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Abstract

First-principles study of ion ordering and diffusion in layered oxides for Na- and K-ion

batteries

by

Jonas Leif Kaufman

Electrochemical energy storage technology must continue to improve in order to meet

increasing demand across sectors, while balancing performance with cost and resource

constraints. For large-scale stationary applications such as grid storage of renewable

energy, Na- and K-ion batteries have received attention as potential alternatives to Li-

ion batteries mainly due to the far greater abundance of those elements. Research efforts

for these “beyond Li-ion” technologies include developing robust electrode materials that

can undergo many cycles without degrading. One promising class of candidate materials

are layered oxide intercalation compounds, which have been widely adopted in positive

electrodes for commercial Li-ion batteries. However, when intercalated with the larger

Na+ and K+ ions, these materials often exhibit additional structural phase transitions and

ion-vacancy orderings that are not encountered with Li+. These effects have important

implications for the voltage profile, degradation mechanisms, and rate capability.

In this dissertation, we study thermodynamic and kinetic properties of layered oxides

for Na- and K-ion battery electrodes using first-principles techniques. Density functional

theory calculations provide energies and relaxed geometries of ordered configurations

at varying Na/K concentration (corresponding to different states of charge), as well as

barriers for ion migration. Statistical mechanics methods, namely cluster expansion

effective Hamiltonians and Monte Carlo simulations, are employed to efficiently model

finite-temperature behavior and predict ground state configurations.
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In the NaxCoO2, NaxCrO2, and KxCrO2 systems (0 ≤ x ≤ 1), we examine phase sta-

bility among layered structures that host Na/K in octahedral or prismatic coordination,

as well as ion-vacancy orderings within them. We establish a comprehensive description

of ordering in these systems, in which most of the stable ordered phases belong to fami-

lies that are each based on a particular motif. At intermediate x, we identify orderings

with Na/K in prismatic coordination that accommodate variations in composition as

antiphase boundaries. We demonstrate how the composition can be changed essentially

continuously by adjusting the average spacing between boundaries, leading to “Devil’s

staircase” behavior that agrees well with experimental observations. We predict a similar

family of orderings at high x in KxCrO2 that host both prismatically and octahedrally

coordinated K within the same intercalation layer, which we find to be a plausible expla-

nation of the experimentally reported structural evolution during cycling. In NaxCrO2,

we also confirm a preference for Cr migration to the intercalation layers at low x, which

is a key degradation mechanism observed in this material.

Using NaxCoO2 as a model system, we explore Na diffusion within the orderings

identified near x = 1/2. While Na mobility is found to be highly restricted, we uncover a

mechanism that enables the collective motion of antiphase boundaries through the inter-

calation layers, the limiting migration barriers for which are relatively low. We simulate

the macroscopic diffusion behavior arising from this mechanism using a kinetic Monte

Carlo model. Our simulations show that antiphase boundary migration, though quite

distinct from textbook atomistic diffusion mechanisms, follows normal Fickian diffusion

in one dimension, but with strong composition dependence of the diffusion coefficient.

These results lay important groundwork for understanding the effects of ordering and

engineering improved battery materials that might take advantage of unconventional

diffusion mechanisms in ordered phases.
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Chapter 1

Introduction

1.1 Moving beyond Li for batteries

The development of the rechargeable Li-ion battery revolutionized energy storage,

enabling advances in many applications, including portable electronics, electric vehicles,

and grid energy storage [1]. While commercial Li-ion batteries are being continually op-

timized, design constraints related to factors such as cost, energy density, power density,

cycle life, and safety have spurred interest in various “beyond Li-ion” battery technologies.

In particular, lower-cost solutions are needed to support grid storage of energy generated

from intermittent renewable sources such as solar and wind [2], an important part of the

greater transition toward a more sustainable future. For these grid storage applications,

where energy density is of far less importance than cost, Na- and K-ion batteries have

received renewed attention as possible alternatives to Li-ion batteries. The most obvious

and significant advantage of Na and K is their greater supply (and subsequently lower

cost): Both elements are about three orders of magnitude more abundant than Li in the

Earth’s crust and are geographically ubiquitous [3]. While their chemical similarity to

Li has allowed for the transfer of many insights from the Li-ion domain, there are some
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Introduction Chapter 1

additional challenges for developing suitable Na- and K-ion battery materials.

A great amount of research has been devoted to active materials for battery elec-

trodes, particularly for positive electrodes. These are typically intercalation compounds,

“hosts” which allow for insertion and removal of the “guest” charge-carrying ions with

minimal change to their crystal structure [4]. It is critical that these materials be able

to shuttle the intercalating guest ions reversibly, to prolong cycle life, and rapidly, to

provide high rate capability. In the case of Na- and K-ion battery electrode materials,

the larger size of Na+ and K+ ions (compared to Li+) generally leads to more ion or-

derings and structural rearrangements of the host during cycling, which can adversely

affect battery performance. Strategies for improving the properties of electrode materials

range from doping to nanostructuring, and rely on understanding the materials’ intrinsic

thermodynamic and kinetic behavior [5].

1.2 Ordering phenomena in electrode materials

A central aspect of the behavior of intercalation compounds for battery electrodes

is the presence of and interplay between different ordering phenomena. For instance,

a typical transition-metal oxide material may exhibit various ion-vacancy orderings on

the guest ion sublattice over the range of concentrations accessed during battery cycling.

The transition-metal sublattice of the host may contain a (dis)ordered mixture of metal

ions, which themselves could carry unpaired spins that order magnetically. Additionally,

transition-metal ions undergoing redox may adopt charge-ordered configurations and/or

orbital orderings (e.g. cooperative Jahn-Teller distortions) depending on their oxidation

state [6]. It is convenient to assume that these various degrees of freedom can be de-

coupled, but this is not true in general. And even in materials where long-range order

is limited to low temperatures, short-range order can still be relevant to electrode per-

2
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formance. Ion-vacancy ordering is of particular importance in Na- and K-ion systems,

as it is often intimately related to structural phase transitions and diffusion mechanisms

[7,8]. It is worth noting that many oxide materials studied as battery electrodes also dis-

play interesting electronically ordered phases, which could have unrealized applications

in which these phases are tuned electrochemically [9].

Ordering phenomena and their effect on processes such as diffusion are often quite

difficult to directly observe in experiments. Computational techniques therefore offer

an invaluable source of insights, and may be used in both explanatory and predictive

capacities. Atomistic properties can be calculated in a rigorous and efficient fashion

using first-principles electronic structure methods, while statistical mechanics approaches

provide ways to search large configuration spaces for possible ground states and predict

thermodynamic and kinetic properties at finite temperature [4, 10].

1.3 Overview

The following chapters explore the application of first-principles techniques to elec-

trode materials for Na- and K-ion batteries. Chapter 2 describes the main computa-

tional methods used throughout. We specifically focus on layered oxide intercalation

compounds, which are reviewed broadly in Chapter 3 from an atomistic perspective,

along with some discussion of mesoscale considerations. Chapters 4, 5, and 6 describe

detailed studies of intercalant ion ordering and structural phase stability in NaxCoO2,

NaxCrO2, and KxCrO2, which serve as model systems through which we may understand

the effects of changing alkali- and transition-metal cation identity. These studies pro-

vide a unified picture of ion-vacancy ordering across systems, in which most orderings

are found to belong to families that are each based on a common motif. Though not

as relevant for battery applications, some aspects of magnetic ordering in the Cr sys-

3
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tems are addressed as well. Chapters 7 and 8 build on the thermodynamic results from

Chapter 4 and present an unconventional Na diffusion mechanism in ordered phases of

NaxCoO2 that relies on extended defects, namely antiphase boundaries. The atomistic

details of this mechanism are introduced in Chapter 7, while Chapter 8 examines the

resulting macroscopic diffusion behavior using a kinetic model. Chapter 9 summarizes

the preceding studies and discusses some of their broader implications.

1.4 Permissions and attributions

1. The content of Chapter 3 has previously appeared in Reference [11]: J. L. Kaufman,

J. Vinckevičiūtė, S. K. Kolli, J. G. Goiri, and A. Van der Ven, Understanding

intercalation compounds for sodium-ion batteries and beyond, Phil. Trans. R.

Soc. A 377 (2019) 20190020. DOI: 10.1098/rsta.2019.0020. Section 3.4 features

contributions from Julija Vinckevičiūtė.

2. The content of Chapter 4 has previously appeared in Reference [12]: J. L. Kaufman

and A. Van der Ven, NaxCoO2 phase stability and hierarchical orderings in the

O3/P3 structure family, Phys. Rev. Mater. 3 (2019) 015402.

DOI: 10.1103/PhysRevMaterials.3.015402. Copyright © 2019 American Physical

Society.

3. The content of Chapter 6 has previously appeared in Reference [13]: Reprinted

with permission from Chem. Mater. 2020, 32, 15, 6392–6400.

DOI: 10.1021/acs.chemmater.0c01460. Copyright © 2020 American Chemical So-

ciety.

4. The content of Chapter 7 has previously appeared in Reference [14]: J. L. Kaufman

and A. Van der Ven, Antiphase boundary migration as a diffusion mechanism in a

4
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P3 sodium layered oxide, Phys. Rev. Mater. 5 (2021) 055401.

DOI: 10.1103/PhysRevMaterials.5.055401. Copyright © 2021 American Physical

Society.

5. The content of Chapter 8 has previously appeared in Reference [15]: Reprinted

with permission from Chem. Mater. 2022, 34, 4, 1889–1896.

DOI: 10.1021/acs.chemmater.1c04152. Copyright © 2022 American Chemical So-

ciety.

6. This work was supported by the U.S. Department of Energy through the Compu-

tational Science Graduate Fellowship (DOE CSGF) under Grant No. DE-FG02-

97ER25308 and as part of the Center for Synthetic Control Across Length-scales for

Advancing Rechargeables (SCALAR), an Energy Frontier Research Center funded

by the U.S. Department of Energy, Office of Science, Basic Energy Sciences under

Award No. DE-SC0019381.

7. Use was made of computational facilities purchased with funds from the National

Science Foundation (CNS-1725797) and administered by the Center for Scientific

Computing (CSC). The CSC is supported by the California NanoSystems Institute

and the Materials Research Science and Engineering Center (MRSEC; NSF DMR

1720256) at UC Santa Barbara. This research used resources of the National Energy

Research Scientific Computing Center (NERSC), a U.S. Department of Energy

Office of Science User Facility operated under Contract No. DE-AC02-05CH11231.
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Chapter 2

Computational methods

2.1 Electronic structure calculations

The primary goal of computational chemistry and materials science is to describe

systems from first principles, i.e. the basic laws of quantum mechanics, without reliance

on empirical data. A monumental leap toward this goal came with the development of

density functional theory (DFT) by Kohn, Sham, and Hohenberg in the 1960s [16, 17],

for which Kohn won the 1998 Nobel Prize in Chemistry. DFT has since become the

workhorse for electronic structure calculations across many research areas. This section

motivates and summarizes DFT, mostly following Electronic Structure: Basic Theory

and Practical Methods by Martin [18]. Other potentially helpful resources for further

reading include The ABC of DFT by Burke [19], Density Functional Theory: A Practical

Introduction by Sholl and Steckel [20], and Kohn’s Nobel lecture [21].

6



Computational methods Chapter 2

2.1.1 Schrödinger equation

At the heart of the quantum mechanical treatment of matter lies the Schrödinger

equation [22]. The time-independent Schrödinger equation may be written generally as

ĤΨ = EΨ, (2.1)

where Ĥ is the Hamiltonian operator, E is an energy eigenvalue of the system, and Ψ is

the corresponding eigenfunction known as a wave function. The wave function depends

on the degrees of freedom of the system and encodes the probability amplitude of the

system taking on particular values of those degrees of freedom, such that |Ψ|2 gives the

observable probability density.

More concretely, for a collection of electrons and nuclei (e.g. comprising a molecule

or solid), Ψ is a function of the spatial coordinates of the electrons, ri, and those of the

nuceli, RI . The corresponding (non-relativistic) many-body Hamiltonian is

Ĥ = − ~2

2me

∑
i

∇2
i −

∑
i,I

ZIe
2

|ri −RI |
+

1

2

∑
i 6=j

e2

|ri − rj|
−
∑
I

~2

2MI

∇2
I +

1

2

∑
I 6=J

ZIZJe
2

|RI −RJ |
,

(2.2)

where ~ is the reduced Planck constant, e is the elementary charge, me is the electron

mass, and ZI and MI are the atomic numbers and masses, respectively, of each nucleus.

The terms, in order, account for kinetic energy of the electrons, Coulomb interaction

between the electrons and the nuclei, Coulomb interaction between the electrons, kinetic

energy of the nuclei, and Coulomb interaction between the nuclei. It is often acceptable

to ignore the fourth term and treat the nuclei as stationary, given that they are much

heavier than electrons. This is known as the Born-Oppenheimer approximation [23]. The

fifth term, while not insignificant, depends only on the nuclear coordinates and thus may

be evaluated separately.
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With these simplifications, we can write the electronic Hamiltonian (which we will

now call Ĥ) as

Ĥ = − ~2

2me

∑
i

∇2
i +

1

2

∑
i 6=j

e2

|ri − rj|
+
∑
i

Vext(ri)

= T̂ + V̂int + V̂ext,

(2.3)

where the third term has been generalized to include any external potentials (e.g. due

to electric fields) in addition to the potential imposed by the nuclei. The corresponding

wave function is Ψ(r1, r2, . . . , rN) for N electrons. Note that this function depends on 3N

coordinates, which presents a critical challenge for solving the many-body Schrödinger

equation. Obtaining or even evaluating reasonable approximate solutions quickly be-

comes computationally intractable, as the cost scales as exponentially with N (dubbed

the “exponential wall” by Kohn [21]). Thus a fundamental reimagining of the problem

is necessary in order to efficiently treat many-electron systems.

2.1.2 Density functional theory

An important insight is that the N -electron wave function Ψ(r1, r2, . . . , rN) is not

itself physically meaningful. Labelling of the electrons is generally not achievable or

valuable in experiments, and probability amplitudes are not observable [20]. What can

actually be observed are quantities derived from Ψ, such as the electron density

n(r) = N

∫
dr2 . . .

∫
drNΨ∗(r, r2, . . . , rN)Ψ(r, r2, . . . , rN). (2.4)

This function encapsulates the essential information of a system’s electronic structure

and is only a function of three coordinates. Working with the electron density rather

than the wave function is the essence of density functional theory (DFT).
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DFT relies on two foundational theorems known as the Hohenberg-Kohn theorems

[16], which may be stated like so:

1. The external potential, which uniquely determines all properties of the system, is

uniquely determined (up to an arbitrary constant) by the ground-state electron

density n(r), such that the energy is a unique functional of n(r): E = E [n(r)].

2. The energy functional E [n(r)] is minimized if and only if n(r) is the exact ground-

state electron density.

These statements allow us to recast the contributions to the energy from Equation 2.3

in terms of the electron density:

E [n(r)] = T [n(r)] + Eint [n(r)] + Eext [n(r)] . (2.5)

If the forms of these functionals were known, it would be possible to arrive at the ground-

state energy by variational minimization with respect to the electron density.

In DFT, this variational problem is handled through the Kohn-Sham approach, which

considers an auxiliary system of non-interacting electrons that is defined to have the same

ground-state density as the true, interacting system of electrons [17]. The Kohn-Sham

wave function is constructed as a Slater determinant of single-electron wave functions ψi,

with density given by

n(r) =
∑
i

|ψi(r)|2. (2.6)

We can rewrite the energy of the system as

E [n(r)] = Ts [n(r)] + Eext [n(r)] + EHartree [n(r)] + Exc [n(r)] , (2.7)
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where

Ts [n(r)] = − ~2

2me

∑
i

∫
drψ∗i (r)∇2ψi(r) (2.8)

is the single-electron kinetic energy,

Eext [n(r)] =

∫
drVext(r)n(r) (2.9)

is the energy due to the external potential, and

EHartree [n(r)] =
e2

2

∫
dr

∫
dr′

n(r)n(r′)

|r− r′| (2.10)

is the Hartree energy, the Coulomb interaction of the electron density with itself (note

that this is not the same as Eint). Equation 2.7 is made equal to Equation 2.5 by lumping

any discrepancy into the final term, known as the exchange-correlation energy:

Exc [n(r)] = T [n(r)]− Ts [n(r)] + Eint [n(r)]− EHartree [n(r)] . (2.11)

This term can also be expressed as

Exc [n] =

∫
drn(r)εxc ([n] , r) , (2.12)

where εxc ([n] , r) is an energy density at r that depends on the electron density in some

vicinity of r.

Minimizing Equation 2.7 with respect to the Kohn-Sham orbitals yields a set of

Kohn-Sham equations (
− ~2

2me

∇2 + VKS(r)

)
ψi = εiψi, (2.13)

10
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which describe non-interacting electrons under an effective potential

VKS(r) = Vext(r) + VHartree(r) + Vxc(r)

= Vext(r) + e2

∫
dr′

n(r′)

|r− r′| +
δExc [n(r)]

δn(r)
.

(2.14)

While the Kohn-Sham equations equations can seemingly be solved independently, the

dependence of VHartree and Vxc on the electron density (which in turn depends on the ψi)

means that they must be solved in an iterative (self-consistent) fashion, starting from an

initial guess and ending when convergence is reached.

DFT as described thus far is an exact theory, in that the Kohn-Sham system by def-

inition reproduces the exact ground state energy and density of the true system. Unfor-

tunately, however, the exact form of the exchange-correlation functional Exc is unknown,

so calculations must instead rely on some approximation of it. Various approximations

have been developed, beginning with the local density approximation (LDA), in which

the local exchange-correlation energy density εxc depends only on the local electron den-

sity n [17]. Improvements upon LDA include the generalized-gradient approximation

(GGA), which depends also on the gradient (first derivative) of n [24–26], as well as

meta-GGA approximations that incorporate the Laplacian (second derivative) of either

n or the Kohn-Sham orbitals (the latter representing the non-interacting kinetic energy

density) [27–31]. These semi-local approaches can offer a reasonable balance of accuracy

and computational efficiency. There is a so-called “ladder” of functionals with roughly

increasing accuracy, each rung of which contains numerous functionals designed with

certain constraints or target systems in mind, or to capture certain phenomena such as

long-range van der Waals interactions [32, 33]. Note that many functionals do introduce

empirical parameterizations into this otherwise first-principles approach [34]. There are

also popular approaches that augment DFT, such as DFT+U , which adds a Hubbard
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U term to the Hamiltonian to penalize non-integer occupation of orbitals and encourage

electron localization [35]. While not detailed here, DFT is easily generalized to account

for electron spin, within what is known as spin-DFT [36,37].

2.1.3 Practical considerations

Beyond the formalism of DFT, there are many practical considerations for its applica-

tion to periodic systems [20]. Periodicity implies that the single-electron eigenstates are

Bloch states, which themselves can be expanded in a basis of plane waves. The plane-

wave basis may be truncated at some cutoff (typically specified by an energy) which

determines the shortest achievable real-space modulations of the wave function in the

unit cell. A key obstacle in this approach is that an unreasonably large basis of plane

waves is usually needed to accurately describe the highly oscillatory wave functions of

core electrons located close to the nuclei. However, the behavior of core electrons is

generally less important than that of valence electrons, as they do not participate sig-

nificantly in chemical bonding. This enables a pseudopotential approach, in which the

true potential of each nucleus is approximated by an effective potential acting only on

the valence electrons that behaves more smoothly close to the nucleus while reproduc-

ing the all-electron energies and wave functions beyond some cutoff radius [38–42]. The

use of pseudopotentials can greatly reduce the size of the plane-wave basis required in a

DFT calculation. Much of the computation needed to solve the Kohn-Sham equations

for a periodic system involves integrals over reciprocal space, which can be evaluated

numerically by sampling a grid of “k-points” in the first Brillouin zone [43]. The density

of this grid along with the cutoff of the plane-wave basis represent two primary sources

of numerical error in periodic DFT calculations, and must be chosen carefully based on

convergence testing.
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2.2 Cluster expansion effective Hamiltonians

While DFT offers a computationally tractable method for calculating the properties

of crystals, some applications require much faster evaluations of the energy (or other

properties). In these cases, a surrogate model (or effective Hamiltonian, if approximating

the energy) can be constructed and trained using data from DFT. One such model is the

cluster expansion. This section describes the configurational cluster expansion introduced

by Sanchez et al. [44,45], but the technique is readily extended to crystals with arbitrary

degrees of freedom [10], as well as off-lattice systems [46, 47]. A key feature of these

models is that they are constructed to obey the symmetries of the system, e.g. the space

group of the parent crystal. Symmetry is also considered when enumerating distinct

configurations to use as training data. While transformations under symmetry operations

are straightforward for isotropic degrees of freedom (such as site occupation), greater care

must be taken when dealing with anisotropic degrees of freedom. The treatment of one

such degree of freedom, orbital occupation, is described in Appendix A.

2.2.1 Site basis functions

Local degrees of freedom on crystallographic sites may be represented by a collection

of site variables. Consider the simple case of a crystal of N sites, each of which may be

occupied by one of two species, A or B. These species could, for instance, correspond

to two different metals in an alloy, or Na and vacancies in a battery electrode material.

Each site n may be assigned an occupation variable σn whose value is mapped to the

site’s occupant, e.g. σn = 1 for A and σn = −1 for B. The occupation variables of all

sites are stored as a configuration vector σ = (σ1, σ2, . . . , σN).

Any local function at a site n that depends only on the occupation σn may be written

in terms of site basis functions φnm(σn), where m = 0, . . . ,M−1 for M possible occupants.

13



Computational methods Chapter 2

In the case of the binary A-B crystal, M = 2 and a complete set of site basis functions is

given by φn0 (σn) = 1 and φn1 (σn) = σn. These site basis functions are orthonormal based

on the scalar product defined by Sanchez et al., who also provide a general procedure for

generating site basis functions of an M -component system [44]. Note that depending on

the particular mapping of the M species to values of σn and the form of the φnm(σn), the

site basis functions may not be orthonormal. For instance, assigning σn to 1 for A and 0

for B, while maintaining the forms of φn0 (σn) and φn1 (σn) given above, results in a basis

that is complete, but not orthonormal.

2.2.2 Crystal basis functions

Now we construct a set of crystal basis functions Φm(σ) to represent any function of

the crystal that depends only on the configuration σ. This is done by taking a tensor

product of all the site basis functions

Φm(σ) =
N∏
n=1

φnmn(σn), (2.15)

where the vector m = (m1,m2, . . . ,mN) denotes which site basis functions comprise each

crystal basis function. This procedure generates MN crystal basis functions which are

complete (and orthonormal) provided the site basis functions used to construct them are

complete (and orthonormal).

Careful inspection of the cluster basis functions reveals a more meaningful way to

label them. Because φn0 (σn) = 1, each σn only appears in select basis functions. In the

binary case, we can write the basis functions as

Φα(σ) =
∏
i∈α

σi, (2.16)
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where α denotes a particular set or cluster of sites (comprised of anywhere from zero to

N sites). Any property that depends only on σ, such as the relaxed energy E, can be

written as a “cluster expansion”

E(σ) = V0 +
∑
α

VαΦα(σ), (2.17)

where the coefficients Vα are referred to as effective cluster interactions (ECIs). Note

we have separated V0, the ECI of the zero-site or null cluster, from the rest of the

sum. It is crucial that the cluster expansion be invariant under the symmetry of the

parent (undecorated) crystal. To enforce this, we group the basis functions into orbits of

symmetrically equivalent clusters and allow one unique ECI per orbit:

E(σ) = V0 +
∑
α

Vα
∑
β∈Ωα

Φβ(σ), (2.18)

where each orbit of clusters Ωα is represented by a single distinct cluster α.

It is also convenient to normalize the cluster expansion by the number of primitive

cells of the parent crystal, taken here to equal N , which gives

E(σ)

N
=
V0

N
+
∑
α

Vαmα

(∑
β∈Ωα

Φβ(σ)

mαN

)
= v0 +

∑
α

Vαmαξα(σ).

(2.19)

In this equation, mα is the multiplicity of the cluster α in the primitive cell, while

ξα(σ) = 〈Φα(σ)〉 =
1

|Ωα|
∑
β∈Ωα

Φβ(σ) (2.20)

is the corresponding correlation function, or average value of the cluster function. The
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correlation functions (or simply, “correlations”) for a particular set of clusters enable

us to describe orderings across different supercells in a consistent manner. Note that

the cluster multiplicities mα may be absorbed into either the ECIs or the correlations

for compactness. This form of the cluster expansion can exactly represent properties of

the infinite crystal, albeit with an infinite number of clusters. In practice, the cluster

expansion is truncated to a finite number of terms.

2.2.3 Fitting

Determining the ECIs for a truncated cluster expansion requires first generating a

set of training data, consisting of a vector of calculated energies y (e.g. calculated from

DFT) and a matrix of correlations X (obtained directly from the ideal crystal geometry)

for a set of distinct configurations. We may then consider the linear regression model

y = Xv + ε, (2.21)

where v is the ECIs and ε is the error term. This model can be fit using any number of

statistical learning techniques. These typically rely on a (generalized) least squares loss

function

(y −Xv)>M (y −Xv) , (2.22)

where M is a symmetric, positive-definite “weight matrix,” or equivalently, the inverse

of the covariance matrix of ε given X. Common special cases are when M is identity,

known as ordinary least squares, and when M is diagonal, known as weighted least

squares. M can be chosen to introduce some statistical or physical intuition into the

fitting problem. For instance, one may use diagonal weights to assign more importance

to configurations that lie closer to the convex hull in energy-composition space, as those
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are thermodynamically more important at low temperatures.

It is typical to consider a large pool of clusters in the truncated expansion, such that

the number of correlation functions exceeds the number of configurations (energies). The

regression model in this case is underdetermined, meaning there may be infinitely many

solutions with ε = 0. To remedy this, one can employ regularization techniques, in which

the loss function is augmented by some penalty term that forces a unique solution (e.g.

ridge [48] or LASSO [49] regression). Another approach is to explicitly select a set of

features (correlation functions) to include prior to fitting (e.g. by genetic algorithm [50] or

Monte Carlo approaches [51]). Some techniques, such as LASSO, perform regularization

and feature selection simultaneously. Cross-validation scores may be used to optimize

fits with respect to any hyperparameters or choice of feature set. Note that while the

truncated cluster expansion is generally expected to be sparse (i.e. few nonzero ECIs),

there is no inherent reason that it should be [10]. Nevertheless, sparsity is desirable to

limit the complexity of the model and avoid unphysical predictions due to overfitting.

2.3 Monte Carlo simulations

The methods described thus far enable the prediction of microscopic properties from

first principles. The microscopic behavior of systems is linked to their macroscopic

thermodynamic properties, i.e. those observed experimentally, by statistical mechan-

ics. Within this framework, Monte Carlo methods offer a way to efficiently approximate

thermodynamic quantities of interest through random sampling.
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2.3.1 Thermodynamic averages

The average value of any thermodynamic variable X can be calculated by

X =
∑
s

X(s)P(s), (2.23)

where X(s) is the value of X in microstate s and P(s) is the probability that the system

at equilibrium is in that particular microstate. This probability is given by

P(s) =
1

Z
e−βΦ(s), (2.24)

where β = 1/kBT for temperature T and Boltzmann constant kB, Φ(s) is an energy of

the microstate s, and Z is the partition function, given by

Z =
∑
s

e−βΦ(s). (2.25)

The form of Φ(s) depends on which thermodynamic variables are held fixed (i.e. the

particular ensemble). For example, in the canonical ensemble (fixed number of particles

N , volume V , and T ), Φ(s) = E(s), the energy itself. In the grand canonical ensemble

(fixed chemical potential µ, V , and T ), Φ(s) = E(s)− µN(s).

All thermodynamic properties of a system can be derived from its partition func-

tion Z. However, the required summation over all possible microstates is generally not

feasible, even when equipped with a method to rapidly evaluate the energy of each mi-

crostate (such as a cluster expansion). Instead we turn to Monte Carlo methods, namely

the Metropolis-Hastings algorithm [52,53], which generates a Markov chain of microstates

sampled from the probability distribution P(s). Following an initial equilibration period,

thermodynamic properties can be calculated via a simple average (rather than a weighted
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average) over the sampled microstates.

2.3.2 Thermodynamic integration

After performing a set of Monte Carlo simulations, it is usually necessary to calculate

the free energy (or characteristic potential), which determines equilibrium for a particular

ensemble. In the grand canonical ensemble, the relevant free energy is the grand potential

Ω = E − TS − µN. (2.26)

Note that for simplicity we have assumed a single chemical species. While average values

of E and N are readily obtained from Monte Carlo simulations, the entropy S is not.

