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Spatial context is known to influence the behavioral
sensitivity (d′) and the decision criterion (c) when
detecting low-contrast targets. Of interest here is the
effect on the decision criterion. Polat and Sagi (2007)
demonstrated that, for a Gabor target positioned
between two similar co-aligned high-contrast flankers,
the observers’ reports of seeing the target (Hit and False
Alarm) decreased with increasing target–flanker
distance. This effect was more pronounced when the
distance was randomized within testing blocks
compared to when it was fixed. According to signal
detection theory (SDT), the latter result suggests that
the decision criterion is adjusted to a specific
distance-dependent combination of signal (S) and noise
(N) when the S and N statistics are fixed, but not when
they vary across trials. However, SDT cannot
differentiate between changes in the decision bias (the
criterion shift) and changes introduced by variations in S
and N (the signal and noise shift). To circumvent this
limitation of SDT, we analyzed the reaction time (RT)
data within the framework of the drift diffusion model
(DDM). We performed an RT analysis of the
target–flanker interactions using data from Polat and
Sagi (2007) and Zomet et al. (2008; 2016). The analysis
revealed a stronger dependence on flankers for faster
RTs and a weaker dependence for slower RTs. The results
can be explained by DDM, where an evidence
accumulation process depends on the flankers via a

change in the rate of the evidence (signal and noise
shift) and on observers’ prior knowledge via a change in
the starting point (criterion shift), leading to
RT-independent and RT-dependent effects, respectively.
The RT-independent distance-dependent response bias
is attributed to the observers’ inability to learn multiple
internal distributions required to accommodate the
distance-dependent effects of the flankers on both the
signal and noise.

Introduction

Detection of an oriented target improves in the
presence of similar, co-aligned, high-contrast flankers
(Morgan & Dresp, 1995; Polat & Sagi, 1993; Polat
& Sagi, 1994; Solomon & Morgan, 2000; Woods,
Nugent, & Peli, 2002). For oriented Gabor targets,
contrast sensitivity is doubled when the distance
between the target and flankers is about three times the
Gabor wavelength (Polat & Sagi, 1993). These spatial
interactions are suggested to be a manifestation of
the brain processes involved in contour filling-in, in
texture segmentation, and in perceptual grouping (i.e.,
contour integration) (Sagi, 1995; Zhaoping & Jingling,
2008). The earlier experiments, cited above, used the
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bias-free, two-alternative forced choice (2AFC) method,
considered efficient in estimating visual sensitivity (d′);
however, 2AFC provides no insights into the perceived
quality of targets, which is expected to be affected by
filling-in processes (Anstis, 2010). Polat and Sagi (2007),
employing the Yes/No method, found, in addition to
detection facilitation, a distance-dependent detection
bias; observers’ tendency to report “target present”
increased at short target–flanker distances regardless of
the presence of the target (Hit) or absence (False Alarm
[FA]). This suggests that the gap between flankers is
filled in with task-relevant information, supporting
the “filling-in” hypothesis. Both the increased target
sensitivity and the observed detection bias are thought
to be caused by lateral interactions in the visual
cortex, activated by the flankers. Report biases are also
affected by decision strategies, possibly related here to
statistical priors derived from the known characteristics
of natural images (Geisler, Perry, Super, & Gallogly,
2001). To better understand the contributions of lateral
interactions and decision strategies to the detection
bias, we present a reaction time (RT) analysis of the
experimental results collected in the previous Yes/No
experiments (Polat & Sagi, 2007; Zomet, Amiaz,
Grunhaus, & Polat, 2008; Zomet, Polat, & Levi, 2016).
The data were modeled using signal detection theory
(SDT) (Green & Swets, 1966) and the drift-diffusion
model (DDM) (Ratcliff & McKoon, 2008; Ratcliff,
Smith, Brown, & McKoon, 2016; Shadlen & Kiani,
2013). In the subsequent sections, we elucidate the
unified SDT–DDM framework employed to model the
data.

The SDT approach

Following SDT, it is assumed that observers base
their decisions on noisy sensory activity within the brain
(referred to as the “internal response”), monotonically
increasing with stimulus strength. For low-contrast
targets, the internal target response distribution,
referred to as Signal, or pS(x), may overlap with the
internal noise distribution representing no target,
termed Noise, or pN(x), thus leading to detection errors
(Figure 1). Consequently, Yes responses can be correct
(Hit, where PHit = the area under the green shaded
curve in Figure 1A) or incorrect (FA, where PFA = the
area under the red-shaded curve in Figure 1A). SDT
provides tools to compute a decision criterion from the
PHit and PFA values, which is the normalized internal
response level above which the observer produces a Yes
decision (denoted by the blue vertical line in Figure 1A).
This criterion is assumed to be observer dependent, and
it can shift according to task demands and the stimulus
properties available to the observer. However, when
observing a specific change in the Hit and FA rates, such
as the increased rates seen in our experiments, SDT
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Figure 1. Illustration of the problem addressed in this work.
(A) The standard SDT scheme: pN(x), the noise distribution (the
broken curve); pS(x) the signal distribution (the continuous
curve); and the decision criterion (the blue vertical line). The
regions of Hit and FA are highlighted in green and red,
respectively; the areas under the highlighted segments are PHIT
and PFA. (B) The decision criterion is shifted toward lower
internal responses, thus increasing PHIT and PFA. (C) pN(x) and
pS(x) are shifted toward higher activity levels without a criterion
shift relative to (A), producing the same increase in PHIT and PFA
as in (B). Our goal here is to decide between (B) and (C).

cannot distinguish between two potential causes: (1)
a shift in the decision criterion toward lower response
levels (Figure 1B), or (2) an elevation in activity levels
at the target location, shifting both the signal and noise
distributions to higher response levels (Figure 1C). In
the realm of SDT, the first cause (a criterion shift) is
believed to depend on the observers’ decision strategies,
which are flexible and aim to optimize the task outcome,
including the error rates, costs, and values, making the
task outcome inherently subjective. On the other hand,
the second cause is deemed sensory driven, or objective,
and is tied to the stimulus (such as flankers), influencing
the response of the system. Regarding the experimental
paradigm studied here, one might anticipate an increase
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in Yes responses in the presence of flankers due to (1)
the observers’ expectation for the gap between flankers
to be filled in, or (2) the increased sensory activity
at the target location (as in Figure 1C), prompted by
the input from the flankers. Both causes might reflect
adaptation of the visual system to the statistics of
edge co-occurrence in natural images (Geisler et al.,
2001).

