Network output depended on the strength of

recurrent feedback, the amount of overlap in the stored memory

patterns, and on the particular instantiation of the random

memories stored in the recurrent weights. Network output

qualitatively matched experimental recordings for the feedback

and feedforward model parameter values (Figure 2).

Without feedback connections (J = 0), both average population

activity (Figure 2a, solid blue line) and single unit activity

(Figure 2g) transitioned smoothly from the representation of

context A to context B. The distribution of population vectors in

the feedforward model was narrow with the peak gradually shifting

towards lower values, as indicated by almost equally spaced

sigmoidal curves in the cumulative distribution function (CDF)

(Figure 2d). A similar pattern was seen in the CA1 data from [12],

where the peak of the distribution of population vectors gradually

shifted from high correlations to lower correlations while the shape

of the distribution (slope of the CDF) was preserved (Figure 2b).

For the feedback model with overlapping memories, average

population activity transitioned smoothly (Figure 2a, solid purple

line) while individual unit responses displayed either smooth or

abrupt transition curves with a heterogeneous distribution of

transition points along the morph sequence (Figure 2h). As for data

from CA3 rate remapping [12] (Figure 2c), the distribution of

population vector correlations gradually widened rather than

merely shifting the peak towards lower correlation values, and

some population vectors remained highly correlated with the

initial shape even in the last morph shape (Figure 2e).

With orthogonal memories, average population activity more

closely resembled data from a global remapping regime [4]. The

representation abruptly switched from the initial morph shape to

the final morph shape (Figure 2a, solid gray line), a behavior

reflected in the abrupt and largely coherent firing rate curves of

individual units (Figure 2f).

Figure 1. Combined continuous and discrete attractor model for episodic-like memory. a, Network architecture. Each CA3 unit received
dedicated LEC and MEC population inputs in addition to recurrent activity from other CA3 units connected through the weight matrix w. b, Network
activity. Top: Each context was defined by a unique pattern of static LEC activity. Firing rate is color coded from dark blue (zero) to dark red
(maximal). Middle: MEC activity defined a position within the environment and was identical between contexts. For each of the 225 positions
eighteen place cells received identical spatial input. Bottom: Combining inputs from the MEC and LEC, the population activity in CA3 represents
both the position of an animal within an environment and the currently active context by the particular pattern of firing rates within the active cell
ensemble. c, Single unit activity. Top row: Single LEC units had distinct but spatially homogeneous firing rates, shown as difference in color. Middle
row: Single MEC units had broad Gaussian fields, representing the summed activity of several spatially modulated MEC neurons. Bottom row: Place
field responses from units in the feedback model of CA3 had context modulated firing, affecting both peak firing rate and place field size. d, The
recurrent weight matrix had a spatial component (diagonal band) and a discrete, contextual component (discrete pattern within band). Periodic
boundary conditions are visible as stripes in bottom left and top right corners. Colors denote zero weights in dark shades to maximal weights in
bright shades.
doi:10.1371/journal.pcbi.1003648.g001

CA3 Rate Remapping

PLOS Computational Biology | www.ploscompbiol.org 3 June 2014 | Volume 10 | Issue 6 | e1003648



These results demonstrate that cardinal differences in the

phenomenology of remapping could be explained by differences in

internal network connectivity, both between hippocampal areas

and within the CA3.

Contextual attractor dynamics
We next asked whether networks with a gradual population

transition curve can still have discrete attractor states for the stored

memories. To this end, we performed one thousand network

simulations where the network received arbitrary positional input

from the MEC and random contextual input from the LEC, and

measured the correlations between network input and output.

Output from the feedback network with overlapping memories

was significantly more correlated with one of the stored patterns

(rretrieved = 0.6660.02; mean 6 s.d.) than the random input

(rinput = 0.3860.02; t = 288; d.f. (degrees of freedom) = 1998;

Figure 3b). Therefore, a network can retrieve contextual memories

even if it displays gradual population transitions through the

morph sequence. As expected, for the network with orthogonal

memories this pattern completion effect was even stronger

(rretrieved = 0.8860.04 vs rinput = 0.4460.03; t = 297; d.f. = 1998;

Figure 3c). As long as MEC input was stronger than input from

LEC, the influence of their relative balance (E) on the pattern

completion results was negligible (data not shown).