However, S, and therefore Ω, can be obtained by thermodynamic integration of Monte

Carlo data over a grid of T and µ values [54]. At constant T , we can integrate across

chemical potential from µ0 to µ

Ω(µ) = Ω0 −
∫ µ

µ0

dµ′N (µ′) , (2.27)

where Ω0 = Ω(µ0). At constant µ, we can integrate across inverse temperature from β0

to β

Ω(β) =
1

β

(
β0Ω0 +

∫ β

β0

dβ′Φ (β′)

)
, (2.28)

where Ω0 = Ω(β0) and, as before, Φ = E − µN . In each case, this approach requires

careful selection of suitable reference states to obtain values of Ω0. Typically these are

taken to be states with nearly zero entropy, e.g. at extreme values of µ or close to zero

temperature, such that Ω ≈ Φ. The result of one integration may also be used as the

reference of a subseqeuent integration.

Once Ω has been calculated, it is trivial to obtain other properties based on S, such as

19



Computational methods Chapter 2

the Helmholtz free energy F = E−TS or the Gibbs free energy G = E−TS+pV , where p

is the pressure and V is the volume (note that F = G when p = 0). It is often necessary to

transform values of Ω to values of G, e.g. for the construction of temperature-composition

phase diagrams. However, in some cases, such as the construction of equilibrium voltage-

composition curves at fixed T , it is simpler to work with Ω directly, as the phase with

the lowest value of Ω will be preferred at each value of µ.

2.3.3 Kinetic Monte Carlo

In addition to calculating thermodynamic averages, Monte Carlo simulations can

also be used model processes occurring over time within the kinetic Monte Carlo (KMC)

method. Consider a system in state k that may undergo a transition to a state i with

transition rate Γk,i. For example, this could correspond to a single atom hopping from

one lattice site to a neighboring one, with a rate given by

Γk,i = ν∗e−βEk,i , (2.29)

where ν∗ is the vibrational prefactor of the hop [55] and Ek,i is its energy barrier. Such

barriers can be calculated from DFT using the nudged elastic band method [56], and

can also be approximated using local cluster expansion methods that account for the

dependence of the barrier on the hop’s local environment [57].

If the transition rates to all possible states i from the initial state k are known, the

system’s evolution can be modeled using KMC. A single transition, or event, is selected

with probability

Pk,i =
Γk,i
Qk

, (2.30)
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where

Qk =
∑
i

Γk,i (2.31)

is the total rate for exiting state k. The event is then carried out and the time is

incremented by

∆t = − ln(u)

Qk

, (2.32)

where u is uniform random number on (0, 1]. The process can then be repeated starting

from state i. This method is known as rejection-free KMC (because no candidate events

are rejected), or the Bortz-Kalos-Lebowitz algorithm [58]. Its application to a particular

model system and an exploration of the resulting kinetic properties are described in

Chapter 8.

2.4 Details

All DFT calculations described in the subsequent chapters were performed using the

Vienna Ab initio Simulation Package (VASP) version 5.4.4 [59–62]. Projector augmented-

wave (PAW) method pseudopotentials [41,42] were used, with the following valence con-

figuration labels: Li, Na pv, K sv, Ti sv, Cr pv, Co, O, S. Brillouin zone sampling was

performed using Γ-centered Monkhorst-Pack k-meshes [43]. The chosen plane-wave en-

ergy cutoff and k-mesh density vary by chapter. Spin-polarization was enabled, with all

magnetic moments initialized ferromagnetically unless otherwise noted. Structures were

relaxed until the forces were smaller than 0.02 eV/Å, prior to performing final static

calculations using the linear tetrahedron method [63]. Different exchange-correlation

functionals were employed, primarily the optB86b-vdW van der Waals functional [64–67]

and the SCAN meta-GGA functional [30, 31].

The Clusters Approach to Statistical Mechanics (CASM) software package [10,68–70],
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was used throughout to enumerate symmetrically distinct configurations and kinetic hops,

construct and fit cluster expansion effective Hamiltonians, and perform grand canonical

Monte Carlo simulations. This work was performed using development branches of CASM

version 0.2.X/0.3.X.

All crystal structure visualizations were created using VESTA [71].
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Chapter 3

Structure and chemistry of

intercalation compounds

3.1 Introduction

Rechargeable Li-ion batteries have been tremendously successful in industrial and

consumer applications, and continue to attract attention from the research community

in order to find ways of further improving battery performance [1, 72]. Efforts are also

being made to move beyond Li-ion for low-cost solutions to large-scale energy storage

problems. This includes a renewed interest in Na-ion batteries [73] and other less tradi-

tional chemistries for batteries that shuttle K [74] and multivalent cations [75, 76]. The

success of such technologies hinges on the development of new electrolyte and electrode

materials that can withstand the extreme chemical and structural changes that often

accompany each charge and discharge cycle of a battery.

Many intercalation compounds, particularly layered ones, have been studied as elec-

trode materials for rechargeable batteries. The canonical layered LiCoO2 [77] and related

Ni-Mn-Co (NMC) and Ni-Co-Al (NCA) compounds are used as cathodes in many Li-ion
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battery applications [1,78]. Layered intercalation compounds are similarly the subject of

great interest for Na- and K-ion battery electrodes [74, 79], though there is some ques-

tion of how they will compete with the current state-of-the-art polyanionic compound

Na3V2(PO4)2F3 for Na-ion battery cathodes [80]. A main obstacle is the prevalence of

structural phase transitions involving stacking sequence changes of the layers [81–83],

which often lead to mechanical degradation and poor cyclability [80, 84]. Many of these

materials also exhibit strong cation-vacancy ordering tendencies [81,85,86], which result

in large jumps in voltage and sluggish diffusion at particular compositions [87,88]. Turn-

ing to other host structures such as spinel may offer benefits of better structural stability

and high rate capability [89–92]. Though we will primarily discuss intercalation com-

pounds used as cathode materials, all of these considerations apply to anode materials

as well.

In exploring various candidate electrode materials for beyond Li-ion batteries, it is

critical to understand their fundamental thermodynamic behavior. Structural phase

stability and ordering phenomena have large impacts on many aspects of battery perfor-

mance including the voltage profile, diffusion rates, and degradation mechanisms. Key

thermodynamic properties that may be difficult to access experimentally can be readily

probed using first-principles statistical mechanics techniques [10, 68–70], which can also

be used to examine nonequilibrium kinetic processes [5, 57, 93–95]. Detailed atomic and

mesoscale studies of battery electrode materials based on first-principles techniques may

offer more clues as to how to avoid unfavorable phase transitions, or alleviate their effects.

Na-ion batteries provide a lens through which to examine some effects not typically

seen in the more well-studied Li-ion systems, including, in particular, ordering phenomena

and structural phase transitions in the electrode materials. Certain underlying trends

observed here may extend to other more novel chemistries, such as K-ion batteries, and

help explain observations in those largely unexplored composition spaces. Recent progress
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on beyond Li-ion battery technology, including Na-ion, has been extensively reviewed

[3, 73–75, 79, 96–103]. Here, we aim to summarize some insights we have gleaned from

computational work into the fundamental behavior of intercalation compounds, with a

focus on ordering and stacking sequence changes in layered systems.

3.2 Thermodynamics

First-principles thermodynamic studies of battery materials begin with a calculation

of free energies of the relevant phases. Free energies at zero temperature can be calculated

using quantum mechanical techniques such as density functional theory (DFT) [17], while

free energies at finite temperature can be calculated with statistical mechanical techniques

that build on the ground state results using effective Hamiltonians [10,44]. Figure 3.1(a)

shows the free energy of the layered NayTiS2 intercalation compound, calculated at 300 K

[8]. The envelope of equilibrium free energies over the different phases as determined

with the common tangent construction delineates the single- and two-phase regions as a

function of composition.

The free energies of the electrode materials also embed information about the voltage

of a battery. Indeed, the battery voltage is determined by the difference in chemical

potential of the intercalating species A between the two electrodes according to

V (y) = −µA(y)− µ◦A
ne

(3.1)

where µA(y) is the chemical potential of A in the cathode at composition y, µ◦A is the

chemical potential of A in the reference electrode, n is the number of electrons transferred

per A ion, and e is the elementary charge. Note that for reversible electrochemical cells,

the positive (negative) electrode is technically only defined as the cathode (anode) upon
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Figure 3.1: (a) Calculated free energy curves of NayTiS2 in different layered host
structures at 300 K. The global convex hull of free energies is show with black lines
connecting the curves of each stable phase. (b) Voltage curve derived from the free
energy at 300 K. Colored rectangles in the background represent single-phase regions,
while black lines correspond to two-phase equilibria. The step at y = 1/2 corresponds
to a stable ordering of Na ions in P3. Data is from Reference [8].
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Figure 3.2: The layered (a) O1, (b) P3, and (c) O3 host structures, in addition to (d)
the spinel host structure. Gray octahedra represent M cations with X anions at the
corners. Green, yellow, and orange are used to show A cations in octahedral, trigonal
prismatic, and tetrahedral coordination, respectively.

discharge, while the opposite is true upon charge. However, we will continue to use these

terms, consistent with much of the literature. With a constant chemical potential in

the reference electrode, the voltage is simply related to the chemical potential of the

intercalating species in the cathode, which is the slope of free energy versus composition.

Through this connection, the meaning of certain features in the voltage profile become

clear, as illustrated in Figure 3.1(b). Plateaus correspond to two-phase regions, where

the chemical potential is constant, while steps correspond to ordered phases at fixed

composition, where the concavity (the energetic strength) of the ordering determines the

magnitude of its step. Sloping regions usually correspond to solid solutions. Note that

kinetic effects, chemical participation from the electrolyte, and other extraneous factors

can significantly alter the voltage curve, but the equilibrium voltage curve is an essential

starting point for understanding battery performance.

3.3 Crystallography

We will discuss compounds of the formula AyMX 2 (0 ≤ y ≤ 1), where A is an alkali

or alkaline earth metal, M is a transition metal, and X is oxygen or sulfur. Four key
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host structures that we will examine are shown in Figure 3.2. The layered (O1, P3, O3)

and spinel structures are all based on stacked triangular lattices of X. In the layered

compounds (Figure 3.2(a-c)), triangular M layers lie between every other pair of X

layers, forming slabs of edge-sharing MX6 octahedra separated by van der Waals gaps.

The intercalant A is inserted into these gaps, and its site topology is determined by the

X stacking sequence: A can occupy octahedral sites in O1 and O3 or trigonal prismatic

sites in P3, with the available sites sharing faces with two, one, and zero M in O1, P3,

and O3, respectively. Hybrid structures that switch between different stackings, such as

O1-O3, are also seen, and are often “staged,” meaning that the A concentration is not

the same in every layer [104,105].

Closely related to the layered phases is the spinel structure (Figure 3.2(d)). Spinels

are normally represented by the formula AM2X4, but with vacancies incorporated on

the A sites and allowing for octahedral occupancy of the A cations, this may also be

expressed as AyMX2. Spinel shares the face-centered cubic X framework of O3, but

with one quarter of the M moved from the M layers into the gaps. This M ordering

results in a three-dimensional interconnected network of MX6 octahedra in which A can

occupy tetrahedral or octahedral sites, neither of which share faces with M .

The commonality of the anion (X) sub lattices of spinel and O3 make phase transitions

between the two kinetically facile. The irreversible transition from O3 to spinel, for

example, simply requires the migration of one out of every four M from the metal layer

to the A layers. There is typically a significant driving force for this transition in partially

deintercalated LiyMO2 (around y = 1/2), although it tends to occur quite gradually due

to kinetic limitations [78, 106]. Such a driving force is notably absent in Na1/2MO2,

which has been attributed to the larger size of Na+ [107]. Note that in the completely

deintercalated state (y = 0) all layered intercalation compounds tend to be susceptible

to decomposition into other phases.
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In contrast to the O3-spinel transition, transitions between different layered struc-

tures within the O3 family (O3, P3, O1, and their hybrids) are generally reversible and

facilitated through the shearing of MX2 slabs [108]. Though we focus on the O3 family

here, there is another family of layered structures based on a distinct set of stackings

called the O2/P2 family [109]. Any transition between the two families requires a stack-

ing sequence change of the layers within a single MX2 slab and is therefore prohibited

at room temperature by the energetic cost of breaking M -X bonds. P2 compounds have

received great interest as Na-ion battery electrodes [73,87], but higher capacities are gen-

erally achievable with the O3 family because P2 hosts are often not fully intercalated in

order to avoid the transition to O2 [110]. O3-type compounds also yield higher voltages

since the NaMX2 end member is usually most stable in the O3 structure [111,112].

3.4 Chemistry

The chemical properties of the intercalant A are important in determining its behavior

within an intercalation compound. Consider the intercalants Li, Na, K, Mg, and Ca.

These exhibit a range of ionic radii, with Mg2+ ≈ Li+ < Ca2+ ≈ Na+ < K+ (based on the

Shannon crystal radii [113] for six-coordination). The ionic radius influences the preferred

coordination for each species, as well its migration barriers and the distortions it induces

when inserted into a host structure. The difference in valence between monovalent cations

(Li+, Na+, K+) and divalent cations (Mg2+, Ca2+) is important not only in setting the

battery capacity and voltage but also in scaling the strength of electrostatic interactions

within the electrode material. The other key factor for electrostatics is electropositivity,

for which Mg < Ca and Li < Na < K. More electropositive species tend to give up more

of their electrons, resulting in stronger electrostatic interactions.

The chemistry of the host MX 2 plays a key role in its electronic structure. Electronic
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Figure 3.3: Molecular orbital diagrams for isolated (a) TiO6 and (d) TiS6 octahedra
alongside the partial density of states of layered (b) NaTiO2 and (c) NaTiS2 in the
O3 structure. Na density of states is shown in gray, but is negligible in this energy
range.

structure is often analyzed by looking at density of states (DOS) diagrams (or partial

DOS (pDOS) where the density is broken up by contributing species), which indicate the

density of electrons at specific energy levels. As a simplified model, consider an isolated

octahedron of a transition metal such as Ti surrounded by six ligand species (e.g. O or

S). The degeneracy of the transition-metal d orbitals is split by the ligand field according

to the Oh symmetry group in a perfect octahedron [114, 115]. The octahedra in real

compounds are often distorted such that the degeneracy of the orbitals is reduced further

(for example, the octahedral transition-metal environments in the layered structures are

typically trigonally compressed along the stacking direction, lowering their symmetry to

D3d).

The d orbitals of the transition metal and the p orbitals of the ligand readily inter-

act to form hybridized states. Molecular orbital diagrams depicting the hybridization

between these species are shown in Figures 3.3(a) and (d) for perfect TiO6 and TiS6 oc-

tahedra, respectively. We have shown only σ-bonding (no π-bonding) in these simplified

diagrams. The states within each species’ orbitals can be assigned to a symmetry group
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representation, and only states with the same representation can hybridize. Note, for

instance, that there are no available t2g O or S states to σ-bond with the available t2g Ti

states (though it turns out they can hybridize via π-bonds). When states hybridize, they

split into low-energy bonding and high-energy antibonding (indicated by an asterisk)

hybridized states. Electrons fill lowest energy states first (i.e. from the bottom of the

diagram up), filling up to around the t2g states for materials discussed in this work. The

bonding states (e.g. t1u and a1g) are below the energy of the isolated ligand p states, are

filled first, and have mainly ligand character; the antibonding states (e∗g, a∗1g, and t∗1u) are

above their respective Ti states and therefore have largely transition-metal character.

The available states in TiO6 are identical to those in TiS6 and it is only the relative

energy of the states that differs between the two chemistries. The more ionic the M -

ligand pair (i.e. the greater their electronegativity difference), the further apart in energy

the hybridized states will reside, which can be seen in comparing the pDOS of layered

NaTiO2 and NaTiS2 crystals (Figures 3.3(b) and (c)). The intercalant (in this case,

Na) serves largely as an electron donor and is generally not considered to hybridize with

the transition metals or ligands. However, increased intercalant concentration does raise

the Fermi level as more electronic states are filled. For instance, Ti4+ in TiX2 has a d0

electronic configuration while Ti3+ in NaTiX2 results in d1, corresponding to one electron

beginning to fill the t2g states.

When an octahedron is in a crystal, the localized states spread out into bands and

new, more complicated symmetries are introduced. However, we can approximate the

regions in the pDOS diagram as ligand-rich states, t2g-like states, and eg-like states. The

dashed line at the top of the filled states indicates the Fermi level, which is conventionally

set to 0 eV. We see that the decrease in ionicity between Ti and S (as compared to O)

results in a considerable decrease in the energy gap between the S-rich states and the

eg and t2g states. Since electronic structure plays a role in conductivity, magnetization,
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and even structural changes, understanding the effects of different transition metal and

ligand pairings is instrumental in material design. Oxides tend to be more ionic than

sulfides due to the high electronegativity of O. The transition metal identity can also

have a significant effect. We have focused on the TiS2 and CoO2 hosts, as the itinerant

nature of their valence electrons and absence of Jahn-Teller activity makes these good

model systems for examining fundamental behavior.

3.5 Trends in phase stability

A high-throughput study of layered AyTiS2 and AyCoO2 (A = Li, Na, K, Mg, Ca)

identified key trends in phase stability and the energetic factors underlying them [7].

Three important factors are depicted in Figure 3.4 and can be explained in terms of

size considerations and varying strengths of competing electrostatic interactions between

different cations. The strength of these electrostatic effects depends significantly on the

ionicity of the compound [7]. This simplified picture does not include purely steric effects

or highly covalent bonding, but nonetheless accounts for much of the observed behavior.

The relative stability between prismatic and octahedral A coordination is strongly

influenced by X-X interactions. Prismatic coordination leads to a shorter interlayer X-

X distance than octahedral coordination for fixed A and X ionic radii (Figure 3.4(a)).

Smaller intercalants such as Li are therefore unstable in prismatic coordination because

the X anions are too close together, while larger intercalants such as Na and K do not

penalize the host when it adopts a P3 or P2 structure.

Face-sharing between AX6 polyhedra and MX6 octahedra also influences the stabil-

ity of different layered structures due to the repulsive nature of the short-range A-M

interactions (Figure 3.4(b)). In P3 each A site shares a face with one MX6 octahedron,

while in O3 there is no face-sharing. More ionic compounds therefore tend to adopt O3 at

32



Structure and chemistry of intercalation compounds Chapter 3

Figure 3.4: Important electrostatic interactions that determine phase stability in
AMX2 layered intercalation compounds, illustrated using O3 and P3 as examples.
(a) Interlayer X-X distances determine whether prismatically coordinated A are sta-
ble. (b) Face-sharing results in energetically unfavorable A-M interactions (c) The
sites available to intercalants determine the possible orderings that limit A-A interac-
tions.
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high compositions to avoid the electrostatic repulsion of face-sharing sites. The octahe-

dral sites of O1 share faces with both neighboring MX6 octahedra, making O1 unstable

for any intercalant concentration in more ionic compounds. More covalent compounds,

however, tend to adopt O1 over the full composition range, which has been ascribed to

a diminished repulsion between X p orbitals in the gap between layers [116].

The topology of the A sites within each host plays an important role in determining

the type of ordered phases that are possible at intermediate intercalant compositions.

In more ionic compounds, repulsive electrostatic interactions will strive to separate the

A cations as far apart from each other as possible within each intercalant layer. In

P3, the available prismatic A sites form a honeycomb network, which allows for A-A

distances that are not available on the triangular lattice of octahedral A sites in O3

(Figure 3.4(c)). This tends to stabilize P3 at intermediate concentrations when the

benefit of maximizing A-A distances on the honeycomb network outweighs the penalty

for face-sharing. Repulsive interactions on the honeycomb network can lead to intricate

A orderings which will be discussed later.

A systematic study of spinel AyTiS2 and AyCoO2 (A = Li, Na, Mg) revealed similar

trends in these compounds [117]. Here the host structure is fixed and intercalants may

occupy either octahedral or tetrahedral sites, the relative stability of which is determined

by two competing factors: Larger cations favor the octahedral sites because they offer

more space, while tetrahedral sites allow A cations to lie further away from neighboring

M cations and limit A-M interactions. The latter is more important in more ionic hosts,

much like the face-sharing penalty in the layered structures.

In the layered and spinel structures, phase stability is greatly influenced by the iden-

tities of both the host and the intercalant. Electrostatic interactions are stronger in more

ionic hosts such as CoO2 compared to more covalent hosts such as TiS2. Furthermore,

intercalation of a more electropositive species, such as Na compared to Li, results in
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stronger A-A and A-M repulsions. Ion size plays a similar role in the layered structures,

as larger ions such as Na and K result in larger interlayer spacing and reduced screening

from the X anions [105]. Divalent intercalant cations such as Mg and Ca tend to create

stronger electrostatic interactions than monovalent ones from the same period, as their

charge is doubled [117,118].

To examine some of the trends in phase stability more closely, we turn to voltage

profiles and phase diagrams obtained from first-principles studies [8, 12, 92, 93]. Figure

3.5 shows calculated room temperature voltage profiles and phase diagrams of LiyTiS2,

NayTiS2, and NayCoO2 in the layered (O3-type) and spinel structures. The agreement

with available experimental voltage curves, which are shown in red, is quite good. Recall

that plateaus correspond to two-phase regions, while steps correspond to ordered phases.

The steepness of each curve is related to the strength of A-A repulsion, which reflects the

ionicity of the compound: The NayCoO2 voltage curves in Figure 3.5(c,f) are noticeably

steeper than their respective NayTiS2 counterparts in Figure 3.5(b,e). The particular

characteristics of the transition metal, such as on-site electron repulsion, can also affect

the slope and average value of the voltage. For oxides, a systematic underprediction of

the voltage is not uncommon when using DFT (without additional corrections such as a

Hubbard U) [123].

Layered LiyTiS2 is quite covalent and remains O1 at all Li concentrations (Figure

3.5(a)). MgyTiS2 (not shown) behaves quite similarly [118]. NayTiS2, conversely, stabi-

lizes O3 at high Na concentrations and P3 at intermediate concentrations (Figure 3.5(b)).

O1 is stable only at y = 0, while staged hybrid O1-P3 and O1-O3 phases are predicted to

be stable at low Na concentrations. NayCoO2 stabilizes similar phases as those adopted

by NayTiS2 but there are some important differences which reflect the increased ionicity

of NayCoO2. The NayCoO2 voltage curve is steeper and contains more steps (the curve

shown was actually calculated at zero temperature because none of the ground states
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Figure 3.5: Calculated equilibrium voltage profiles (black) for various layered (a [93],
b [8], c [12]) and spinel (d,e,f) [92] intercalation compounds at 300 K. Available ex-
perimental curves (red) are shown for comparison in (a [119], b [120], c [121], d [122]).
Colored rectangles in the background of (a,b,c) indicate regions in which each lay-
ered host structure was found to be stable. Background color in (d,e,f) indicates the
fraction of A occupying tetrahedral sites (versus octahedral sites) in the spinel host
structure.
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were found to disorder at room temperature [12]), with a much larger step at y = 1/2

compared to that of Na1/2TiS2 (Figure 3.5(c)). The ordering that produces this step will

be discussed in Section 3.6. A significant step near y = 1/2 has also been observed in

some K intercalation compounds [124,125], which likely corresponds to a similar ordering

[126]. P3 is stable up to y = 2/3 in NayCoO2 versus y ≈ 0.72 in NayTiS2, indicating

that the face-sharing penalty begins to destabilize P3 sooner in the more ionic NayCoO2.

The even more ionic NayTiO2 (not shown) remains O3 throughout cycling [127, 128], as

face-sharing in P3 is likely even more unfavorable.

In the spinel host, LiyTiS2 and NayTiS2 display similar solid solution behavior result-

ing in smooth voltage profiles (Figure 3.5(d,e)). The intercalants in these compounds

occupy only octahedral sites. In the more ionic NayCoO2, occupancy of tetrahedral and

octahedral sites were found to be essentially degenerate, with the energy penalty of the

smaller tetrahedral sites being balanced by reduced A-M interactions [92]. This results

in solid solution behavior with mixed octahedral and tetrahedral occupancy at high and

low Na concentrations. However, at y = 1/2 the compound orders with Na filling all the

tetrahedral sites, thereby maximizing the distances between Na cations. This ordering

produces a significant step in the voltage curve, with two-phase regions on either side

(Figure 3.5(f)). Mg, being a divalent cation, produces stronger electrostatic interactions

than Na, stabilizing some tetrahedral occupancy in MgyTiS2 and multiple ordered phases

in MgyCoO2 (not shown) [92,117].

In the following sections, we focus on ordering and structural changes that can occur

in layered intercalation compounds. First we present the rich intercalant orderings that

appear in more ionic compounds and then we discuss the mechanisms for structural phase

transitions between layered structures.
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Figure 3.6: Typical low-energy A orderings predicted at (a) y = 1/3 in O3 and P3,
(b) y = 1/2 in O3, and (c) y = 1/2 in P3. a is the lattice parameter and d is the
shortest A-A distance. Dark blue and light purple are used to distinguish between
the two different triangular sublattices.

3.6 Intercalant orderings

Larger intercalants such as Na and K tend to form ordered phases in more ionic hosts,

which manifest themselves as steps in the voltage profiles. Both the O3 and P3 structures

favor the hexagonal ground state ordering at y = 1/3, shown in Figure 3.6(a) [8,12,126].

This ordering maximizes the distance between A cations where the shortest A-A distance

is d =
√

3a ≈ 1.73a (a being the lattice parameter). At y = 1/2, however, it is not possible

to arrange the A ions on a single triangular sublattice without occupying adjacent nearest-

neighbor sites with separation d = a (Figure 3.6(b)). Orderings at y = 1/2 in O3 are

therefore frustrated in the sense that they must include this electrostatically unfavorable

interaction [7]. However, if a second triangular sublattice is available, as in P3, the A

ions can spread out slightly further to achieve a separation of d = 2√
3
a ≈ 1.15a. This is

realized in the zig-zag row ordering at y = 1/2 shown in Figure 3.6(c), which is observed

in many Na intercalation compounds in both the P3 and P2 structures [97,121,129–131].

The honeycomb network of A sites in P3 yields many more possible orderings than O3,

which can result in very complex ground states at intermediate intercalant concentrations.

However, a unifying picture of these orderings is revealed by considering them as regions
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Figure 3.7: Different types of antiphase boundaries predicted to appear on the hon-
eycomb network in P3. (a) Vacancies congregate along boundaries to form triangular
island domains at high compositions. At intermediate compositions, two type of
boundaries incorporate (b) additional vacancies or (c) additional A ions between re-
gions of the y = 1/2 ordering from Figure 3.6(c). Dark blue and light purple are used
to distinguish between the two different triangular sublattices.

of one ordering separated by antiphase boundaries (APBs). For example, in NayTiS2,

the P3 orderings at room temperature are predicted to consist of triangular islands of

Na occupying a single sublattice, as shown in Figure 3.7(a) [8]. The APBs formed along

the edges of the triangular domains introduce vacancies into the structures. The total

length of APBs therefore determines the composition. Another example is in NayCoO2,

where the zig-zag row ordering at y = 1/2 is much stronger than in NayTiS2. As such, the

orderings immediately above and below y = 1/2 preserve this ordering locally, but include

APBs to accommodate changes in Na composition. There are two types of boundaries

that introduce either more vacancies (“diluted”) or more Na (“enriched”), as shown

in Figure 3.7(b,c) [12]. More complicated orderings are predicted between y = 4/7 and

y = 2/3 that are based on the y = 4/7 ground state periodically separated by another type

of “enriched” APB. More details about the precise orderings are reported in Reference

[12]. The same intercalant ordering preferences have been predicted for KyCoO2 in the

P3 structure [126].

In both NayTiS2 and NayCoO2, stable ordered superstructures are predicted at nearly
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arbitrary composition (within some range) and formed by incorporating a certain den-

sity of APBs. This produces sloping regions in the voltage profile that correspond to

sequences of ordered structures rather than solid solutions. Similar ordering phenomena

may very well occur in other systems that stabilize the P3 structure. The occurrence of

such orderings may also give rise to more exotic diffusion mechanisms than are usually

considered. For example, diffusion could occur exclusively along “diluted” APBs [8],

resulting in reduced dimensionality of transport, or by creation/annihilation of APBs

in waves throughout the crystal. Detailed kinetic studies are required to resolve these

mechanisms exactly.

3.7 Stacking sequence changes

Stacking sequence changes in layered intercalation compounds can be accomplished

by a simple shearing of the MX2 slabs. These transitions tend to be more prevalent in

intercalation compounds containing larger ions such as Na and K since they can stabilize

prismatic coordination. O3 typically transitions to P3 toward the beginning of charge

(deintercalation), while empty layers take on O1 stacking toward the end of charge to form

hybrid structures (consisting of a mix of O1 and O3 or O1 and P3 layers) and eventually

purely O1. These stacking sequence changes are accompanied by a collective reordering of

the intercalant within the layers as the composition changes. Such transitions are critical

to battery performance and can lead to mechanical degradation of electrode materials.