Linking SDT to DDM

To disentangle the inherent ambiguity within SDT
and distinguish between the contributions driven by the
sensory activity and those influenced by the decision
criteria, we examined the experimental results using the
DDM framework (Ratcliff & McKoon, 2008; Ratcliff
et al., 2016; Shadlen & Kiani, 2013). Unlike SDT,
DDM introduces a temporal dimension to the decision
process, allowing RT-based predictions. According to
DDM, observers accumulate evidence both in favor
of and against the presence of a target. Early models
(Gold & Shadlen, 2001; Link & Heath, 1975; Stone,
1960) followed Wald’s (1947) sequential probability
ratio test, suggesting that each time interval produces
a log-likelihood ratio (LLR) value. This value assesses
the odds ratio for one stimulus being present versus
the other, and it accumulates over time intervals until a
decision is triggered. This occurs when the accumulated
value reaches one of two thresholds (bounds)—for
example, +a or –a for positive or negative decisions,
respectively. The starting point of the accumulator
(sp) can be selected to incorporate expectations,
prior information (e.g., in the present context, the
statistics of natural images), and the subjective value
of the decision, such as payoff and reward. The rate
of evidence accumulation, termed the “drift rate,”
increases with the target sensitivity, resulting in faster
attainment of the decision bounds. When the internal
response offers no evidence of the target presence or
absence, such as when pS(x) = pN(x), the drift rate (v)
is zero. Positive and negative drift rates correspond
to target-present and target-absent trials, respectively.
Thus, within the SDT framework, we assume that
LLR(x) = log[pS(x)/pN(x)] is integrated over time,
where pS(x) and pN(x) (as illustrated in Figure 1)
represent the momentary distributions of the sensory
evidence (x) in the signal (S) and noise (N) trials.
More formally, for a time-varying response x(t)
and an accumulated value L, we have L(t) = L(t –
1) + LLR[x(t)], for all t > 0, with L(0) = sp. The
mean drift rate (v) in the S and N trials (vS and vN,
respectively) is assumed to be proportional to the
expected value of LLR[x(t)] over the corresponding
S and N trials. A decision is reached when L(t) ≥ a
(a positive decision) or when L(t) ≤ –a (a negative
decision). Importantly, note that the effect of L(0)

on L(t) is expected to diminish with time as L(t)
accumulates evidence and noise (Dekel & Sagi,
2020b).

Although offering an efficient method for sequential
hypothesis testing, a critical limitation of the likelihood
model lies in its requirement for knowledge of the
signal and noise distributions, necessary for each
x(t) value so that LLR[x(t)] can be accumulated.
This necessity is often deemed challenging, if not
unattainable, particularly in typical psychophysical
experiments characterized by a limited number
of trials. An alternative approach, employed by
DDM, directly integrates the sensory evidence
(Ratcliff & McKoon, 2008; Shadlen & Kiani,
2013). Gold and Shadlen (2001) proposed the
difference between the momentary response and
the criterion level as an alternative to the likelihood
ratio computation, although the method of criterion
setting is left open. The approach presented here
explicitly assumes, as described below, that, in
uncertain environments where observers encounter
diverse stimuli with varying internal distributions,
they fail to accurately estimate these distributions.
Consequently, they base their decision on a mixed
distribution, applying a single decision criterion to all
stimuli (Gorea, Caetta, & Sagi, 2005; Gorea & Sagi,
2000).

Interacting decision criteria

Consider the case where various stimuli are presented
in an experiment, yielding stimulus-dependent S and
N distributions, when there are varying target–flanker
distances between trials (Mix condition) (Figure 2). The
findings of Gorea and Sagi (2000) suggest that observers
are unable to learn the individual distributions, as
required for optimal performance. Instead, they merge
all S and N distributions (related to the different
distances) into single S and N distributions, estimated
to represent the average of the individual distributions.
For the decision-making process, observers employ only
one criterion that is optimized for these single S and
N distributions. Consequently, it is predicted that only
one accumulator is used in the mixed condition, with
the estimated evidence for or against target presence
being blind to the originating, distance-dependent
distribution. Therefore, we expect zero evidence (i.e.,
the criterion) to correspond to the presence/absence
of targets regardless of the specific flanker
configurations. In essence, this is determined globally
by amalgamating the diverse distributions related to
the various target–flanker distances (as depicted in
Figure 3).

In this study, we undertook an analysis of the task
involving the detection of a low-contrast Gabor patch
in the presence of flankers (Figure 2A). The effect of
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Figure 2. Lateral masking and the SDT criterion. (A) Stimuli used in Polat and Sagi (2007). Observers detected the presence versus the
absence of the low-contrast target stimulus presented between two high-contrast flankers aligned with the target (except for the 15λ
condition used for reference). The distance between the target and flankers was varied (3λ, 4λ, 6λ, 9λ, 12λ, and 15λ) between blocks
of trials (the Fix condition) or within one block of mixed trials (the Mix condition). (B, C) Group results from Polat and Sagi (2007)
(Figure 3) showing the effect of flankers on target detection, as measured by SDT (B) criterion (Cr) and (C) sensitivity (d′). Shown are
the means ± SEM across seven observers (see Methods). Note the close to uniform criterion level in the Fix condition compared with
the larger range in the Mix condition. d′ does not differ much between conditions, although it is somewhat lower in the Mix
condition, possibly due to the increased uncertainty involved in this condition. The d′ curves show lateral facilitation at shorter
distances, although they are smaller than the typical facilitation observed with the standard 2AFC method (Polat & Sagi, 1993; Polat &
Sagi, 2007).
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Figure 3. The proposed SDT modeling of the measured criterion change. (A) Internal response distributions thought to be involved in
the studied task (normal distributions, σ = 1). There are six noise distributions (broken lines) and six signal distributions (continuous
lines), with the shortest and longest target–flanker distances denoted in red and blue, respectively. We assumed that observers
cannot estimate all of these distributions when encountered randomly within a block of trials, and instead we used the mean
distributions of the noise and signal (the broken and continuous black curves, respectively). (B) LLR functions computed for the noise
and signal pairs in (A). We expected a Yes response when LLR > 0 and No otherwise. It was assumed that observers based their
decisions on the black curve (the LLR of the means) instead of the specific distance curves; thus, they are biased. (C) Predicted
criterion shifts derived from (B). For the Fix condition, we assumed ideal observers (unbiased). (D) The d′ values associated with the
distribution pairs are presented in (A). These values are computed as the difference between the paired signal and noise distributions.
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the flankers depends on the target–flanker distance,
showing improved sensitivity at intermediate target–
flanker distances (2λ < distance < 8λ, where λ is the
wavelength of the Gabor stimuli). This phenomenon,
known as range-dependent lateral facilitation, induces
an impression of filling-in, leading to an elevation in
the FA rate in Yes/No detection experiments (Polat &
Sagi, 2007). This effect can be quantified by the decision
criterion (Figure 2B) as defined in SDT. Although the
criterion can be adjusted by observers when different
target–flanker distances are blocked (Figure 2B, Fix), it
was found to depend on the flankers when the different
target–flanker distances are mixed (Figure 2B, Mix).
This result can be explained by observers failing to
independently adjust multiple criteria when the stimulus
strength, which is distance dependent, is randomized
within a block of trials, as illustrated in Figure 3.
To explain these effects, the flankers can be assumed
to increase the response level of the target stimulus
population; this effect depends on the target–flanker
distance. Figure 3 illustrates the challenge faced by
observers in such a task. In each trial, an internal
response is drawn from one of 12 distributions,
corresponding to six distances, both with and without
the target present (6 × 2, as shown in Figure 3A).
For an observer to make unbiased decisions, these
12 distributions need to be correctly estimated, with
an unbiased criterion set for each distance based on
the corresponding pair of distributions (noise and
signal). Instead, we propose that observers utilize
only two distributions: the average noise distribution
and the average signal distribution (denoted by the
black curves in Figure 3A). The ratio between these
distributions provides the input to their decision:
Yes, if LLR(x) > 0; No, otherwise (x is the internal
response; see the black curve in Figure 3B). In a blocked
condition (where the distance is fixed), observers
can possibly estimate the specific distance-dependent
distribution and derive an unbiased likelihood ratio
value for each distance (illustrated by the colored
curves in Figure 3B). The anticipated decision criteria
for the example outlined in Figure 3A are depicted in
Figure 3C.

