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relationship with grade outcomes in students’ 
early STEM courses at six research universities
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Natalia Caporale6  , Sonja Cwik7  , Kameryn Denaro8  , Stefano Fiorini9  , Yangqiuting Li10  , Chris Mead11  , 
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Sara E. Brownell15  , Chantal Levesque‑Bristol5  , Marco Molinaro16  , Chandralekha Singh7  , 
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Abstract 

Background Large introductory lecture courses are frequently post‑secondary students’ first formal interaction 
with science, technology, engineering, and mathematics (STEM) disciplines. Grade outcomes in these courses are 
often disparate across student populations, which, in turn, has implications for student retention. This study posi‑
tions such disparities as a manifestation of systemic inequities along the dimensions of sex, race/ethnicity, income, 
and first‑generation status and investigates the extent to which they are similar across peer institutions.

Results We examined grade outcomes in a selected set of early STEM courses across six large, public, research‑inten‑
sive universities in the United States over ten years. In this sample of more than 200,000 STEM course enrollments, we 
find that course grade benefits increase significantly with the number of systemic advantages students possess at all 
six institutions. The observed trends in academic outcomes versus advantage are strikingly similar across universi‑
ties despite the fact that we did not control for differences in grading practices, contexts, and instructor and student 
populations. The findings are concerning given that these courses are often students’ first post‑secondary STEM 
experiences.

Conclusions STEM course grades are typically lower than those in other disciplines; students taking them often pay 
grade penalties. The systemic advantages some student groups experience are correlated with significant reduc‑
tions in these grade penalties at all six institutions. The consistency of these findings across institutions and courses 
supports the claim that inequities in STEM education are a systemic problem, driven by factors that go beyond spe‑
cific courses or individual institutions. Our work provides a basis for the exploration of contexts where inequities are 
exacerbated or reduced and can be used to advocate for structural change within STEM education. To cultivate more 
equitable learning environments, we must reckon with how pervasive structural barriers in STEM courses negatively 
shape the experiences of marginalized students.

Keywords Course grades, Generation status, Grade anomaly, Income, Introductory courses, Race/ethnicity, Sex, 
STEM, Systemic advantage index, Undergraduate
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Introduction
Despite national reform efforts dedicated to increasing 
diversity and inclusion in science, technology, engineer-
ing, and mathematics (STEM), these fields continue to 
witness a disproportionate loss of marginalized students 
(Seymour & Hunter, 2019). STEM education research-
ers have repeatedly identified unequal outcomes in tra-
ditional academic achievement measures across student 
groups by gender, race/ethnicity, and socioeconomic 
measures (Dika & D’Amico, 2016; Eddy & Brownell, 2016; 
Koester et al., 2016; Malespina & Singh, 2023; Matz et al., 
2017; Mead et al., 2020; Whitcomb et al., 2021; Xie et al., 
2015). Historically, STEM learning environments have 
been spaces in which systemic inequities (e.g., racism, 
sexism, and classism) create advantages, for example, 
for those who are white, wealthy, male, and continuing-
generation, leading to a lack of diverse representation 
in STEM fields across degree programs, levels of educa-
tion, and careers (Gin et al., 2022; McGee, 2020; National 
Center for Science & Engineering Statistics, 2021; Rein-
holz & Ridgway, 2021). However, most of this research 
has been concentrated at a sole institution or, if examined 
across institutions, is missing a coordinated methodol-
ogy grounded in historical theoretical perspectives which 
position inequalities as a byproduct of university struc-
tures that perpetuate and exacerbate inequities rather 
than student demographics. Research on systemic, struc-
tural advantages across undergraduate STEM learning 
environments can uncover how these advantages persist 
across intersecting identities and positions. The goal of 
this study, then, is to explore how systemic advantages 
in STEM manifest across multiple large public research 
universities in the United States (U.S.) and highlight the 
need for institutions to focus on centering the experi-
ences of students with historically marginalized identities 
as a step toward more equitable and inclusive learning 
environments for all students.

Identifying systemic inequities benefits from a com-
parison of student outcomes across multiple institutions 
using the same conceptual frameworks, methodologies, 
and definitions (e.g., Matz et al., 2017) as these commonly 
vary across studies. We argue that for a comparison to be 
constructive and support transformative change in STEM 
education, analyses must be grounded in an asset-based 
model using critical frameworks to examine the complex 
relationships between institutional practices and student 
identities, backgrounds, and outcomes. We use such an 
approach here to explore whether data from introductory 
STEM courses at multiple research universities support 
the claim that demographic-based grade differences are 
driven by systemic inequities. Prior to reviewing litera-
ture about systemic inequities within foundational STEM 
courses and their positioning as propagators of inequity, 

we situate what we mean by equity and how we apply 
critical frameworks to begin examining this variation. We 
then present our approach to exploring a dataset of more 
than 200,000 students across 60 STEM courses at 6 uni-
versities over 10 years.

Background
Conceptualization of equity in education
Despite our different positions, privileges, histories, and 
commitments as individual authors, we share a common 
goal of dismantling oppressive systems and pursuing 
equity within higher education. Before exploring related 
literature and theory, it is important that we define our 
conception of equity, specifically with respect to educa-
tional settings (Levinson et  al., 2022; Russo-Tait, 2023; 
Wolbring & Nguyen, 2023). Drawing from Gutiérrez’s 
(2012) sociopolitical framework and Black feminist the-
ory (Collins, 2000; Crenshaw, 1991; Davis, 1983; Hooks, 
1981; Lorde, 1984), we view equity as acknowledgment 
of how historical events have created power imbalances 
within higher education and working to dismantle these 
disparities, so all students are empowered.

It follows that we do not view equity in education as a 
static goal (e.g., parity across grade distributions) as this 
approach does not guarantee equity. Rather, we posi-
tion course grade disparities as a product of underlying 
inequitable systems and as a proxy for inequities. Two 
students who receive the same grade have not necessar-
ily had equitable experiences, as fairness does not mean 
sameness (Gutiérrez, 2012). Indeed, the outcome of simi-
lar course grades does not necessarily redress the systems 
that advantage some students over others. Further, the 
focus on student empowerment within this conceptu-
alization of equity is a critical dimension not addressed 
with the outcome of similar course grades. Students who 
are marginalized and minoritized often have their voices 
silenced, identities suppressed, and knowledge deval-
ued. Therefore, considering identity as a precursor to 
power (Gutiérrez, 2012), equity focuses on addressing 
these power dynamics in a way that empowers students 
to authentically be themselves rather than conforming to 
inequitable and oppressive structures.