Despite the prevalence and importance of stacking sequence changes, the finer details

of these processes are not well understood. First-principles techniques can be used to

gain some insights into these transitions that may be difficult to probe experimentally.

A fundamental property of interest here is the generalized stacking fault energy or γ-

surface, which gives the energy per unit area of shearing half of a crystal relative to the
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Figure 3.8: Stacking of an O3 AMX2 supercell before and after shearing by u = a
2 + b

2 .
The displacement vector u has been scaled up by a factor of three for better visibility.
M and A ions are shown as gray and green, respectively, with X anions at the corners
of all octahedra. The fault plane is shown in gray.

Figure 3.9: Calculated γ-surfaces of (a) O1 CoO2, (b) O3 LiCoO2, and (c) O3 NaCoO2.
Special points on the surface are annotated with the local stacking.
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other half [132, 133]. This has long been recognized as a key property that influences

deformation behavior in metallic alloys [134–137]. The stable points corresponding to

local minima of the γ-surface represent allowed stackings, while the unstable points,

which are experimentally inaccessible, give the barriers between those stackings. This

information provides a starting point for understanding stacking sequence changes as well

as key parameters for multiscale modeling efforts.

Figure 3.8 illustrates the methodology of our γ-surface calculations. Supercells with

three MX2 slabs are used to isolate faults from their periodic images. A displacement

u within the a-b plane is introduced by adjusting the c lattice vector (c′ = c + u),

which changes the stacking between each periodic supercell and the next. For each

displacement u, we optimize the interlayer spacing δ around the fault plane as well

as the position of the intercalant ion nearest to the fault plane. More details about the

calculations are described in Appendix B. Figure 3.9 shows calculated γ-surfaces of CoO2

in the O1 structure and LiCoO2 and NaCoO2 in the O3 structure. Each point on these

surfaces corresponds to a particular displacement vector u, with the color representing

the stacking fault energy. Special points are labeled with the local stacking of the oxygen

layers around the fault plane (O1, O3, or P3) although the remaining layers retain their

original stacking, as illustrated in Figure 3.8. Note the difference in energy scales between

the three compositions: the highest point for LiCoO2 is about five times that of CoO2,

while the highest point for NaCoO2 is about 30% higher than that of LiCoO2. The energy

landscape is relatively flat in CoO2 because the interlayer interactions are mainly limited

to van der Waals forces. The presence of an intercalant raises the energy through A-O and

A-Co interactions, which are more significant with the larger and more electropositive

Na than Li. Another important detail is the three-fold symmetry of the crystal, which

is reflected in the γ-surfaces. With this underlying symmetry there are three equivalent

directions for a given stacking sequence transition to occur, so it may not proceed in
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Figure 3.10: Stacking fault energy along the [110] direction (gray dashed lines in Figure
3.9) for CoO2, LiCoO2, and NaCoO2. Circles indicate calculated points. Filled circles
and solid lines represent equilibrium fault energies, while open circles and dotted lines
represent metastable fault energies. Inset supercells show the most stable local A
coordination within the O3 structure for LiCoO2 and NaCoO2 at each special point
on the γ-surface. Black dotted circles in the insets identify vacant tetrahedral A sites
within the structures.

the same crystallographic direction going forward and backward even if it is completely

reversible. This entropic effect can lead to “electrochemical creep” after many cycles,

resulting in roughening of the electrode particles [84].

To compare the γ-surfaces from Figure 3.9 more closely, we examine the energy along

the dotted line connecting O3 to P3 to O1 to O3, shown in Figure 3.10. The preferred

coordination of the intercalant in the fault plane at each special point is also shown. For

both LiCoO2 and NaCoO2, the intercalant favors prismatic coordination in a local P3

stacking and octahedral (as opposed to tetrahedral) coordination in a local O1 stacking.

However, the relative stabilities of each local stacking are different. In NaCoO2, local P3

stacking is more favorable than O1, and both are local minima. In LiCoO2, the situation
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is reversed, and P3 is actually an unstable maximum. This confirms the established fact

that Li is too small to stabilize prismatic coordination. The CoO2 curve has its lowest

value in O1, has a local minimum in a local O3 stacking, and has a maximum for a local

P3 stacking, with smooth transitions in between. In contrast, the curves for LiCoO2

and NaCoO2 are mostly smooth but both contain a sharp cusp between the O1 and O3

minima that corresponds to an abrupt change in the intercalant position as the structure

is sheared. The smooth transitions (O3 ↔ P3 and P3 ↔ O1) require the intercalant to

travel along with either the top or bottom layer as the crystal is sheared. However, for

the O1 ↔ O3 transition, if the intercalant travels continuously along with either the top

or bottom layer it moves toward a tetrahedral site (black dotted circles in the insets of

Figure 3.10), which is higher in energy than the preferred octahedral site. The presence

of this cusp feature highlights an important subtlety of γ-surfaces in layered intercalation

compounds in that careful consideration of intercalant site preference must be accounted

for when calculating them.

The γ-surfaces of Figure 3.9 collect the energies associated with a homogeneous shear

of adjacent MX2 slabs in layered intercalation compounds. However, these materials

do not undergo stacking sequence changes via the macroscopic collective shearing of an

entire particle. Much like in metallic alloys, the transitions are instead likely mediated

by dislocation motion, which requires less energy [133, 138, 139]. Dislocations have also

been observed in intercalation compounds [104, 139–145]. The details of their behavior,

however, are still largely a mystery, so we will simply present some underlying concepts.

Figure 3.11 schematically illustrates an electrode particle as it transitions from O3

to P3 upon deintercalation of Na. During the transition the two phases coexist within

the same particle and are separated by a moving front at which a stacking sequence

change from O3 to P3 must occur. These local changes in the stacking sequence is likely

to be mediated by a periodic array of dislocations as schematically represented by right
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Figure 3.11: Depiction of an electrode particle undergoing a first-order transition from
O3 to P3 upon deintercalation of Na. Inset shows a suggested dislocation structure
at the interface.

side up and upside down “T”s. By simply considering the X anion stacking sequences

of the two structures (AB CA BC for O3 versus AB BC CA for P3), we arrive at the

dislocation structure shown in the inset of Figure 3.11. Because O3 and P3 have the same

stacking periodicity, every third layer is continuous, while pairs of dislocations must be

introduced along the phase boundary to accommodate the change in stacking. Another

important detail is the depletion of Na locally within the P3 phase. A severe gradient in

composition may result in a large interlayer spacing mismatch along the boundary and

lead to cracking.

In Figure 3.12, we show what the dislocation structure along the phase front may

look like within the X layers. The X layer below the intercalant layer is shown in

dark gray, while the layer above is shown in blue or orange, depending on the stacking.

Dislocation lines may change directions or form kinks throughout the particle. The

dislocation structure may also consist of a sudden change between the two stackings

or a more continuous transition. The former would result in large local strain of the

layers but a lower stacking fault energy (Figure 3.12(a)), while the latter would result

in smaller strain and higher stacking fault energy (Figure 3.12(b)). The competition
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Figure 3.12: Dislocation structure of an O3/P3 two-phase region viewed along the
stacking direction, showing only the two X anion layers nearest to the fault plane.
The layer below is shown in dark gray, while the layer above is shown in blue or orange
for O3 or P3, respectively. In (a) the change in stacking is abrupt, while in (b) it is
more continuous, as reflected by the color gradient.

between strain and stacking fault energies should therefore determine how spread out

the dislocation is. A clearer picture of these dislocations and their motion will provide a

better understanding of stacking sequence changes, and perhaps how to mitigate them.

3.8 Conclusion

As battery research pushes beyond Li-ion technology into less well-explored territory,

a fundamental understanding of materials in these composition spaces must be devel-

oped. We have illustrated the utility of first-principles techniques to predict detailed

behavior of electrode materials. In both layered and spinel host structures, simple size

and electrostatic effects can explain thermodynamic trends with varying host and inter-

calant identities. These include site preferences in spinel, as well as the relative stability

of various layered phases and intercalant orderings.

We have highlighted two phenomena that are more prevalent in layered Na interca-

lation compounds than their Li counterparts: complex Na-vacancy orderings and phase

transitions involving shearing of the host layers. Staircases of ordered superstructures
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that incorporate composition changes through antiphase boundaries likely have profound

implications for Na diffusion, while stacking sequence changes can cause increased sus-

ceptibility to mechanical degradation.

Our examination of stacking sequence changes suggests potential strategies that could

be developed to avoid them. These transitions may be prevented or delayed thermody-

namically through tuning of the host chemistry and ionicity [146], or kinetically penal-

ized by achieving a high dislocation energy. If they cannot be avoided, then they could

perhaps be managed so that they are not as harmful, for instance by matching lattice

parameters of the two endpoint phases [80]. The challenges inherent to intercalating

Na and other less traditional cations can hopefully be overcome through a combination

of experimental efforts and computational insights in order to develop next-generation

electrode materials.
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Chapter 4

Ordering and phase stability in

layered NaxCoO2

4.1 Introduction

Na-ion batteries offer a promising alternative to Li-ion for applications in which weight

is not critical. Layered intercalation compounds have received widespread attention as

positive electrodes for both technologies since the 1980s [79,97,109]. Layered Na interca-

lation compounds typically undergo more structural phase transformations upon cycling

compared to their Li counterparts [73, 81–84, 112, 128, 130, 147–156] due to the stability

of both octahedral and prismatic Na coordination [78,157]. Furthermore, host structures

that offer prismatic sites to Na allow for more complex Na-vacancy orderings than are

possible in hosts with octahedral sites. Structural phase transitions and Na orderings

are both important in determining the voltage profile, susceptibility to degradation, and

diffusion mechanisms of electrode materials.

Many layered transition-metal oxide and sulfide Na intercalation compounds have

been investigated experimentally [97] and computationally [7, 8, 158, 159]. Two distinct
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types of phases are synthesized: P2 and O3, with the latter converting to P3 upon dein-

tercalation through the gliding of transition-metal oxide/sulfide slabs. O3-type NaxCoO2

(0 ≤ x ≤ 1) is among the oldest [108] and one of the most studied layered Na intercala-

tion compounds [97], but the details of Na ordering as the compound is deintercalated

are not well-understood. Experimental voltage profiles suggest rich ordering phenomena

in the P3 phase for intermediate Na content, but so far no comprehensive picture of these

orderings has been established.

An overview of the O3-type NaxCoO2 host structures considered in this study is shown

in Figure 4.1. Each consists of stacked triangular lattices of O alternated by layers of Co

and Na/vacancies. The Co and O layers form sheets of edge-sharing CoO6 octahedra,

and the stacking sequence of the O layers determines the coordination of the Na sites.

In O1 stacking (AB), each Na site is octahedrally coordinated by O and shares faces

with the two neighboring CoO6 octahedra. In O3 stacking (AB CA BC), the Na sites

are also octahedrally coordinated but do not share faces with CoO6 octahedra. In P3

stacking (AB BC CA), each Na site is prismatically coordinated and shares a face with a

single CoO6 octahedron, either above or below. While the Na sites in O1 and O3 belong

to a single triangular lattice, those in P3 lie on one of two distinct triangular lattices

that together form a honeycomb network. This allows for Na-Na pair distances in P3

that are not available in O1 or O3, expanding the possible orderings that Na may take

on to minimize electrostatic interactions [7]. Phase transformations within this set of

structures are accomplished by gliding of CoO2 sheets, without the need to break strong

bonds. In addition to the pure structures O1, O3, and P3, hybrid structures such as

O1-O3 (also known as H1-3) and O1-P3 are also possible. The labels O′3 or P′3 are

commonly used to indicate a distortion of the O3 or P3 parent structure [108].

In this study, we use first-principles techniques to predict phase stability and ground

state Na orderings within the various host structures that can be derived from O3-type
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Figure 4.1: Stacking sequences of the (a) O1, (b) O3, and (c) P3 structures and the
hybrid structures (d) O1-O3 and (e) O1-P3. Polyhedra are shown as parallelograms
with O (red circles) at the corners. Co (blue circles) occupy octahedral sites while
Na (yellow circles) occupy either octahedral sites on a single triangular sublattice or
prismatic sites on two distinct triangular sublattices.

NaxCoO2 through a simple shearing of the CoO2 sheets. P3 is found to be stable at

intermediate compositions, in agreement with experiment, as well as O3 and a hybrid

O1-O3 phase at lower compositions. We identify several families of hierarchical orderings

in O3 and P3 that result in staircases of stable periodic ground states. These are predicted

to remain ordered at room temperature and together produce a sloping voltage profile

consisting of many small steps and plateaus similar to that observed experimentally. We

find that the zig-zag row motif found at x = 1/2 forms the basis of all ground state

orderings in P3 NaxCoO2. We discuss the likelihood of the same orderings appearing in

other layered intercalation compounds.
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4.2 Methods

DFT calculations were performed using VASP [59–62] with a plane-wave energy cutoff

of 700 eV and k-point meshes of density of 38 Å along each reciprocal lattice vector.

The optB86b-vdW exchange-correlation functional [64] was used to account for van der

Waals interactions, which are necessary to accurately describe the interlayer cohesion near

complete deintercalation [118, 123]. Although the addition of a Hubbard U correction

can produce average voltages in better agreement with experiments [123], this method

was not used because it has been shown to yield some unphysical results in layered

cobalt oxide systems. Specifically, a typical U value of 3 eV or greater inverts the phase

stability between O1 and O3 in CoO2 [123] and leads to incorrect ordering tendencies

in P2-NaxCoO2 [160]. DFT without U , conversely, has been used to accurately predict

phase stability in LixCoO2 [105, 161]. A hybrid functional such as HSE was not used in

this study due to the computational cost, inability to capture van der Waals effects in

CoO2 [162], and demonstrated overprediction of voltages in LixCoO2 [123,162].

CASM [10,68–70] was used to enumerate symmetrically distinct configurations within

each host structure across the composition range of NaxCoO2. DFT energies were calcu-

lated for 22 O1 configurations, 339 O3 configurations, 365 P3 configurations, 34 O1-O3

configurations, and 60 O1-P3 configurations. For hybrid structures, only those config-

urations containing zero Na in the O1 layers were enumerated because O1 was found

to be unstable for x > 0, in agreement with previous studies [7, 111]. Cluster expansion

effective Hamiltonians were fit for each host structure (except O1) and used iteratively to

predict new near ground state configurations for which to calculate DFT energies. The

cluster expansions made it feasible to traverse the configuration space at large supercell

volumes. Monte Carlo heating and cooling runs were performed for a grid of tempera-

tures and chemical potentials. For further details of the cluster expansions and Monte
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Carlo simulations, we refer the reader to the Supporting Information [163]. Free energy

integration of our Monte Carlo results showed that at room temperature (300 K), the

ordered ground states are more stable than the disordered phases resulting from cooling

runs, and that the ground states do not disorder appreciably until above 400 K. For this

reason all phases were treated as line compounds, i.e. the free energies at room tem-

perature were taken to be the zero temperature formation energies obtained from DFT.

Unless otherwise noted, all reported energies and structures are DFT predictions.

The cathode voltage is related to the Na chemical potential µNa by

V = −µNa − µ◦Na

e
(4.1)

where µ◦Na is the Na chemical potential in the reference anode and e is the elementary

charge. Hexagonal close-packed Na metal was chosen as the reference.

4.3 Results

4.3.1 Phase stability

Figure 4.2(a) shows the calculated formation energies and the convex hull for each

host structure. As reference states, we use O1 CoO2 and O3 NaCoO2. The global convex

hull is outlined in black. O1 is predicted to be globally stable only at x = 0 and is

not shown for other compositions. O3 is globally stable both for 1/3 ≤ x ≤ 3/8 and

4/5 ≤ x ≤ 1, while P3 is stable for intermediate Na concentration, 5/11 ≤ x ≤ 2/3. The

width of the two-phase region between O3 at x = 3/8 and P3 at x = 5/11 may be smaller

than is shown, as there are several P3 ground states in this region that are above the

global convex hull by less than 1 meV/CoO2, which is well within numerical error of the

DFT calculations. For the hybrid structures, O1-P3 is not found to be globally stable,
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while O1-O3 is stable at x = 1/6. The predicted phase stability agrees with experimental

studies by Lei et al. [112] and Kubota et al. [121] for x ≥ 1/2. The characterization of

structure for lower compositions has proven difficult experimentally [121], so we cannot

compare our results for x < 1/2 as closely.

The slope of the formation energy is related to the chemical potential of Na, which

is used to calculate the equilibrium voltage curve in Figure 4.2(b). Each plateau corre-

sponds to a two-phase region, while each step corresponds to a ground state ordering.

We have identified four families of hierarchical ground state orderings, whose predicted

composition ranges are indicated in Figure 4.2(b) along with important orderings at their

endpoints. The ζ− and ζ+ orderings in P3 can be generated by combining translational

variants of the x = 1/2 ground state ordering (ζ) separated by antiphase boundaries

(APBs). Similarly, the η+ orderings can be generated from the orientational variants

of the x = 4/7 ground state (η) separated by APBs. The θ orderings in O3 consist of

fully sodiated regions separated by rows of vacancies. We will examine these families of

orderings in detail along with the other ground states.

The calculated equilibrium voltage curve in Figure 4.2(b) is compared to the exper-

imental curve from Kubota et al. [121] The relative jaggedness of the calculated curve

is in part due to a finite sampling of the large number of possible orderings in each

family of ground states. Our voltage underpredicts experiment by about 0.5 V, which is

consistent with systematic errors inherent to approximations to DFT when comparing

energies of metals and oxides. The voltage of the O3 region for x ≥ 4/5 is predicted to

be lower still. We attribute this underprediction to an inability of DFT approaches in

accurately describing charge localization in the vicinity of the metal-insulator transition

in cobalt oxide compounds at high intercalant concentrations [105]. Despite these issues,

the overall qualitative agreement with experiment is good. We predict a large step of

about 0.5 V at x = 1/2 and a smaller one at x = 2/3, with a sloping region rich in small
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Figure 4.2: (a) Calculated formation energies versus composition for configurations
on the local convex hull of each host structure. The global convex hull is shown in
black. Single phase regions are highlighted in the background. (b) Calculated zero
temperature equilibrium voltage curve (black) compared to experiment from Kubota
et al. [121] (gray). A section of the metastable P3 voltage curve is shown in red. The
composition ranges for various families of orderings in P3 and O3 are indicated.
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steps and plateaus between the steps at x = 1/2 and 2/3. The metastable P3 voltage

curve corresponding to the ζ− family of orderings is shown in red, and may be the path

followed experimentally as the equilibrium path requires a two-phase reaction from P3

to O3.

4.3.2 O3 orderings

At x = 1 there is only one ordering possible in O3 as all Na sites are then filled. For

3/4 ≤ x ≤ 6/7 we find that the O3 ground states all consist of different arrangements

of rows of vacancies as shown in Figure 4.3. There are an infinite number of orderings

in this family with different sequences of spacings between vacant rows, resulting in a

“Devil’s staircase” [164,165] of stable ground states at almost arbitrary composition. We

refer to this family of orderings as θ and present a naming convention and composition

formula for specific orderings in the Appendix C.

The θ orderings bring about significant distortions of the O3 host, as shown in Figure

4.4. Na directly adjacent to the vacancy rows are displaced from the centers of their

octahedral sites toward the vacancies, and the interlayer spacing tends to expand around

the vacancies, resulting in undulating CoO2 layers. Configurations in which vacancy

rows are not stacked immediately on top of each other seem to be energetically preferred,

though we did not probe this exhaustively. The strong distortions made it difficult to

parameterize an accurate cluster expansion, so we were unable to perform reliable Monte

Carlo simulations to determine if the θ orderings remain ordered at room temperature.

We expect, however, that the rows are “locked in” such that breaking them is energetically

unfavorable. To test this, we calculated the energies of perturbed structures in which

every fourth Na in a row adjacent to a vacant row was moved into the vacant row itself.

This was found to increase the energy by 283 and 384 meV for θ3 and θ4 (Figure 4.3(a,b)),
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Figure 4.3: Orderings belonging to the θ family on the local convex hull of O3. Yellow
circles represent Na and black lines indicate vacancy rows between fully sodiated
regions. Unit cells are shown in dark gray. Single asterisks indicate that the ordering
is above the global hull and double asterisks indicate that the ordering is also above
the local hull but by less than 0.5 meV/CoO2.

respectively. These are large energy increases, and we, therefore, expect that the θ ground

states will remain ordered at room temperature.

Experimental studies report a stable O′3 phase, described as O3 with a monoclinic

distortion, from x = 0.8 or 0.83 to around 0.86 or 0.88, followed by a two-phase region

between O′3 and hexagonal O3 at x = 1 [112,121]. This composition range is similar to

that where the θ family is found to be stable. The predicted two-phase region between

fully sodiated O3 and θ5,6 at x = 11/13 coincides with the experimental two-phase region.

Other θ orderings having Na concentrations that are slightly higher than x = 11/13, such

as θ6, θ7 and θ8, were predicted to be only 1-2 meV/CoO2 above the global convex hull.

As is evident in Figure 4.2(a), the O3 host is not only stable at high Na concentrations,

but also at concentrations around x = 1/3. Figure 4.5 shows ground state orderings in

O3 for 1/3 ≤ x ≤ 1/2. The x = 1/3 ordering in Figure 4.5(a) is the typical
√

3a×
√

3a
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Figure 4.4: Structure of the θ4 ground state at x = 4/5 (a) before and (b) after relaxation.

ordering on a triangular lattice, where a is the lattice parameter. The orderings at x = 3/8

and x = 2/5 (Figure 4.5(b,c)) can be viewed as consisting of different translational

variants of the x = 1/3 ordering separated by APBs. This suggests that there could

be another family of O3 ground state orderings in this composition range with different

spacings of APBs, but we have not pursued this further. At x = 1/6, the O3 ground

state is a staged structure with layers of the x = 1/3 ordering alternated by vacant layers.

Its energy is lowered by 8 meV/CoO2 if the O3 stacking sequence of the vacant layers

are changed to an O1 stacking sequence, thereby producing the globally stable O1-O3

hybrid at x = 1/6 (also known as H1-3 [105]). This suggests that there are possible

higher order hybrids with the same x = 1/3 O3 ordering between vacant O1 layers at

even lower compositions, e.g. O1-O1-O3 at x = 1/9.
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Figure 4.5: Orderings on the local convex hull of O3 for 1/3 ≤ x ≤ 1/2. Yellow circles
represent Na and black lines indicate APBs between translational variants of the
x = 1/3 ordering. Unit cells are shown in dark gray. Asterisks indicate that the
ordering is above the global hull.

4.3.3 P3 orderings

Figure 4.2(a) shows that the P3 host is stable at intermediate Na concentrations. The

two triangular sublattices of Na sites in P3 form a honeycomb network, and we distinguish

Na occupancy of the different sublattices with light and dark circles, as in Figure 4.6.

At x = 1/2, the P3 ground state is a zig-zag row ordering with Na occupying third-

nearest-neighbor sites on the honeycomb network, as shown in Figure 4.6(a)(i). The same

ordering has been observed experimentally [121] and predicted computationally [8, 111]

in several transition-metal oxides and sulfides intercalated with Na. We denote this

ordering by ζ, and it forms the foundation of all the hierarchical orderings we identified

in P3. We found that the relative stacking of orderings in P3 tends not to affect the

energy significantly (within ∼ 2 meV/CoO2), but we did not test this exhaustively. We

also confirmed that occupation of nearest-neighbor sites results in a large energy penalty
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Figure 4.6: (a) Important P3 ground state orderings ζ, η, and ∆, with Na shown in
blue. (b) The three orientational variants of the η ordering from (a)(ii), shown in
green, orange, and magenta. Unit cells are shown in dark gray. Light and dark circles
distinguish Na occupancy of the two distinct triangular sublattices.
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Figure 4.7: APBs (black lines) that make up the (a) ζ−, (b) ζ+, and (c) η+ families of
hierarchical orderings, separating (a,b) translational variants of the ζ ordering (blue),
or (c) orientational variants of the η ordering (orange and green). Unit cells of each
variant are shown in dark gray. Light and dark circles distinguish Na occupancy of
the two distinct triangular sublattices.
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(> 1 eV/Na-Na pair) due to steric repulsion.

We identified three families of hierarchical orderings in P3. Endpoints of these families

correspond to important orderings at x = 1/2, x = 4/7, and x = 2/3 (Figure 4.6(a))

that we have labeled ζ, η, and ∆, respectively. The ∆ ordering can be generated from

the η ordering, which itself can be generated from the ζ ordering. This is achieved by

introducing different kinds of APBs, which are shown in Figure 4.7. We describe each

family of orderings next, with naming conventions, composition formulas, and specific

ground state orderings given in Appendix C.

The ζ− and ζ+ orderings in P3

The P3 ground states for 2/5 ≤ x ≤ 1/2 consist of translational variants of ζ separated

by APBs, as shown in Figure 4.7(a). This type of APB introduces more vacancies

compared to ζ. The infinite possible sequences of APB spacings result in another Devil’s

staircase of hierarchical ground state orderings. We label this family of orderings as ζ−

and introduce a notation to label them specifically that is similar to that used to describe

the θ family (see the Appendix Section C.2 for details).

For 1/2 ≤ x ≤ 4/7, we observe ground states with a different type of APB between

translational variants of ζ, as shown in Figure 4.7(b). In this type, Na are condensed along

the APB, with adjacent third-nearest-neighbor pairs forming quadruplet clusters. As

with the ζ− orderings, one can choose an arbitrarily complex sequence of APB spacings,

leading to another family of ground state orderings which we call ζ+. Within both the

ζ− and ζ+ families, multiple structures can have the same composition and are likely

degenerate in energy, as discussed in the Appendix Section C.2.
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The η+ orderings in P3

The x = 4/7 ordering (labeled ζ+
4 ) shown in Figure 4.6(a)(ii) is of particular impor-

tance, and is denoted separately as the η ordering. This is the endpoint of the ζ+ family,

as smaller APB spacings (higher x) do not produce stable orderings. It consists entirely

of the quadruplet clusters formed along the ζ+-type APBs. The η ordering resides in a
√

7a ×
√

7a supercell and has three orientational variants ηA, ηB, and ηC related by a

three-fold rotation, shown as green, orange, and magenta in Figure 4.6(b). The three

variants are commensurate with the same unit cell, though we have chosen to show the

unit cell rotated along with the ordering.

Sections of the two variants ηA and ηB separated by the type of APB shown in Figure

4.7(c) form another family of ground state orderings for 4/7 ≤ x ≤ 2/3 which we refer

to as η+. For a specific naming convention and composition formula, see the Appendix

Section C.3. The η+ orderings are fundamentally different from the ζ− and ζ+ orderings

in that they alternate between two orientational variants and as such, every η+ ordering

contains an even number of APBs in its unit cell.

Two examples of the η+ orderings are shown in Figure 4.8. The x = 8/13 ordering

η+
4,4 consists of equal portions of the two η variants (Figure 4.8(a)), while in the x = 2/3

ordering, η+
2,4 or ∆, the ηA regions are half as wide (Figure 4.8(b)). Along the APBs

there are triplet clusters of Na on the same triangular sublattice, shown as light or dark

circles, and at x = 2/3 the structure is made up entirely of such clusters, as shown in

Figures 4.6(a)(iii) and 4.8(b) (note that these are the exact same ordering ∆ viewed in

different ways).

A hexagonal P3 phase has been reported experimentally around x = 0.56, with regions

of monoclinic P′3 above and below it in composition [112]. Because x = 4/7 ≈ 0.57 is

close to this composition, we suggest that the experimental phase may correspond to the
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Figure 4.8: Example ground state orderings belonging to the η+ family in P3, com-
posed of regions of the ηA (green) and ηB (orange) orientational variants separated
by APBs (black lines). Unit cells are shown in dark gray. Light and dark circles
distinguish Na occupancy of the two distinct triangular sublattices.
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η ordering, which is described by a hexagonal supercell. Lei et al. also speculate that

the two regions of P′3 above and below x = 0.56 may be distinct ordered superstructures

[112], which could correspond to the ζ+ and η+ families identified here. In addition to

being the endpoint of the η+ orderings, the ∆ ordering at x = 2/3 is representative of

the low-energy P3 orderings at higher compositions, beyond where P3 is globally stable.

These orderings consist of triangular islands of Na on a single sublattice separated by

APBs, like those found computationally in NaxCoO2 [111, 166] and NaxTiS2 [8]. Some

illustrative snapshots from our Monte Carlo cooling simulations are shown in Figure 4.9,

with Na on either sublattice indicated with light and dark blue.

4.4 Discussion

Our first-principles study of NaxCoO2 has revealed several families of stable hierar-

chical Na orderings that span wide composition ranges. The predicted phase stability

follows the experimentally observed O3 → O′3 → P′3 → P3 → P′3 transitions upon

deintercalation of NaCoO2, matching both the single-phase composition ranges and the

shape of the voltage profile. In addition to the well-known ordering at x = 1/2 (ζ), we

have identified important orderings in P3 at x = 4/7 (η) and x = 2/3 (∆) that may

assist experimental studies in resolving structure at these compositions.