It is also possible that observers bias their
decisions for each distance independently, based
on prior knowledge about the statistics of filling-in
between contour elements, as shown by Gorea
and Sagi (2000) for targets having different prior
probabilities. Such biases may affect the predictions
shown in Figure 3C, depending on the specific
priors assigned to different distances. Thus, as
outlined earlier, we can anticipate the presence of two
contributing sources to the criterion effect: (1) activity
based, affecting the statistics of internal responses
(leading to shifted pS(x) and pN(x) distributions,
akin to Figure 1C); and (2) biases corresponding to
observers’ prior knowledge of the stimuli and the task

at hand (resulting in a shifted criterion, similar to
Figure 1B).

Note that the above discussion concerns the
mechanisms of criterion setting and is mute regarding
observers’ sensitivity to changes in target contrast.
Sensitivity depends on the internal response gain, which
corresponds to the difference between the means of the
S and N distributions. In the context of SDT, sensitivity
is described by d′, which is computed in a way that
is assumed to be criterion independent (Figures 2C
and 3D).

A criterion that disappears with RT and that
does not disappear with RT

In prior studies involving tasks such as detection,
tilt after effect, and tilt illusion, we have demonstrated
that perceptual biases arising from shifts in decision
criteria (as in Figure 1B) diminish as the RTs
lengthen. In contrast, biases attributed to sensory
interactions (as in Figure 1C) remain unaffected
by RTs (Dekel & Sagi, 2020b). DDM provides a
coherent explanation for these phenomena. In the
DDM framework, shifts in decision criteria are
implemented by modifying the starting point in the
evidence accumulation process. Consequently, when
the process takes longer to terminate (manifested as
a slower RT), decisions are less biased due to noise
accumulation (Dekel & Sagi, 2020b). Conversely,
alterations in decision criteria arising from sensory
interactions are characterized by a change in the rate
at which evidence accumulates. As a result, such effects
exhibit a minimal dependence on RT. In the present
work, we adopted this approach to analyze lateral
masking data collected from previous studies which
had not been previously subjected to RT analysis
(Polat & Sagi, 2007; Zomet et al., 2008; Zomet et al.,
2016).

The present project

The experimental findings previously presented
show a clear dependency of decision bias on the
target–flanker distance when the different distances are
mixed but not so much when the observers are presented
with a fixed distance. The mixture distribution model
predicts distance-dependent decision biases (i.e.,
criterion shifts) when distances are mixed, caused by
internal-response shifts interfering with the formation
of efficient representations of the internal distributions
associated with different stimuli. In addition, there
may be expectation-dependent decision biases resulting
from observers adopting different decision rules for
different stimuli. These expectation-based biases are
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presumed to disappear at slow RTs, whereas biases
predicted by the mixture distribution model are
expected to be present at slower RTs under experimental
conditions where different stimuli (here, different
distances) are mixed but not when the distance is
fixed. Based on these arguments, we present four
predictions:

P1. The criterion dependence on distance (Figure 2B)
is expected to be larger at faster RTs compared
with slower RTs (the effects of starting point).
At slower RTs, we expect the criterion to
depend on the distance when trials of different
distances are mixed (the effect of mixing
distributions), but not when the distances are
blocked.

P2. The criterion dependence on distance is expected
to be larger at faster RTs due to biases introduced
by the starting point of the accumulator, sp = L(0).
These biases are reduced with increasing RT due to
the accumulation of internal noise (P1). However,
high levels of external noise (Zomet et al., 2016),
introduced at t = 0, are expected to dominate
the internal noise and reduce the effect of the
accumulation starting point. Thus, we predict RT
to have a reduced effect on the dependence of the
criterion on distance.

P3. The dependence of the criterion on distance is
expected to decrease with the decreasing slope of
the log-likelihood function presented in Figure 3B.
It becomes evident that the slope decreases when
the S and N distribution width (σ ) is increased.
For the specific model presented, assuming normal
distributions, the slope is proportional to (<S>
– <N>)/σ 2. Thus, in the presence of increasing
noise (increasing σ values), when the S and N
means are kept constant, the dependence of the
criterion on distance is expected to decrease and
to vanish at slower RTs. When the S and N
difference is increased with σ , the dependence of
the criterion on distance is expected to be preserved
at higher noise levels. These predictions are tested
by analyzing the results from experiments where
external noise is added to the target (Zomet et al.,
2016).

P4. The dependence of the criterion on distance is
expected to be larger at faster RTs; thus, it will be
reduced in slower observers (as discussed above,
according to DDM, the starting-point–dependent
bias decreases with RT) (Dekel & Sagi, 2020a).
Here we analyzed data from a group of observers
diagnosed for depression (Zomet et al., 2008),
showing slower RTs. We expect the faster RTs
of this group to have a reduced dependence of
criterion on distance.