With this framing in mind, the goal is not simply to 
observe inequities in grades, rather it is to use this infor-
mation to dismantle disparities and empower all indi-
viduals given that part of equity is grappling with how 
structural and political systems cause harm and produce 
academic disparities. In an academic context, equity 
could look like acknowledging how marginalized groups 
have had their power diminished within the classroom 
and academia as a whole as well as working to dismantle 
oppressive systems, providing resources and structures 
to enable empowerment. Simply put, awareness that 
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emerges from observing inequities in grades is not the 
end goal; adjustment and response to power imbalances 
should be continuous work (Rehrey et  al., 2020). Thus, 
equity as a process informs our theoretical approach 
to studying intersectional inequalities in foundational 
STEM courses, operationalized as large-enrollment, 
stable, gateway courses that serve a wide variety of stu-
dents (Center for Research on Learning & Teaching, 
n.d.). From this conceptualization of equity, we now take 
a historical perspective to examine how the foundations 
of higher education fostered the systemic inequities that 
persist today.

Historical foundation of systemic inequities
The first colleges and universities in the U.S. were made 
in the nation’s image (Dancy II et  al., 2018; Mustaffa, 
2017; Patton, 2016); like constitutional rights, access was 
primarily permitted to white men from wealthy Christian 
backgrounds (Byrd, 2021; Renn & Reason, 2021; Thelin, 
2019; Wilder, 2013). Women and those who were not 
white or lacked wealth were denied the opportunity to 
pursue higher education (Renn & Reason, 2021). Many 
of these higher education institutions were built on land 
violently seized from Native Americans (Nash, 2019; 
Wolfe, 1999) and enslaved Black people were forced to 
attend to architectural developments and caretaking 
duties (Mustaffa, 2017; Patton, 2016; Wilder, 2013).

During the mid-1900s, U.S. colleges and universi-
ties began to significantly alter their demographic com-
position. At the time, social movements coincided with 
national pressures to make the country more globally 
competitive (Bell, 1980). Women and racially minoritized 
people had advocated throughout the 1900s on the front 
lines for greater access to higher education (Johnston, 
2018; McCammon et al., 2001), but this was not realized 
until the 1950s and 1960s during the global space race. 
The U.S. was seeking to expand its workforce educated in 
STEM disciplines, thereby aligning the interests of those 
advocating for access to higher education with that of the 
majority, finally spurring action (Bell, 1980). Civil rights 
legislation was developed shortly after to increase access 
to higher education for an array of historically minor-
itized people including women and low-income and 
racially minoritized populations (Renn & Reason, 2021; 
Warikoo & Allen, 2020). Increasing access was not done 
purely for equity-oriented reasons; as a result, we still see 
exclusion and harm in STEM higher education contexts.

Contemporary systemic inequities in American higher 
education
Although higher education admissions policy changes in 
the ensuing decades have substantially expanded access, 
colleges and universities in the U.S. remain exclusionary 

spaces (e.g., Dancy & Hodari, 2023). The original prac-
tice of selecting a limited few for higher education has 
enabled campus environments and academic structures 
to continue to be non-inclusive of the lived experiences 
of minoritized populations (Patton, 2016; Renn & Rea-
son, 2021). For example, the valued classroom structures 
and discourse patterns within undergraduate mathemat-
ics have greater benefits for men than women (John-
son et  al., 2020). Racially minoritized students express 
experiencing discrimination when navigating office 
hours or securing research opportunities (Masta, 2019; 
Tichavakunda, 2021), which negatively influences their 
sense of belonging and academic confidence (Duran 
et al., 2020; Jack, 2021; Strayhorn, 2018). Students report 
feeling like they must over-achieve academically in STEM 
environments to counteract negative stereotypes about 
their social group (Jack, 2021; McGee & Martin, 2011; 
Seymour & Hunter, 2019; Squire et  al., 2018), and the 
psychological distress of navigating exclusionary environ-
ments has negative effects on minoritized students’ well-
being and academic outcomes (McGee, 2021; Seymour 
& Hunter, 2019). Studies repeatedly show that learning 
environments in STEM disciplines are unwelcoming and 
unsupportive of students from marginalized populations, 
ultimately hindering their degree progression (Fiorini 
et al., 2023; Leyva et al., 2021; McCoy et al., 2017; McGee, 
2021). Colleges and universities often fail to implement 
support structures that could assist minoritized students, 
particularly students whose secondary education falls 
short (Engle & Tinto, 2008; Kenyon & Reschovsky, 2014; 
Meatto, 2019).

Introductory STEM courses are key barriers for minor-
itized students (Seymour & Hunter, 2019), notable for 
consistently yielding grade performance differences 
across student populations, with women and underrep-
resented and racially minoritized, low-income, and first-
generation students generally receiving lower grades than 
white, wealthy, continuing-generation men, even after 
accounting for students’ pre-college and family back-
ground characteristics (Dika & D’Amico, 2016; Koester 
et al., 2016; Malespina & Singh, 2023; Matz et al., 2017; 
Whitcomb et  al., 2021; Wright et  al., 2016; Xie et  al., 
2015). Inequalities at these initial stages in STEM majors 
hinder diversity in the STEM workforce, as lower aca-
demic performance in these courses has been shown to 
significantly increase the probability of students leav-
ing STEM degree programs (King, 2015; Witteveen & 
Attewell, 2020). Introductory STEM courses arguably 
operate as key sites of intersected inequalities in higher 
education, and the reliance on such courses at research 
universities is one way that racialized, class-based, and 
gendered inequalities are reproduced within higher edu-
cation generally, and in STEM fields particularly.
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Theoretical perspectives
Intersectionality and organizational theory
We are guided by intersectionality and organizational 
theories that reveal how organizations such as colleges 
and universities are gendered, racialized, and classed 
(Acker, 1990; Armstrong et  al., 2014; Bourdieu & Pas-
seron, 1990; Byrd, 2017, 2021; Collins, 2000; Collins & 
Bilge, 2020; Lee, 2016; Ray, 2019).

Intersectionality describes how people’s experiences 
relate to multiple, intertwined social positions that reflect 
systems of power, including sexism, racism, and clas-
sism, influencing their everyday lives (Carbado, 2013; 
Cho et  al., 2013; Collins, 2000; Collins & Bilge, 2020; 
Crenshaw, 1991). Different contexts and situations can 
heighten one identity compared to others even within the 
same spaces and places, such as moving from one class-
room to another on a campus (Carbado, 2013; Collins, 
2000). Marginalized identities are reified when people 
face structural barriers to mobility, stability, and success, 
and when combined with their other identities, existing 
at a particular intersection can yield qualitatively differ-
ent experiences. The concept of intersectionality helps 
researchers grapple with the complexity of a person’s 
experiences and outcomes within an unequal opportu-
nity structure (Bowleg, 2008; Collins & Bilge, 2020; Cren-
shaw, 1991). Within higher education, it is important to 
understand opportunity structures and the ways that the 
purposes and goals of organizations bring about differ-
ential resources and opportunities for students to pursue 
along their degree pathways.