We predict a staged hybrid phase for more dilute Na, below compositions that have

been accessed experimentally. It is curious that we find a globally stable O1-O3 hybrid

at x = 1/6 but not a globally stable O1-P3 hybrid at x = 1/4, as is the case in NaxTiS2

[8]. The O1-P3 hybrid groundstate in NaxTiS2 consists of layers of the P3 ζ ordering at

x = 1/2 alternating with vacant O1 layers. Not only does this configuration lie above

the common tangent between O3 and O1-O3 for NaxCoO2, but it has a higher formation

energy than the P3 ground state at x = 1/4, which is not staged. This suggests a
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Figure 4.9: Representative snapshots from P3 Monte Carlo cooling runs at 300 K
(cooled from 1000 K). Light and dark blue circles distinguish Na occupancy of the
two distinct triangular sublattices.
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Figure 4.10: A hypothetical triple junction between the three orientational variants
of the η ordering (green, orange, magenta). Black lines indicate APBs and unit cells
of each variant are shown as dark gray boxes. Light and dark circles distinguish Na
occupancy of the two distinct triangular sublattices.

preference in P3 for Na to spread out within each layer, rather than limiting interlayer

interactions by staging.

This study highlights the importance of hierarchical orderings in layered Na interca-

lation compounds. In each family, orderings consist of regions of favorable local ordering,

such as the zig-zag rows of the ζ ordering in P3, separated by a particular kind of APB to

accommodate changes in composition. Orientational variants occupying the same com-

mensurate supercell offer a convenient way of stitching them together, as is the case with

the η ordering. The ordering tendencies described here could lead to even more intricate

superstructures. For example, the η ordering could potentially support triple junctions

between all three orientational variants separated by the same kind of APB discussed

earlier, as illustrated in Figure 4.10. We leave the energetics of such structures to be

explored in a later study.

Infinite staircases of orderings can be difficult to treat with a cluster expansion ap-

66



Ordering and phase stability in layered NaxCoO2 Chapter 4

proach, as they often require long-range interactions to capture a sufficient number of the

ground states. It can also be difficult to find such orderings by brute force enumeration, as

even relatively simple hierarchical orderings often require large supercells. Monte Carlo

approaches will fail to predict specific orderings if the chosen supercell is not of commen-

surate shape (even if it is large enough), but may be useful in revealing preferred local

ordering phenomena. Also of note is that there is likely a large degeneracy of orderings

within a given family. While it is convenient to model simpler ones, experimentally we

would expect to see larger superstructrures with different spacings between APBs. Such

Devil’s staircases are common in other types of compounds as well, including metallic

alloys [167–169].

The Na ordering of a phase has implications for diffusion and the kinetics of Na

insertion and removal. Diffusion in layered intercalation compounds is intimately tied to

cation ordering [57, 93, 95] and happens differently in P3 compared to O3 [88, 170, 171].

Diffusion may occur more readily along APBs, as has been proposed for the orderings of

triangular islands for high Na content [8], but likely only along APBs that contain more

vacancies compared to the rest of the structure, as in the ζ− orderings. The insertion

and removal of Na in P3 will likely require non-local rearrangements of the Na ions.

Since the composition of the hierarchical orderings are determined by the density of

APBs, any change in composition will require the creation or annihilation of APBs that

is simultaneously coupled with a readjustment of the spacing between existing APBs.

We leave a detailed examination of these non-local diffusion processes for a future study.

Similar families of orderings may be stable in other intercalation compounds that

adopt the P3 structure, particularly oxides, where electrostatic effects are strong due to

ionicity [7]. This may be the case in alloyed transition-metal oxides like NaxFe1/2Co1/2O2,

which also exhibits the ζ ordering at x = 1/2 and undergoes similar structural trans-

formations during cycling [121]. It is possible that the intercalation of K instead of Na
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may yield the same orderings unless they are somehow destabilized by the larger ionic

radius of K+. Intercalating into different transition-metal oxides like MnO2 or NiO2 may

see these ordering tendencies competing or coupling with Jahn-Teller distortions, which

are critical to understanding the energetics of these systems [85, 172]. The Jahn-Teller

distortions themselves can take on distinctive orbital orderings within the lattice, such

as collinear and zig-zag arrangements [6]. The interaction of these with Na orderings is

potentially rich but not well-explored.

4.5 Conclusion

In this study we have examined phase stability in NaxCoO2 between O3, P3, O1,

and staged hybrid structures. The calculated voltage profile agrees qualitatively with

experiment. We find that a family of vacancy row orderings are stable in O3 at high Na

concentrations, which may correspond to the O′3 phase seen experimentally. At interme-

diate composition, we have discovered several families of ground state Na orderings on

the honeycomb network in P3 and a unifying picture of their construction. An infinite

number of hierarchical orderings are obtained by combining regions of the zig-zag row or-

dering at x = 1/2 separated by different types of antiphase boundaries. These orderings

are likely to be common among other P3 intercalation compounds.
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Chapter 5

Ordering and phase stability in

layered NaxCrO2

5.1 Introduction

There is a growing effort to develop “beyond Li-ion” battery technologies that could

address the world’s energy storage needs at lower cost and using more widely avail-

able resources [2, 101]. Na-ion batteries are one such technology that hold promise for

applications such as stationary energy storage due to the far greater abundance of Na

compared to Li [3]. Much research has been devoted to developing suitable materials for

Na-ion batteries, particularly cathode materials [73,97]. One of the most popular classes

of candidate Na-ion cathode materials are layered transition-metal oxides intercalation

compounds, which generally exhibit high energy density and rate capability, and share

many similarities with their well-studied Li-ion counterparts [78,79].

Various layered oxide compounds with the formula NaxMO2 (M = Ti, V, Cr, Mn,

Fe, Co, Ni, or some combination) have been explored as electrode materials [108, 121,

127,128,147,148,173–182]. Among these, NaxCrO2 is of particular interest as a high-rate
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cathode material [183]. It is also considered to be inherently safe due to its exceptional

thermal stability in contact with an electrolyte [184]. Despite these advantages, NaxCrO2

does display certain structural phase transitions and Na-vacancy ordering effects that

are common to many Na layered oxide systems and generally considered detrimental

[8,11,80]. Beyond battery applications, layered NaCrO2 has also received attention from

the solid-state physics community as a frustrated magnetic system [185–190].

The fully sodiated NaCrO2 adopts the O3 structure, depicted in Figure 5.1(a). This

structure is made up of stacked sheets of edge-sharing CrO6 octahedra, which host Na in

octahedral sites in the intercalation layers between them. The Na sites form triangular

lattices and do not share faces with the CrO6 octahedra. There are also tetrahedral sites

in the intercalation layers that share faces with the CrO6 octahedra. While these sites are

generally too small for Na occupation, they are able to accommodate Cr that can migrate

via the shared faces. Like many O3-NaxMO2 materials, O3-NaCrO2 transforms to a P3

structure, depicted in Figure 5.1(b), upon desodiation [7, 8, 84, 97]. This structure is

obtained from O3 by a change in the stacking sequence of the CrO2 sheets [108]. The Na

sites form honeycomb networks, with each site sharing one face with a CrO6 octahedron.

While there is an energy penalty associated with the Na-Cr face-sharing in P3, the

honeycomb network allows for unique Na-vacancy orderings that lower the electrostatic

energy contribution of Na-Na interactions relative to O3 [7,11].

The phase stability between O3 and P3 in NaxCrO2 has been examined in various

experimental studies. Figure 5.2 shows several reported phase diagrams for x > 0.5

obtained from ex situ [82] or in situ [191–193] X-ray diffraction (XRD). These follow the

same general picture of phase evolution with desodiation: The O3 structure near x = 1

undergoes a first-order transition to a O′3 phase near x = 0.8, which eventually undergoes

a first-order transition to a P′3 phase at lower x. The primed phases here indicate a

monoclinic distortion of the hexagonal O3 or P3 parent structure. Beyond these general
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Figure 5.1: The (a) O3 and (b) P3 layered structures of NaxCrO2, which host Na on
octahedral and trigonal prismatic sites, respectively. Letters (A, B, C) indicate the
oxygen stacking sequence of each structure.

similarities, there are some key discrepancies between the various experimental phase

diagrams. The boundaries of each single-phase region differ significantly across studies,

and Jakobsen et al. recently reported the appearance of an extra O′3 phase (dubbed

O′3-E) near x = 0.7 [193]. The details of Na ordering within each phase are also not

well understood. Some orderings have been reported in the P′3 phase [131, 194], but no

comprehensive picture of ordering across composition in the O3 and P3 structures has

been established. For x < 0.5, NaxCrO2 has been found to undergo an irreversible phase

transition to an O3 phase involving charge disproportionation and migration of the Cr

to tetrahedral sites in the intercalation layers, although there is some disagreement over

its exact nature [82,192].

The NaxCrO2 system displays an interesting assortment of behavior for 0 ≤ x ≤ 1.

While some specific aspects have been studied using first-principles techniques [82, 159,

192], questions remain regarding the true equilibrium phase stability between O3 and
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Figure 5.2: Reported phase diagrams from several experimental studies [82,191–193].
Solid-colored and white blocks indicate single- and two-phase regions, respectively,
while the hatched region indicates that no data was reported there. The predicted
ground states from this work, drawn as line compounds, are shown for comparison.

P3, as well as the nature of Na ordering and Cr migration. Here we report on a first-

principles study of phase stability between various Na-vacancy orderings in the O3 and

P3 structures of NaxCrO2. We predict O3 to be stable at high x, with the preferred

orderings forming families based on the common motif of rows of vacancies that separate

fully sodiated regions. Some of these orderings are also found to couple to favorable

magnetic orderings. At intermediate x, we predict P3 to be stable and identify families

of (near) ground state orderings containing antiphase boundaries between regions of the

x = 1/2 ordering. We also confirm a preference for Cr migration to tetrahedral sites in

O3 at x = 0, along with charge disproportionation. Our predicted phase stability and

voltage profile are compared to experimental reports, and we discuss possible sources of

discrepancy as well as similarities to other layered oxide systems.
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5.2 Methods

Density functional theory calculations were performed using VASP [59–62]. The

plane-wave energy cutoff was chosen to be 600 eV, and the Brillouin zone was sampled

with k-meshes of density 34 Å along each reciprocal lattice vector (increased to 40 Å

for calculating density of states). All calculations were spin-polarized and initialized in

the ferromagnetic (FM) state, unless otherwise noted. The SCAN meta-GGA exchange-

correlation functional [30, 31] was used because it has been shown to provide accurate

predictions of voltage, structural parameters, and phase stability in related layered oxide

systems [13, 195–200]. Some calculations were also run with PBE [26] and PBE+U [35]

(with U = 3.5 eV for Cr) for comparison. Unless otherwise noted, all reported properties

and structures are from calculations using the SCAN functional.

Symmetrically distinct Na-vacancy orderings in the O3 and P3 host structures of

NaxCrO2 were enumerated using the Clusters Approach to Statistical Mechanics (CASM)

software package [10,68–70]. DFT energies were calculated for 228 O3 configurations and

273 P3 configurations. Energies were calculated for an additional 37 configurations of

O3-CrO2 in which one third of the Cr have been moved to tetrahedral sites in the inter-

calation layers (all such structures in supercells of volume up to six times the primitive

cell volume). We also enumerated and calculated DFT energies for collinear magnetic

orderings of the Cr spins within the predicted O3 and P3 ground states at select compo-

sitions.

CASM was used to construct cluster expansion effective Hamiltonians for the O3 and

P3 structures (not considering magnetic ordering or Cr migration), which we employed

to iteratively predict candidate ground state structures whose energies were subsequently

calculated with DFT. Details of the cluster expansions are provided in Appendix Section

D.1. These cluster expansions were also used to run Monte Carlo simulations of finite-
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temperature phase stability, the details of which are provided in Appendix Section D.2.

Voltages were calculated using the Nernst equation [4]

V = −µNa − µ◦Na

e
(5.1)

where µNa is the chemical potential of Na in NaxCrO2, µ◦Na is the chemical potential

of the reference anode (taken to be body-centered cubic Na metal [201]), and e is the

elementary charge.

5.3 Results

5.3.1 Phase stability

Figure 5.3(a) shows the calculated zero-temperature formation energies of NaxCrO2

configurations in the O3 and P3 structures, referenced to O3-CrO2 and O3-NaCrO2

(FM). Also included are energies of the most favorable magnetic orderings found in O3

at x = 1, x = 4/5, and x = 3/4, as well as O3 configurations at x = 0 with one third of

the Cr migrated to tetrahedral sites in the intercalation layers. Note that we generally

do not distinguish between parent and distorted host structures (e.g. O3 vs O′3) in our

results. The global formation energy convex hull determines the zero-temperature phase

stability. To more easily compare energies of configurations close to the hull, distances

above the hull (excluding the Cr migration configurations) are also plotted in Figure

D.3 of Appendix D. We predict O3 to be stable for 3/5 ≤ x ≤ 1, and P3 to be stable

for 1/2 ≤ x ≤ 4/7. At x = 0 an O3 configuration with tetrahedral Cr is predicted

to have the lowest energy. Our predicted phase stability for x ≥ 1/2 is generally in

good agreement with experimental studies (Figure 5.2), which report O3-type phases

appearing around x = 0.8 upon desodiation and P3-type phases appearing at or just
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below x = 0.6 (according to Zhou et al. [191] and Jakobsen et al. [193]). We do predict

a narrower two-phase region between P3 and O3 than has been reported experimentally,

with O3 predicted to be stable down to x = 3/5. The results of our grand canonical

Monte Carlo simulations (summarized in Appendix Section D.2) also suggest that the

O3 regime extends to even lower x with increasing temperature, while the P3 regime

becomes narrower.

While we performed most calculations with FM alignment of the Cr spins, we did

explore non-FM magnetic configurations at select compositions in O3 and P3, the energies

and net magnetic moments of which are shown in Figure D.4 of Appendix D. At x = 1 in

both O3 and P3, an antiferromagnetic (AFM) in-layer ordering (Figure D.5, Appendix

D) is predicted to be most stable. This configuration is 31 meV/CrO2 and 43 meV/CrO2

lower in energy than the FM configuration in O3 and P3, respectively. The predicted

preference for AFM ordering at x = 1 is consistent with experimental reports of the

magnetic behavior of NaCrO2, which displays AFM direct exchange interactions resulting

from overlap of the Cr t2g orbitals [186]. The collinear AFM ordering we identify is almost

certainly not the true ground state, however, as NaCrO2 is a known triangular Heisenberg

antiferromagnet with more exotic low-temperature magnetic behavior [186–188]. In O3,

we find non-FM configurations are also preferred at x = 4/5 (10 meV/CrO2 below FM)

and x = 3/4 (6 meV/CrO2 below FM), while no such preference is found in P3 at x = 2/3

or x = 1/2. It is somewhat intuitive that the preference for AFM ordering would diminish

with decreasing x. As Na is removed and Cr is oxidized from 3+ (d3) toward 4+ (d2),

the hopping of aligned spins between t2g orbitals of neighboring Cr ions would no longer

be completely suppressed due the Pauli exclusion principle [115]. We emphasize that

we expect the material to be paramagnetic at room temperature, as the reported Néel

temperature of NaCrO2 is 41 K [186].

Figure 5.3(b) shows the equilibrium voltage derived from the calculated zero-temper-
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Figure 5.3: (a) Calculated formation energies of O3 and P3 configurations versus
composition. For O3, FM configurations are marked by squares while non-FM config-
urations are marked by diamonds, and configurations with Cr migrated to tetrahedral
sites are marked by triangles. Filled markers with lines connecting them indicate con-
figurations on the local convex hull of each host structure (not accounting for magnetic
ordering or Cr migration). The global convex hull is outlined in black. Shaded regions
indicate where each host structure is globally stable. (b) Predicted voltage curve from
DFT (black) compared to experimental voltage curves from first charge reported by
Bo et al. [192] and Kubota et al. [82] (light and dark gray). The composition of the
voltage curve from Kubota et al. has been transformed as x→ 1.09x− 0.09. Part of
the predicted metastable P3 voltage curve is also shown (orange).
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ature formation energies in Figure 5.3(a). The multitude of steps in the predicted voltage

curve correspond to Na-vacancy orderings in O3 and P3, which we examine in detail in

Section 5.3.2. The O3-CrO2 configuration with tetrahedral Cr produces a large two-phase

voltage plateau at around 3.3 V, however, following the convex hull of metastable configu-

rations in P3 (which is observed down to x ≈ 0.4 experimentally [82,192]) instead reveals

a large voltage step at x = 1/2. Experimentally measured first-charge voltage curves

reported by Kubota et al. [82] and Bo et al. [192] are also shown in Figure 5.3(b) for

comparison. For x > 1/2, the agreement between the predicted and experimental voltage

curves is quite close, with the many steps in the predicted curve matching the sloped

section measured experimentally. At high x, we expect that magnetic entropy would

lower the free energy of the O3 phases at room temperature and raise the corresponding

voltage to be closer to the experimental value. At low x, we predict a lower voltage for

Cr migration to tetrahedral sites than the 3.8 V plateau observed experimentally. We

address this discrepancy and present further details of the Cr migration mechanism in

Section 5.3.3. The predicted metastable voltage curve of P3, however, provides excellent

correspondence with experiment, reproducing the observed step at x = 1/2.

5.3.2 Ground state orderings

As shown in Figure 5.3, there are numerous (near) ground state configurations pre-

dicted in the O3 and P3 structures. By closely examining these Na-vacancy orderings,

we are able to identify overarching patterns that connect them.

O3 orderings

Key orderings in the O3 structure are shown in Figure 5.4. The ground state orderings

immediately below x = 1, at x = 4/5 and x = 3/4, contain straight rows of vacancies
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between fully sodiated regions (Figure 5.4(a,b)). As previously mentioned, both of these

configurations prefer non-FM orderings of the Cr spins, which are shown in Figure 5.5.

These magnetic orderings are coupled to distortions of the CrO2 sheets caused by the Na

orderings, such that the distance between neighboring Cr ions is smaller when their spins

are antialigned than it is when they are aligned. We also identify an ordering at x = 7/9

(not shown) that interpolates the x = 3/4 and x = 4/5 orderings, alternating between

three and four rows of Na between vacant rows. It is predicted to lie just 0.1 meV/CrO2

above the FM convex hull. This suggests that there could be a “Devil’s staircase” of

many orderings with varying average spacing between vacant rows, as was previously

predicted to be stable in O3-NaxCoO2 and labeled the θ family [12]. Like in that system,

these orderings could correspond to the monoclinically distorted O′3 phases observed

experimentally at high x (around 0.75–0.8) in NaxCrO2 (Figure 5.2).

At lower compositions in O3, the preferred orderings also consist of rows of vacancies

between fully sodiated regions, however, the rows are no longer completely straight. The

x = 7/10 ordering shown in Figure 5.4(c), which lies on the hull of FM configurations

in O3, contains periodic kinks in the vacant rows. In the ground states at x = 2/3 and

x = 3/5 (Figure 5.4(d,e)), the kinks are as closely spaced as possible, and these orderings

only differ in the spacing between the rows of vacancies. As with the θ family at higher

compositions, there could potentially be a staircase of orderings in this composition

regime with varying spacing of vacant rows and/or varying density of kinks along the

vacant rows. Thus we identify two qualitatively distinct families of orderings in O3

above x = 1/2, based on either straight or corrugated rows of vacancies. The latter could

possibly explain the second O′3 phase around x = 0.7 recently reported by Jakobsen et

al. [193] (Figure 5.2).
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Figure 5.4: Select predicted ground state Na orderings on the triangular lattice in
O3. Dotted black lines indicate the unit cells and solid black lines indicate rows of
vacancies between fully sodiated regions. Asterisk indicates that the ordering is on the
hull of FM configurations, but is displaced from the hull when accounting for non-FM
configurations
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Figure 5.5: Relaxed structures of the lowest energy non-FM configurations found
in O3 for (a) x = 3/4 and (b) x = 4/5. Spin up/down Cr are shown as light/dark
gray. The unique nearest-neighbor Cr-Cr pair distances for each structure (in Å) are
labeled.
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P3 orderings

Figure 5.6 shows important orderings predicted in the P3 structure. The ground state

at x = 1/2 (Figure 5.6(a)) is particularly stable, as demonstrated by the large step it

produces in the P3 voltage curve (Figure 5.3(b)) This ordering, which we refer to as ζ,

is also favored by several other layered Na and K intercalation compounds in the P3 and

P2 structures [13, 97, 121, 126, 129–131]. Its stability is attributed to increased Na-Na

distances relative to alternate arrangements, which minimize the electrostatic repulsion

between the ions. Yabuuchi et al. confirmed the ζ ordering experimentally in P′3-

Na0.5CrO2 via synchrotron XRD, and also found that it undergoes a disordering transition

upon heating at 150–200 °C [131]. We estimate from our Monte Carlo simulations that

the ζ ordering disorders at around 475 K (202 °C) (Figure D.2, Appendix D), which is

in close agreement with the experimentally determined transition temperature.

Above x = 1/2 in P3, we predict that the highly favorable ζ ordering is preserved

locally, and that additional Na are accommodated along antiphase boundaries (APBs).

The ground state ordering at x = 6/11, shown in Figure 5.6(d), illustrates this motif.

There are also predicted ground states at x = 8/15 and x = 5/9 (not shown) that differ

only in the average spacing between APBs. The ground state at x = 4/7, which we

refer to as the η ordering, has the smallest separation of APBs that was found to be

stable (Figure 5.6(e)). As with the vacancy row orderings identified in O3, these APB-

based orderings allow for essentially arbitrary variation in composition controlled by the

average density of APBs. This particular staircase of orderings was also predicted in

P3-NaxCoO2 and labeled the ζ+ family [12]. Above x = 4/7, we also find ground states

at x = 8/13 and x = 2/3 (not shown) that are common to P3-NaxCoO2 and belong to

a staircase of orderings containing APBs between variants of the η ordering, referred to

as the η+ family [12]. However, these are not found to be globally stable here. Chen

81



Ordering and phase stability in layered NaxCrO2 Chapter 5

Figure 5.6: Select predicted (near) ground state Na orderings on the honeycomb
network in P3. Dotted black lines indicate the unit cells and solid black lines antiphase
boundaries between regions of the x = 1/2 ordering (a). A single asterisk indicates
that the ordering is above the global hull, while a double asterisk indicates that the
ordering is also above the P3 hull.
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et al. recently reported similar APB-based orderings for 1/2 ≤ x ≤ 2/3 in NaxCrO2

determined from in situ XRD [194]. They identified superstructures consisting of regions

of the ζ ordering separated different APBs from those presented here. Though not an

exhaustive comparison, we calculated the energies of two such alternative orderings from

Chen et al. at x = 5/9 and x = 2/3 to lie 7 meV/CrO2 and 8 meV/CrO2 above the hull,

respectively.

Below x = 1/2, we predict one ground state ordering in P3 at x = 2/5, shown in

Figure 5.6(b). Like the P3 orderings above x = 1/2, this ordering can be viewed as

regions of the ζ ordering separated by APBs, however, this type of APB accommodates

vacancies rather than additional Na. This again suggests that there could be numerous

(near) ground states between x = 1/2 and x = 2/5 with varying average densities of

APBs. For instance, there is one ordering at x = 4/9 with more widely spaced APBs

(not shown) that has a calculated energy just 0.5 meV/CrO2 above the P3 convex hull.

Interestingly, these orderings are slightly different from those predicted in P3-NaxCoO2,

which are based on a different type of APB and form a staircase of orderings below

x = 1/2 labeled the ζ− family. This other APB type is shown in the alternative x = 2/5

ordering in Figure 5.6(c). In NaxCrO2, we calculate the energy of this ordering to lie

6 meV/CrO2 above that of the preferred ordering in Figure 5.6(b). We note, however,

that the energy of the latter is 3 meV/CrO2 above that of the O3 ground state at x = 2/5

(Figure 5.4(f)), which contradicts experimental observations of a P3-type phase down to

x ≈ 0.4 [192]. While this may signify an incorrect prediction of the SCAN functional, the

predicted difference in energy between P3 and O3 is very small and there is undoubtedly

a sizeable kinetic barrier for the stacking sequence transformation from P3 to O3.

One subtlety we have disregarded in presenting these two-dimensional orderings is

their stacking within the three-dimensional crystal. The influence of stacking on the

energy of O3 orderings in various Na transition metal oxides was studied by Toumar et
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al., who determined that, while it is generally less important than intralayer Na ordering,

the effect of stacking is not necessarily negligible [159]. To investigate this effect for our

predicted P3 orderings, we calculated the energies of all distinct single-layer stackings of

key P3 ground states at x = 2/5, x = 1/2, x = 4/7, and x = 2/3 (Figure D.6, Appendix

D). The energy range of different stackings is less than 10 meV/CrO2 at x = 1/2, x = 4/7,

and x = 2/3, but is 20 meV/CrO2 at x = 2/5. These results suggest that stacking does

indeed have a significant effect, which should be considered in more detailed studies

involving the orderings we have identified here.

5.3.3 Cr migration

As shown in Figure 5.3(a), interlayer Cr migration to tetrahedral sites is predicted to

be favorable in O3-CrO2. The corresponding predicted ground state structure is shown

in Figure 5.7. In this structure, one third of the Cr have migrated to the intercalation

layers, forming rows of tetrahedral Cr sites. Examining the calculated partial densities

of states (Figure 5.8), we find that the tetrahedral Cr contribute minimally to the Cr

d states immediately below the Fermi energy, consistent with an oxidation state of 6+

(d0). These states represent a total of two electrons per CrO2, or three electrons per

octahedral Cr, in line with an oxidation state close to 3+ (d3) for the octahedral Cr.

Thus our results agree with the expected disproportionation of Cr4+ → 2
3
Cr3+ + 1

3
Cr6+.

Although the structure in Figure 5.7 has the lowest energy among those at x =

0 considered in this work, it is unlikely that it is accessed during the electrochemical

extraction of Na. Bo et al. observed that the plateau at 3.8 V corresponds to the

formation of an O3-NaδCrO2 phase with hexagonal (R3̄m) symmetry, one third of the Cr

migrated to tetrahedral sites, and a small amount of residual Na (δ = 0.04) [192]. While

the structure in Figure 5.7 is consistent with the observed charge disproportionation and
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Figure 5.7: Relaxed structure of the predicted ground state O3-CrO2 configuration
with one third of the Cr occupying tetrahedral sites in the intercalation layers.

Figure 5.8: Total and partial densities of states for predicted ground state O3-CrO2

structure with Cr migration to tetrahedral sites.
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migration of Cr, the row ordering of tetrahedral sites (Figure 5.7) clearly breaks the

R3̄m symmetry. The true structure formed experimentally likely contains a disordered

arrangement of tetrahedral Cr sites.

There are also kinetic effects that would hinder the complete extraction of Na. In

O3, Na hops between octahedral sites via the intermediate tetrahedral sites, but if a

significant number of those sites are occupied by Cr then some Na could become trapped

in the structure. However, with 1/3 of the Cr in tetrahedral sites, 5/6 of the tetrahedral

sites in the intercalation layer would still be vacant, suggesting that Na diffusion channels

would not be completely blocked. The more relevant effect is likely the contraction of

the interlayer spacing near x = 0, which is known to inhibit diffusion by significantly

increasing ion migration barriers [57, 93, 95, 202]. The structure shown in Figure 5.7 has

an average interlayer spacing (between the oxygen above and below the intercalation

layer) of 2.49 Å, compared to 3.16 Å for O3-NaCrO2. This is also smaller than the

interlayer spacing of O3-CrO2 without Cr migration (2.58 Å), indicating that the presence

of tetrahedral Cr contributes to an even more severe contraction. While these effects are

often acknowledged as preventing ion reinsertion [82, 127, 173, 179, 192], they may also

explain why a small amount of Na remains. If the kinetically accessible NaδCrO2 phase

has a significantly higher formation energy than the CrO2 phase we have identified,

then it would raise the voltage of the two-phase plateau closer to the value measured

experimentally.

Bo et al. reported that the O3-NaδCrO2 phase serves as an intermediate for a transi-

tion to a rocksalt CrO2 phase (with Cr occupying half of the available octahedral sites)

[192]. This differs from an earlier experimental report by Kubota et al., who described a

single O3-NaδCrO2 phase (with δ = 0.06) containing both tetrahedral and octahedral Cr

in the intercalation layers, rather than a two-phase mixture with rocksalt [82]. To address

this discrepancy, we considered a rocksalt-derived structure with stoichiometry CrO2 in
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which Cr adopts the same ordering as Mn in spinel LiMn2O4 (shown in Figure D.7,

Appendix D). This spinel-like structure can be viewed as a particular one-half vacancy

ordering on the rocksalt parent structure. As shown in Figure 5.3(a), we find that the

formation of the spinel-like structure is unfavorable, with its energy lying 72 meV/CrO2

above that of O3-CrO2. Other Cr-vacancy arrangements would need to be considered

to determine definitively if there is a more stable (dis)ordered rocksalt phase of CrO2.