Spatial attractor dynamics
Network connectivity was structured to support both spatial and

contextual attractor dynamics. The spatial component served to

confine activity to a single activity bump of CA3 units ensuring the

expression of single place fields. MEC input determined the

position of the CA3 bump and provided sufficient spatial stability

to move CA3 activity along the simulated path. To investigate

how spatial stability depended on MEC input, we performed one

thousand network simulations with random LEC input but no

MEC input. Even without MEC input network activity converged

to a single bump of activity for random LEC input. The spatial

tuning of the network activity increased with recurrent strength,

both for the network with orthogonal memories (Figure 4a) and

overlapping memories (Figure 4b), but at the expense of spatial

stability, a familiar issue for continuous attractor networks [15,23].

Spatial stability, measured as the number of stable positions that

could be retrieved for the 1000 random LEC input patterns,

Figure 2. Comparison of model output to hippocampal data in the morph experiment. a, Mean correlation between population vectors
across the morph sequence. Experimental data in dotted lines and model output in solid lines. Blue: Data from CA1 rate remapping and feedforward
model. Purple: Data from CA3 rate remapping and feedback model with overlapping memories. Gray: Data from CA1 global remapping and feedback
model with orthogonal memories. Experimental data curves from [12] and [4]. b-e, Cumulative distribution functions (CDF) of population vector
correlations for the 6 morphed environments numbered 2-7. b, for CA1 rate remapping data (Adapted from [12]). c, for CA3 rate remapping data
(Adapted from [12]). d, for the feedforward model. e, for feedback model with overlapping memories (a = 12). f, Schematic of a population vector
(PV). For each position of the environment, a PV consisting of the firing rate of each unit at that position was constructed. Each PV of the first morph
shape was then correlated with the corresponding PV of the subsequent 6 morph shapes. The mean of these PV correlations are plotted in a for each
morph shape. g-i, Maximal firing rates of individual units in the model as the morph sequence progressed from square to circle. g, Units in the
feedback model with orthogonal units transitioned abruptly and coherently around the same point of the morph sequence. h, Units in the
feedforward model followed the linear change in the contextual input across the morph sequence. i, Units in the feedback model with overlapping
memories displayed a heterogeneous pattern of responses with both gradually transitioning units and units that transitioned abruptly at different
points along the morph sequence.
doi:10.1371/journal.pcbi.1003648.g002

CA3 Rate Remapping
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decayed gracefully with increasing recurrent weight strength

(Figures 4c and 4d).

Morph transition dynamics
Why do the contextual attractor dynamics of the network with

overlapping memories not show up as abrupt transitions across the

morph procedure? One possibility is that a hysteretic effect biases

the representation towards the initial context, so that activity never

completely escapes from the attractor of context A. Whereas place

cell firing rate in the dentate gyrus is a direct function of the

current morph stage, the firing rate of single CA3 neurons depends

on the direction of morphing [13]. Although this kind of hysteresis

could be an effect of short term plasticity [24], it is also a generic

property of attractor networks [25].

The strength of recurrent feedback substantially affected the

population response through the morph sequence (Figure 5). As

feedback strength was increased, the representation of the two end

shapes became less correlated (Figure 5a), and the CDF curves

showed wider distributions of population vector correlations

(Figures 5c–f).

To explore the effect of hysteresis on the network activity in the

CA3 model, we first simulated a version of the scrambled morph

experiment [12], in which network activity was reset to zero

between each morph stage. For the network with overlapping

memories, resetting network activity only marginally affected

population vector correlations (Figures 5a and 5b). Both the

graded transitions and the shape of the CDFs were maintained

without hysteresis. This is consistent with the original experimental

observation that scrambled intermediate shapes produced the

same population response patterns as the sequential morph

[12], and suggests that gradual population transitions with wide

population vector distributions is not dependent on hysteresis or

plasticity but rather a signature of the stored memory patterns.

For the network with orthogonal memories, average population

transitions were abrupt even for small values of J (Figure 6a). The

CDF curves (Figure 6d–f) also markedly differed from the case

with overlapping memories (Figure 5d–f), and wide distributions of

population vector correlations were not observed for any setting of

the parameters. Resetting network activity between shapes had a

profound effect on population activity in the network with

orthogonal memories (Figure 6b), indicating a strong effect of

hysteresis due to non-linear network dynamics. The effect of

network-wide hysteresis increased with feedback strength until the

network ultimately remained trapped in the initial representation

(Figure 6a, pink line). This is reminiscent of strong population level

hysteresis observed for both hippocampal and entorhinal repre-

sentations in a global remapping regime (Supplementary figure

11a in [26]).