It is also important to avoid oversimplifying intersec-
tionality, placing inequalities within social identities 
rather than reflecting unequal opportunity structures 
(Carbado & Harris, 2019; Cho et  al., 2013; Collins & 
Bilge, 2020; Harris & Patton, 2018; Haynes et al., 2020). 
Decoupling a person’s experiences and outcomes from 
interlocking systems of power individualizes inequali-
ties, leaving unaddressed organizational features that 
perpetuate inequalities long-documented in higher edu-
cation and particularly in STEM fields (Allen & Jewell, 
2002; Armstrong & Jovanovic, 2017; Bauer et  al., 2021; 
Brunn-Bevel et al., 2019; Byrd, 2021; Fiorini et al., 2023; 
Griffin, 2019; Thelin, 2019). Further, this disconnect can 
misinform initiatives and policies aiming to address such 
inequities by missing how organizations differentially 
distribute resources and opportunities through policies, 
practices, and everyday interactions (Acker, 1990; Byrd, 
2021; Ray, 2019).

Persistent inequities across STEM fields hamper the 
capacity to uphold institutional missions and ideals of 
supporting students with an array of different identities 
and from different backgrounds. Although STEM disci-
plines notably show greater inequities compared to other 

fields of study (Matz et  al., 2017; Riegle-Crumb et  al., 
2019), research continues to find that systemic inequi-
ties are a common feature of higher education across 
academic fields, levels of degree programs, and employ-
ment (Blair-Loy & Cech, 2022; Byrd, 2021; Byrd et  al., 
2019; Espinosa et  al., 2019; McGee, 2020; Posselt, 2018, 
2020; Stewart & Valian, 2018; Zambrana, 2018). There-
fore, we must be mindful in interpreting research find-
ings to avoid deficit framing based on presumptions 
of meritocracy that can limit interventions and policy 
changes by focusing on individuals and not universities 
(Blair-Loy & Cech, 2022; Carnevale et al., 2020; Castillo 
& Gillborn, 2022; Harper, 2010). Given that inequities are 
so intertwined with higher education, and STEM fields 
in particular, a theoretical framework that situates how 
individual academic performance reflects organizational 
inequity is warranted.

Intersectionality‑informed explorations of quantitative 
STEM education data
The application of intersectionality alone to quantitative 
studies can further disconnect inequities and inequalities 
from the contexts surrounding people if not paired with a 
critical lens that seeks to emphasize the societal context 
of a phenomenon (Pearson et  al., 2022). Therefore, we 
couple the guidance of intersectional and organizational 
theories with a critical approach to raise questions about 
the orientation to and purposes of quantitative meth-
ods for understanding marginalization within higher 
education. This disposition helps to (1) avoid assump-
tions about the value neutrality of quantitative analyses; 
(2) limit deficit perspectives of individuals and groups 
that essentialize people; (3) support consideration of 
the contexts that lead to particular outcomes; (4) recon-
sider sociodemographic groupings and categories; and 
(5) recognize that interpretations of quantitative data are 
privileged in society. We explicitly highlight these dispo-
sitional tenants throughout the paper to show where they 
guided decisions and interpretations. As researchers, we 
must carefully consider how we assign meaning to inter-
pretations of data that can silence the voices and experi-
ences of marginalized communities as data do not speak 
for themselves (Byrd, 2021; Castillo & Gillborn, 2022; 
Covarrubias & Vélez, 2013; D’Ignazio & Klein, 2020; Gar-
cia et al., 2018; Gillborn et al., 2018; López, et al., 2018; 
Pearson et al., 2022).

While tending to each of these critical quantitative 
tenets can enhance research to speak to the systemic 
realities of inequities in STEM learning environments, 
lingering issues must be addressed when applying inter-
sectionality to quantitative data. Researchers often use 
individual-level variables without attending to histori-
cal context or the systems in which individuals operate, 
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thereby hindering the visibility of intersected experi-
ences, processes, and outcomes of systemic phenom-
ena (Bauer et  al., 2021; Bowleg, 2008; Hancock, 2007, 
2013; Lopez et  al., 2018). It is important to note how 
such exploration is constrained by the variables used 
in analyses. For example, the ways that institutions and 
researchers place students in sociodemographic catego-
ries by gender, race/ethnicity, and socioeconomic posi-
tion (i.e., income and first-generation status) are not 
always documented (Byrd, 2021), nor can we assume 
identity processes of students (i.e., how someone self-
identifies and why). In this study, we explicitly attempt 
to link our analysis to such historical context.

In relation to interpretations of sociodemographic 
variables, this framing means that a coefficient for stu-
dents identifying with a particular racial/ethnic group 
in a multivariate model should not be interpreted by 
researchers as the social construct of race directly influ-
encing a student’s outcome such as grades (Bonilla-
Silva, 2006). Rather, a racial disparity in course grades 
reflects the racially inequitable learning contexts of that 
course that impact students along racial lines. Through 
additive approaches, researchers might explore the 
average combined effects of multiple systems of ineq-
uity and power, but also should recognize that, of 
course, qualitatively different experiences underlie 
overarching quantitative patterns and are not fully cap-
tured. Grounded in these theoretical perspectives, our 
approach interrogates the entrenched nature of sys-
temic oppression in postsecondary STEM courses.

Research questions
Our critical theoretical perspectives, informed by 
intersectionality and organizational theory, provide 
the foundation for this study about how introductory 
STEM courses operate as key sites of intersected ine-
qualities in higher education. We investigate grade dis-
parities as a reflection of existing institutional practices 
and policies that perpetuate inequalities among stu-
dents by sex, race/ethnicity, and socioeconomic status. 
To explore such systemic inequalities and expand our 
scope of cross-institutional analyses beyond prior work 
focused solely on sex (Matz et al., 2017), we define and 
use the systemic advantage index (SAI), which repre-
sents the total number of advantages that characterize 
students within institutions according to sex, race/eth-
nicity, income, and first-generation status. To explore 
the extent to which historically based (dis)advantages 
exist across institutions and to document the mani-
festation of systemic inequities in introductory STEM 
courses, we ask the following research questions:

1. What is the distribution of students by systemic 
advantage at each institution?

2. What is the relationship between systemic advantage 
and course outcomes?

Methods
Institutional context
This study examines data from six four-year public uni-
versities in the U.S.: the flagship campuses of Arizona 
State University, Indiana University, Michigan State Uni-
versity, Purdue University, the University of Michigan, 
and the University of Pittsburgh, randomly deidentified 
herein as Institutions A through F. These six institutions 
are similar in that they are doctoral universities with very 
high research activity, they have large enrollments (from 
19,000 to 42,000 undergraduate students in Fall 2018; 
National Center for Education Statistics, n.d.), and they 
serve populations that are primarily residential (Carnegie 
Classification of Institutions of Higher Education, n.d.).