However, disordered rocksalt structures are qualitatively different from ones containing

tetrahedral Cr, and we find that the energetic driving force for charge disproportionation

and migration to tetrahedral sites is quite significant.

5.4 Discussion

In this first-principles study, we have examined phase stability among various ion

orderings in the O3 and P3 layered host structures of NaxCrO2 (0 ≤ x ≤ 1). O3 is

found to be stable at high Na concentrations while P3 appears at intermediate ones.

We identify many low-energy Na-vacancy orderings which can be organized into families,

each based on a specific motif. In O3 the orderings contain rows of vacancies that serve as

boundaries between fully sodiated regions, and in P3 the orderings contain APBs between

regions of the particularly favorable x = 1/2 ordering (ζ). In each case, variations in the

boundary density produce variations in the overall composition. The predicted phase

stability regions and voltage are mostly consistent with experimental reports. We also

confirm a preference for AFM ordering at high x and for Cr migration to tetrahedral

sites in the intercalation layers of O3 at low x.

The main discrepancy between our predictions and experimental reports is in precisely

where the transition from O3- to P3-type stacking occurs upon desodiation (see Figure

5.2). At zero temperature, we predict that O3 is stable down to x = 3/5 = 0.6, which
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marks the start of a two-phase region with P3 at x = 4/7 ≈ 0.57. Some experimental

studies, however, report a P3 phase at compositions as high as x ≈ 0.7 [82, 192]. There

are also reports of P3 not appearing until x ≈ 0.6 [191, 193], but with a significantly

wider two-phase region with O3 than we predict. While it is possible that we could have

missed important configurations in P3, we did verify that there were no new ground state

orderings predicted by our cluster expansion for 3/8 ≤ x ≤ 3/4 in supercells of volume

10 times the primitive cell volume or less. It is therefore unlikely that any dramatically

more stable configurations were omitted. Furthermore, previous DFT studies similarly

found O3 to be more stable than P3 at x = 2/3 [192] and x = 3/5 [82]. We also see no

evidence that magnetic ordering lowers the energies of P3 configurations for intermediate

x (Figure D.4, Appendix D).

There are several possible explanations for the discrepancy between the predicted

phase boundaries of P3 and those inferred from experimental observations. One possi-

bility is that P3 is further stabilized by entropy at finite temperature. Our Monte Carlo

simulation results, however, show that configurational entropy actually serves to stabilize

O3 even more (Figure D.1, Appendix D), though we do caution that the cluster expan-

sion and Monte Carlo approach may not be able to capture collective excitations in the

ordered phases of P3, such as rearrangements of APBs [14]. We have not considered

vibrational entropy, which could potentially be relevant. Yabuuchi et al. reported the

somewhat unusual decomposition of P′3-Na0.5CrO2 into Na-rich and Na-free P3 phases

upon heating, which could indicate the importance of phonons at high (and low) x [131].

In assessing our predictions, it is also informative to examine their sensitivity to

the particular DFT method used. We took the FM ground states from each structure

as determined by SCAN and recalculated their energies using PBE and PBE+U , with

U = 3.5 eV for Cr (the value typically chosen in the literature [82, 192, 194]). The

resulting formation energies and voltage curves are shown in Figure D.8 of Appendix D,

88



Ordering and phase stability in layered NaxCrO2 Chapter 5

compared to our SCAN results. While we acknowledge that a more rigorous comparison

would involve a recalculation of the energies of many/all configurations with each DFT

method, our analysis still provides some useful insights. Compared to SCAN, PBE yields

a wider stability region for the P3 structure that extends up to x = 8/13 (versus x = 4/7

with SCAN). O3 is still predicted to be more stable than P3 at x = 2/5, but by a mere

0.1 meV/CrO2 (versus 3 meV/CrO2 with SCAN). The predicted voltage from PBE is

about 1 V lower than the SCAN voltage, which is consistent with benchmarking results

for transition-metal oxides intercalated with Li [196]. The O3-CrO2 structure containing

tetrahedral Cr is less stable with PBE, producing a higher cutoff voltage (relative to the

rest of the voltage curve) than with SCAN. With PBE+U , we find that many of the

SCAN ground states are displaced from the formation energy convex hull, and that the

P3 stability region is even narrower (Figure D.8(c), Appendix D). This produces a voltage

curve that is quite different in shape from the SCAN and PBE curves, even though it is

close in value to the voltages from SCAN and experiment. It is known that the addition

of a U term can significantly alter ground state predictions by inducing charge ordering

[160]. Our comparison highlights the advantage of SCAN: It seems to provide reliable

predictions of both phase stability and average voltage without requiring an empirical

parameter such as U .

We find that NaxCrO2 displays many similarities to related layered oxide systems, as

well as some key differences. The APB-based P3 orderings predicted here are largely the

same as those predicted by first-principles studies of NaxCoO2, KxCoO2, and KxCrO2

[12,13,126]. This suggests that their stability arises from simple electrostatic interactions

rather than specific chemical effects. The vacancy row orderings we identify in O3 are also

the same as those predicted in NaxCoO2 [12]. In the analogous K systems, however, these

structures relax to “M” phases containing a mixture of octahedral and prismatic K in the

same intercalation layer [13,126], which has been attributed to the increased electrostatic
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repulsion between K+ ions compared to Na+. A key distinction of the NaxCrO2 system

is the relatively lower stability of P3 relative to O3 at intermediate x. Here we predict

P3 to be stable up to x = 4/7, while it is found to be stable up to x = 2/3 in the Co and

K analogues [12, 13, 126]. This behavior can be explained by considering the competing

electrostatic repulsions that serve to (de)stabilize P3. While the intercalant ions in P3

share faces with transition-metal ions in the neighboring layers (which they do not in

O3), this penalty is balanced by a reduction of intralayer repulsions between intercalant

ions by their arrangement on the honeycomb networks [7]. In the case of KxCoO2 and

KxCrO2, the repulsions between K+ ions are strong enough that changing the transition-

metal identify does not noticeably alter the stability of P3. In the case of NaxCoO2 and

NaxCrO2, however, the larger ionic radius of Cr compared to Co in the same oxidation

state [195] yields larger distances between intercalation sites, making the the effects of

intralayer Na-Na repulsions, and thus the stability of P3, less pronounced.

The ordering patterns we have identified likely have significant consequences for ion

diffusion. Highly ordered phases tend to lead to a significant reduction in the diffusion

coefficient [57], however, this may not be true of the APB-based orderings in P3 pre-

dicted here. In P3-NaxCoO2, APBs have been theorized to facilitate diffusion via their

collective motion through the intercalation layers [14]. The simulated diffusion was found

to be Fickian, with a strong dependence of the diffusion coefficient on the Na concentra-

tion (corresponding to the APB density) [15]. The orderings we predict for x > 1/2 in

NaxCrO2 are identical to those predicted in NaxCoO2, and although we predict a slightly

different type of APB for x < 1/2, we believe that a similar diffusion mechanism based

on APB migration may play a key role in both regimes in this system. Comparable

mechanisms may also be relevant in the vacancy row orderings found in O3 at Na high

concentrations. We do acknowledge that the orderings in NaxCrO2 are likely more tol-

erant to defects than those in NaxCoO2 due to the increased in-layer lattice parameter,
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which may enable additional diffusion mechanisms.

5.5 Conclusion

In this study, we investigated phase stability between the O3 and P3 structures of

layered NaxCrO2 and the nature of Na ordering within them. We identified several

families of low-energy orderings: Some in O3 at high x containing rows of vacancies

and some in P3 at intermediate x containing antiphase boundaries, which both enable

smooth variations in composition. Similar orderings have been predicted in related Na

and K intercalation compounds, and have important consequences for Na diffusion. In

O3, we considered migration of Cr to tetrahedral sites in the intercalation layers at

x = 0 and found a strong energetic preference tied to charge disproportionation. We

have discussed how our findings may clarify discrepancies in the literature, specifically

regarding the O3 → P3 transition upon desodiation and the Cr migration mechanism

at low x. These results serve as fundamental groundwork for future computational and

experimental studies of this promising electrode material.
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Chapter 6

Ordering and phase stability in

layered KxCrO2

6.1 Introduction

There is a consensus that deep decarbonization efforts must include extensive electrifi-

cation across industries [203], which in turn will require reliable and cost-effective options

for grid energy storage. Rechargeable Li-ion batteries are well suited for short-duration

storage needs, but alternative technologies are highly desirable to avoid supply problems

related to Li and other constituents [204]. Na- and K-ion batteries have emerged as

potential replacements for Li-ion batteries in such applications, mostly due to the far

greater abundance of those elements [3,73,205]. Compared to Na, K offers several addi-

tional advantages: Its lower redox potential can yield higher voltages and it can reversibly

intercalate into graphite anodes [3, 206].

Several classes of materials have been investigated as cathodes for K-ion batteries,

including the familiar layered transition-metal oxides used in Li- and Na-ion batteries

[205, 207, 208]. The layered oxides generally promise high theoretical energy density
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and rate capability [79, 208]. However, almost all of the layered oxide K intercalation

compounds investigated thus far, such as KxMnO2 and KxCoO2, have only been syn-

thesized and cycled at intermediate K concentration x, limiting their practical capacities

[124,209–218]. An important exception is layered KCrO2, first synthesized by Delmas et

al. [219,220], which is stable in the fully potassiated limit. In a key breakthrough, Kim et

al. recently showed that this stability is unique to Cr (among redox-active 3d transition

metals), and demonstrated the cyclability of layered KCrO2 in electrochemical cells over

a wide range of K concentrations [195]. Other studies have examined K-deficient KxCrO2

starting materials [125, 221], which display different cycling behavior. This variation in

experimental observations necessitates an understanding of the equilibrium thermody-

namics of this system.

While KCrO2 is a viable candidate cathode material for K-ion batteries, questions

remain about its structural evolution during cycling, which directly impacts battery

performance. As observed by Kim et al., the system displays a multitude of different

phases upon deintercalation, which produce a complex, stepwise voltage profile not unlike

those of many layered Na intercalation compounds [195]. Phase transitions occur between

the layered O3 and P3 structures (O/P denote octahedral/prismatic K coordination),

shown in Figure 6.1, as well as O′3 and P′3 (primes indicate monoclinic distortions

of the hexagonal parent structures [108]). Such transitions are accommodated by the

facile sliding of CrO2 layers [8, 11]. The details of structural phase stability and K

ordering preferences are currently unknown for KxCrO2. Kim et al. [195] found that a

significant fraction of the capacity is lost after the first charge, which may be related to

the irreversibility of certain transitions. Elucidating the nature of structural changes and

K-ordering transitions will assist the engineering of Cr-based cathodes for next-generation

K-ion batteries.

Here we describe the results of a comprehensive first-principles study of phase stability
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Figure 6.1: The (a) O3 and (b) P3 host structures of KxCrO2, which alternate
between slabs of edge-sharing CrO6 octahedra and K intercalation layers. The O3
structure allows K to lie on octahedral sites on a single triangular lattice, while the
P3 structure allows K to lie on prismatic sites on either of two triangular lattices.

of KxCrO2 as a function of x (0 ≤ x ≤ 1). We predict a myriad of ground state

and low energy orderings in P3 at intermediate K concentrations that belong to several

families of hierarchical phases. These phases consist of periodic arrays of antiphase

boundaries that separate well-ordered domains. We also predict the stability of a family

of undulating phases with a mixture of octahedral and prismatic coordination within

the same K intercalation layer at high K concentrations. The undulating phases are

referred to as M phases as they host mixed K coordination. An analysis of simulated

diffraction patterns of the M phases suggests that they may have already been observed

experimentally, being mistaken for O′3. We argue that the large elastic deformations

that are required to form the M phases may explain experimentally observed capacity

losses at high K concentrations.
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6.2 Methods

Total energies were calculated from DFT using VASP [59–62]. Calculations used a

plane-wave energy cutoff of 600 eV, which, during testing, was found to be sufficient

for convergence of energy differences to within 0.6 meV/CrO2. k-point meshes were

automatically generated with a density of 34 Å, which, during testing, was found to be

sufficient for convergence of total energies to within 0.1 meV/CrO2. The SCAN meta-

GGA functional [30, 31] was employed to approximate the exchange-correlation energy,

as it has been found to produce an improved description of layered oxides compared to

GGA(+U) [195–198].

Symmetrically distinct K/vacancy-ordered configurations within periodic supercells of

the O3 and P3 host structures were enumerated using CASM [10,68–70]. Energies were

calculated for 219 O3 configurations, 258 P3 configurations, and 39 M configurations.

The M structures relaxed from certain O3 configurations, and were identified visually

and by the deformation scores calculated by CASM. The majority of P3 configurations

considered in this study were limited to those that do not contain a nearest-neighbor

(NN) K-K pair, as configurations with such pairs were found to be highly unstable due

to steric repulsion. Some non-ferromagnetic orderings of Cr spins were considered for

the O3-KCrO2 and P3-K1/2CrO2 ground state structures. Cluster expansion effective

Hamiltonians for the O3 and P3 structures were fit iteratively in order to predict low-

energy configurations and to run grand canonical Monte Carlo simulations of finite-

temperature phase stability. For P3, the effective cluster interaction of the NN pair was

manually set to a large value (5 eV/pair) to ensure no simultaneous occupation of those

sites in our cluster expansion predictions. Details of the cluster expansions and Monte

Carlo simulations can be found in Sections S1 and S2 of the Supporting Information

[222], respectively.
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Voltage was calculated using the Nernst equation [4]

V = −µK − µ◦K
e

(6.1)

where µK is the K chemical potential of KxCrO2, µ◦K is the reference chemical potential

of K metal in the body-centered cubic structure, and e is the elementary charge.

6.3 Results

6.3.1 Phase stability and voltage

Figure 6.2(a) shows the calculated zero-temperature formation energies of configu-

rations within each host structure (O3, P3, or M). Formation energies were calculated

relative to CrO2 and KCrO2 in the O3 structure. The convex hulls are shown for each

host individually, along with the global convex hull of ground states over all host struc-

tures. O3 is predicted to be stable for 0 ≤ x ≤ 1/6, x = 1/3, and x = 1, P3 is predicted

to be stable for 1/5 ≤ x ≤ 1/4 and 2/5 ≤ x ≤ 2/3, and M is predicted to be stable

for 3/4 ≤ x ≤ 7/8. The set of high-energy (near zero formation energy) configurations

in O3 and P3 at intermediate concentrations correspond to staged structures in which

all layers are either completely empty or completely filled. Figure S2 of the Supporting

Information [222] plots the distance of each formation energy to the global hull in order

to more clearly reveal structures that are close to the global hull. A high degree of degen-

eracy is predicted among different host structures and ordered K-vacancy configurations.

For example, the energy difference between the O3 and P3 ground states at x = 1/5 and

x = 1/4 is less than 2.5 meV/CrO2, indicating that the two host structures are nearly

degenerate at these compositions considering the accuracy of the DFT calculations. We

did not exhaustively explore phase stability below x = 1/3, given that this region is above
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the voltage interval that has been reversibly accessed experimentally [195]. Fully dein-

tercalated layered oxides often prefer the O1 structure [7, 105], however, we calculated

the energy of O1-CrO2 to be 1.0 meV/CrO2 higher than that of O3-CrO2. We therefore

did not consider any staged hybrid structures with alternating O1- and O3-type stacking

at low x.

All formation energies plotted in Figure 6.2(a), with the exception of O3 KCrO2,

were calculated with a ferromagnetic (FM) configuration. The O3 ground state at x = 1

(indicated by a diamond in Figure 6.2(a)) has an antiferromagnetic (AFM) in-layer or-

dering of the Cr spins (Figure S3a, Supporting Information [222]). This ordering is

14 meV/CrO2 lower in energy than the FM configuration of KCrO2. A preference for

AFM ordering is consistent with the low-temperature magnetic behavior observed exper-

imentally in KCrO2 [223, 224]. The P3 ground state at x = 1/2, in contrast, prefers a

FM in-layer ordering, with negligible magnetic interactions between adjacent CrO2 layers

(Figure S3b, Supporting Information [222]). The FM x = 1/2 ground state was predicted

to be 17 meV/CrO2 more stable than the closest non-FM in-layer ordering considered in

this study. We therefore performed all other calculations ferromagnetically.

Figure 6.2(b) shows the zero-temperature equilibrium voltage curve obtained by cal-

culating the K chemical potential using the global hull formation energies of Figure 6.2(a).

The numerous ground state orderings in P3 produce a series of small steps in the voltage

curve, along with larger steps at x = 1/2, 6/11, and 2/3. The M ground states yield

another staircase of steps at higher composition, while the O3 ground state at x = 1/3

produces a large step. Generally, plateaus in the equilibrium voltage profile signify the

occurrence of first-order phase transitions, as they correspond to a discontinuous jump in

composition at a constant K chemical potential. In the case of the ordered phases that we

describe in Section 6.3.2, computational constraints limit us to examining a finite num-

ber of orderings, which results in a stepped voltage profile. However, an actual material
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Figure 6.2: (a) Formation energy vs composition for calculated configurations. Filled
symbols denote configurations on the local hull of each host structure. The global
hull is outlined in black. Colored regions in the background indicate where each host
structure is globally stable. The diamond at x = 1 indicates an antiferromagnetic
ordering in O3. All other configurations shown are ferromagnetic. (b) Voltage vs
composition as predicted by DFT (black) compared to an experimentally measured
first charge curve from Kim et al. (gray, taken from Figure 3a of Reference [195]). The
original experimental curve is shown as a dotted line, while the solid line is shifted in
composition by ∆x = −0.085.
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will have the flexibility to sample a much larger number of phases that are separated by

much smaller composition intervals, thereby giving the impression of a smoother, sloping

voltage profile.

A first-charge voltage curve measured by Kim et al. [195] is also plotted in Figure

6.2(b). The reported capacity for the experimental voltage curve was converted to com-

position based on the theoretical capacity of KCrO2. Figure 6.2(b) also shows the same

experimental voltage curve shifted by ∆x = −0.085, such that the largest step coincides

with the x = 1/2 ordering in P3. Such a shift is appropriate, as Kim et al. [195] observed

that some K is extracted from the stoichiometric KCrO2 starting material before cycling.

They attributed this to interaction with the carbon that was added to the electrode. A

rigid shift in composition is the only adjustment we can include in our comparison with-

out making assumptions about other factors such as side reactions. We also note that

the chemical potential gradients present in real systems typically introduce polarization,

whereby the measured voltage lies above and below the equilibrium voltage on charge

and discharge, respectively [78], though we have not considered this in our comparison.

After accounting for the shift in composition, the quantitative and qualitative agreement

between our predicted voltage curve and experiment is quite good. In particular, the

three major steps in the experimental curve match those predicted at x = 1/2, 6/11, and

2/3, with sloping regions in between that are consistent with many smaller steps.

Our grand canonical Monte Carlo simulations (described in Section S2, Supporting

Information [222]) suggest that the O3 and P3 ground states for x ≥ 1/3 do not disorder

at 300 K (Figure S1, Supporting Information [222]). The cluster expansion and Monte

Carlo approach can overestimate order-disorder transition temperatures, however we also

saw no significant disordering of the ground states up to around 500 K (Figure S1,

Supporting Information [222]). This is consistent with the strong ordering preferences

displayed by related systems such as NaxCoO2 [12]. The highly distorted nature of the
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Figure 6.3: Relaxed in-plane K orderings of the (a) x = 1/2, (b) x = 5/11, (c)
x = 6/11, and (d) x = 4/7 ground states in P3. The honeycomb network of available
prismatic sites is shown in white. Black solid lines indicate antiphase boundaries.
Black dotted lines indicated the in-layer unit cells of the ζ ordering (abc) and the η
ordering (d).

M phases (see Section 6.3.2) makes them difficult to model with a configurational cluster

expansion approach, but the coupling of K ordering to periodic undulations of the host

layers likely limits the ability of the M phases to accommodate disorder. It is, therefore,

reasonable to treat each M phase as a line compound with their free energy approximated

by their DFT formation energy.

6.3.2 Ground state orderings

As shown in Figure 6.2, many ordered phases appear over a wide range of compo-

sitions in KxCrO2. We focus on the P3 and M ground states, as these appear in the

experimentally accessed composition interval. The ground state orderings found in P3

(for 2/5 ≤ x ≤ 2/3) belong to several families of hierarchical orderings first identified in

NaxCoO2 and later predicted for KxCoO2 [12, 126]. These phases consist of regions of

a single in-layer ordering separated by antiphase boundaries (APBs) that accommodate

additional K or vacancies, thereby allowing for smooth variations in composition. This is

illustrated in Figure 6.3. The x = 1/2 ordering (Figure 6.3(a)), which has been labeled

ζ [12], corresponds to the familiar zig-zag row ordering on the honeycomb network that

has been observed in several Na systems with the P3 structure [121,131]. Below x = 1/2,
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the ζ ordering is maintained locally while vacancies accumulate along periodically spaced

APBs as shown in Figure 6.3(b). Above x = 1/2, the excess K concentrate along the

APBs shown in Figure 6.3(c). We have labeled the families of orderings immediately be-

low and above x = 1/2 as the ζ− and ζ+ phases, respectively [12]. At x = 4/7 we predict

an important ζ+ ground state having the maximum possible density of APBs (Figure

6.3(d)). This ordering has been labeled η to distinguish it from the other ζ+ phases. It

forms the basis of a third family of orderings (η+) for 4/7 < x ≤ 2/3 that consist of η

domains separated by APBs that introduce additional K. A complete description of the

ζ−, ζ+, and η+ orderings can be found in Reference [12].

The hierarchy of ground state orderings in P3 have the flexibility to vary their K

concentration almost continuously without significantly disrupting strong local ordering

preferences. This is achieved by varying the density of APBs. Orderings within the

hierarchy can, therefore, be enumerated algorithmically by varying the periodicity with

which APBs occur. This was done to systematically enumerate 3387 hierarchical order-

ings in an automated fashion. We generated all in-layer ζ−, ζ+, and η+ orderings in

supercells of volume 36 times the primitive cell volume or less, as well as all symmetri-

cally distinct stackings of those orderings. We subsequently approximated their energies

using the cluster expansion developed for the P3 host. There is typically a large num-

ber of these orderings at a given composition because different spacings of APBs can

yield the same composition [12], as do different stackings of the same in-layer ordering.

To summarize, all 3387 configurations enumerated belong to one of the three families

of APB-based orderings, allowing us to assess the energetics of these orderings across

many more compositions than we investigated with DFT. As shown in Figure 6.4, the

cluster-expanded energies of these configurations all lie within 12 meV/CrO2 of the hull,

with many of them less than 1 meV/CrO2 above the hull. For comparison, the weighted

root-mean-square error of our P3 cluster expansion is 6.0 meV/CrO2 (Section S1, Sup-
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Figure 6.4: Energy above hull vs composition calculated from the cluster-expanded
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porting Information [222]). Thus there are likely a continuum of (near) ground states in

P3 that are responsible for the sloping voltage profile seen experimentally.

The other important family of ground state orderings are the M phases, which are

stable for 3/4 ≤ x ≤ 7/8. First predicted in KxCoO2 [126], the unique feature of

the M phases is a mixture of octahedral and prismatic K coordination within the same

layer. The relaxed structures of several representative M orderings are shown in Figure

6.5. These structures emerge when relaxing K-rich orderings in O3 that consist of rows

of vacancies (also referred to as O′3 structures). The rows of K on either side of the

vacant row relax toward each other to form two adjacent rows of distorted prismatic

sites. The displacement of the K causes a periodic undulation of the adjacent CrO2
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layers. The M ground states shown in Figure 6.5 each contain two rows of prismatic

K per unit cell, with varying amounts of octahedral K. The ground states at x = 3/4,

x = 4/5, and x = 5/6 contain one, two, and three rows of octahedral K per unit cell,

respectively. There are additional low-energy structures belonging to this family that

interpolate the simpler structures. For example, the M structure at x = 7/9 (calculated

to lie 0.03 meV/CrO2 above the hull, which is within DFT error) interpolates the ground

states at x = 3/4 and x = 4/5, alternating between one and two rows of octahedral K

between pairs of prismatic K rows. Therefore, as with the P3 orderings, there is likely

an infinite number of M phases with varying numbers of octahedral and prismatic K

rows. A complete description of the M phases can be found in Reference [126]. We also

find several metastable M phases below x = 3/4, which are qualitatively different from

the row orderings seen above x = 3/4 (an example is shown in Figure S4, Supporting

Information [222]). Such structures could potentially be accessed during conversion to

P3.

6.3.3 Structural evolution

Our investigation of phase stability of KxCrO2 predicts a complex series of structural

transitions upon K extraction that follows the sequence O3→M→P3→O3 and passes

through a multitude of K-vacancy ordered phases when traversing the M and P3 hosts.

Structural transitions often result in abrupt changes in lattice parameters that can have

detrimental consequences during cycling of a battery [78,225,226]. Figure 6.6 shows the

calculated lattice parameters of configurations on the hulls of each host structure. The

lattice parameters of FM O3-KCrO2 are predicted to be within 0.5% of the experimentally

measured values. The removal of K from KCrO2 leads to a contraction of the in-plane

a and b lattice parameters (Figure 6.6(a)), which is consistent with the oxidation of
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Figure 6.5: Relaxed structures of the ground state M phases at (a) x = 3/4, (b)
x = 4/5, and (c) x = 5/6.
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Cr3+ toward Cr4+. A strong splitting of the a and b lattice parameters occurs in the

M phases due to the monoclinic distortion that arises from the row ordering among K

and vacancies that characterize the M phases. A similar but weaker splitting of the a

and b lattice parameters also occurs in the P3 phases. The c lattice parameter increases

upon deintercalation until x = 1/3 (Figure 6.6(b)), due to the well-known effect of a

reduction in screening and an increase in the repulsion between adjacent O layers with

the introduction of K vacancies [105].

We also simulated X-ray diffraction (XRD) patterns of the relaxed ground state struc-

tures to facilitate a direct comparison to the in situ XRD data reported by Kim et al.

[195] (Figure 6.7). Note that slight quantitative differences in peak positions are expected

due to discrepancies between the true and calculated lattice parameters. The positions of

important peaks observed by Kim et al. are shown as dotted lines and labeled by letters,

with an overall shift in composition of ∆x = −0.2 (determined by adjusting the largest

step in the in situ voltage curve until it coincides with x = 1/2, as in Figure 6.2(b)).

This shift places the starting material at a composition of x = 0.8, which is within the

composition interval in which the M phases are predicted to be stable. However, the pres-

ence of hexagonal O3 peaks near 13.7◦ and 18.0◦ (labeled a and b in Figure 6.7), which

cannot be clearly attributed to any of our simulated M peaks, implies that the material

may start as a metastable two-phase mixture of hexagonal O3 near x = 1 and M near

x = 0.8. The three observed peaks labeled c, d, and e in Figure 6.7 were attributed to

O′3 by Kim et al. but are close to simulated peaks in the M phases. The set of simulated

M peaks near 16.0◦ is also consistent with experimentally observed peaks (labeled f),

while the remaining M peaks are significantly less intense and may be difficult to resolve

in practice. To test whether the M phases unambiguously provide the best agreement

with experiment among the phases considered, we also simulated XRD patterns of the

metastable configurations on the local hulls of O3 and P3 in the predicted M stability
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region (Figure S5, Supporting Information [222]). Neither set of simulated patterns for

these metastable structures matches the experimentally observed peaks as closely as that

of the M phases, most notably so for the peaks labeled d and e in Figure 6.7.

At compositions below x = 3/4, the series of observed peaks below 13.5◦ (labeled g in

Figure 6.7) and near 16.5◦ (labeled h) match predictions well. The ground state ordering

at x = 2/3 exhibits a pair of peaks near 19.5◦ that are consistent with the P′3 peaks

reported by Kim et al. (labeled i). Upon reduction of the K composition, these peaks

were observed to combine into a single hexagonal P3 peak before splitting again (labeled

j), however, ground states predicted in this work show the emergence of a third peak

in the same region that then disappears. This occurs near x = 4/7, the composition of

the η ordering predicted to be a ground state. The η ordering has a hexagonal in-plane

unit cell (Figure 6.3(d)) and may correspond to the experimentally observed hexagonal

P3 structure. Below x = 2/5, Kim et al. again observe a single hexagonal P3 peak

(labeled k), which could indicate that the K begin to disorder in this regime. Finally, a

single hexagonal O3 peak was observed near x = 0.3 (labeled l) close to the O3 peaks

of the ground state predicted to be stable at x = 1/3, though this phase may also be

disordered. In summary, the simulated XRD patterns largely agree with experimental

observations. While the available evidence does not definitively prove the formation of

the M phases, it does with some plausibility suggest that their signatures in XRD may

have been mistaken for those of O′3 phases.