To assess the effects of hysteresis on the single unit level, we

simulated the reverse morph sequence and found that the subset of

units with firing rates that depended on the direction of morphing

increased with the strength of feedback and decreased with the

amount of overlap in the stored representations of context

(Figure 7). The fraction of hysteretic units also varied with the

particular random memories stored in the network (data not

shown). In other words, a small number of hysteretic units were

observed even in networks whose mean population response

transitioned gradually across the morph sequence. The prevalence

and inter-subject variability of hysteretic units in rate remapping

Figure 3. Discrete attractor dynamics for context in the feedback models. a, Random LEC input was provided with the spatial MEC input to
test whether model output would converge to one of the two stored patterns. b, Feedback model with overlapping memories (a = 12). Pattern
completion as a function of feedback strength, J, in Eq. 1. For sufficiently strong feedback, model output correlated significantly more strongly with
one of the stored memory patterns (purple) than the random input pattern (yellow) or the other stored memory pattern (blue). c, The pattern
completion effect was even stronger for the feedback model with orthogonal memories (a = 0). Colors as in b.
doi:10.1371/journal.pcbi.1003648.g003

Figure 4. Spatial attractor dynamics in the feedback models. a,
To test whether the model exhibited spatial attractor dynamics, random
LEC input was provided in the absence of MEC input. b-c, Spatial
modulation in the absence of MEC input for the feedback model with
orthogonal memories (a = 0) in b, and overlapping memories (a = 12) in
c. The model was simulated with 1000 random LEC input patterns and
no MEC input over a range of feedback strengths (J). The output
showed significant spatial tuning for large J. Mean of 1000 simulations
is shown for each value of J. Error bars denote STD. c-d, Spatial stability,
measured as the number of positions the network converged on in the
absence of MEC input, decreased as a function of feedback strength for
both feedback models.
doi:10.1371/journal.pcbi.1003648.g004

CA3 Rate Remapping
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experiments still awaits quantification, but substantial variability in

the effect of hysteresis has already been documented between

animals in the global remapping regime [4,26].

Signature of spatio-contextual attractor dynamics
To understand how correlations in the stored memories induce

gradual population transitions, we plotted the transition curve for

each position-dependent population vector in the feedback model

(Figure 8a). Rather than having one coherent context attractor,

the network displayed multiple position-dependent attractors that

transitioned at different points along the morph sequence. The

average of many individual abrupt transitions appears gradual on

the population level (Figure 5a). This explains why single cell

responses can be abrupt while the population average is smooth,

and predicts a spatial signature in transition dynamics for the

population (Figure 8b). Place cells with place fields close to each

other in space should have a tendency to transition at similar

points along the morph sequence. However, some units may

display smooth transitions if they participate to similar degrees in

both memories. In a network with orthogonal memory represen-

tations, population vector correlation profiles were much more

stereotyped (Figure 8c), and the spatial profile weaker but still

present for strong feedback (Figure 8d). The spatial profile of

population vector correlations is a result of local cell assemblies for

contextual features embedded in a spatial attractor manifold.

Discussion

Recent evidence supports a behaviorally relevant role for firing

rate modulation in context-dependent memory [8], but whether

rate remapping is governed by attractor dynamics is unclear

[5,27]. We analyzed the possibility that CA3 memories consist of

local attractor states embedded in a continuous spatial map [12].

Implementing this architecture in a network model was sufficient

to reproduce the main features of CA3 rate remapping on both the

single neuron and network levels in a way that was consistent with

episodic-like memory. The results support the view that place cells

process multimodal information through attractor dynamics.

Attractor dynamics
The key ingredient in the CA3 model was the discrete attractors

for contextual features stored locally within a broader spatial

attractor manifold in the recurrent weight matrix. The spatial

component of the synaptic feedback confined activity to place cells

with similar positional preferences and ensured that the position

with the strongest collective input was activated. Input was

dominated by spatial activity from MEC, implying that a relatively

weak signal for context is sufficient to elicit rate remapping.