Other key characteristics vary; for example, in 2018–
2019, the admissions rate ranged from 23 to 85% across 
the institutions and the 6-year graduation rate ranged 
from 63 to 93% (National Center for Education Statistics, 
n.d.). The percentages of undergraduate students who 
are women (42 to 52%) and non-white (30% to 50%) also 
vary (Fall 2018 figures; National Center for Education 
Statistics, n.d.). The data used in this study were gathered 
and derived from the student information systems main-
tained at each institution following Institutional Review 
Board requirements. The student-level data were held 
locally, not shared between researchers.

Data collection
Defining the sample: student population (step 1)
We selected all undergraduate students who received a 
numeric grade in at least one STEM course (defined as 
those with biology, chemistry, engineering, mathematics, 
physics, or statistics course codes, excluding laboratory 
courses as they tend to be secondary to lecture courses) 
within their first academic year at one of the participat-
ing universities spanning a period of 10 academic years 
(Fall 2009 through Spring 2019, excluding summer terms 
as we were interested in students’ first interactions with 
STEM courses). All data were thus collected before the 
instructional, grading, and policy changes that resulted 
from the COVID-19 pandemic beginning in March 2020. 
A summary of the criteria and exclusions applied to the 
sample in this and the following steps is shown in Fig. 1.

We excluded transfer students as our goal was to 
examine students’ first interactions with post-secondary 
STEM courses. Though a subset of transfer students did 
take their first STEM course at one of our institutions 
and could have been included in principle, the transfer 
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credit records we accessed were not consistently spe-
cific enough at the course level to parse these groups; we 
assumed that some transfer students had prior STEM 
courses transfer only as general education or elective 
credit, and thus that we would not be able to reliably 
determine if a student had or had not taken a post-sec-
ondary STEM course before transferring. International 
students were also excluded because race is a social con-
struct defined differently according to each country’s his-
tory and culture. Given that our data came from entirely 
U.S.-based institutions, we did not want to enforce a 
potentially inappropriate U.S.-based construct on our 
international student populations. With these sample 
limitations, we do not assert that transfer and interna-
tional students do not experience inequitable learning 
environments. Rather, we aimed to explore different axes 
of systemic advantage here.

Defining the sample: the largest STEM courses (step 2)
For this study, we defined the 10 largest STEM courses 
at each university as the courses with the greatest num-
ber of enrollments from this student population across 
the 10-year period of interest. We included courses 
without regard to level; in particular, the number and 
type of mathematics courses offered prior to calculus 
differs across these institutions. In this way, we focused 
our attention on the largest STEM courses unique to 
each institution and its student population. The dis-
tribution of courses by discipline is shown in Table  1. 
Mathematics courses are the most prominent, compris-
ing more than half of the courses overall. No upper-
division courses, that is, those at the “300-level” or 
above, were evident in the sample (though disparities 
have been shown to persist at the upper-division level; 
see Farrar et al., 2023).

Fig. 1 Summary of criteria and exclusions for the data sample

Table 1 The distribution of the 10 largest STEM courses at each institution by discipline

Discipline A B C D E F Total

Biology 1 3 1 1 1 1 8

Chemistry 2 3 2 1 2 2 12

Engineering 0 0 0 0 0 1 1

Mathematics 6 4 6 7 5 4 32

Physics 0 0 1 1 1 1 4

Statistics 1 0 0 0 1 1 3

Total 10 10 10 10 10 10 60
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Defining the sample: enrollment exclusions (step 3)
Two final adjustments to the sample were made. First, 
the enrollment patterns for students across these 10 
largest courses varied; that is, each student fell into one 
of three categories: (1) the student took one or more of 
the 10 largest STEM courses in the fall term and none 
in the spring term; (2) the student took one or more of 
the 10 largest STEM courses in the spring term and none 
in the fall term (for example, some students began their 
undergraduate careers in the spring); or (3) the student 
took one or more of the 10 largest STEM courses in both 
the fall and spring terms. Because we intended to focus 
on students’ first experience with large STEM courses, 
we limited our enrollments of interest for those in group 
3—the “both fall and spring” students—to only those that 
occurred in the students’ fall term.

Second, we adjusted the sample in the cases where 
students were enrolled in two or more of the 10 larg-
est STEM courses within the same term. To support 
the robustness of the analyses, among the students that 
were represented with multiple enrollments across 
these 10 largest STEM courses within the same term, 
we randomly sampled a single STEM course enrollment 
for each student. This step was necessary because the 
GPAOs (defined below) for these course enrollments for 
each student would be highly correlated. This exclusion 
had the effect of reducing the sample of 386,035 enroll-
ments across the 10 largest STEM courses to 227,413 
enrollments. In this way, the final sample [n = 227,413 
students (Institution A: 59,412, B: 43,287, C: 22,056, D: 
34,967, E: 47,373, F: 20,318); 60 courses; 6 institutions] 
includes only one unique enrollment per student.

Demographic variables
We used four demographic variables in this study: sex, 
race/ethnicity, income, and first- versus continuing-gen-
eration status.

Though gender, not sex, was our construct of inter-
est with respect to systemic advantage in undergradu-
ate STEM courses, gender data were not available in the 
student records at every institution, a byproduct of the 
non-neutrality of data as noted in dispositional tenant 1. 
Thus, we used a binary sex classification (female students 
and male students) and recognize these data as limiting 
(D’Ignazio & Klein, 2020), particularly with respect to 
non-binary and genderqueer students.

Race/ethnicity was coded as white or non-white, 
where non-white included students who indicated they 
were American Indian or Alaska Native, Asian or Asian 
American, Black or African American, Hispanic, Native 
Hawaiian or Other Pacific Islander, or two or more 
races. We recognize that the choice to group students 
of non-white races and ethnicities into one category has 

the potential to perpetuate a centering of whiteness and 
encourage the monolithic view of non-white individuals, 
an implication with which we disagree. This choice was 
based on history, that is, U.S. universities being designed 
solely for white students and implementing exclusion-
ary practices for non-white students. Our binary coding 
of race and ethnicity is intended to reflect this historical 
structural perspective.

Low-income students were defined as those eligible 
for federal Pell grants; however, at two institutions, these 
data were unavailable to researchers. In these cases, the 
low-income category was defined by the median income 
level associated with students’ high school zip code based 
on data from the U.S. Census Bureau; zip code has been 
found in prior research to be a reasonable proxy for soci-
oeconomic status (Berkowitz et  al., 2015; Link-Gelles 
et al., 2016). We used a median income of $46,435 or less 
as a conservative estimate for low income as this income 
level is twice the average federal poverty guideline for a 
family of four persons within the U.S. over our period of 
interest (Office of the Assistant Secretary for Planning 
and Evaluation, n.d.).