Next, we will test these predictions.

Methods

Experimental data

Here, we analyzed unpublished RT data from
previously reported experiments (Polat & Sagi, 2007;
Zomet et al., 2008; Zomet et al., 2016), as detailed below
and summarized in Table 1. All experiments measured
the detection of low-contrast vertical Gabor patch
“targets” in the presence of two lateral high-contrast
Gabor patch “flankers” (Figure 2A). Flankers were
located at varying distances from the target (3–15 λ,
where λ is the wavelength of the Gabor patch). In
all experiments, the 15λ distance used horizontally
oriented flankers (Figure 2A), presumably nulling any
lateral interaction with the vertical target, whereas
all other distances used vertically oriented targets.
Auditory feedback was used to denote detection errors.
From Polat and Sagi (2007), we recovered the original
data for most observers (six and five observers out of
seven for Mix and Fix, respectively). In the remaining
publications, all of the original data were recovered,
as well as an unpublished pilot study employing
external noise, as in Zomet et al. (2016), with numerous
repetitions per participant. The observers in all the
experiments differed, with the exception of those in
Polat and Sagi (2007), where five observers were shared
between Fix and Mix. The stimulus parameters and
experimental setup, detailed below, were nearly identical
in the different experiments (see the differences in
Table 1).

Stimuli and procedure Polat and Sagi (2007)

The stimuli consisted of Gabor patches with
wavelength λ = 0.11°, modulated from a background
luminance of 40 cd·m−2 (Figure 2) (Polat & Sagi, 2007).
Stimuli were presented on a Philips multiscan 107P
color monitor (Philips, Amsterdam, the Netherlands)
using a PC system. The effective size of the monitor
screen was 24 × 32 cm, which at the used viewing
distance of 150 cm subtends a visual angle of 9.2° ×
12.2°. Observers viewed the stimuli binocularly in a
dark cubicle, where the only ambient light came from
the display screen.

Stimuli consisted of a low-contrast Gabor target and
two high-contrast (60%) Gabor flankers (Figure 2).
The target–flanker distances used were 1λ, 2λ, 3λ,
4λ, 6λ, 9λ, 12λ, and 15λ. Baseline thresholds, against
which spatial interactions were compared, were
obtained using orthogonal target and flankers with an
inter-element distance of 15λ. The contrast of the target
was constant for each observer at all target–flanker
distances; the exact value depended on the contrast
detection threshold for that observer (range 3%–4%).
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In the Yes/No task, the observers were asked to detect
the target that was shown in a single presentation
and to report whether the target was present (Yes)
or absent (No) by pressing the left and right mouse
keys, respectively. A visible fixation circle indicated
the location of the target; it disappeared when the
trial started. Observers activated the presentation of
the trials at their own pace. When the 2AFC task was
used, there were two stimulus intervals (80 ms each),
presented 800 ms apart, both containing the flankers;
however, the target was presented in only one of the
intervals.

There were two main experimental procedures. In the
Mix procedure, the trials with different target–flanker
distances were presented in random order, whereas in
the Fix procedure the different target–flanker distances
were blocked. In the Fix procedure, the target–flanker
distance was changed randomly between blocks. In
both procedures, each distance was presented 50 or 20
(depending on the experiment) times in a session in
which the target was present in about half of the trials
(a probability of 0.5).

Stimuli and procedure Zomet et al., 2008

The stimuli and the task (Zomet et al., 2008) were
the same as in Polat and Sagi (2007), using the Mix
procedure, but with a wavelength where λ = 0.16°
and with a stimulus duration of 100 ms. Stimuli were
presented on a ViewSonic E70 color monitor with
display dimensions as above (ViewSonic, Brea, CA).
The two groups (patients and controls) did not differ
significantly (p = 0.097) regarding the mean contrast
threshold. The mean contrast threshold of the control
group was 5.12, and that of the patient group was 6. In
each session, 20 trials for each target–flanker separation
were presented, with a total of 120 trials per session.

The patients were hospitalized in the Psychiatry
Department at Sheba Medical Center. These patients
were diagnosed by psychiatrists as suffering from
major depression disorder (MDD), according to the
Diagnostic and Statistical Manual of Mental Disorders,
fourth edition (DSM-IV). All patients were found to be
currently depressed during our testing period and were
being treated with antidepressants and benzodiazepine
medications (for more details, see Zomet et al., 2008).

Stimuli and procedures Zomet et al., 2016

The method was similar to the method described
above (Zomet et al., 2008), but with only four
target–flanker distances (3λ, 4λ, 6λ, and 15λ) in the
main experiment (Zomet et al., 2016). Stimuli were
displayed on a Sony CPD-G400 Multiscan color
monitor (1024 × 768 pixels; Sony, Tokyo, Japan). The
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effective size of the monitor was 26 × 35 cm, which at a
viewing distance of 150 cm subtended a visual angle of
9.7° × 11.4°.

White noise (containing a broad range of random
orientations and spatial frequencies) at differing levels
of contrast was presented at the target location and
was superimposed on the target when present. For
all observers, the noise contrast was normalized to
their noise threshold detection threshold, measured,
and separately estimated using an adaptive staircase
method (79% correct); it was presented at 0, 0.5, 1, and
2 times their noise detection threshold (noise threshold
units [NTU]). For a given noise level, the stimuli were
presented in random order and all target–flanker
separations were mixed (Mix procedure). Each block
consisted of 20 trials at each of the four target–flanker
separations (80 trials per block). There were four
blocks, each with a different external noise level (0, 0.5,
1, and 2 NTU). The starting noise level was randomized
between participants. Participants repeated each noise
level three times for a total of 960 trials (20 × 4 flank
distances × 4 noise levels × 3 repetitions). There was
also a pilot experiment employing a set of six distances
as in Polat and Sagi (2007). In this experiment, the
target contrast was increased with increasing noise
levels to yield (approximately) constant sensitivity.

Signal detection theory analysis

We used the standard definitions of the sensitivity
(d′) and the internal criterion (c) (Green & Swets, 1966):

d ′ = z (PHit ) − z (PFA) (1)

c = −0.5 · [z (PHit ) + z (PFA)] (2)
where PHit is the probability that an observer correctly
reported that the target is present in target-present
trials, PFA is the probability that the observer incorrectly
reported that the target is present in target-absent trials,
and z is the inverse cumulative normal distribution
function. To avoid saturation, the PHit and PFA
probabilities were clipped to the range [ 12n ,

2n−1
2n ], where

n is the number of trials in the measurement.