6.4 Discussion

Our first-principles investigation of phase stability in layered KxCrO2 across the full K

composition range has revealed the stability of a complex series of phases and K-vacancy

orderings. The calculated voltage profile and simulated diffraction patterns are, upon
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preliminary comparison, consistent with experimental observations, indicating that our

description of phase stability in this system is plausible. Our study has produced two

key results: A prediction of the stability of hierarchical ground state orderings in P3

that consist of well-ordered domains separated by anti-phase boundaries (APBs) and the

prediction of the “M” phases, having mixed K coordination, as the stable structures at

high K concentrations.

As with many layered transition-metal oxides, KxCrO2 prefers the P3 structure at

intermediate K content, as the honeycomb network of trigonal prismatic sites in P3

enables a reduction in K-K repulsion in spite of the fact that those sites shares faces

with Cr [7, 11]. We predict not just several ordered phases, but a continuum of ordered

superstructures in P3 that belong to families that share common ordering tendencies

(Figure 6.3). A favorable ordered motif, such as the ζ ordering shown in Figure 6.3(a), is

preserved over a wide concentration interval, with variations in K concentration accom-

modated by the introduction of APBs as shown in Figure 6.3(b,c). The P3 orderings are

examples of the “Devil’s staircase” behavior [164, 165] found in many materials, includ-

ing other layered intercalation compounds [8, 12, 126, 155] and metallic alloys [167–169].

The staircases of P3 orderings discussed here are not unique to KxCrO2, as they are

also the predicted ground states in NaxCoO2 and KxCoO2 [12, 126]. The recurrence of

these orderings suggests that they may appear in any P3 system in which electrostatic

repulsions between alkali ions are the dominant interactions. It is therefore important to

understand the K diffusion behavior within APB-based orderings. Though it is known

that strong ordering tends to suppress diffusion [88,228], the presence of APBs may give

rise to unexpected, facile diffusion mechanisms. Future first-principles kinetic studies

will explore this possibility. As for the evolution of the APB-based phases during cy-

cling, they could display solid solution behavior in which transitions occur solely by the

rearrangement of boundaries rather than by a nucleation and growth process.
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The more surprising prediction of this study is the stability of the M phases —

ground states with a mixture of octahedral and prismatic K in the same layer (Figure

6.5). These structures were first identified computationally in KxCoO2 [126], emerging

from spontaneous relaxations of certain O3 structures. The unique stability of these

undulating phases appears to originate from an in-layer rearrangement of K that allows

them to spread out more than is possible in O3. The resulting reduction in K-K repulsion

outweighs the strain penalty of warping the metal oxide layers [126]. In KxCoO2 the M

phases are predicted to appear above the K compositions investigated electrochemically

[124], and are likely not globally stable. As layered KxCrO2 is stable up to x = 1 [195],

it is more likely to exhibit the M phases.

Our simulated XRD results (Figure 6.7) suggest that the M phases have diffraction

patterns that are very similar to those assigned to monoclinic O′3 structures, to the

point where it may be challenging to differentiate between the two. The energies of the

M phases are significantly lower than the closest O3 or P3 configurations considered in

this study, and the difference increases with x (Figure S2, Supporting Information [222]).

For example, at x = 3/4 the M ground state lies 17 meV/CrO2 below the O3 ground state

and 5 meV/CrO2 below the P3 ground state, while at x = 5/6 M lies 33 meV/CrO2 below

O3 and 35 meV/CrO2 below P3. The sizable energetic preference for the M phases does

not support the idea that O3 or P3 would form in their place. We have also confirmed

that M phases provide a better match to the experimentally observed XRD data than

the metastable O3 or P3 structures (Figure S5, Supporting Information [222]). We note

that the formation of an M phase within an O3 or P3 electrode particle during cycling

would result in coherency strain due to lattice mismatch and the warping of the CrO2

layers. Such strain could potentially be quantified in XRD studies through analysis of

peak broadening [229,230]. We also observe that the calculated lattice parameters of the

M phases lie between those of the endpoint O3-KCrO2 and P3-K2/3CrO2 phases and are
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comparable to those of the most stable O3 and P3 structures in the M stability region

(Figure S5, Supporting Information [222]). This observation, along with the presence of

metastable M phases below x = 3/4 (Figure S4, Supporting Information [222]), suggests

that the M phases could offer a continuous pathway for structural transformation from

O3 to P3 as K is extracted.

If the M phases do indeed form, there would be important consequences for battery

performance. The strain associated with forming the M phases upon charge could result

in a significant overpotential, which may be part of the reason that the calculated volt-

age curve underpredicts experiment at high x (Figure 6.2(b)). The M phases may also

explain the capacity loss observed experimentally, where K cannot be fully reinserted

into the cathode at the end of first discharge. Kim et al. attributed this to slow kinet-

ics in the O′3 phase [195], but it could be that the strongly ordered M phases suppress

the transition back to the O3 phase altogether. It therefore may be favorable to make

chemical substitutions that penalize the formation of the M phases or facilitate reversible

transitions between M and O3, if possible. Layered cathode materials engineered to avoid

such detrimental phase transitions while remaining stable at high K concentrations could

allow for the low-voltage regime to be fully utilized.

6.5 Conclusion

This study investigated phase stability in layered KxCrO2, a promising cathode mate-

rial for K-ion batteries. We found that O3 tends to be stable at extreme K concentrations,

while P3 is stable at intermediate ones. A multitude of (near) ground state structures

appear in P3, belonging to several families of hierarchical in-layer K orderings based on

the stable x = 1/2 and x = 4/7 orderings. Antiphase boundaries between the ordered

domains allow for smooth variations in composition with K (de)intercalation, but may
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limit the speed and dimensionality of diffusion. We also predict the emergence of unusual

“M” phases at high x (3/4 ≤ x ≤ 7/8) that contain mixed octahedral and prismatic K co-

ordination within each intercalation layer. These phases display large distortions driven

by K-K repulsion, and may lead to irreversiblities if they form during cycling. We find

that the formation of the M phases is plausible, and that they may be difficult to dis-

tinguish from O′3 phases. Our calculated voltage profile and simulated XRD patterns

are generally consistent with experimental observations, assuming a K-deficient starting

material. These results should provide a foundation for understanding and optimizing

layered oxide cathodes with near-maximal K content to unlock higher capacities in bat-

tery applications.
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Chapter 7

Atomistic diffusion involving

antiphase boundaries

7.1 Introduction

Na-ion batteries continue to attract interest as cost-effective alternatives to Li-ion

batteries for select applications. In many reports, a layered transition-metal oxide inter-

calated with Na is used as an electrode [73, 79, 97, 231]. Such compounds have already

been widely adopted as cathodes in Li-ion batteries due to their favorable electrochem-

ical properties [78, 232, 233]. An important criterion for evaluating cathode materials

is the ease with which ions diffuse through the crystal, as the ionic conductivity of the

electrodes contributes to overall rate capability of the cell [4, 95]. Compared to Li, Na

frequently induces more structural phase transitions and stronger ion-vacancy orderings

[7,8,11,81,83,84,121,234], which can significantly affect kinetics. Many issues associated

with layered oxides for Na intercalation also apply to their K analogues for the emerging

K-ion batteries [13,126,205,235].

Layered oxides can adopt a variety of host crystal structures, each with distinct
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Figure 7.1: (a) Side view of P3-NaxCoO2, with Na shown hopping between near-
est-neighbor trigonal prismatic sites in the Na layer. (b) Top view of the nearest-neigh-
bor hop. (c) The same view as (b) shown on the honeycomb network of possible Na
sites. Squares indicate sites that must be vacant in order for the hop to occur.

topologies of intercalant sites. The O3 structure [108], favored by many Li intercalation

compounds such as LixCoO2 [78, 234], hosts intercalating ions in octahedral sites that

form two-dimensional triangular lattices. The related O1 structure [93] also hosts in-

tercalating ions in octahedral sites. Hops between nearest-neighbor octahedral sites of

layered intercalation compounds pass through intermediate tetrahedral sites. This leads

to diffusion mechanisms that are mediated by divacancies, with important consequences

for the concentration dependence of the diffusion coefficient [57,93,95].

While layered Na intercalation compounds such as NaxCoO2 also favor an O3 crystal

structure at high concentrations, they usually transform to a P3 structure upon Na ex-

traction through a change in stacking sequence of the two-dimensional transition-metal

oxide building blocks [7, 108]. The P3 structure is shown in Figure 7.1(a) for NaxCoO2.
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The Na ions of P3 occupy trigonal prismatic sites that form two-dimensional honey-

comb networks. Elementary Na hops between nearest-neighbor prismatic sites in P3

pass through the shared face of their coordination prisms as illustrated in Figure 7.1. Si-

multaneous occupation of nearest-neighbor sites in P3 is highly unfavorable due to steric

repulsion [8, 12]. The neighboring sites of the hop endpoints must therefore be vacant

for a hop to occur as illustrated in Figure 7.1(c). Second-nearest-neighbor hops are also

possible in P3 if the intermediate nearest-neighbor site is unstable (Figure S1, Support-

ing Information [236]). These crystallographic constraints lead to collective transport

mechanisms that remain unexplored and poorly understood. It is generally believed that

diffusion in P3 is faster than in O3 [154,155,234,237,238], but the mechanisms that are

responsible for the enhanced ion mobility in P3 have not received much attention.

In this study, we investigate diffusion mechanisms in the P3 host structure from first

principles, using P3-NaxCoO2 as a model. Since layered Na intercalation compounds ex-

hibit stronger ordering tendencies than their Li counterparts [7,11], we focus in particular

on the role of Na ordering on transport kinetics. Ordered phases introduce pronounced

steps in the voltage profile and can impact kinetics, often reducing the mobility and/or

dimensionality of transport [57,88]. Some Na and K intercalation compounds that adopt

the P3 host, including NaxCoO2, are predicted to exhibit families of hierarchical phases

consisting of well-ordered domains separated by a periodic array of antiphase boundaries

(APBs) [11–13,126]. Our systematic study of diffusion in these ordered phases points to

a transport mechanism that is mediated by APB motion, as opposed to mechanisms that

rely on distinct vacancies or vacancy clusters. This would make diffusion in P3 structures

fundamentally distinct from the more conventional diffusion mechanisms of O3 and O1

hosts [57, 93,95].
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7.2 Background

Select examples of the hierarchical orderings considered in this study are shown in

Figure 7.2 alongside calculated and experimentally measured voltage curves for NaxCoO2

[12,121]. Each step in the voltage curve corresponds to an in-layer Na ordering, with the

large step at x = 1/2 corresponding to a particularly stable ground state that has been

named ζ [12]. The local ordering is retained as the composition is decreased or increased

from x = 1/2, with changes in composition accommodated by APBs between regions of

the ζ ordering (shown as black lines in the insets of Figure 7.2). There are two types of

APBs: One which introduces additional vacancies and one which introduces additional

Na. The average spacing between APBs can be varied nearly continuously, giving rise to

a “Devil’s staircase” [164, 165] of orderings below and above x = 1/2. This description

is consistent with the sloping, yet somewhat jagged structure of the measured voltage

profile.

The family of orderings just below x = 1/2 (for 2/5 ≤ x < 1/2) is labeled ζ−, while

that just above x = 1/2 (for 1/2 < x ≤ 4/7) is labeled ζ+ [12]. The average linear density

of APBs is proportional to 1/2−x and x− 1/2 for the ζ− and ζ+ orderings, respectively

(derived in Section S1, Supporting Information [236]). The composition may equivalently

be expressed in terms of the spacings between APBs, which provides a convenient way

to label specific orderings within each family. For example, the x = 5/11 and x = 6/11

orderings shown in Figure 7.2 are labeled ζ−5 and ζ+
6 , respectively [12].

The ζ− and ζ+ families of orderings were predicted to be stable at room temperature in

NaxCoO2 [12]. These same intercalant orderings have also been predicted as ground states

in KxCoO2 [126] and KxCrO2 [13], indicating that they are relevant in a wide range of

related materials. It is therefore desirable to determine how intercalant migration occurs

within such highly ordered phases. The continuous nature of these families of orderings
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Figure 7.2: A section of the calculated voltage curve of NaxCoO2 from Reference
[12]. Experimental voltage curve taken from Reference [121]. Insets show the in-layer
Na orderings of calculated ground states at select compositions. Black lines in insets
represent antiphase boundaries between regions of the x = 1/2 ordering.
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suggests that transitions between individual phases during cycling may be accommodated

by the collective motion of APBs through the crystal, but it is not immediately clear how

this would occur. We seek to determine the viability of such a mechanism. We also wish

to understand any differences in behavior between the “diluted” boundaries of the ζ−

orderings (those that introduce additional vacancies) and the “enriched” boundaries of

the ζ+ orderings (those that introduce additional Na). To study Na migration within

these families of orderings, we chose one representative ordering from each, namely the

ζ−5 and ζ+
6 orderings shown in Figure 7.2.

7.3 Methods

First-principles calculations were performed using large periodic supercells to calcu-

late energies and migration barriers within the perfectly ordered regions of the ζ ordering

and in the vicinity of APBs. Supercells of the representative ζ− and ζ+ orderings (ζ−5 and

ζ+
6 ) were chosen such that Na sites that are equidistant from an APB are symmetrically

equivalent, yielding three asymmetric Na sites in each case (Figure S3, Supporting Infor-

mation [236]). The lowest energy stacking (under the described symmetry constraint) of

each of the two primitive in-plane Na orderings was selected and tripled along the bound-

ary direction. Finally, the c lattice vector of each supercell was adjusted to maximize

the distance between each atom and its nearest periodic image in the next layer. The

resulting supercells are shown in Figure S3 of the Supporting Information [236]. The

minimum distances between periodic image atoms in our calculations are 8.54 Å and

9.75 Å for the ζ− and ζ+ supercells, respectively. CASM [10,68–70] was used to enumer-

ate symmetrically distinct point defects and Na hops within the chosen supercells. For

all hops considered, we required that the nearest-neighbor sites of the hop endpoint sites

be unoccupied to avoid steric repulsion.
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Energies were calculated using VASP [59–62] with a plane-wave energy cutoff of

530 eV and k-meshes of density 30 Å along each reciprocal lattice vector. The optB86b-

vdW exchange-correlation functional [64–67] was employed to capture van der Waals

interactions, as it has been shown to be effective in this system [12]. The representative

ζ− and ζ+ structures were relaxed fully, but for all subsequent calculations the lattice

was fixed to the relaxed lattice of either the ζ− or ζ+ structure and only the ions were

allowed to relax. Migration energy pathways were calculated via the nudged elastic band

method as implemented in VASP, using a minimum of seven images between endpoints.

Static calculations using the linear tetrahedron method [63] were performed to obtain

final energies of all relaxed structures.

7.4 Results

We investigate defect formation and Na migration barriers in the ζ−5 (x = 5/11) and

ζ+
6 (x = 6/11) orderings of P3-NaxCoO2 to determine the mechanisms with which Na

diffusion occurs in the families of APB-containing P3 orderings. For brevity, we will refer

to the ζ−5 and ζ+
6 orderings as simply ζ− and ζ+, respectively. Our calculations indicate

that the endpoints of many Na hops within the ζ− and ζ+ orderings are dynamically

unstable: They either relax to a different configuration or are found to reside on a local

maximum of the energy surface of the crystal as revealed with NEB calculations (some

examples of the latter case are shown in Figure S4, Supporting Information [236]). We

refer to these hops as “invalid” as their endpoints do not coincide with local minima in

which the migrating Na ion can thermalize before performing a subsequent hop.

While the majority of simple nearest-neighbor hops in the ζ− and ζ+ orderings are

found to be invalid, there are a number of allowed hops along the APBs. These valid hops

are found to be crucial to Na transport as they enable a straightforward mechanism for
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APB migration through kink formation and lateral expansion. Our calculations predict

exceedingly low migration barriers for kink formation and expansion for the ζ− APBs,

and moderately low barriers for similar pathways in the ζ+ ordering. We also compare the

defect energies required for APB migration to vacancy formation energies and determine

that additional vacancies are unlikely to play a significant role in Na transport within

the well-ordered ζ− and ζ+ phases.

7.4.1 Na migration in the perfect ζ− and ζ+ orderings

We enumerated all distinct one-atom first-nearest-neighbor (1A1NN) hops within the

perfect ζ− and ζ+ orderings. These are shown in Figure 7.3. Our calculations predict

that almost all of these hops are invalid, indicated by open-face red arrows in Figure 7.3.

There is only one allowed 1A1NN hop in the ζ− ordering and it involves the Na closest to

the APB hopping towards the APB (black arrow in Figure 7.3(a)). For the ζ+ ordering,

all 1A1NN hops were found to be invalid. There are also no valid one-atom second-

nearest-neighbor hops in the ζ+ ordering, as all of them would result in a simultaneous

occupation of nearest-neighbor sites.

These results demonstrate the strong resilience of the ζ ordering at x = 1/2 with

respect antisite disorder, as the Na in regions of perfect ζ ordering between APBs of ζ−

and ζ+ are quite restricted in their mobility despite being surrounded by vacancies. In

the apparent absence of simple Na migration mechanisms, we turn our attention to the

possibility of collective APB migration in the ζ− and ζ+ orderings. This would allow

for the local ζ ordering between APBs to be retained but also for vacancies/Na to move

through the crystal with the APBs.
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Figure 7.3: Symmetrically distinct one-atom nearest-neighbor Na hops in the rep-
resentative (a) ζ− and (b) ζ+ orderings. Dotted lines indicate the in-plane supercell.
Solid black lines indicate APBs. A filled-face black arrow indicates that the hop is
valid, while an open-face red arrow indicates that the hop is invalid.

Figure 7.4: Migration energy for APB kink formation in the representative ζ− or-
dering. Dotted lines indicate the in-plane supercell. Solid black lines indicate APBs.
Green circles indicate the hopping Na and its periodic images, with the hop direction
indicated by black arrows.
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Figure 7.5: Migration energies for APB kink expansion in the representative ζ−

ordering. (a) and (b) show the two possible directions for expansion from an initial
kink. Dotted lines indicate the in-plane supercell. Solid black lines indicate APBs.
Green circles indicate the hopping Na and its periodic images, with the hop direction
and kink expansion direction indicated by black arrows.
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Boundary migration in the perfect ζ− ordering

An examination of the lone valid 1A1NN hop in the ζ− ordering suggests a simple

mechanism for APB migration. As shown in Figure 7.4, this hop forms a kink in the APB,

in which a section of the boundary is translated away from the rest of the boundary. The

calculated migration barrier for this hop is just 0.03 eV. Furthermore, the end state of

the hop has almost the same energy as the initial state, indicating that there is no defect

energy associated with the kink (Figure 7.4). The remarkably low migration barrier

implies that kinks may form readily in the ζ−-type APBs.

Once this kind of kink has formed, it can expand via subsequent 1A1NN hops in-

volving the Na next to the kink. As shown in Figure 7.5, the kink may expand in either

direction along the boundary with a migration barrier of 0.03 eV, the same as that of

the initial kink formation. Note that while the kink expansion seems to introduce no ad-

ditional defect energy, these hops are necessarily symmetric due to our particular choice

of supercell (that is, endpoints A and B in Figure 7.5 are symmetrically equivalent).

This symmetry also highlights that these events may be viewed as either expansion or

contraction of a kink, depending on the orientation of the kink relative to the rest of the

boundary.

From simple elementary hops, we have discovered a mechanism for APB migration in

the ζ− ordering. First a kink in the boundary is formed, and then the kink can expand

such that the boundary as a whole translates. The individual migration barriers required

for this mechanism are very low, comparable to thermal energy at room temperature.

Boundary migration in the perfect ζ+ ordering

For the perfect ζ+ ordering, we have identified a similar mechanism to that found in

the ζ− ordering, in which kinks in the APBs may form and then expand. Although there
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Figure 7.6: Migration energies for APB kink formation in the representative ζ+

ordering. (a) and (b) show the two types of kinks that can form. These hops occur as
simultaneous two-atom hops. Dotted lines indicate the in-plane supercell. Solid black
lines indicate APBs. Green circles indicate the hopping Na and their periodic images,
with the hop direction indicated by black arrows.
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Figure 7.7: Migration energies for APB kink expansion in the representative ζ+

ordering. (a) and (b) show the two possible directions for expansion from an initial
kink. These hops occur as pairs of one-atom hops, with the numbers indicating their
order. Dotted lines indicate the in-plane supercell. Solid black lines indicate APBs.
Green circles indicate the hopping Na and their periodic images, with the hop direction
and kink expansion direction indicated by black arrows.
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is no 1A1NN hop possible in the perfect ζ+ ordering, there are more complicated, two-

atom hops that enable initial kink formation. Due to the orientation of the APBs, there

are two distinct Na sites that lie at the boundary in the ζ+ ordering, and there are two

valid ways for these Na to collectively hop such that a kink is formed, as shown in Figure

7.6. These must occur as simultaneous hops, as decomposing them into pairs of valid

1A1NN hops is not possible (Figure 7.3). There are two distinct types of kinks, shown

forming in Figure 7.6(a) and (b). The two types of kinks have the same defect energy

of 0.22 eV, although the first type has a larger barrier to formation than the second

(0.28 eV vs 0.23 eV). While these barriers are not as low as that of kink formation in the

ζ− ordering, they are still relatively low, suggesting that these kinks may readily form at

room temperature.

As with the ζ−-type APBs, once a kink has formed in a ζ+-type APB it may expand

via hops involving the Na next to the kink. For example, the first type of kink (shown

forming in Figure 7.6(a)) may expand in either direction through 1A1NN hops, as shown

in Figure 7.7. Expansion in either direction requires pairs of 1A1NN hops that occur

one after the other. For expansion in one direction (Figure 7.7(a)), the two hops have

comparable barriers (0.04 eV and 0.05 eV), while for expansion in the other direction

(Figure 7.7(b)), the first hop has a very low barrier and the second hop has a higher one

(0.02 eV and 0.10 eV). Note that in our chosen supercell, the second type of kink (shown

forming in Figure 7.6(b)), is equivalent to endpoint C in Figure 7.7, so that type of kink

may expand by the reverse of the hops shown in Figure 7.7. For completeness, this is

illustrated in Figure S5 of the Supporting Information [236].

For the ζ+-type APBs, all barriers for kink expansion hops are less than half of the

barriers for kink formation. The defect energy for kink expansion is also negligible, as the

migration barriers shown in Figure 7.7 are close to symmetric. This suggests that for the

ζ+ ordering, kink formation is the limiting step in the APB migration mechanism, as once
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a kink has formed its expansion is relatively facile. The fact that the individual migration

barriers for 1A1NN ζ+ kink expansion hops are nearly symmetric is consistent with the

symmetry of the local environments of these hops under reversal of the hop direction,

as shown in Figure S6 of the Supporting Information [236]. The same symmetry of the

local environment does not exist for the equivalent 1A1NN hops occurring at perfect

boundaries (i.e. one-atom kink formation hops), so in these cases one hop endpoint is

preferred (Figure S6, Supporting Information [236]). This symmetrization of the local

environment may explain why 1A1NN hops at perfect ζ+ boundaries are invalid but

become valid in the presence of a kink.

7.4.2 Vacancy formation

The ζ− and ζ+ orderings have compositions close to x = 1/2 and therefore contain

high concentrations of vacancies. To assess the relevance of additional vacancies that

may mediate diffusion processes that are distinct from those that lead to kink formation

and expansion (in the absence of additional vacancies), we calculated vacancy formation

energies in the ζ− and ζ+ orderings.

The vacancy formation energy in a particular ordered phase that is stable at a Na

chemical potential µ is given by

Ef,Va = EVa − E + µ (7.1)

where EVa and E are the energies with and without a single point vacancy, respectively.

Each type of vacancy defect has a vacancy formation energy that is a function of µ,

since the ordering into which the vacancy is introduced is stable within a finite chemical

potential (i.e. voltage) window. We consider the vacancy formation energies within the µ

windows that stabilize the ζ−5 and ζ+
6 orderings. Note that this is likely an overestimation

127



Atomistic diffusion involving antiphase boundaries Chapter 7

of the actual stability window size, as there are likely intermediate phases on the Devil’s

staircase of orderings that have not been explicitly included [12].

The average formation energies of point vacancies on each of the three distinct Na

sites in the ζ− and ζ+ orderings are listed in Figure 7.8, along with the energy window of

each ordering. The size of the energy windows are small compared to the average vacancy

formation energies, so we may use the averages as a convenient figure to discuss relative

magnitudes. For the ζ− ordering, where the boundaries are more dilute than the bulk

ordering, vacancies prefer to lie away from the boundary (site 3). For the ζ+ ordering,

where the boundaries are more enriched than the bulk ordering, vacancies prefer to lie at

the boundary (sites 1 and 2). This is consistent with the expectation that a homogeneous

distribution of vacancies is preferred. The lowest average vacancy formation energy in

the ζ− ordering is 0.21 eV, while the lowest in the ζ+ ordering is 0.52 eV.

We can compare these vacancy formation energies to the defect energies associated

with APB migration in the ζ− and ζ+ orderings (Section 7.4.1) to assess whether addi-

tional vacancies are likely to contribute to Na diffusion. For the ζ− ordering, the vacancy

formation energy of 0.21 eV, while low, is not negligible. In contrast, the defect energy

for APB kink formation in the ζ− ordering is essentially zero. Hence, the concentration of

APB kinks should be significantly higher than the concentration of additional vacancies

at room temperature in the ζ− orderings. For the ζ+ ordering, the defect energy associ-

ated with APB kink formation of 0.22 eV (for both types of kinks) is not insignificant,

however, it is still less than half of the lowest point vacancy formation energy of 0.52 eV.

As with the ζ− ordering, the formation of APB kinks is far more favorable than the

formation of vacancies in the ζ+ ordering. We also considered combined kink-vacancy

defects for the ζ+ ordering by enumerating all distinct point vacancies in supercells con-

taining either of the two kinks shown in Figure 7.6. The lowest energy kink-vacancy

defect has an average formation energy of 0.45 eV, which while lower than lowest point
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Figure 7.8: Calculated formation energy windows of symmetrically distinct point
vacancies in the representative (a) ζ− and (b) ζ+ orderings. Dotted lines indicate the
in-plane supercell. Solid black lines indicate APBs. Squares indicate point vacancies
on different sites, labeled by site number.
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vacancy formation energy in the perfect ordering, is still significantly higher than the

APB kink formation energy without a point vacancy. These results imply that even

though additional vacancies may increase the mobility of Na in the ζ− and ζ+ orderings,

their contribution to macroscopic Na transport is likely to be negligible in comparison to

that mediated by APB migration via kink formation and expansion.

7.5 Discussion

In this study, we have investigated Na diffusion mechanisms within highly ordered

phases of P3-NaxCoO2. Two sets of hierarchical Na ordered phases were examined that

are composed of regions of a single ordering (ζ) separated by one of two types of APBs.

In the ζ− orderings the boundaries incorporate extra vacancies, while in the ζ+ orderings

they incorporate extra Na. The APBs are not defects, but are instead crucial features of

the equilibrium phases, with the equilibrium density of APBs set by the composition x.

In the perfect orderings, diffusion via simple one-atom hops appears to be quite limited,

as many endpoint configurations of these hops are unstable. There are, however, valid

mechanisms in both the ζ− and ζ+ orderings that enable the APBs themselves to migrate.

This can occur by the formation of a kink in the boundary followed by the continual

expansion of the kink along the boundary (much like kink-mediated processes for grain

boundary motion [239, 240] or surface step growth [241, 242]). Additional vacancies are

not only not required for this mechanism to occur, but also have defect energies that are

higher than those required for APB migration.

While both the the diluted APBs of the ζ− orderings and the enriched APBs of the ζ+

orderings allow for APB migration, the mechanisms and the energies of these processes

are somewhat different. For the ζ−-type boundaries, kinks can form without incurring

an energy penalty and can form and expand via one-atom hops with a minuscule barrier
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of 0.03 eV. These hops are low enough in energy that the motion of Na at the boundaries

could serve not only as a diffusion mechanism but also as a possible source of entropy,

further lowering the free energy of ζ− phases at finite temperature. We expect the

true ζ−-type APBs to be rough and dynamically shifting, unlike the perfectly straight

boundaries depicted in Figure 7.2. In contrast, kinks in the ζ+-type boundaries must form

via two-atom hops with barriers about an order of magnitude higher than those in the

ζ− case. Because there is also a significant kink defect energy for the ζ+-type APBs, the

reverse barriers are low, meaning it is likely that most kinks that form will subsequently

be destroyed. However, kinks that persist can expand via one-atom hops that have more

modest barriers than the initial kink formation. Based on these differences, we expect

the ζ+-type APBs to be both less rough (containing fewer kinks) and less mobile than

the ζ−-type APBs.