First-generation students were defined as those report-
ing that no parent or guardian had earned a bachelor’s 
degree.

When students were missing information for any 
demographic variable, they were categorized with the 
advantaged group in order to be conservative with the 
analyses.

Course grades and metrics
We collected students’ final course grades, exclud-
ing non-numeric grades like lapsed incomplete grades, 
grades earned under pass/fail policies, and grades repre-
senting course or term withdrawals. The numeric grad-
ing scale was the same across three institutions, while 
the other three institutions’ scales each varied slightly 
(Table  2). Though these variations certainly impact the 
precise magnitude of our estimates (indeed, grading 
schemes have been shown to vary even across sections of 
the same course within a single institution; James, 2023), 
we maintain that the overall trends and resulting inter-
pretations are insensitive to them.

We used grade point average in other courses (GPAO) 
as a control metric for academic performance, defined 
as a student’s cumulative GPA across all courses (includ-
ing non-STEM courses) and all terms excluding only the 
STEM course of interest (Huberth et  al., 2015; Koester 
et  al., 2016). For example, if a student enrolled in five 
courses during their second term, their GPAO for one of 
these second-term courses is calculated as their average 
GPA across the other four courses from that term plus 
all their courses from the first term. That is, GPAO is a 
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way of describing the grades that students typically earn 
across all their courses while retaining the ability to com-
pare to a student’s grade in a particular course of interest.

Because GPAO is calculated relative to each course 
enrollment, a student’s GPAO for one course can be dif-
ferent from their GPAO for another course. We selected 
GPAO as a control metric for academic performance 
because prior studies have shown its power in predicting 
academic outcomes over and above high school GPA and 
standardized exam scores (Huberth et al., 2015; Koester 
et  al., 2016) and in highlighting inequities in STEM 

courses (Matz et  al., 2017). Using GPAO also facilitates 
cross-institutional studies because it easily accounts for 
the variance in grading across universities; indeed, four 
grading scales are represented here among only six uni-
versities. With GPAO, grade comparisons are made rela-
tive to how students usually perform at their specific 
institution.

Analytical framework
We calculated a metric that we call the systemic advan-
tage index (SAI) (Castle et  al., 2021) for each student 
based on selected demographic information as a measure 
that partially represents systemic oppression within the 
U.S. higher education system. The SAI is derived from 
the historical academic structures of inequity within this 
system and is therefore intended to be a structural meas-
ure rather than a deficit-oriented measure, aligning with 
dispositional tenants 2, 3, and 4.

We define SAI as the number of advantages that a stu-
dent has based on their sex, race/ethnicity, income, and 
first- versus continuing-generation status, where male 
students, white students, higher-income students, and 
continuing-generation students, respectively, are consid-
ered advantaged. Though privilege in higher education 
operates through other dimensions (e.g., ableism; Rein-
holz & Ridgway, 2021), we limited the current study to 
these four characteristics based on data availability and 
consistency. Herein, students range from having zero 
advantages (i.e., first-generation, low-income, non-white 
female students) to four advantages (i.e., continuing-gen-
eration, higher-income, white male students).

Within this range, there are 16 mutually exclusive 
groups of students (Table 3); students with the same SAI 
have the same number of systemic advantages, but the 

Table 2 The numeric grading scales represented across the six 
institutions

a Grading scale 1 is used at three institutions in the sample. Grading scales 2, 3, 
and 4 are each used by one institution
b The ‘–’ notation indicates that this grade is not available at this institution

Grade Grading  scalea

1 2 3 4

A + 4.00 4.33 4.00 4.00

A 4.00 4.00 4.00 4.00

A− 3.70 3.67 3.50 3.75

B + 3.30 3.33 3.50 3.25

B 3.00 3.00 3.00 3.00

B− 2.70 2.67 2.50 2.75

C + 2.30 2.33 2.50 2.25

C 2.00 2.00 2.00 2.00

C− 1.70 –b 1.50 1.75

D + 1.30 – 1.50 1.25

D 1.00 1.00 1.00 1.00

D− 0.70 – – 0.75

E/F 0.00 0.00 0.00 0.00

Table 3 The percentage of students by systemic advantage index (SAI) within each institution

Note: As an example, 6% of students at Institution A had an SAI of 0

SAI Description A B C D E F

0 First‑generation, lower‑income, non‑white female students 6 3 5 1 < 1 1

1 First‑generation, lower‑income, white female students
First‑generation, lower‑income, non‑white male students
First‑generation, higher‑income, non‑white female students
Continuing‑generation, lower‑income, non‑white female students

13 8 10 5 4 6

2 First‑generation, lower‑income, white male students
First‑generation, higher‑income, white female students
Continuing‑generation, lower‑income, white female students
First‑generation, higher‑income, non‑white male students
Continuing‑generation, lower‑income, non‑white male students
Continuing‑generation, higher‑income, non‑white female students

24 17 18 22 18 19

3 First‑generation, higher‑income, white male students
Continuing‑generation, lower‑income, white male students
Continuing‑generation, higher‑income, white female students
Continuing‑generation, higher‑income, non‑white male students

35 40 39 43 45 46

4 Continuing‑generation, higher‑income, white male students 22 33 28 29 33 29
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precise advantages can differ. While each advantage con-
tributes equally to a student’s SAI, we acknowledge that 
the advantages are not necessarily equivalent in how they 
relate to the outcomes in a course, a key limitation in line 
with dispositional tenant three. The same index value 
represents different intersectional combinations of stu-
dent characteristics and, hence, conflates different expe-
riences. However, the SAI as a coarse estimate facilitates 
analysis of how these axes of advantage manifest system-
atically within students’ introductory STEM course out-
comes across institutions, providing an advantage over 
studies of single institutions and single axes of diversity 
and even meta-analyses that entail methodological vari-
ation. That is, our focus is on the system of advantages 
inherited and persisting in our educational systems, not 
on individual students or advantages, nor on how stu-
dents with specific combinations of characteristics expe-
rience systemic inequities.

Our analysis follows Matz et al. (2017), using students’ 
grades and their grades in other courses (their GPAO) 
together to calculate a metric called grade anomaly. 
Grade anomaly is the difference between course grade 
and GPAO. A positive grade anomaly indicates that the 
student received a higher grade in the sampled course 
compared to their other courses—a grade “bonus”. A neg-
ative grade anomaly indicates that the student received 
a lower grade in the sampled course compared to their 
other courses—a grade “penalty”. This simple comparison 
is easy to compute, widely available, and informative both 
as a kind of control for academic performance at the uni-
versity level and in providing a measure of the feedback 
to the student about how well they did in their course 
compared to their typical performance. We used ordi-
nary least squares regression to evaluate the relationship 

between SAI and grade anomaly. All analyses and visu-
alizations were carried out using R Statistical Software (R 
Core Team, 2023).