RT behavioral analysis

We binned trials by categorizing RT into four
equal-quantity bins from the fastest to the slowest.
Binning was done separately for each experimental
block and each trial type to avoid confounds (observer
× experimental block × target–flanker distance ×
target stimulus [present/absent]). Task performance was
quantified in each RT bin using the standard measures
of sensitivity (d′) (Equation 1) and the decision criterion
(c) (Equation 2) from SDT (Green & Swets, 1966).

Statistics

All statistics were assessed using linear mixed-effects
models (MATLAB 2013a fitlme(); MathWorks,
Natick, MA), as detailed in the text. We considered
two main factors to contribute to criterion
modulation: the target–flanker distance (Dtf )
and RT. We tested for significant contributions
of these two factors and their interactions
with the measured criterion (c) (Equation 2),
assuming:

c = α0 + α1 ∗ RTbin + α2 ∗ Dtf + α3 ∗ RTbin ∗ Dtf (3)

with Dtf (six or four levels; see Table 1, Target–flanker
distance) and RTbin (four bins, 0:3, fast to slow)
defined as a continuous effect, and the observers
as random effects (slopes and intercepts). Our
main interest is in α2, which measures the change
in c resulting from increasing Dtf , and α3, which
measures the RT-dependent addition to α1, so
that the Dtf slope equals α2 + α3 × RTbin. This
simple model accounted for much of the variance
in the data; the adjusted R2 value was between
0.5 and 0.8; the lower values were obtained in the
external-noise experiments and in the experiments with
patients.

Results

First, we confirm that, for the dataset analyzed
here, the criterion dependency on distance differs
between the two experimental conditions Fix and
Mix. The original results are presented in Figure 2B.
In the Fix condition, observers better adjusted their
criterion, as manifested by the reduced dependency
on the target–flanker distance (a smaller c[Dtf ]
slope), the consequence of the different decision
requirements presumably imposed by the mixing
of different target–flanker distances in the Mix
condition. Indeed, testing the dataset analyzed here
with the linear mixed-effects model for the effect of
the experimental condition (Mix: E = 1; Fix: E = 0),
assuming

c = α0 + α1 ∗ E + α2 ∗ Dtf + α3 ∗ E ∗ Dtf

showed a significant effect of the condition on
the c(Dtf ) slope, where α3 = 0.035, t(260) =
2.97, p = 0.003; the slope more than doubled
in the Mix condition (α2 + α3 = 0.061 vs. α2
= 0.026). The c(Dtf ) slope in the Fix condition
(α2 = 0.026) did not reach statistical significance
(p = 0.09). The intercept showed no statistical
difference between conditions (α1 = −0.19,
p = .09).
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Figure 4. Target–flanker distance and RT, analysis of Polat and
Sagi (2007). (A, C) Shown are (A) criterion (c, Equation 2) and
(C) sensitivity (d′, Equation 1), as a function of the
target–flanker distance (in units of wavelength, λ), when the
different target–flanker distances are mixed within blocks (Mix
experiment). Data were split into four bins (colors) by sorting
the measured RTs. The results indicated: (1) a more biased
criterion setting at the faster RTs, (2) a weaker modulation of
the criterion by the flankers at the slower RTs, and (3) a
flanker-dependent criterion in all RTs, even the slowest. The
sensitivity (d′) was lower with slower RTs, but only in the
slowest time bin (blue). (B, D) Behavioral data of the Fix
experiment, whereby trials were blocked by the target–flanker
distance, showing reduced effects. Error bars are ±1 SEM.

P1. Effects of RT on the criterion slope
To test our first prediction (P1), we examined

the dependence of the c(Dtf ) slope on RT. First, we
considered the experimental data of the Mix condition
from Polat and Sagi (2007). In this experiment, trials
having different target–flanker distances were mixed
within a block (Figure 2A). Our RT analysis, presented
in Figure 4A, clearly shows that the criterion (c)
had lower values for slower RTs, especially at larger
target–flanker distances (Dtf ), implying that the
criterion slope as a function of distance is reduced with
increasing RT. This claim is strongly supported by the
linear mixed-effects model described in Equation 1,
showing that the interaction between the RT bin index
and distance (α3 = −0.02) was significant, t(140) =
−3.67, p < 0.001. The c(Dtf ) slope of the fastest RT bin
(α2 = 0.09) was significant, t(140) = 4.68, p < 0.001;
whereas, the slope at the slowest RT bin (α2 + 3 × α3 =
0.03) approached statistical significance, t(140) = 1.97,
p = 0.05, suggesting criterion modulation at slow RTs.

We note here that the criterion modulation differs
from the sensitivity modulation. Polat and Sagi (2007)
found a small but significant modulation of sensitivity
(d′) by the flankers, as seen in Figure 2C for the available

data. (Note that a much stronger modulation of
sensitivity by the flankers is found when the detection
task is replaced by a 2AFC discrimination task; see
Polat & Sagi, 1993; Polat & Sagi, 2007.) The expected
sensitivity modulation with distance is non-monotonic,
showing a maximal effect at 3λ. Applying the RT
analysis here revealed a gradual reduction of d′ at slower
RTs, with values decreasing from ∼1.5 at fast RTs to ∼1
at slow RTs, t(142) = −4.01, p < 0.001, for modulation
of d′ by RT when ignoring the target–flanker distance
(Figure 4C). There was no significant interaction
between RT and the target–flanker distance, t(140)
= −0.72, p = 0.5. Importantly, the criterion and
sensitivity exhibited different modulations by RT, as
the criterion was modulated to a much greater extent
than sensitivity, and its modulation dynamics differed
(Figure 4A vs. Figure 4C).

The RT effects in the Fix condition are qualitatively
similar to the effects observed in the Mix condition
(Figure 4A vs. Figure 4B). Here, the linear mixed
effects model, described in Equation 1, showed that the
interaction between the RT bin index and distance (α3
= −0.01) was significant, t(116) = −2.86, p = 0.005.
The c(Dtf ) slope of the fastest RT bin (α2 = 0.04) was
significant, t(116) = 3.07, p = 0.003), whereas the slope
with the slowest RT bin (α1 + 3 × α3 = 0.01) was not
statistically different from zero, t(116) = 0.64, p =
0.52, suggesting, as predicted, no criterion modulation
at slow RTs when the target–flanker distances are
blocked.