In choosing a single representative from each family of APB-based orderings, we ne-

glect any potential composition dependence of the migration barriers. To begin exploring

the composition dependence of the migration barriers, we varied the c lattice parameter,

which depends on composition and controls the spacing between CoO2 slabs. The inter-

slab spacing is known to affect intercalant migration barriers in layered oxide systems,

with larger spacings yielding lower barriers [57, 93, 95, 202]. We recalculated formation

barriers for each type of APB kink with the c lattice parameter fixed to that of the

minimum or maximum composition of the corresponding family of orderings (x = 2/5

and x = 1/2 for ζ−, x = 1/2 and x = 4/7 for ζ+), using the relaxed c lattice parameters

of the P3 ground state structures provided in Reference [12]. As shown in Figure S7 of

the Supporting Information [236], the kink formation barriers decrease with increasing c

lattice parameter, as expected. However, the variation in the barriers is not large, as none

of them change by more than 0.01 eV over their respective c lattice parameter ranges.

While the barriers for APB migration are not strongly affected by the c lattice param-
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eter changes induced by varying composition, there are other factors, such as in-layer

electrostatic effects, that could influence the barriers more significantly as one traverses

each family of orderings.

While the results of this study indicate that APB migration is an important mech-

anism of Na transport in well-ordered P3 phases, we acknowledge that there could be

additional mechanisms that are important to diffusion. It is possible that more com-

plicated, coordinated multi-atom hops are allowed, beyond the one- and two-atom hops

considered here. Such mechanisms would likely be difficult to identify by enumeration,

but could perhaps be observed in molecular dynamics simulations [88, 243]. We did in-

vestigate whether the formation of APB kinks opens up any additional avenues for Na

migration. For each type of APB kink, we calculated migration barriers of 1A1NN hops

in the vicinity of a single kink (shown in Figure S8 of the Supporting Information [236],

with the barriers of the valid hops listed in Table S1). As in the perfect orderings, most

of the hops are invalid, but there are two valid hops for each type of kink besides the

kink expansion/destruction hops discussed previously. For the ζ− kinks, these hops have

barriers that are more than double the barrier for kink expansion, while for the ζ+ kinks,

some of the additional hops have barriers comparable to those for kink expansion. This

indicates that there may be additional relevant diffusion pathways in the ζ+ orderings,

but APB migration remains a significant mechanism for long-range diffusion.

Our results may have important implications for the performance of P3-NaxCoO2 and

related electrode materials that adopt similar intercalant orderings. If APB migration is

indeed the dominant diffusion mechanism, then long-range Na transport within a single

crystal would be confined not just to the two-dimensional intercalation layers, but to a

single dimension perpendicular to the APBs. We would also expect the Na mobility to

increase with the density of APBs. This would result in a sharp drop in the diffusion

coefficient as the APB density approaches zero, which occurs near x = 1/2. At this
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composition, where the ζ ordering is stable, alternative mechanisms would take over,

perhaps requiring vacancy defects.

Any predictions of this study will be difficult to test experimentally without under-

standing the macroscopic consequences of the APB migration mechanism. While we

obtain low barriers for the elementary hops required for APB migration, these may not

necessarily translate to fast bulk diffusion. Rapid localized hops may be highly corre-

lated such that back-and-forth hopping dominates. The extent to which APB migration

contributes to long-range diffusion must be determined through kinetic modeling, which

could also provide estimates of effective Na diffusion coefficients and their composition

dependence. However, our results reveal a subtle complication for modeling efforts in

that many configurations are found to be mechanically unstable in P3. A general kinetic

Monte Carlo approach using cluster expansion techniques [57, 93, 94, 244–246] will likely

encounter difficulties, as the unstable configurations may be erroneously visited during

simulations even if the cluster expansion assigns them high formation energies. The de-

velopment of a more constrained kinetic model to investigate APB migration will be the

focus of a future study.

7.6 Conclusion

We have examined diffusion mechanisms in the layered P3 crystal structure, which

is adopted by many Na and K intercalation compounds at intermediate compositions.

Using NaxCoO2 as a model system, we investigated Na migration mechanisms in phases

comprised of ordered regions periodically separately by APBs. The Na in the ordered

regions of these phases are largely immobile, however, atomic hops are possible along

APBs, which lead to APB kink nucleation and propagation and thereby mediate Na

diffusion through the crystal. This mechanism has low kinetic barriers and does not
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require vacancy defects. The results of this study suggest that APB migration, though

distinct from conventional vacancy-mediated diffusion, is an important, if not dominant

diffusion mechanism in a variety of P3 layered intercalation compounds that host APB-

based ordered phases.
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Chapter 8

Macroscopic diffusion facilitated by

antiphase boundaries

8.1 Introduction

Ionic mobility is a crucial property for functional materials in various device appli-

cations. As a prominent example, electrode materials for rechargeable batteries must

allow sufficiently fast diffusion of the charge carrier ions so as not to limit the overall

rate capability in an electrochemical cell [4]. Layered transition metal chalcogenides,

such as LiTiS2, LiCoO2, NaCoO2, and their analogues, have been explored extensively

for battery applications due to their high cation diffusion coefficients and capacities

[73, 78, 79, 97, 231–233]. Many transition metal chalcogenides also display interesting

electronic phases that may be accessed or tuned electrochemically [6, 85, 194, 247–253].

Understanding the nature of ion diffusion through the two-dimensional intercalation lay-

ers of such materials is critical to engineering their performance, but is complicated by

subtleties arising from the interplay of chemistry and crystal structure.

Diffusion mechanisms and rates can vary significantly with chemistry due to differ-
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ing chalcogen anion stacking sequence preferences and the intercalant ion site topologies

that result. For instance, layered Li intercalation compounds tend to only adopt struc-

tures with octahedral Li sites that form triangular lattices (e.g. O3 and O1, where O

denotes octahedral coordination), while Na and K often stabilize additional structures

with prismatic intercalant sites that form honeycomb networks (e.g. P3 and P2, where

P denotes prismatic coordination) [7,11,78,108,234]. Furthermore, Na and K frequently

assume intricate ion-vacancy orderings, especially in the P structures [7, 8, 11, 13, 81, 83,

84, 121, 126, 205, 234, 235]. These structural variations lead to differences in the kinds of

kinetic hops that are allowed as well as the mechanisms that enable long-range diffusion,

which typically rely on the presence of specific defects such as vacancy clusters [95,171].

Largely due to the difficulty of ascertaining them experimentally, the mechanistic de-

tails of diffusion in many layered Na and K intercalation compounds have not been fully

explored.

Recently, we conducted a study of Na migration mechanisms in P3-NaxCoO2, a canon-

ical model system for understanding the behavior of layered Na intercalation compounds

used as battery electrodes [14]. This material is predicted to adopt families of Na-vacancy

orderings comprised of antiphase boundaries (APBs) that separate domains of a stable

x = 1/2 ordering [12]. The phases directly below x = 1/2 contain APBs that add

vacancies, while the phases directly above x = 1/2 contain APBs that add Na. By sys-

tematically considering various atomic hops, we found that the Na within the perfectly

ordered regions between APBs are immobile, while those along APBs are very mobile

and thereby facilitate the migration of APBs [14]. This mechanism, illustrated in Figure

8.1(a) for an APB that forms below x = 1/2, relies on the formation and expansion

of kinks to facilitate APB motion. The limiting migration barriers, those of APB kink

formation, were calculated to be relatively low (0.03 eV and 0.30 eV for x < 1/2 and

x > 1/2, respectively). While our prior study and the present study focus on the Na
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Figure 8.1: (a) Illustration of the kink-mediated APB migration mechanism in
P3-NaxCoO2 at intermediate x, shown for a ζ− APB (x < 1/2). (b) Illustration
of divacancy migration via a cartwheel motion in O3-NaxCoO2 at high x.

material, we expect that our findings may apply to related K intercalation compounds,

given that they tend to adopt similar APB-based ion-vacancy orderings [13,126].

In this study, we use a specialized kinetic model to determine the extent to which the

APB migration mechanism contributes to long-range diffusion in P3-NaxCoO2, as well

as to understand the nature of the diffusion mathematically. The predicted behavior is

consistent with Fickian diffusion in one dimension (perpendicular to the APBs), with

a significant dependence of the diffusion coefficient on composition due to variations in

the APB density and migration barriers. This work identifies APB migration as a key

diffusion mechanism in the P3 structure that differs substantially from known mechanisms
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in O3 and P2 materials, in that it allows for facile long-range ion transport in ordered

phases without requiring vacancy cluster defects [57,93,95].

8.2 Background

The crystallographic constraints of the O and P layered structure types lead to differ-

ent fundamental atomic hop mechanisms, as shown in Figure 8.2. In the P structures, Na

can hop directly between neighboring prismatic sites (Figure 8.2(a)), yielding inherently

lower migration barriers than in the O structures, where hops between neighboring oc-

tahedral sites must pass through a smaller intermediate tetrahedral site (Figure 8.2(b))

[57, 93, 234]. Beyond differences in migration barriers of individual hops, geometric and

correlation effects play a critical role in determining diffusion mechanisms at non-dilute

concentrations. The complex Na-vacancy orderings often hosted by the P structures

can severely limit the rate of Na diffusion at particular stoichiometries. For example, in

some ordered phases of P2-NaxCoO2, it was found that Na may only hop back and forth

locally, and that vacancy defects must be present to allow any Na mobility [88].

Even in disordered phases, short-range ordering can significantly affect transport. Na

diffusion in O3 relies on a well-known divacancy mechanism common to Li intercalation

compounds [57,93,95], while similar multi-vacancy clusters are thought to be important

in disordered phases in P2 [88, 171, 243]. The divacancy mechanism, shown in Figure

8.2(b), dominates diffusion in O3, as the divacancy configuration significantly lowers the

migration barrier compared to the same hop without an additional vacancy next to the

intermediate tetrahedral site [95]. The result is a tendency for isolated divacancies to

remain intact and move via a “cartwheel” motion, as illustrated in Figure 8.1(b) [57].

Such mechanisms can result in highly correlated ion motion and a strong dependence

of the diffusivity on the concentration of the vacancy clusters. Important mechanistic
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Figure 8.2: (a) Illustration of Na hopping between prismatic sites on a honeycomb
network in a P structure. Squares indicate vacancies required for the hop endpoints to
be stable. (b) Illustration of Na hopping between octahedral sites (via a tetrahedral
site) on a triangular lattice in an O structure. Square indicates the additional vacancy
that lowers the hop barrier within the divacancy mechanism.

139



Macroscopic diffusion facilitated by antiphase boundaries Chapter 8

details, as well as accurate rates of diffusion, can be exceedingly difficult to evaluate

experimentally. It is generally accepted that diffusion in P2 is faster than in O3 [154,

155, 234, 237, 238], but little experimental data exists for the P3 structure specifically,

despite its continued relevance for Na- and K-ion battery electrodes.

Also central to this study is the multitude of stable ion-vacancy orderings that nat-

urally arise on the honeycomb networks of P3 intercalation compounds [8, 11, 12]. It is

known that the geometry of the honeycomb network can lead to “Devil’s staircases” of

infinite ground state orderings that span a range of concentrations [165]. Intercalation

compounds such as P3-NaxCoO2 and P3-NaxTiS2 are predicted to stabilize families of

Na-vacancy orderings based on APBs [8, 12]. As shown in Figure 8.3 for P3-NaxCoO2,

APBs separate translational variants of the stable x = 1/2 ordering (referred to as the ζ

ordering) and introduce either more vacancies (ζ− APBs) or more Na (ζ+ APBs). These

APBs can be thought of as extended defects in the ζ ordering, however, they appear as

part of the predicted ground state orderings directly above and below x = 1/2 (not as

configurational excitations). These orderings form two Devil’s staircases, as the average

density of APBs, which determines the composition, can vary essentially continuously.

The same staircases of orderings have also been predicted in P3-KxCoO2 [126] and P3-

KxCrO2 [13], so they are relevant to K intercalation compounds as well. Note that

these orderings are distinct from those identified in P2-NaxCoO2 [160, 166], as the two

triangular lattice sites of the honeycomb networks are inequivalent in P2, unlike in P3.

8.3 Methods

Kinetic Monte Carlo (KMC) simulations were used to simulate the diffusion behavior

due to the migration of APBs. We constructed a model in which APB-based orderings

on the honeycomb network are mapped onto two-dimensional grids (representing a single
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Figure 8.3: Examples of the (a) ζ− and (b) ζ+ APBs on the honeycomb network
of P3. Black lines indicate the APBs, which separate translational variants of the ζ
(x = 1/2) ordering (light and dark gray backgrounds). Dotted lines indicate the unit
cell of the ζ ordering.
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Na intercalation layer), with one dimension oriented along the length of the APBs and

the other oriented perpendicular to the APBs. Each individual Na atom is mapped to

one grid cell and assigned a phase (0 or 1) depending on the translational variant of

the ζ ordering to which it belongs. The APBs are implicitly represented as the shared

edges of grid cells with opposite phase. Examples of these phase grids for ζ− and ζ+

orderings are shown in Figure 8.4, where the light and dark gray regions of alternating

phase correspond to those in Figure 8.3.

The phase grids can be converted into two-dimensional composition grids by first

accounting for the space added or consumed by the APBs and then defining a local

composition x over the model area. This procedure is illustrated in Figure 8.4. The

regions between APBs are assigned a composition of x = 1/2 (the composition of the

bulk ζ ordering), while the ζ− and ζ+ APBs are assigned compositions of x = 0 and

x = 1, respectively. This scheme recovers the exact overall composition x̄ of the original

orderings upon averaging the local composition over the entire model area. The two-

dimensional composition grids can then be averaged across the boundary length direction

to obtain one-dimensional composition profiles. As shown in Figure 8.4, modulations in

composition correspond to modulations in the linear density of APBs.

Abstracting the APB-based orderings into simple phase information enables KMC

simulations in which configurations can only evolve via predefined kinetic events. Within

our model, the allowed kinetic events are APB kink formation, destruction, and expan-

sion, which all correspond to inverting the phase of cells adjacent to an APB. The cells

in the bulk ζ regions between APBs are fixed, as the corresponding Na are predicted to

be immobile [14]. The kinetic barriers calculated in Reference [14] are encoded into the

KMC simulation and, along with a simple model for APB-APB repulsion, are used to cal-

culate event rates (the vibrational prefactors [55] for all hops were taken to be identical).

KMC simulations were run with periodic boundary conditions and at fixed composition
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(conserving the total number of APBs). A custom KMC simulator was implemented in

C++ using kmc-lotto, a simple library to perform event selection in arbitrary KMC sim-

ulations [254]. The Bortz-Kalos-Lebowitz algorithm was employed to select events and

update the simulation time [58]. All simulations were run at a temperature of 300 K. Fur-

ther details of the KMC simulations, including a link to our open-source KMC simulator

code, are provided in Appendix E.

For simplicity in interpreting our simulation results, we report the physical quantities

of time (t), wavenumber (k), and diffusivity (D) as dimensionless ratios in terms of

corresponding scaling constants (t0, k0, D0) defined as

t0 =
1

ν∗
, k0 =

2π

a
, D0 = a2ν∗ (8.1)

where ν∗ is the vibrational prefactor of the kinetic hops [55], and a is the lattice constant

of the honeycomb network.

8.4 Results

To probe the nature of macroscopic diffusion mediated by APBs in NaxCoO2, we

investigated the relationship between the wavelength of composition modulations and

their relaxation time. First, we imposed an initial sinusoidal one-dimensional composition

profile resembling

x(s) = x̄+ A cos (ks) (8.2)

where x̄ is the average composition and s is the position along the direction separating the

APBs. The time evolution of the composition amplitude A(t) was then extracted via a

Fourier transform of the one-dimensional composition profile across simulation snapshots.

In all cases, A(t) was averaged over 100 independent simulation trajectories to obtain
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Figure 8.4: Phase grids, composition grids, and one-dimensional composition profiles
(discrete and smoothed) for representative ζ− and ζ+ APB KMC simulations, showing
initial and evolved states.
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Figure 8.5: Composition amplitude A vs time t for a typical set of ζ− APB KMC
simulations, averaged and fit to a decaying exponential. Error bars represent one
standard deviation.

ensemble-averaged amplitudes 〈A(t)〉 better representing the the true dynamics of the

system (this also yields uncertainties for each amplitude value that were used to perform

weighted fitting and error propagation). The ensemble-averaged amplitudes were fit to a

decaying exponential

〈A(t)〉 = A0e
−t/τ (8.3)

where τ is the relaxation time. Figure 8.5 shows an example of one such fit for a set of

simulations.

Following this procedure, we ran simulations in high aspect ratio supercells with
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height (in the boundary separation direction) equal to the wavelength of the initial com-

position profile and width (in the boundary length direction) fixed at 20 grid cells. Initial

and evolved snapshots from representative simulations are shown in Figure 8.4. Simula-

tions were run at various wavelengths and close to fixed composition, with x̄ taking on

values between 0.4541 and 0.4554 for the ζ− simulations and between 0.5465 and 0.5473

for the ζ+ simulations. These compositions are close to the respective compositions of

x = 5/11 and x = 6/11 at which the kinetic barriers were calculated [14]. The resulting

dependence of τ−1 on the wavevector k is shown in Figure 8.6 for both APB types. For

simple Fickian diffusion, one would expect

τ−1 = Dk2 (8.4)

which can be obtained by Fourier transforming Fick’s second law. If higher order

derivatives were to enter into the underlying diffusion equation, for instance as in the

Cahn–Hilliard equation [255], they would appear as terms involving higher powers of k

on the right-hand side of Equation 8.4. Note that given our choice of scaling coefficients

(Equation 8.1), Equation 8.4 is equivalent to

(
τ

t0

)−1

= 4π2 D

D0

(
k

k0

)2

(8.5)

As shown in Figure 8.6, the data are well described by Equation 8.4, particularly in the

small k (large wavelength) limit, in both the ζ− and ζ+ cases. This indicates that the

diffusion behavior resulting from APB migration is Fickian in nature. It is important to

recognize that the diffusivity D we obtain is the chemical diffusion coefficient, as we are

directly simulating a non-equilibrium process rather than using equilibrium simulations

to obtain the self-diffusion coefficient and then multiplying with the thermodynamic
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Figure 8.6: Inverse relaxation time τ−1 vs wavevector k fit to a Fickian relationship
τ−1 = Dk2. Error bars (too small to be visible for most points) represent one standard
deviation. Data is from simulations run at 300 K.

factor (the approach typically employed in KMC studies [57, 93,94,244,246,256]).

Assuming Fickian diffusion, we explored how the diffusivity arising from APB motion

depends on average composition. Sets of simulations were run at various values of x̄

(within the ranges in which each APB type is stable) and the resulting τ values were

used to calculate D values via Equation 8.4. Figure 8.7 shows the dependence of D on

x̄. In both the ζ− and ζ+ regimes, the diffusivity drops significantly as the composition

approaches x̄ = 1/2 and the corresponding density of APBs approaches zero. This

result is intuitive, as the APB migration mechanism breaks down in the absence of

APBs. Other, less facile transport mechanisms presumably take over near x̄ = 1/2,
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Figure 8.7: Diffusivity D vs average composition x̄. Error bars (too small to be visible
for most points) represent one standard deviation. Data is from simulations run at
300 K.

likely requiring vacancy defects in the ζ ordering, however our simplified model does not

account for such mechanisms.

Away from x̄ = 1/2, the typical diffusivity for the ζ− APBs is several orders of

magnitude larger than that for the ζ+ APBs. This is consistent with the predicted

energetics of APB kink formation, which acts as a limiting step in the APB migration

mechanism [14]. At 300 K, the predicted ratio of the hop rate of ζ− kink formation to

that of ζ+ kink formation is more than 103 (assuming the same vibrational prefactor).

Furthermore, the ζ+ kinks introduce a significant defect energy while the ζ− kinks do not,

making it more likely for ζ+ kinks to be destroyed rather than expand and facilitate APB
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migration. This distinction is also qualitatively apparent from the phase grids resulting

from our simulations. As illustrated by the evolved snapshots in Figure 8.4, the ζ− APBs

typically contain far more kinks than the ζ+ APBs.

8.5 Discussion

In this study, we have examined macroscopic diffusion arising from a previously iden-

tified APB migration mechanism for layered intercalation compounds. The mechanism

allows for the migration of APBs (which themselves contain either additional vacancies or

additional ions relative to the rest of the structure) via the formation and subsequent ex-

pansion of kinks in the boundaries. Using P3-NaxCoO2 as a model system, we simulated

APB kinetics in two regimes, above and below x = 1/2, to directly probe the relaxation

of composition (APB density) modulations. The wavelength dependence of the relax-

ation time is consistent with Fick’s laws, allowing us to extract one-dimensional chemical

diffusion coefficients from our simulations. These diffusivity values depend strongly on

composition, approaching zero as APB migration breaks down near x = 1/2 and reaching

higher values for x < 1/2 than for x > 1/2 due to the higher mobility of APBs in that

regime.

The results we have presented mostly illustrate qualitative diffusion behavior, due to

the use of dimensionless quantities. To put our calculated diffusivity values into physical

context, we may estimate the value of D0 for the P3-NaxCoO2 system. We assume

a = 2.8 Å, the calculated in-layer lattice constant of Na1/2CoO2 from Reference [12], and

we assume ν∗ = 1012–1013 Hz, the commonly assumed range of typical values for the

vibrational prefactor. Substituting these values into Equation 8.1 yields a range of D0

values of 8× 10−4–8× 10−3 cm2/s.

Room temperature Na diffusion coefficients of NaxCoO2 in the O3 and P2 structures
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have been reported to be on the order of 10−10 cm2/s [170], which is significantly lower

than the typical values we obtain (Figure 8.7). However, a different, comprehensive

study of P2-NaxCoO2 based on the potentiostatic intermittent titration technique reports

chemical diffusion coefficients as high as 2 × 10−6 cm2/s at certain compositions [228],

which is more comparable to our calculated values for x > 1/2. The same study also

found diverging minima in the diffusion coefficient at the compositions of certain ordered

phases. To our knowledge, no analogous study of P3-NaxCoO2 has been reported in

the literature, and there is generally limited experimental diffusion data available for

any P3 materials. If APB migration is indeed the dominant Na diffusion mechanism

in the P3 structure, it may be difficult to discern experimentally, as we predict the

behavior to simply be Fickian in nature. One key indication would be if the composition

dependence of the diffusion coefficient follows Figure 8.7, with a sharp drop at x = 1/2

and asymmetric slopes on either side of x = 1/2.

We acknowledge that the calculated diffusion rates (Figure 8.7), particularly for the

ζ− orderings below x = 1/2, are remarkably fast for a Na intercalation compound.

These values could be overestimated due to idealizations in our KMC model, such as

the assumption that APBs can only form certain kinds of kinks and cannot be broken.

However, the calculated Na migration barriers for ζ− APB motion are extremely low (0.03

eV) [14], so such rapid diffusion may be plausible. Molecular dynamics could perhaps be

used as an alternate technique to verify the APB migration mechanism and the resulting

speed of diffusion. Ab initio molecular dynamics simulations, however, are limited by

the size of the simulation cell and the total simulation time, while standard molecular

dynamics simulations require accurate interatomic potentials, which are often challenging

to parameterize for compounds that undergo redox.

The mechanism considered here is fundamentally distinct from textbook atomistic

descriptions of ion diffusion. Often, nondilute diffusion is facilitated by isolated defects,
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such as single vacancies or small vacancy clusters [95]. By contrast, the APBs that facil-

itate diffusion in the APB migration mechanism are extended defects, which in the case

of P3-NaxCoO2, are predicted to be abundant in the ground state orderings themselves

(except near x = 1/2), with their density set by the composition. This difference may

be key to avoiding the high correlation of atomic hops that can plague certain close-

packed structures. In layered materials that rely on a divacancy mechanism for diffusion,

isolated divacancies tend to simply rotate locally (Figure 8.1(b)), such that long-range

ion migration is mediated by connected clusters of divacancies [57, 93]. Quite similarly,

diffusion within the three-dimensional spinel crystal structure can, in some cases, de-

pend overwhelmingly on triple-vacancy clusters [94], meaning that a percolating network

of such clusters is necessary to avoid diffusion shutdown due to highly correlated hops

[256]. The APB migration mechanism we describe does not seem to suffer from such

extreme correlation effects, allowing for facile motion of APBs through the crystal.

Our results suggest the intriguing possibility of designing materials to exploit similar

diffusion mechanisms. This need not be limited to layered materials, as three-dimensional

structures could host similar extended defects (which could be planar rather than linear)

to facilitate rapid transport. In battery applications, these principles could perhaps

be extended beyond electrode materials towards achieving liquid-like diffusion in solid

electrolyte materials as well.

8.6 Conclusion

This study reveals a seemingly unconventional APB-based Na diffusion mechanism

in a layered intercalation compound that results in conventional Fickian diffusion in one

dimension. The mechanism differs from the typical atomistic understanding of diffusion

in that it involves the collective motion of boundaries, much like in theories of APB or
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grain boundary motion in alloys. We emphasize that unlike in many systems, additional

defects are not required to facilitate long-range diffusion, as the APBs that mediate

Na transport are inherent to the stable ordered phases [12]. Furthermore, diffusion

due to this mechanism does not appear to be limited by dramatic correlation effects

that play a dominant role in determining the diffusion coefficients of layered and spinel

intercalation compounds. We hope that these results encourage further kinetic studies

of layered intercalation compounds as well as broader explorations of diffusion facilitated

by extended defects.

152



Chapter 9

Conclusion

The field of beyond Li-ion batteries continues to grow, with researchers exploring a wide

variety of possible technologies to help meet the world’s pressing energy storage needs.

Even as many practical advances are made, there is still much to be uncovered about

fundamental thermodynamic and kinetic aspects of battery materials. This dissertation

has investigated properties of common candidate electrode materials for Na- and K-ion

batteries using first-principles statistical mechanics methods.

In Chapter 3 we summarized some general insights and trends gleaned from compu-

tation across intercalation compounds, focusing on ion ordering and stacking sequence

transitions in layered structures. We examined these effects in detail for several layered

oxide systems in Chapters 4, 5, and 6. Using density functional theory calculations and

cluster expansion effective Hamiltonians, we predicted several families of hierarchical ion-

vacancy orderings, each of which contains many ordered phases that are closely spaced in

composition. These families include one based on rows of vacancies in the O3 structure of

NaxCoO2 and NaxCrO2, one based on alternating regions of octahedral and prismatic K

in KxCrO2 (dubbed the “M” phases), and several based on antiphase boundaries (APBs)

in the P3 structure of all three systems. We predicted these phases to remain ordered
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at room temperature, and found that they explain the multitude of small voltage steps

observed experimentally. We also examined stacking sequence changes in these systems

and their relationship to ion ordering, obtaining generally good agreement with reported

structural evolution during cycling.

Building on our thermodynamic results, we considered the kinetic implications of our

predicted P3 orderings in Chapter 7. We enumerated kinetic hops in APB-based ordered

phases near x = 1/2, using NaxCoO2 as a model system. While the majority of hops

were found to not be allowed, owing to the strong ordering tendencies of the system, we

identified certain hops in the vicinity of APBs that are allowed. The nature of these hops

suggested a mechanism for migration of the APBs themselves (which carry additional Na

or vacancies) through the intercalation layers via the formation and expansion of kinks in

the boundaries. We calculated relatively low migration barriers for this mechanism, and

also concluded that it would likely dominate over mechanisms that require additional

vacancies in the ordered phases. To determine the extent to which the APB migration

mechanism contributes to long-range diffusion, we simulated APB motion in Chapter 8

using a simplified kinetic Monte Carlo model. By explicitly examining the relaxation

of composition modulations (corresponding to modulations in APB density) at different

wavelengths, we determined that the diffusion behavior is mostly Fickian, but with strong

composition dependence of the diffusion coefficient. In regimes of greater APB density,

we obtained extremely high diffusion rates for a Na intercalation material.