Figure 5. Transition curves in the model with overlapping
memories (a = 12) were not shaped by hysteresis. a, Mean
population vector correlation transition curves for different feedback
strengths. Increasing J was associated with stronger pattern separation
and sharper transition curves. From blue to purple, J = (100, 180, 260,
380). b, To test history dependence of the transition curves, new
simulations where network activity was reset between every morph
shape were performed. The mean transition curves were not affected
by the manipulation. c-f, The CDF curves corresponding to the mean
population vector correlations in a qualitatively changed as J increased.
For sufficiently strong feedback, sharper transitions could be seen as an
asymmetry in how separated the CDF curves were.
doi:10.1371/journal.pcbi.1003648.g005

Figure 6. Population transitions and hysteresis in networks
with orthogonal memories (a = 0). a, Mean population vector
correlation transition curves for different feedback strengths. Increasing
J lead to sharper transition curves with strong pattern separation and
progressively stronger hysteresis. From blue to purple, J = (40, 60, 80,
110). b, When network activity was reset between each morph shape,
the hysteretic effect disappeared and the network transitioned at the
midpoint of the morph sequence for sufficiently strong feedback. c-f,
The cumulative population vector correlation curves changed as a
function of J.
doi:10.1371/journal.pcbi.1003648.g006

CA3 Rate Remapping
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However, spatial activity patterns were formed even without MEC

input, showing that any source of spatial information suffices to

produce place field responses. This spatial pattern formation

mechanism depends on dynamics of continuous attractors

[23,28–30]. The required intrinsic spatial structure is consistent

with the empirical observations that CA3 place cells tend to have

unimodal place fields [13] (but see [31,32]) and that place cells

preserve their spatial firing selectivity in the absence of either self-

motion cues [33] or visual information [34–36].

The discrete component of the synaptic weights forced CA3

activity towards one of the stored context memories in a process of

pattern completion, with the LEC input serving to bias which of

the two stored patterns were expressed. The contextual pattern

formation mechanism required LEC input to convey rate changes

in response to manipulations of external context, in agreement

with the finding that rate remapping is impaired in animals with

neurotoxic LEC lesions [37].

Global remapping
Global remapping is thought to involve independent linear

transformations of different grid cell modules [26,38,39], but

whether the transition is a coordinated effort or primarily driven

by either MEC or hippocampus is not known. Although the role of

the MEC in global remapping was not explicitly analyzed in

the present study, model simulations using orthogonal memory

patterns produced sharp and coherent transition dynamics in

response to relatively weak, linear changes in LEC input. Whereas

rate remapping might be an expression of switching between local

attractors within a common spatial map, global remapping might

express a switch between spatial maps represented by unrelated

neural charts [30,40]. The defining difference between rate

remapping and global remapping might therefore be the structure

of the CA3 feedback connections as much as the difference in

input, an interpretation which is commensurate with a recent

Figure 7. Single unit hysteresis. A hysteretic unit was defined as a
unit with more than 10% deviation in firing rate between morphing
directions in at least one morph shape. The figure shows the proportion
of hysteretic units as a function of feedback strength (x-axis) and
memory overlap (colors). Darker colors indicate more overlapping units
in the two stored memories.
doi:10.1371/journal.pcbi.1003648.g007

Figure 8. Signature of local context-dependent attractor dynamics for overlapping and orthogonal memories. a, Overlapping
memories. Correlation with square shape for all 225 population vectors across the morph sequence. Parameters and colors as in Figure 5. Stronger J
lead to incoherent transition points between population vectors. b, Spatial dependence of population transitions. Transition curves for population
vectors representing nearby positions had more similar transition points than population vectors representing distant positions, leading to a spatial
profile. The spatial profile was not present for the feedforward network (blue line). c, Orthogonal memories. Population vector correlation curves for
networks with orthogonal memories were largely coherent. d, A weaker spatial profile than in b was found for the correlations between transition
curves of population vector correlations for orthogonal memories.
doi:10.1371/journal.pcbi.1003648.g008
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analysis of the impact of storing correlated memories in continuous

attractor networks [41].

Hysteresis
In the empirical morph experiment, strong hysteresis led the

authors to suspect the presence of attractor dynamics [12].

One major difficulty in isolating the role of hysteresis in these

experiments is that long-time spatial averaging of population

vector correlations is a coarse measure of true network dynamics.

In the experiments, the animal is removed from the arena for

several minutes before being placed back into the next morph

shape. During this time, contextually related activity must be

retained or facilitated by the animal in order for a hysteretic effect

to contribute to the network dynamics. Hippocampal neurons are

reported to maintain their place-specific firing in the absence of

landmarks or visual cues over similar extended periods of time

[34,35,42]. The role of synaptic plasticity in such working memory

remains unknown but the phenomenon is likely to be supported by

mechanisms like synaptic facilitation [43] or gain modulation [15].