Results
RQ1: What is the distribution of students by systemic 
advantage at each institution?
We first evaluated the percentage of students in each 
SAI group by institution (Table  3; Fig.  2) to understand 
the distribution of students by SAI groups and to explore 
similarities and differences in the population at each 
university. At every institution, the majority of students 
were represented by groups with three or four advan-
tages. Institution A had the smallest proportion of stu-
dents (57%) with three or four advantages; though not a 
statistical outlier, it was furthest from the other institu-
tions. Institutions B, D, E, and F all had greater than 70% 
of students in groups with three or four advantages and, 
in particular, Institution E had very few students (< 1%) in 
SAI group 0. Institution A, and Institution C to a lesser 
extent, showed a broader distribution over the five SAI 
groups in general in comparison to the other institutions.

The percentages of students within each SAI sub-
group—for example, the percentage of first-generation, 
lower-income, white female students relative to the 
three other SAI = 1 subgroups—are provided in Table  4 
and Fig.  3. Across the institutions, the SAI = 3 group is 
dominated by continuing-generation, higher-income, 
white female students and secondarily by continuing-
generation, higher-income, non-white male students. 
The SAI = 2 group is dominated by continuing-genera-
tion, higher-income, non-white female students whereas 
the SAI = 1 subgroups are more evenly distributed. 

Fig. 2 The percentage of students by systemic advantage index (SAI) within each institution
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Considering all these data, an overall lack of low-income 
students is especially apparent at Institution E.

RQ2: What is the relationship between systemic advantage 
and course outcomes?
We then explored the relationship between systemic 
advantage and two academic performance variables in 
the sampled STEM courses at each institution: course 
grade (Table 5; Fig. 4) and grade anomaly (Table 6; Fig. 5). 
At every institution, both relationships showed that more 
favorable course outcomes were generally associated 
with more systemic advantages. The trends were strik-
ingly similar across universities even though we did not 
control for differences in grading practices, contexts, and 
instructor and student populations. One point of con-
trast is that for all but one institution (Institution E), the 
average course grade for SAI group 4 was the same or less 
than that for SAI group 3. However, when considered rel-
ative to students’ performance in other courses (Fig.  5), 
the trend of more favorable course outcomes for those 
with more advantages was still apparent.

In particular, regression models (Table 7) showed that 
increasing SAI had a significantly positive relationship 
with grade anomaly; a one-unit increase in SAI was asso-
ciated with an increase in grade anomaly of between 0.04 
and 0.10 points, depending on the institution, on average 
(see the Estimate column in Table 7; the lowest estimate 
is 0.04 for Institution D and the highest estimate is 0.10 
for Institution E). Further, grade anomaly in these early 
STEM courses was significantly greater for the most 

advantaged group of students (SAI = 4) versus all other 
students at every institution (Table 8; differences in grade 
anomaly for all possible comparisons of SAI groups are 
provided in Additional file 1).

We note that across all SAI groups and institutions, the 
average grade anomaly for students in their first STEM 
course, as we have defined them here, was negative. All 
SAI groups on average received a grade penalty—a lower 
grade in the sampled course compared to their other 
courses—ranging between 0.24 and 0.94 grade points 
(see the Mean columns in Table  6; the lowest mean is 
−  0.94 for SAI group 0 at Institution E and the highest 
mean is − 0.24 for SAI group 4 at Institution D), but the 
penalties were more amplified on average for students in 
SAI groups with fewer systemic advantages.

Discussion
This study uses a simple method, grounded in a critical 
historical perspective, to highlight how early university 
STEM courses provide more favorable course outcomes 
to students with more systemic advantages, sustain-
ing and increasing disparities between different student 
populations. Though we found that all students received 
lower course grades on average in introductory STEM 
courses relative to their other courses, the most disad-
vantaged groups of students, as defined by the number 
of disadvantages, received the largest penalties. The rela-
tionship between greater advantage and less grade pen-
alty was significant at each institution, resonating across 
the broad set of disciplines and contexts represented in 

Table 4 The percentage of students by systemic advantage index (SAI) subgroup within each institution and SAI

As an example, 20% of students in the SAI = 1 group at Institution A are first-generation, lower-income, white female students

SAI/SAI 
subgroup

Description A B C D E F

0 First‑generation, lower‑income, non‑white female students 100 100 100 100 100 100

1a First‑generation, lower‑income, white female students 20 33 31 34 5 29

1b First‑generation, lower‑income, non‑white male students 38 21 28 8 1 16

1c First‑generation, higher‑income, non‑white female students 12 10 11 42 90 15

1d Continuing‑generation, lower‑income, non‑white female students 30 35 29 16 3 40

2a First‑generation, lower‑income, white male students 10 11 12 6 1 8

2b First‑generation, higher‑income, white female students 10 17 22 28 20 13

2c Continuing‑generation, lower‑income, white female students 17 26 21 20 3 18

2d First‑generation, higher‑income, non‑white male students 8 4 5 9 15 5

2e Continuing‑generation, lower‑income, non‑white male students 17 11 11 4 < 1 11

2f Continuing‑generation, higher‑income, non‑white female students 39 32 29 33 61 45

3a First‑generation, higher‑income, white male students 7 7 8 13 7 6

3b Continuing‑generation, lower‑income, white male students 13 9 8 10 1 7

3c Continuing‑generation, higher‑income, white female students 50 69 71 59 64 51

3d Continuing‑generation, higher‑income, non‑white male students 30 15 13 18 27 36

4 Continuing‑generation, higher‑income, white male students 100 100 100 100 100 100



Page 11 of 20Castle et al. International Journal of STEM Education           (2024) 11:14  

Fig. 3 The percentage of students by systemic advantage index (SAI) subgroup with SAI = 1 (top), SAI = 2 (middle), or SAI = 3 (bottom) at each 
institution; see Table 4 for the description of each subgroup
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students’ first post-secondary interactions with STEM. 
Although some might argue that the grade anomaly dif-
ferences result more from student effort than from the 

learning environment, using GPAO as a control for aca-
demic performance mitigates this alternative explanation 
as it accounts for students’ general study habits across a 

Fig. 4 Students’ mean course grade ± 1 standard error in the sampled STEM course by systemic advantage index (SAI)

Table 6 Mean grade anomaly for each systemic advantage index group (0 to 4) by institution (A to F)