P2. effects of added external noise on the
interaction between RT and c(Dtf)

The second prediction was tested using results from
experiments in which different levels of external noise
are added to the target (see Methods and Zomet et al.,
2016) using a procedure that is otherwise identical to
the one considered in the previous section. Different
noise levels were added in different blocks, randomly
permuted between observers (see Methods and Zomet
et al., 2016). We considered two variants: one where the
contrast was maintained and the noise was increased,
leading to a reduced d′ value when the noise level
increased (Main, n = 12 observers) (Figure 5B). The
other, an unpublished pilot of that study, in which the
target contrast was increased with noise to maintain a
roughly fixed d′ (Pilot, n = 7) (Figure 5C); this pilot is
particularly convenient for performing the RT analyses
because of the large number of trials per observer)
(Table 1).

First, we considered the case when the level of
external noise was zero (No noise) (Figures 5B
and 5C; Figures A3 and A4). In this condition, the
experiment is equivalent to the one considered in the
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Figure 5. External noise and the RT effect, analysis of Zomet et al. (2016). (A) An example of stimuli with different added noise levels.
(B) The main experiment where added noise reduced sensitivity (d′). (C) The pilot experiment where the target contrast increased
with noise, so that the sensitivity remained stable across noise levels. The error bars are ±1 SEM.

previous section (Mix condition), so we expected similar
results. The results indeed show a strong interaction
between RT and the c(Dtf ) slope. Specifically, the c(Dtf )
slope was reduced with RT; for Pilot, t(164) = −4.66,
p < 0.001, and for Main, t(188) = −3.01, p = 0.003.
In addition, the criterion slope at the slowest RT was
positive; for Pilot, t(164) = 4.62, p < 0.001, and for
Main, t(188) = −3.88, p < 0.001, as predicted for the
Mix condition (the estimated slopes are presented
in Figure 8).

To test prediction P2, we examined the interaction
between RT and the c(Dtf ) slope in the presence of
noise. As shown in Figure 5 and Figure 8, introducing
noise reduces the interaction of the criterion and
the RT. This is seen in Figure 8, manifested by more
similar c(Dtf ) slopes for the fast and slow RT bins in
the presence of noise. There is one exception, when the
noise level was 75% of the noise threshold in the pilot
experiment, t(164) = −3.39, p < 0.001; otherwise, as
predicted, none of the interactions reached statistical
significance (p = 0.1–0.9). This effect was not due to
a reduction in sensitivity (d′), as shown in Figure 5C,
where the target contrast was increased with the added
noise, so that the sensitivity was fixed.

P3, effects of added external noise on the c(Dtf)
slope

Of interest here are the results with the highest noise
level. Here we expected the Main experiment and the
Pilot to diverge. Indeed, examining the c(Dtf ) slopes at

the slowest RT show that it is significant in the Pilot
experiment, in which the target contrast was increased
with noise, t(164) = −3.01, p = 0.003, but not in the
Main experiments in which the target contrast was not
scaled with noise, t(172) = 0.51, p = 0.5.

P4. individuals with slow RTs showed no RT
effect for criterion

To test the relationship between individuals’ bias and
RT, we applied the RT analysis to the experimental data
of Zomet et al. (2008). In this study, patients diagnosed
with depression (Patients) and their matched controls
(Controls) performed an experiment similar to the ones
analyzed above. Specifically, different target–flanker
distances were mixed within a block, and there was no
noise, comparable to the Mix experiment of Polat and
Sagi (2007) and the no-noise condition of Zomet et al.
(2016). Unlike these studies, the number of trials was
lower, and observers were, on average, older and slower
(see Table 1).

The results of the RT analysis are presented
in Figure 6. The criterion slope as a function of
the target–flanker distance was reduced with RT,
though not significantly for the patients. For RT:slope
interaction, Controls: t(764) = −2.41, p = 0.02;
Patients: t(644) = −0.52, p = 0.6. The sensitivity (d′)
was reduced with RT—Controls: t(764) = −2.22, p =
0.03; Patients: t(644) = −3.06, p = 0.002—independent
of the target–flanker distance—Controls: t(764) = 0.19,
p = 0.85; Patients: t(644) = −1.46, p = 0.14.
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A Zomet et al. 2008 Zomet et al. 2008               B
Controls, N=32                Patients, N=27

Figure 6. The RT effect in slow individuals. (A) RT analysis of Zomet et al. (2008). Annotations follow Figure 4. The results showed no
RT effect for criterion in depressive patients and controls. (B) Shown for each observer is the change in criterion (�c) from the fastest
to the slowest RT bin of the 15λ measurement, as a function of the mean RT. The results indicated a correlation between RT and �c
between experiments and within experiments for the Zomet et al. (2008) control data. The procedural differences between
experiments are summarized in Table 1.

To explain the small effect of RT on the criterion,
we considered the simple idea described in Dekel and
Sagi (2020a)—namely, that individuals with reduced
bias can be explained by having slower decision
times. Indeed, we found that observers in Zomet et al.
(2008) had extremely slow RTs, showing, on average,
∼1600 ms for Controls and ∼2700 ms for Patients (see
the x-axis of Figure 6B). This is much slower than the
∼650 ms measured for observers in similar experimental
conditions (Figures 4A and 5, no noise). Overall,
the differences between experiments can possibly be
explained by RT. In addition, we considered differences
between observers in the control group of Zomet et
al. (2008), where wide inter-individual differences in
RT were measured (see the x-axis of Figure 6B). We
correlated individual RTs with the individual size of
the criterion modulation by RT (for 15λ distance); we
found a significant correlation (adjusted R = 0.54, p
< 0.001) (Figure 6B). To summarize, the difference
between the experiment by Zomet et al. (2008) and
the other experiments appears to be well explained by
slower RTs. In addition, the difference in RT between
experiments and observers can possibly be attributed to
age and/or practice effects (Table 1).

Summary of the results

The experimental results show a clear dependency
of decision bias on the target–flanker distance, which

is expected to disappear at slower response times
if it was caused only by the criterion setting (sp in
DDM), but not if it was caused by changes in the
internal distributions associated with the different
stimuli (affecting the drift rate in DDM). Our results,
summarized in Figures 7 and 8, support the latter.

Figure 7 depicts c(Dtf ) functions for the four
RT bins (1 being the fastest). In the slowest RT
bin the differences between experiments and
conditions are largely abolished (but note the
flat Fix curve), as clearly seen when comparing
all curves in bin 4 (slow RTs). In the fastest RTs
(bin 1; see Figure 7), the curves corresponding
to the different conditions present a much larger
variability.