Another observation from the experimental study was that the

representation of the square and circular arenas were more similar

after experiencing the morph sequence than at pre-training.

Again, it is difficult to determine whether this decreased pattern

separation (a) is due to hysteresis in a strict dynamical systems

sense, (b) stems from a network whose response to new stimuli is

slow but ultimately independent of starting point, or (c) results

from a network that undergoes synaptic plasticity through

the morph sequence. From the perspective of the model, the

experimental observation can either be explained by a modulation

of the balance between entorhinal input and hippocampal

feedback or as a plasticity-dependent increase in the overlap

between the hippocampal representations of square and circle.

Although it is not clear why only the CA3 would be prone to such

representational malleability, synaptic plasticity is also implied by

the change in CA3 response to the morph sequence over multiple

exposures [12]. To accurately distinguish between these possibil-

ities however, analysis of network dynamics just before and shortly

after morph shape transitions are required. Such analyses are just

becoming feasible, as large-scale neural recording technology is

reaching maturity (e.g. [44]) and can be combined with new

experimental designs that allow for investigating remapping at the

appropriate time scale [45].

Functions of CA3 attractor dynamics
The present model of CA3 rate remapping relies on the

combination of continuous and discrete attractor dynamics,

and extends previous models for how both ’what’ and ’where’

information can be stored in an attractor network [15,16,46].

An intriguing consequence of the proposed architecture is that it

allows local modifications to a pre-existing representation of an

episode or spatial map without affecting other neurons coding for

distant positions. This flexibility to locally update the place field

map were experimentally observed in rats when a novel shortcut

was introduced in a familiar maze [47,48], when objects were

moved within a familiar arena [49-51], and when the goal location

was relocated within a Morris water maze task [52]. To ensure

spatial stability under conditions where external input is tempo-

rarily unavailable, additional stabilizing mechanisms may be

important [15,53,54]. However, rather than avoiding drift,

spatially dependent recurrent connections in CA3 could serve to

encode paths and topological relationships between contextual

features in the environment, consistent with the view that

hippocampal neurons encode "phase sequences" [5,55] and are

involved in path planning [56,57].

Rate remapping in the dentate gyrus
Rate remapping in the dentate gyrus has been shown to be

different from that in CA3 [13]. The dentate gyrus is generally

believed to perform a pattern separation of inputs to CA3 [11],

consistent with models showing that rate remapping in the dentate

gyrus can be explained in terms of inhibition-driven pattern

separation of inputs from the entorhinal cortex [22] or a synaptic

gating mechanism [58,59]. In principle, attractor dynamics could

also be part of the disynaptic connections of the Mossy-Hilar

system [60], and feedback connections from the CA3 could

influence dentate dynamics. Whether the dentate and CA3

operate as a unit or perform separable functions remains to be

determined. The present model predicts that CA3 rate remapping

can still be observed after dentate lesions, consistent with empirical

data showing that spatial selectivity of CA3 place fields is

preserved after dentate lesions [61].

Model predictions
How can we test whether attractor dynamics impact the

discharge patterns of CA3 place cells? The model makes several

predictions about place cell activity. First, we found that the

transition curves of nearby population vectors are more similar

than the transition curves of distant population vectors (Figure 8).

This spatial dependence in population activity transitions can be

measured from large-scale CA3 recordings in a rate remapping

paradigm. Furthermore, the signature should depend on active

recurrent collaterals, and require synaptic plasticity to form.

Second, single cell hysteresis is expected even in the absence of

synaptic plasticity, and should also be dependent on active CA3

feedback. Third, CA3 rate remapping should be independent of

the dentate gyrus provided that memories have already been

formed. Fourth, while rate remapping is dependent on LEC input,

spatial preference is expected to be flexible with regard to the

functional source of spatial information because it is encoded in

the recurrent connections. Finally, attractor dynamics are sensitive

to the balance between entorhinal input and recurrent feedback.

Molecular techniques for manipulating the strength of population

activity could provide means to test this prediction.