0 1 2 3 4

N M SD N M SD N M SD N M SD N M SD

A 3455 − 0.78 1.16 8018 − 0.68 1.14 14,095 − 0.59 1.08 20,845 − 0.55 1.06 12,999 − 0.57 1.08

B 1220 − 0.80 0.93 3259 − 0.76 0.89 7198 − 0.66 0.85 17,379 − 0.57 0.77 14,231 − 0.49 0.73

C 1045 − 0.67 1.04 2225 − 0.61 0.98 4004 − 0.45 0.85 8526 − 0.39 0.78 6256 − 0.37 0.82

D 212 − 0.43 0.85 1798 − 0.38 0.82 7623 − 0.32 0.78 15,105 − 0.27 0.74 10,229 − 0.24 0.72

E 21 − 0.94 1.03 1706 − 0.82 0.84 8687 − 0.60 0.71 21,461 − 0.51 0.66 15,498 − 0.42 0.66

F 222 − 0.40 0.98 1139 − 0.46 0.98 3873 − 0.36 0.93 9248 − 0.36 0.95 5836 − 0.26 0.89

Fig. 5 Students’ mean grade anomaly ± 1 standard error in the sampled STEM course by systemic advantage index (SAI)
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range of other courses. Further, we contend that these 
analyses are conservative because withdrawals were 
excluded, and withdrawals contribute substantially to 
differences in course outcomes between student groups 
based on gender, race/ethnicity, income, and first- versus 
continuing-generation status (Michaels & Milner, 2021). 
Withdrawals represent another source of information for 
examining inequities in future work.

Mathematics accounted for approximately half of the 
courses in the sample. Unlike other disciplines, mathe-
matics courses are often pre- and co-requisite for many 
STEM degree pathways and are often a general educa-
tion requirement. Therefore, the trend across institu-
tions of more favorable introductory STEM course 
outcomes for those with a greater number of systemic 
advantages is highly concerning. An unfavorable grade 
in an initial mathematics course can bar students 
from other discipline-specific courses, forcing them 
to potentially extend the time to completion of their 

degree, or spurring them to exit their STEM program. 
When considering enacting structural change across 
institutions, it is important to note that STEM itself is 
not a monolith and the variations in disciplinary cul-
tures are essential to consider when advocating for 
structural reform across departmental and institutional 
levels (Reinholz et al., 2019). Therefore, this study adds 
to the call for a larger conversation about undergrad-
uate mathematics education (Reinholz et  al., 2020), 
with a specific emphasis on the earlier mathematics 
courses, that centers on structures and challenges defi-
cit discourse (Adiredtja & Louie, 2020). It is critical that 
equity practices promote a reconfiguration of univer-
sity mathematics practices, and that researchers and 
educators grapple with the institutional factors that can 
hinder change (Ching & Roberts, 2022). As this pattern 
was not confined to a sole institution, it is important 
for future work to consider the enactment of disciplines 
within the university context and examine the disci-
pline through a lens focused on systemic inequity in 
addition to the course- and institution-level analyses.

Initiatives both national and local to our universi-
ties have promoted diversity within STEM disciplines 
specifically regarding retention of students typically 
disadvantaged by higher education (Asai, 2020). But 
given that early STEM course grades are a key factor 
in STEM retention (Byars-Winston et al., 2010; Dika & 
D’Amico, 2016; King, 2015; Seymour & Hunter, 2019; 
Stinebrickner & Stinebrickner, 2014; Witteveen & 
Attewell, 2020), our findings are concerning and sug-
gest that continued scrutiny for structural inequities 
in STEM is necessary. Indeed, higher grades in begin-
ning STEM courses, especially relative to other courses, 
is a predictor of retention (Griffith, 2010), though pat-
terns in persistence differ by demographic charac-
teristics (Costello et  al., 2023). Past research provides 
mechanisms for how inequities in early STEM courses 
can reflect unequal learning environments rather than 
student abilities. For example, Black students face 
implicit and explicit messages that they do not belong 

Table 7 Estimates, standard errors of the mean (SEM), and t 
values from generalized linear regression models for the effect of 
systemic advantage index (SAI) on grade anomaly

The model was run separately at each institution because of restrictions on 
sharing student-level data across universities

p < 0.001 for all covariates

Institution Covariate Estimate SEM t

A Intercept − 0.710 0.011 − 65.55

SAI 0.045 0.004 11.61

B Intercept − 0.828 0.011 − 72.14

SAI 0.085 0.004 23.00

C Intercept − 0.635 0.015 − 41.98

SAI 0.073 0.005 14.43

D Intercept − 0.405 0.014 − 28.87

SAI 0.044 0.005 9.67

E Intercept − 0.828 0.012 − 67.93

SAI 0.104 0.004 27.15

F Intercept − 0.495 0.023 − 21.99

SAI 0.053 0.007 7.25

Table 8 Welch’s two‑sample t‑test for differences in grade anomaly for SAI = 0, 1, 2, or 3 versus SAI = 4 at each institution

Institution Grade anomaly (M) t df 95% CI p

SAI 0, 1, 2, or 3 SAI 4 LL UL

A − 0.60 − 0.57 3.18 21,006 0.013 0.055 0.001

B − 0.62 − 0.49 17.46 31,042 0.121 0.151 < 0.001

C − 0.45 − 0.37 6.48 11,896 0.056 0.104 < 0.001

D − 0.29 − 0.24 5.96 19,669 0.035 0.068 < 0.001

E − 0.55 − 0.42 20.02 32,064 0.118 0.144 < 0.001

F − 0.37 − 0.26 7.81 11,431 0.082 0.137 < 0.001
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in STEM spaces (Basile & Black, 2019; McGee, 2021) 
and peers, mentors, and instructors are influenced by 
prevalent stereotypes about women’s STEM ability 
(Eddy & Brownell, 2016). Matias Dizon and colleagues 
(2023) also recently observed that women and Black 
students have stronger negative relationships than their 
peers between discouragement for speaking in class 
and GPA. Many other institutional and sociocultural 
contexts shape how systemic advantages contribute to 
grade disparities in STEM environments (Griffin, 2019; 
McGee, 2020).

We contend that three aspects of the current study are 
significant. First, this study formally introduces the SAI, 
showing that the selective origins of the university sys-
tem still function in STEM courses today through struc-
tural inequities in course performance. Because the SAI 
reflects advantage in a broad sense, the index is a struc-
tural measure rather than one framed by student deficits. 
At the same time, the SAI (as any index) has the potential 
to be misused as it is not inherently anti-deficit; research-
ers using the SAI must actively pursue asset-based and 
anti-deficit framing. While we defined SAI here in terms 
of four categories, other dimensions of advantage (e.g., 
transfer status, disability status, LGBTQ + status, or 
English language learning status, among others) can be 
added and explored according to the history of a par-
ticular educational context and data availability. Indeed, 
we are aware of similar work at the K-12 level based on 
a six-factor advantage index that uses the four dimen-
sions included here alongside English language status 
and disability status (Stevens, 2023), though we encour-
age researchers to report results with the current SAI 
model in future studies to support broader comparison. 
An example further afield, the University of California 
Davis has used a “disadvantage index” for more than a 
decade to help parse applicants to the medical school 
(Saul, 2023).