DDM predictions

To try to better understand the observed interactions
with RT, we considered the idea that the detection task
is performed by the gradual accumulation of noisy
evidence, as in the standard DDM (Gold & Shadlen,
2001; Ratcliff et al., 2016). Here we considered some
general effects of model parameters on its behavior
(a more detailed model parametrization and fitting
results are provided in Figure A2). As described in
the Introduction, two important parameters in the
model affect the criterion: (1) the starting point (sp)
of the accumulation process, which leads to increased
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Figure 7. The differences between experiments disappear with slow RTs. Shown for all experiments without noise are the criterion
measurements as a function of the target–flanker distance in four RT bins. It can be observed that the experimental differences are
abolished in the slowest RT bin (bin 4).
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Figure 8. Fast (Q1, first RT quantile) and slow (Q4, fourth RT quantile) distance effects on criteria: a summary of all studies. Shown are
the c(Dtf) slopes fitted to the respective RT bins using the linear model described by Equation 3. All fast distance effects except one
(the highest noise level in Zomet et al., 2016; main) are statistically significant (see the Results). The slow effects are more uniform
across conditions, all significant except for the Fix condition (see P1) and the noise-amp = 0.75 condition in the pilot experiment (see
the Discussion), and the noise-amp = 2 condition in the main experiment (see P3).

bias in faster decisions if put closer to one of the
bounds (Figure 9, second row) (Dekel & Sagi, 2020b);
and (2) the rates at which evidence is accumulated for
target-present and target-absent trials (Figure 9, first
row). As shown in Figure 9, this simple idea can explain
the criterion measurements quite well. We provide

here some information as to how this model works
by describing the predictions of four simple model
variations and analyzing the effect of the drift rate
and the starting point on the results. The analysis is
sufficiently general for its predictions to be independent
of the specific assumptions made regarding the drift
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Figure 9. Modeling the influence of flankers on target detection using DDM. Shown are the parameters (the first two rows) and the
theoretical predictions (the last four rows) of the four models described in the text. The sensitivity estimate (d′, Equation 1) is
approximately the difference in the drift rate between the target present and absent trials. In Models 3 and 4, the starting point is
biased (sp < 0.5), leading to an overall reduction in criterion (c, Equation 2) with RT. In Model 4, the reduction in slope with RT is
explained by a flanker-dependent starting point (variable sp). Overall, Model 4 can explain both the reduction in overall criterion with
RT and the reduction in the c (distance) slope with RT. See the text for model details and Figure A2 for fitting Model 4 to the
experimental data.

rate (see the Introduction). For simplicity, the drift rate
is considered here as an abstract variable monotonically
related to the log-likelihood ratio (Gold & Shadlen,
2001).

Model 1: An unbiased flanker-independent
starting point, target-dependent drift rate

Here, the drift rate (v) depends on the target stimulus
(v+ = +1 for target present, v– = −1 for target absent),
and the starting point (sp) is fixed at 0.5 (unbiased).
This model predicts no bias (c = 0) at all RTs, with fixed

d′, independent of distance. This model fails to explain
the data.

Model 2: As in model 1 with a
flanker-dependent drift rate

Here, at short distances, the difference between
v+ and v– is increased, thus showing larger d′ values
at these distances. Both v+ and v– are positive at
short distances (supporting the positive responses),
thus showing a negative criterion (c < 0) at these
distances, RT independent. This model can explain the
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distance dependence, but not the RT dependence of the
measured criterion.

Model 3: A biased flanker-independent starting
point, flanker-dependent drift rate

The same as in Model 2, but with a biased starting
point (sp). The effect of this bias (sp < 0.5) is short
term, resulting in higher criteria (c) in trials with fast
RTs; slow RTs show criteria equal to those produced by
Model 2. The RT effect on c is distance independent.
This model predicts an RT effect but cannot
explain the dependence of the criterion slope on RT
(Figure 8).

Model 4: A flanker-dependent starting point
and drift rate

Like Model 3 but with sp allowed to change with
distance, resulting in distance-dependent RT effects,
the RT-dependent slope of the c(distance) curve. This
model captures the main features of the experimental
results. Overall, the DDM framework considered
here can qualitatively account for the most salient
RT effects, but a precise modeling, requiring several
more parameters and assumptions, remains somewhat
speculative. In the Appendix (Figure A2) we present a
detailed fit of Model 4 to the behavioral data, using the
fast-dm software with the Kolmogorov–Smirnov (KS)
setting (Voss & Voss, 2007).

DDM drift rate and SDT d′

Note that the DDM analysis allows for the derivation
of the target–flanker distance-dependent sensitivity
functions for both the target-present and target-absent
conditions (the idea in Figure 9, fitting in Figure A2),
unlike the previously used SDT methods that provided
only a differential sensitivity estimate (i.e., d′). As
seen in Figure A2, the fitted drift rates for both
target-present and target-absent gradually decrease
with longer target–flanker distances, as predicted by the
theory illustrated in Figure 1. The differential sensitivity,
which is the difference in the fitted drift rates between
the target-present and target-absent trials, was mostly
fixed, showing a small decrease at longer target–flanker
distances. This is consistent with the slightly improved
d′ value in the presence of proximal flankers. We noted
that the fitted drift rate in the target-absent trials
was usually negative. A negative drift indicates that
the evidence supports the negative (target-absence)
response. That is, the reduced sensory response in
the target-absent trials is mapped into negative values
(see the Discussion). This finding is reasonable in

the sense that what is accumulated is target-presence
evidence, with “zero” values corresponding to no
evidence for or against target presence (see the
Introduction).

Discussion

Lateral masking affects the detection of low-contrast
targets (Polat & Sagi, 1993). This effect is usually
quantified using measures of behavior derived from
SDT (Green & Swets, 1966): sensitivity (d′, Equation 1)
and the decision criterion (c, Equation 2). Although
the bias-independent sensitivity measure (d′) is the
standard measure used to quantify the perceptual
effects, our interest here lies in the effects on the
decision criterion (bias), shown in Figure 2. SDT,
with limited access to internal distributions (Gorea
& Sagi, 2000), provides an observer-independent
account of the biases found, as illustrated in Figure 3
(see the Introduction). Here, for the first time, to the
best of our knowledge, an RT analysis of the lateral
masking effect was performed, attempting to isolate the
subjective (observer dependent) and objective (observer
independent) factors underlying the observed biases in
perception.