Conclusions
This study shows that attractor dynamics could provide a

mechanism for connecting discrete memories with a representa-

tion of space in a way that is consistent both with neurophysiology

and current theory for episodic-like memory [62]. The phenom-

enon of rate remapping is reminiscent of ’gain fields’ in

sensorimotor transformations, a multiplicative modulation of

tuned responses, as in brain areas responsible for eye and hand

position in the parietal reach region [63,64]. Gain fields typically

represent two or more continuous variables whereas rate

remapping involves more discrete patterns of activity, but both

phenomena could share similar mechanisms on network, neural,

and synaptic levels [65]. Understanding rate remapping might

therefore be important to our understanding of a much wider

range of brain areas [66,67].

Methods

Simulations
All simulations were based on a 75675 cm2 recording arena

discretized into position bins of 565 cm2, similar to [12]. Each of

the 225 positions had eighteen hippocampal units associated with

it, for a total of 4050 hippocampal units. In a simulated contiguous

path taken by the rat every position of each context was visited

once, long enough for the network activity (Eq 1) to converge.
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Network activity was not reset between positions or context shapes

except when explicitly mentioned. Periodic boundary conditions

were imposed on the environment, which had the topology of

a torus. All network simulations were run on Matlab 2012b

(Mathworks) using a forward Euler integration scheme. Conver-

gence was assumed when the mean difference between unit

activities was less than 361025 from one time step to the next. For

the standard parameters, simulations reached this convergence

criterion in 2396100 (mean 6 s.d.) iterations.

Network dynamics
The activity of the hippocampal units was governed by Eq 1. All

inputs were excitatory, and inhibition was provided both through

a subtractive term in the recurrent weights and a divisive term in

the activation function (Eq 3).

For the feed forward network (J = 0) in Figure 2, a feed forward

inhibition was added to the network to compensate for the missing

subtractive inhibition in the recurrent weights which increases

sparsity (pattern separation). The dynamics were thus governed by

the following equation:

d

dt
ri(t)~{ri(t)zf Esi(t)z(1{E)hi{Ið Þ

where I = 0.8 and the other parameters were as for Eq 1.

In the simulations, an activity bump contained 210610 (mean

6 s.d.) active units per position for the model with overlapping

memories (a = 12), and 293613 active units per position for the

model with orthogonal memories (a = 0).

Recurrent weights
Recurrent hippocampal activity was provided through the

connectivity matrix, w, in which a single shot Hebbian learning

rule stored the context representations (Eq 2). Two pattern vectors,

j1 and j2, of CA3 network activity were generated to represent the

square and circular contexts respectively (M = 2). The number of

active (non-zero) units was the same for both patterns and all

positions. The number of overlapping units per position in j1 and

j2 was denoted by the parameter a and ranged from 0 to 18 in

steps of two units. The level of activity for active units was drawn

from a uniform probability distribution. For networks with

orthogonal memories, a = 0, nine units were active in each pattern

and pattern vectors satisfied jm. jn = 0 for m ? n, where bold

denotes vector notation.

Analysis
Rate maps were constructed for each hippocampal unit by

calculating firing rate as a function of the 15615 position bins for

each environment. Based on these rate maps, population vectors,

population vector correlations, cumulative frequency plots of

population vector correlations, spatial correlations, and rate

overlap measures were calculated as in [12].

Spatial modulation index. The spatial modulation index

was taken to be the fraction of the total activity that was within a 5

by 5 bins square around the circular mean of the activity in the

two-dimensional network.

Measure for stable positions. The position read out by the

hippocampal network was defined as the circular mean of the

hippocampal network activity. The number of stable positions was

measured as the number of unique positions that the network

activity converged on after 1000 simulations with random LEC

input patterns. The maximal number of positions was 225.

Measure of context correlation between the output

pattern and stored patterns. The contextual correlation

between the hippocampal output, r, and a contextual pattern for

a given position (Figure 3) was calculated as corr(r, h ? s); where h
is an LEC input pattern or one of the stored patterns, j1 and j2. s
is the MEC input pattern at the current position thresholded at 0.3

to achieve spatial confinement.

Spatial profile of population vector correlations. For

each morph shape, the population vector correlation for each

position was calculated and plotted in Figures 8a and 8c. The

spatial correlation profiles in Figures 8b and 8d were calculated as

the correlation between the population vector correlation transi-

tion curves at different positions (Figures 8a and 8c) and plotted as

a function of the spatial distance between their positions.

Measure of hysteresis. Hysteresis was quantified by com-

paring the rate curve arising from morphing context A into context

B with that arising from morphing context B into context A. A unit

was counted as hysteretic if its firing rates in the two morph

directions differed by more than 10% of the difference between its

overall maximum and minimum rates, in at least one morph

shape.
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