Second, the study is a valuable example of parallel anal-
ysis across multiple institutions; as such, the focus of the 
study is students’ early STEM courses writ large across 
research-intensive public universities. The consistent 
trends observed here point to systemic inequities within 
early STEM courses as a whole, not limited to individual 
instructors, courses, departments, or even institutions. 
Indeed, we are not aware of any work that uses data from 
so many large public institutions, representing various 
institutional contexts (e.g., land grant origin, minority-
serving institution status, relative “eliteness”), to show 
the pervasive nature of the systemic inequities discussed 
herein. We note that the SAI factors included here were 
in part selected as most any institution would have access 
to similar data, facilitating further comparison. We rec-
ognize the privilege that quantitative studies have within 

research, as noted in dispositional tenant 5, and use this 
study to not only advocate for systemic change through 
structural and policy change (Lubienski, 2008), but also 
urge researchers to delve more deeply into the structural 
mechanisms that produce these inequities.

Third, we included courses without regard to level, 
which is important especially with respect to mathemat-
ics because students identifying with historically mar-
ginalized racial/ethnic groups are more likely to have 
introductory mathematics course placements that do not 
align with their aptitudes due to underestimation (Lar-
nell, 2016). Segregation at the K-12 level also contributes 
to such students receiving fewer educational resources on 
average than white students in the U.S. (Meatto, 2019). 
Even when educational resources are available, discrimi-
nation from school officials has been shown to prevent 
racial and ethnic minorities from accessing higher-level 
coursework (Lewis & Diamond, 2015; Tyson, 2011). By 
including all course levels, our attention was focused on 
all early STEM courses that have traditionally played a 
gatekeeping role.

Limitations
Several limitations are salient, and it is critical to grasp 
these as a manifestation of the choices that the research 
team made with respect to the study design, analyses, 
and interpretations. Indeed, quantitative analyses are not 
neutral (as stated within dispositional tenant 1) and it is 
imperative to understand how our choices yield limita-
tions along different axes.

First, comparing students across universities using 
prescriptive administrative data (meaning data that are 
limited and narrow) comes at the expense of allowing 
individuals to articulate important factors in relation to 
their identities and experiences within their particular 
context (Lubienski & Gutiérrez, 2008). The SAI is based 
on the historical foundations of U.S. universities and 
implemented herein based on the availability of insti-
tutional data. We implemented proxies that are limited 
in order to make comparisons across institutions—sex 
rather than gender and median income by high school 
zip code rather than Pell grant eligibility due to lack of 
access to this data at two institutions. Further, the SAI 
does not include structural advantages related to dis-
ability, sexuality, and other elements of students’ identi-
ties because much of this data is not regularized across 
institutions or available for research. Higher education 
systems are not neutral to these identities; students 
experience structural advantages along these different 
dimensions of identity, and these are critical areas that 
need more research and system-level reform to strive 
toward equity. At the same time, though institutional 



Page 16 of 20Castle et al. International Journal of STEM Education           (2024) 11:14 

data are limited, they facilitate cross-institutional anal-
yses that can reveal broad inequities, supporting more 
refined future studies.

Second, the choices we made in constructing the SAI 
index can errantly promote binary thinking, especially 
with regard to race/ethnicity. Collapsing race/ethnicity 
into a binary category based on a structural perspective 
comes at the expense of seeing challenges faced by spe-
cific racial/ethnic groups, and there is the potential to 
misconstrue this choice as centering whiteness. These 
specific limitations and the implications of this approach 
are critical to acknowledge and discuss as the goal of this 
work is to highlight inequity within undergraduate STEM 
across institutions as a byproduct of historical structural 
inequities from the origins of U.S. higher education.

Finally, student groups with different identity profiles 
are combined herein based on their SAI number, which 
confounds the challenges faced by specific groups of stu-
dents. It is important to reiterate that the dimensions of 
social identities collapsed into systemic advantages are 
not interchangeable, even though we are using SAI to 
group students by number of advantages. This also means 
that for SAI indices comprising multiple groups, the 
anomalies for some specific subsets are an underreport of 
their experiences given that the overall SAI results are an 
average of multiple groups. We collapsed the number of 
associated advantages that a student brings to their first 
STEM course to examine the manifestation of systemic 
inequity. In this way, the SAI is a conservative measure, 
yet it is able to reveal the presence of systemic inequi-
ties across institutions. We contend that the current 
approach is useful for describing how systemic advan-
tages manifest across students’ intersecting backgrounds 
within higher education.

Future work
To identify and change the structures and policies that 
enforce inequities and inequalities, future work should 
focus on sources of variation between institutions. Com-
paring outcomes in more specifically aligned courses 
across institutions in particular disciplines could yield 
exemplars of structures and systems that enable grade 
equity. These comparisons would help build understand-
ing of contexts where students experience larger inequali-
ties and where inequities do not manifest in introductory 
grades, pressing evermore toward equitable experiences 
for students in foundational STEM courses. Generali-
zation to the introductory STEM context within other 
types of institutions of higher education beyond the large 
universities represented here is also a rich path for future 
studies, as is tying these analyses to qualitative data that 
richly cover how inequities affect students in STEM.

Conclusion
This study adds to the robust literature on equity in 
STEM by showing the persistent relationship between 
advantage and course outcomes for students in early 
STEM courses. We maintain that the grade penalties 
observed herein reflect systemic inequities in STEM 
fields and show that STEM is uniquely inequitable when 
compared to other higher education disciplines. This 
study helps continue to shift conversation about student 
success in STEM from student-based performance dif-
ferences to a metric that describes advantage broadly; 
clearly, the language used to address differential out-
comes matters (Quinn & Desruisseaux, 2022). Address-
ing systemic inequity requires changing the learning 
environment around students. Prior research advocates 
for course-level changes such as working with instructors 
to counter ideas that students have fixed ability and intel-
ligence (Canning et al., 2019) and fostering approaches to 
increase students’ growth mindset and sense of belonging 
(Chen et al., 2021). Importantly, within the broader pat-
tern of inequity observed herein, campus leaders should 
identify how their institution contributes and work to 
remedy the broader systemic problems both locally and 
across institutions. If the goal is to support marginal-
ized students and promote their academic excellence, 
we must explore how to identify but more importantly 
seek to correct inequities within early undergraduate 
STEM courses. The current study provides one approach 
for identifying the extent of systemic inequity present in 
foundational STEM courses.
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