To explain the effects of RT, we extended the
time-independent SDT explanation (Figure 1) by using
the drift diffusion model. More specifically, we modeled
the influence of the flankers on the detected target
(Figure 1C, signal shift) as a change in the rate of
evidence accumulation (the drift rate), which leads to
the time-independent effects on the measured criterion,
which are maintained even at the slowest RTs. The
time-dependent effects on criterion were modeled as a
change in the starting point (Figure 1B, criterion shift).

We found that mixing the trials of different target–
flanker distances affects mostly the slow RT trials. The
fixed-distance procedure, unlike the mixed-distance
procedure, produces negligible distance dependence
at the slow RTs but not at the fast RTs (Results, P1).
This result can be explained by a mismatch between
the actual internal distributions associated with the
stimuli and the one (averaged across distances) used by
the observer to make a decision concerning the target’s
presence.

We found that adding external noise (Zomet et al.,
2016) affects mainly the fast RTs (Results, P2), equating
fast and slow effects, implying that the influence of the
starting point becomes negligible due to the presence
of external noise when accumulation starts. For the
condition where the target contrast was not increased to
compensate for the increased noise, we found reduced
effects on the criterion at both fast and slow RTs,
as predicted by the change in the slope of the LLR
function (P3, Figure 3).
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In Zomet et al. (2008), the observers are slow
(because of age or lack of practice); thus, we found the
criterion effects to be much smaller, showing little or no
dependence on RT (Results, P4). This agrees with our
previous results showing that individual differences in
TAE can be explained by RT differences (Dekel & Sagi,
2020a).

The presented RT analysis provides further insight
into processes underlying statistical decisions. Of
particular interest are the limitations imposed on such
decisions. We identified here a limit on the number of
statistical distributions that can be efficiently learned
by observers facing decisions on stimuli sampled
from different distributions. Considering the example
presented in Figure 3, limitations regarding the internal
representations of response distributions are expected
to be universally expressed (i.e., to introduce biases
in slow responses). Indeed, slow distance-dependent
biases were shown in 11 experimental conditions out
of 14 (see Figure 8). As discussed above, we predicted
two of the three exceptions. Of critical importance for
the present theoretical framework is the reduced effect
in the Fix condition of Polat and Sagi (2007). Here,
unlike in the Mix condition, the different target–flanker
distances are blocked, leaving us with only two internal
distributions to learn (signal and noise); thus, the
imposed constraints do not apply. A second predicted
exception, described above (P3), concerns the absence
of slow RT effects in the presence of high external noise.
The third exception, not explained within the theoretical
framework presented here, is the experimental condition
with the external noise amplitude approaching the
noise threshold (noise amplitude = 0.75 threshold). We
attribute this reduced distance effect to the increase in
the False Alarm rate at slow RTs (otherwise present only
at target locations near the flanker) and to the reduced
sensitivity at all distances (d′ approaching zero), caused
by the external noise level approaching the threshold,
as indicated by the results presented in Figure A4.

Within the context of the DDM framework, the slow
RT effect can be quantified as the drift rate asymmetry
(Models 2 to 4, Figure 9 and Figure A2), which is the
sum of the up (target present) and down (target absent)
drift rates (v+ + v–). For an unbiased observer, this sum
is expected to be zero. Figure 10A presents the drift rate
asymmetry in the fitting results (Figure A2) for both the
Mix and the Fix conditions of Polat and Sagi (2007),
showing a marked difference between conditions. In
contradistinction, biases due to shifts in the starting
point (sp) are very similar in the Mix and the Fix
conditions (Figure 10B). Accordingly, we attribute
the differences in results between the Mix and the Fix
conditions to objective factors affecting decisions—that
is, to differences in the internal responses rather than to
subjective factors such as priors (see the Introduction).
We can conclude that the biases in the Mix condition
can be explained by the distance-dependent excitatory
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Figure 10. (A) Drift rate asymmetry, quantified as the sum of
the up and down drifts, evaluated by fitting Model 4 (Figure A2)
to the data of Polat and Sagi (2007). A positive bias leads to
increased Hit and FA rates and, thus, to lower decision criteria.
Note the difference between the two conditions. (B) Drift
starting point (sp), evaluated by fitting Model 4 to the data of
Polat and Sagi (2007). Biases due to prior information or payoff
are indicated by deviations from sp = 0.5. Both experimental
conditions show unbiased sp at short distances but a lower sp
at longer distances, resulting in lower Hit and FA rates at these
distances (higher criteria).

effects of the flankers, operating in both target-present
and target-absent trials, underlying the perceived
filling-in effect.

Although additional modeling details remain
somewhat speculative, the basic idea used here,
of separately considering RT-dependent and RT-
independent effects and interpreting them as changes
in how evidence is interpreted (the drift rate) and what
priors exist before the evidence (the starting point),
seems quite robust.

Keywords: filling-in, lateral facilitation, reaction-time,
decision, perceptual bias
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Appendix

Figure A1. Target–flanker distance and RT. Shown, in six experiments (columns), are five behavioral measures (rows): criterion (c),
sensitivity (d′), hit rate, False Alarm rate, and RT, as a function of the target–flanker distance. Data were split into four bins (colors) by
sorting the measured RTs. Error bars are ±1 SEM.
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Figure A2. Fitting behavior to Model 4. The top two rows present the recovered parameters: the drift rates (v+, v–, and their mean) in
the first row and the starting points in the second row. Rows 3 to 6 present the recovered behavior (c, d′, PHit, and PFA). To obtain
analytical model distributions and to fit Model 4 to behavioral data, we used the fast-dm software with the Kolmogorov–Smirnov (KS)
setting (Voss & Voss, 2007). Fitting was performed separately for each observer. The drift rate (v) was fitted separately for each
combination of the target stimulus (target present/absent) and the target–flanker distance (four or six possible distances, resulting in
8 or 12 parameters); the starting point (sp) was fitted separately for each target–flanker distance (four or six possible distances,
resulting in 4 or 6 parameters),. The non-decision time (t0) and bounds-separation (a) were fitted once for all configurations (2
parameters). Overall, the model recovers the important features of the experimental results shown in Figure A1 (R2 = 0.78,
comparing all 88 RT binned criteria, third row, broken into experiments; from left to right, R2 = 0.87, R2 = 0.6, R2 = 0.93, R2 = 0.79).
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Target-flanker distance ���

Figure A3. RT and external noise. RT analysis of the main experiment of Zomet et al. (2016), with the layout following Figure A1. The
first row is reproduced from Figure 5B.
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Target-flanker distance ���

Figure A4. RT and external noise. RT analysis of the pilot experiment of Zomet et al. (2016). The first row is reproduced from Figure 5C.