In this dissertation, we have revealed the rather intricate behavior displayed by some

relatively simple systems. It is important to acknowledge that these particular materials

represent a small subset of layered intercalation compounds, which themselves are just

one class of candidate electrode materials for Na- and K-ion batteries. And continued

improvements based on strategies such as chemical substitution can mitigate many of

the problems related to ion ordering and structural phase transitions discussed here.
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However, our results have broader qualitative implications for how we think about details

of ordering and diffusion in materials. Our grouping of various orderings into families

highlights the advantage of viewing ordered phases not in isolation, but in terms of

common motifs that relate them. This concept holds relevance beyond battery materials,

as similar staircases of hierarchical orderings have been found in other systems such as

metallic alloys. Our demonstration of diffusion mediated by APBs shows how transport

can rely on extended defects rather than isolated ones, and challenges the perception

that ordered phases always exhibit sluggish diffusion. These ideas suggest new potential

directions for research, such as the development of tools to identify and predict ordering

patterns in a more systematic fashion and the engineering of materials in which diffusion is

facilitated by the motion of extended defects. As computational techniques become more

powerful, there is ample opportunity to further our understanding of ordering phenomena

in materials for electrochemical applications and beyond.
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Appendix A

Orbital occupation matrices

Orbital occupation matrices are obtained by projecting electronic wavefunctions onto
particular reference orbitals, and offer a way to describe the electronic state at a given
site. Their mathematical definition and use in simulating electronic ordering are detailed
in Reference [6]. Here we describe the computational treatment of occupation matrices
as implemented in CASM version 1.X [68].

Our goal is to efficiently represent occupation matrices and define how they trans-
form under symmetry operations. First we must establish how orbitals (real spherical
harmonics) themselves transform. The s orbitals are invariant under all operations, while
p orbitals simply transform as the Cartesian coordinates. For d orbitals, we can represent
a general orbital as

r>Mr, (A.1)

where M is a traceless, symmetric 3 × 3 matrix and r = (x, y, z). Applying a point
symmetry operation S to the orbital transforms M as

M ′ = SMS>. (A.2)

This is equivalent to the Kronecker product of S with itself acting on the vectorization
m = vec(M):

m′ = (S ⊗ S) m. (A.3)

m has nine elements, only five of which are independent (because M is traceless and
symmetric). We may therefore reduce m to a five-dimensional vector d = Pm via a
5× 9 reduction matrix

P =


0 1/

√
2 0 1/

√
2 0 0 0 0 0

0 0 0 0 0 1/
√

2 0 1/
√

2 0

−1/
√

6 0 0 0 −1/
√

6 0 0 0
√

2/3

0 0 1/
√

2 0 0 0 1/
√

2 0 0

1/
√

2 0 0 0 −1/
√

2 0 0 0 0

 , (A.4)
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which reflects the following choice of reference orbitals: xy, yz, 3z2 − r2, xz, x2 − y2. d
then transforms as d′ = Gd, where

G = P (S ⊗ S)P>. (A.5)

An analogous procedure can be followed for f orbitals, but with M instead being a
traceless, symmetric 3× 3× 3 tensor. P in this case would be a 7× 27 matrix acting on
the 27-dimensional vectorization of M . The rest of this section will focus on d orbitals.

Let U be a d-orbital occupation matrix for a single spin channel. Applying S to U is
equivalent to applying S> to the reference orbitals, such that U transforms as

U ′ = G>UG, (A.6)

and equivalently
u′ =

(
G> ⊗G>

)
u (A.7)

for u = vec(U). U is a 5× 5 symmetric matrix, meaning that the 25-dimensional vector
u is confined to a 15-dimensional subspace. We obtain v = Qu via a 15 × 25 reduction
matrix

Q =



1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 s 0 0 0 s 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 s 0 0 0 0 0 0 0 s 0 0
0 0 0 0 0 0 0 0 0 s 0 0 0 0 0 0 0 0 0 0 0 s 0 0 0
0 0 0 0 s 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 s 0 0 0 0
0 0 0 s 0 0 0 0 0 0 0 0 0 0 0 s 0 0 0 0 0 0 0 0 0
0 0 s 0 0 0 0 0 0 0 s 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 s 0 0 0 s 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 s 0 0 0 s 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 s 0 0 0 s 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 s 0 0 0 0 0 0 0 s 0 0 0 0 0 0 0 0



,

(A.8)
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where s = 1/
√

2, such that

v =



U1,1

U2,2

U3,3

U4,4

U5,5√
2U4,5√
2U3,5√
2U2,5√
2U1,5√
2U1,4√
2U1,3√
2U1,2√
2U2,3√
2U3,4√
2U2,4



. (A.9)

v therefore transforms as v′ = Hv, where

H = Q
(
G> ⊗G>

)
Q> (A.10)

It is straightforward to account for time-reversal symmetry for two spin channels.
Consider two occupation matrices U↑ and U↓ for the two spin channels, with corresponding
reduced (15-dimensional) vectorizations v↑ and v↓. These can be concatenated to produce
a single 30-dimensional vector

v↑↓ =

(
v↑
v↓

)
(A.11)

that describes the occupations for both spin channels. Now consider the action of S along
with possible time reversal. If there is no time reversal, the occupations transform as

v′↑↓ = (I ⊗H) v↑↓, (A.12)

where I is the 2× 2 identity matrix. If there is time reversal, the occupations transform
as

v′↑↓ = (W ⊗H) v↑↓, (A.13)

where

W =

(
0 1
1 0

)
(A.14)

is a permutation matrix that swaps the spin channels.
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Calculation details for Chapter 3

Density of states and γ-surface calculations were performed using VASP [59–62]. The
optB86b-vdW exchange-correlation functional [64] was selected to accurately capture van
der Waals interactions. The density of states calculations employed a plane-wave energy
cutoff of 550 eV and a k-point mesh of density 45 Å or higher along each reciprocal lattice
vector.

The γ-surface calculations were set up using multishifter, a CASM-powered [68]
utility for calculating γ-surfaces and universal binding energy curves for arbitrary slip
planes in crystals [257]. Supercells for the γ-surface calculations contained three layers
with an in-plane size of one formula unit. This was found to be sufficient for isolating
faults from their periodic images and converging stacking fault energies to within 2%.
The γ-surfaces were calculated using 12 by 12 triangular grids of displacements over the
unit cell. Only symmetrically distinct displacements on this grid were calculated. For the
energy paths along the [110] direction shown in Figure 3.10, the number of samples was
doubled. For each displacement, we varied the interlayer spacing around the fault plane
from −0.1 Å to 0.4 Å in increments of 0.1 Å, relative to the original spacing. All ions were
kept static, except for the one A ion in the fault plane (for LiCoO2 and NaCoO2), which
relaxed until forces converged to within 0.2 eV/Å. To avoid local minimum trapping,
we ran three separate calculations for each displacement and interlayer spacing in which
we initialized the A ion from each of the three distinct triangular sublattices. The final
energy versus interlayer spacing was fit to a parabola to determine the lowest energy for
each displacement and initial A position (in some cases the fit yielded an R2 value of
less than 0.95 so we simply took the lowest value over the interlayer spacings), and the
minimum of these was taken to be the stacking fault energy for each displacement.

The γ-surface calculations used a plane-wave energy cutoff of 700 eV and a k-point
mesh of density 38 Å along each reciprocal lattice vector. Gaussian smearing of width
0.1 eV was used for the LiCoO2 and NaCoO2 relaxations, while static calculations using
the linear tetrahedron method [63] were performed for CoO2.
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Details of hierarchical orderings in
NaxCoO2

Here we describe the details of each family of hierarchical orderings in O3 and P3. We
define a naming convention for specifying orderings within each family and provide com-
position formulas. Ground state orderings belonging to each P3 family are shown in
Figure C.1.

C.1 The θ orderings in O3

The θ orderings in O3 can be viewed as rows of Na periodically separated by rows
of vacancies (Figure 4.3). We denote a particular row ordering with a tuple S that is
appended as a subscript to θ. Each element of the tuple corresponds to the number
of filled Na rows between adjacent pairs of vacant rows within the super lattice of the
ordering. As an example, consider the θ4,5 ordering shown in Figure 4.3(c). In this
ordering 4 filled Na rows separate one pair of adacent vacant rows, while 5 filled Na rows
separate the next pair of adjacent vacant rows. S for this ordering therefore contains
(4, 5). Due to the periodicity of the underlying triangular lattice, S may be reversed or
cycled and still describe an equivalent ordering. The composition of a θ ordering is given
by

x =

∑
k∈S k∑

k∈S (k + 1)
(C.1)

where k corresponds to the number of filled rows between vacant rows as contained in S.
For the θ4,5 ordering, this equation evaluates to

x =
4 + 5

(4 + 1) + (5 + 1)
=

9

11
(C.2)
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Figure C.1: Orderings belonging to the (a) ζ−, (b) ζ+, or (c) η+ families on or near
the local hull of P3. Regions of the ζ ordering are shown in blue, while green and
orange represent two orientational variants of the η ordering ηA and ηB, respectively.
Light and dark circles distinguish Na occupancy of the two distinct triangular sublat-
tices. Black lines indicate APBs between different (a,b) translational variants of the
ζ ordering or (c) orientational variants of the η ordering. Spacings between APBs are
indicated above each ordering. Unit cells are shown as dark gray boxes. Single aster-
isks indicate that the ordering is above the global hull and double asterisks indicate
that the ordering is also above the local hull but by less than 2.1 meV/CoO2.
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C.2 The ζ− and ζ+ orderings in P3

The ζ− and ζ+ orderings in P3 can both be viewed as regions of translational variants
of the ζ ordering (Figure 4.6(a)(i)) periodically separately by one of two kinds of antiphase
boundaries (APBs) (Figure 4.7(a,b)). We introduce a notation for these families that is
similar to that used to describe the θ family. The spacing between two APBs is measured
by the number of Na atoms in an unbroken zig-zag row of the ζ ordering, as shown in
Figure C.1(a,b). We collect the repeated spacings for a given ordering in a tuple S which
is used as a subscript in the label. The composition of the ζ− orderings is then given by

x =

∑
k∈S k∑

k∈S (2k + 1)
(C.3)

where k are the individual spacings between APBs contained in S. Note that we have
not shown the ζ−4 ordering at x = 4/9 in Figure C.1 because it requires a unit cell of
18 primitive cell volumes, just as the ζ−2 ordering at x = 2/5 requires 10 primitive cell
volumes rather than 5. This is because two APBs of this type separated by an even
number of Na are not equivalent, as shown in Figure C.1(a)(i).

For the ζ+ orderings, we still measure the spacing between APBs by the number of
Na atoms in an unbroken zig-zag row of the ζ ordering, but spacings are restricted to
even values due to the orientation of the APBs (Figure C.1(b)). The spacings are again
collected as a tuple S and used as a subscript. The composition of the ζ+ orderings is
given by

x =

∑
k∈S k∑

k∈S (2k − 1)
(C.4)

The composition approaches x = 1/2 as the spacings k between APBs go to infinity
for both ζ+ and ζ−. Multiple sets of spacings can yield the same composition, for example
ζ−2,2,4 and ζ−2,3,3 at x = 8/19 and ζ+

8 and ζ+
6,10 at x = 8/15. While we did not calculate

and compare the energies for any such pair of structures, they would likely be nearly
degenerate in energy due to limited interactions between distant APBs.

C.3 The η+ orderings in P3

The η+ orderings in P3 can be viewed as alternating regions of two orientational
variants of the η ordering, distinguished by the labels ηA and ηB (4.6(b)(i,ii)), periodically
separately by APBs (Figure 4.7(c)). We present a naming convention for the η+ family of
orderings, similar to that used to describe the ζ− and ζ+ orderings. The spacing between
two APBs is counted by the number of Na in the unit cell between them belonging to a
region of either ηA or ηB, as shown in Figure C.1(c). Due to the geometry of the APBs,
the ηB spacings are restricted to multiples of 4 and the ηA spacings are restricted to either
2 or multiples of 4.

We collect the repeated spacings for a given ordering in a tuple S which is used as a
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subscript in the label. The spacings alternate between the ηA and ηB variants, and we
arbitrarily choose that S begin with an ηA spacing. The composition of the η+ orderings
is then given by

x =

∑
k∈S k∑

k∈S
(

3
2
k + bk

4
c − 1

2

) (C.5)

where k are the individual spacings between APBs contained in S. For the η+
4,8 and η+

8,4

orderings this equation evaluates to

x =
4 + 8(

6 + 1− 1
2

)
+
(
12 + 2− 1

2

) =
12

20
=

3

5
(C.6)

and for the η+
2,4 ordering it evaluates to

x =
2 + 4(

3 + 0− 1
2

)
+
(
6 + 1− 1

2

) =
6

9
=

2

3
(C.7)

Figure C.1(c) shows ground states belonging to the η+ family. The orderings η+
2,8 at

x = 5/8 and η+
4,4,2,4 at x = 7/11 (not shown) have energies above the hull but by less than

0.5 meV/CoO2 and are therefore considered as candidate ground states. As with the ζ+

and ζ− families, there are several η+ structures having the same concentration that are
essentially degenerate. For example, the two x = 3/5 orderings η+

4,8 and η+
8,4 shown in

Figure C.1(c)(i,ii) have energies that are within 2 meV/CoO2 of each other, with the first
being on the hull.

Triplet clusters of Na on the same triangular sublattice form along the η+-type APBs.
When APBs are spaced such that the ηA regions are as narrow as possible (k = 2, as in
the ∆ ordering in Figure C.1(c)(iv)), two pairs of Na from adjacent triplet clusters form
quadruplet clusters that actually resemble the third orientational variant ηC from Figure
4.6(b)(iii).
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Supporting information for Chapter
5

D.1 Cluster expansions

The Clusters Approach to Statistical Mechanics (CASM) software package [10,68–70]
was used to fit cluster expansion effective Hamiltonians for the O3 and P3 structures of
NaxCrO2, based on energies calculated using density functional theory (DFT). Only ferro-
magnetic configurations were included, and any configurations that relaxed to a different
host structure were excluded from the fits. For P3, we also excluded any configurations
containing a nearest-neighbor Na-Na pair, as the mechanical instability of these struc-
tures made it impossible to obtain a reliable effective cluster interaction (ECI) for that
pair cluster. We instead manually set that ECI to 3.33 eV/pair. The active cluster basis
functions for each fit were selected from a large pool of pairs, triplets, and quadruplets
using a genetic algorithm [50] based on a tenfold cross-validation score. The weighted
root-mean-square error (WRMSE) was calculated using Boltzmann weighting based on
the distance to the formation energy convex hull, with kT = 0.035 eV. Details of each fit
are reported in Table D.1.

Table D.1: Number of distinct configurations trained on, clusters basis functions
included, and WRMSE of each cluster expansion fit.

host structure configurations trained on clusters in fit WRMSE (meV/CrO2)
O3 228 34 4.3
P3 261 40 3.7
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D.2 Monte Carlo simulations

Grand canonical Monte Carlo simulations were performed in CASM for the O3 and P3
structures using the fitted cluster expansions. Heating and cooling runs were performed
between T = 5 K and 1000 K in 5 K increments at constant Na chemical potential µ.
A grid of µ values was used with a spacing of 0.02 eV/Na. All Monte Carlo supercells
contained six host layers, with at least 1200 CrO2 per layer. Cooling runs were initialized
from the final configurations of a single reference run at T = 1000 K sweeping from low
to high µ. Separate heating runs were initialized from each ground state ordering of
interest. We performed heating runs for the x = 2/5, x = 3/5, x = 2/3, x = 3/4, and
x = 4/5 ground states in O3 and the x = 2/5, x = 1/2, x = 4/7, x = 8/13, and x = 2/3
ground states in P3. Thermodynamic integration [54,258] of our Monte Carlo results was
carried out in order to calculate the grand potential Ω = U −TS−µN at each T and µ.
Finally, equilibrium phase stability and voltage was computed at fixed T by minimizing
Ω at each µ value over the collection of phases from heating and cooling runs.

Figure D.1 shows the resulting voltage curves and stability regions of each host struc-
ture at various temperatures from 200 K to 500 K, compared to the zero-temperature
DFT voltage curve. At 200 K, the P3 stability window predicted from DFT (1/2 ≤
x ≤ 4/7) is preserved, while at 300 K only the x = 1/2 P3 ordering is stable relative
to O3 (note, however, that we did not perform any heating runs for P3 ground states
between x = 1/2 and x = 4/7). The O3 ground state at x = 3/4 is also found to
remain mostly ordered at 300 K, although the corresponding voltage step is smoothed
out slightly. By 500 K we find that P3 is completely overtaken by O3 at intermediate
x. Figure D.2 shows the grand potential versus temperature obtained from heating and
cooling runs in the P3 structure at µ = 0, corresponding to an average composition of
approximately x = 1/2. Due to hysteresis in the Monte Carlo simulations, the transition
temperature upon heating is higher than that upon cooling. The true predicted tran-
sition temperature lies where the grand potentials from heating and cooling are equal,
at around 475 K. Representative snapshots above and below this transition temperature
show the disordering of the x = 1/2 ground state (insets in Figure D.2).

D.3 Additional figures
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Figure D.1: Equilibrium voltage calculated from grand canonical Monte Carlo sim-
ulations at various temperatures (colored circles) compared to the voltage curve cal-
culated from DFT (black lines). Shaded regions indicate where each host structure is
globally stable.
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Figure D.2: Grand potential versus temperature for heating and cooling runs in P3 at
µ = 0. The transition temperature at which the two potential curves cross is indicated
by a dotted line. Insets show Monte Carlo snapshots illustrating the disordering of
the x = 1/2 ground state.
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Figure D.3: Calculated energy above the global convex hull of O3 and P3 configu-
rations versus composition. For O3, FM configurations are marked by squares while
non-FM configurations are marked by diamonds. P3 configurations are marked as
circles. Filled markers with lines connecting them indicate configurations on the local
convex hull of each host structure (not accounting for magnetic ordering). Configura-
tions on the global convex hull are outlined in black.
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Figure D.4: Calculated energy versus magnetic moment for magnetic orderings within
the predicted (a) O3 and (b) P3 NaxCrO2 ground state structures at various compo-
sitions. For each structure/composition, the energies are given relative to that of the
FM state.

Figure D.5: Top view of the lowest energy in-layer AFM ordering found for both O3-
and P3-NaCrO2. Spin up/down Cr are shown as light/dark gray.
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Figure D.6: Energy above the hull for different stackings of the P3 ground state
orderings at select compositions.

Figure D.7: CrO2 in the spinel structure.
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Figure D.8: Formation energies and voltages of FM configurations calculated with
(a) SCAN, (b) PBE, and (c) PBE+U (U = 3.5 eV). Shaded regions indicate where
each host structure is globally stable. Experimental voltage curve from Bo et al. [192]
is shown for comparison.
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Appendix E

Kinetic model of antiphase
boundary migration

E.1 Simulation grid

E.1.1 Grid overview

Na-vacancy orderings consisting of regions of the ζ ordering separated by antiphase
boundaries (APBs) may be mapped onto abstract two-dimensional grids, as shown in
Figure E.1. In these grids, the l direction points along the length of the boundaries and
the s direction points perpendicular, along the direction separating the boundaries. Each
grid cell has dimensions ul by us and contains exactly one Na. In the ζ− case, the grid
cells are staggered along the s direction, while in the ζ+ case they are not. Each grid
cell has a sublattice value (A or B) denoting the triangular sublattice of the honeycomb
network on which its Na resides and a phase value (0 or 1) denoting the translational
variant of the ζ ordering to which its Na belongs. APBs are implicitly represented by
adjacent cells having opposite phase.

E.1.2 Space occupied by boundaries

As shown in Figure E.1, the ζ− boundaries introduce some additional space between
cells in the s direction, while the ζ+ boundaries consume some space and cause the cells at
boundaries to overlap slightly. These subtleties can be ignored in the grid representation
but must be accounted for when mapping from the grid back to real space. Each ζ−

boundary adds a height us/2 in the s direction, which is said to be occupied by the
boundary. Each ζ+ boundary removes a height us/4 in the s direction and is said to
occupy us/4 of the remaining height. The result is that the true, physical height (in the
s direction) of a grid that is m cells tall with n boundaries is(

m+
n

2

)
us (E.1)
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Figure E.1: Example (a) ζ− and (b) ζ+ configurations and their corresponding
simulation grids. Dotted boxes indicate unit cells of the ζ ordering and black solid
lines indicate antiphase boundaries. Na atoms (yellow circles) are labeled by sublattice
(A or B). Grid cells are shaded according to their phase.
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in the ζ− case and (
m− n

4

)
us (E.2)

in the ζ+ case. Note that us = a in the ζ− case and us =
√

7
2
a in the ζ+ case, where a is

the lattice parameter of the underlying hexagonal lattice of the honeycomb network [14].

E.1.3 Local composition

After accounting for the space added/removed by APBs, a local composition may
be defined over the model area. The space occupied by boundaries is assigned a local
composition of x = 0 in the ζ− case and x = 1 in the ζ+ case. The remaining “bulk”
regions of ζ ordering are assigned a local composition of x = 1/2. The resulting average
composition of a grid that is m cells tall with n boundaries is

x̄ =
m
2

+ 0

m+ n
2

=
m
n

2m
n

+ 1
(E.3)

in the ζ− case and

x̄ =

m−n
2

2
+ n

4

m− n
4

=
2m
n

4m
n
− 1

(E.4)

in the ζ+ case. These expressions correspond exactly to the true average compositions
given in Reference [12] in terms of the average spacing between boundaries, which is
captured by the quantity m/n.

E.2 Kinetic events

E.2.1 Events considered

Kinetic events within the grid models equate to “flipping” one or more cells, that is,
changing both the sublattice and phase values to their opposites. Candidate events we
consider are flipping any one cell and, in the ζ+ case only, flipping any pair of cells that
are adjacent in the l direction. The rate of a given candidate event is determined by its
local environment. Events that are invalid in the current configuration are assigned rates
of zero. Valid events have rates based on the kinetic barriers for different types of hops
considered (APB kink formation/destruction/evolution).

E.2.2 Event rate determination

Cardinal directions (N, S, E, W) will be used to refer to a cell’s neighbors, where N
corresponds to the s direction and E corresponds to the l direction.
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Figure E.2: (a,b) Local environments that determine whether a cell is at a valid
boundary in the ζ− model. (c-h) Local environments corresponding to distinct kinetic
events in the ζ− model, where the cells involved in each event are bolded.
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Figure E.3: (a,b) Local environments that determine whether a cell is at a valid
boundary in the ζ+ model. (c-j) Local environments corresponding to distinct kinetic
events in the ζ+ model, where the cells involved in each event are bolded.
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Event validity determination The two main assumptions that determine the validity
of an event are (1) only Na located at an APB can hop and (2) APBs cannot be created
or destroyed (average composition is fixed). For an event to be valid, each cell involved
must lie at a valid boundary, that is:

1. The cells above (NW/NE for ζ−, NW/N/NE for ζ+) have equal phase.

2. The cells below (SW/SE for ζ−, SW/S/SE for ζ+) have equal phase.

3. The cell’s own phase is opposite either the above phase or the below phase but
not both (this ensures that no flip will result in the merging/annihilation of two
boundaries).

Examples of cells located at valid boundaries are shown in Figures E.2(a,b) and E.3(a,b).
For the ζ+ model, there are some additional considerations due to the fact that kink

formation/destruction can only occur via double Na hops. Events can only be valid in
the following cases:

• One-cell events: W and E neighbors must have opposite phase (kink evolution,
Figure E.3(g-j)).

• Two-cell events: The two cells must have equal phase, and W neighbor of W cell
and E neighbor of E cell must have equal phase (kink formation/destruction, Figure
E.3(c-f)).

Furthermore, no valid event can result in the formation of single Na kinks, as these are
unstable. Therefore we also require:

• One-cell events: If phase of W (E) neighbor equals cell’s own phase, phase of W
neighbor of W (E neighbor of E) neighbor must also equal cell’s own phase.

• Two-cell events: If W neighbor of W cell and E neighbor of E cell have phase equal
to the cells’ own phase (kink formation event), phase of W neighbor of W neighbor
of W cell and phase of E neighbor of E neighbor of E cell must also equal cells’ own
phase.

Base barrier determination Each valid event may be categorized according to its
local environment and assigned a base migration barrier Ea,base and endpoint energy
change ∆Ebase. The values of these quantities for each distinct hop considered in our
model are listed in Table E.1, based on calculations from Reference [14].

For ζ− events:

• If W neighbor phase is equal to E neighbor phase, event is either kink formation
(W/E phase equals cell’s own phase) or destruction (W/E phase is opposite cell’s
own phase). Figure E.2(c,d).
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Table E.1: Base barriers and energy changes for different kinetic events in each
model. A single barrier is listed for symmetric hops.

event Ea,base (eV) ∆Ebase (eV)
ζ− kink formation/destruction 0.03 0.00
ζ− kink evolution I 0.03 0.00
ζ− kink evolution II 0.03 0.00
ζ+ kink formation I 0.28 0.22
ζ+ kink destruction I 0.06 −0.22
ζ+ kink formation II 0.23 0.22
ζ+ kink destruction II 0.01 −0.22
ζ+ kink evolution I 0.04 0.00
ζ+ kink evolution II 0.05 0.00
ζ+ kink evolution III 0.02 0.00
ζ+ kink evolution IV 0.10 0.00

• If W neighbor phase is opposite E neighbor phase, event is kink evolution. Type I
if W neighbor is sublattice A (Figure E.2e,f), type II if W neighbor is sublattice B
(Figure E.2(g,h)).

For ζ+ two-cell events (kink formation/destruction):

• If W neighbor of W cell and E neighbor of E cell have phase equal to (opposite) cells’
own phase, event is kink formation (destruction). Type I if W neighbor is sublattice
A (Figure E.3(c,d)), Type II if W neighbor is sublattice B (Figure E.3(e,f)).

For ζ+ one-cell events (kink evolution):

• Type I: W neighbor sublattice is B and N neighbor sublattice is B (Figure E.3(g)).

• Type II: W neighbor sublattice is A and N neighbor sublattice is A (Figure E.3(h)).

• Type III: W neighbor sublattice is B and N neighbor sublattice is A (Figure E.3(i)).

• Type IV: W neighbor sublattice is A and N neighbor sublattice is B (Figure E.3(j)).

Boundary repulsion adjustment We also include a nearest-neighbor repulsion term
for the APBs. The repulsion energy for each type of APB was calculated from density
functional theory by constructing supercells containing two APBs and incrementally
bringing them closer together, as shown in Figure E.4. These calculations were performed
using VASP [59–62] with the same settings used in Reference [14]. In our model, we only
add a penalty when two boundary segments are us (one cell) apart. The corresponding
repulsion energy per unit of boundary length is 0.05 eV/ul for both the ζ− and ζ+

boundaries. The ζ− boundaries can actually be brought even closer together such that
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no Na/cells separate them (Figure E.4(a)), which is forbidden in our model, but this
has an energy more than four times that of one-cell separation and is therefore rather
unlikely.

Each event’s barrier is adjusted based on the change in boundary repulsion energy
incurred, ∆Erep. This is calculated by determining the change in the number of nearest-
neighbor interactions between boundary segments in the s direction and multiplying with
the nearest-neighbor repulsion energy per unit of boundary length. For each cell involved
in an event:

• If phase of cell two cells N is opposite phase of N neighbor(s), there is another
boundary N of the N neighbor(s):

– If own phase equals N phase (boundary below), number of interactions in-
creases by 1 (Figure E.5(a)).

– If own phase opposite N phase (boundary above), number of interactions de-
creases by 1 (Figure E.5(b)).

• If phase of cell two cells S is opposite phase of S neighbor(s), there is another
boundary S of the S neighbor(s):

– If own phase equals N phase (boundary below), number of interactions de-
creases by 1 (Figure E.5(c)).

– If own phase is oppose N phase (boundary above), number of interactions
increases by 1 (Figure E.5(d)).

These cases are illustrated in Figure E.5 for the ζ− model. The same procedure applies
for the ζ+ model.

Once ∆Erep has been determined for an event, the adjusted migration barrier Ea is
calculated as

Ea = Ea,base (E.5)

if ∆E = ∆Ebase + ∆Erep < 0 or

Ea = Ea,base + ∆Erep (E.6)

otherwise. This procedure, illustrated in Figure E.6, preserves the base migration barrier
of either the forward or reverse hop and ensures that no negative adjusted migration
barriers are produced.

Rate calculation For a valid event with migration barrier Ea, its rate Γ is given by

Γ = ν∗ exp
−Ea

kBT
(E.7)

where ν∗ is a vibrational prefactor, kB is the Boltzmann constant, and T is the temper-
ature.
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Figure E.4: Repulsion energy versus separation for (a) ζ− and (b) ζ+ boundaries.
Insets show the configurations used to calculate certain points.
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Figure E.5: Local environments containing two nearby boundary segments in the ζ− model.

Figure E.6: Illustration of the procedure for adjusting the energy barrier of an kinetic
event. If the total energy change ∆E is negative, the forward barrier is preserved.
Otherwise, the reverse barrier is preserved.

181



E.3 Total energy

The total energy in our model, though not explicitly tracked, may be written as

U = ncellsu0(x̄) + nkinkukink + nrepurep (E.8)

where ncells is the number of unit cells in the simulation supercell, u0(x̄) is an average
reference energy per unit cell at the overall composition x̄, nkink is the number of APB
kinks, ukink is the defect energy per kink, nrep is the number of nearest-neighbor APB
segment pairs, and urep is the nearest-neighbor APB-APB repulsion energy per pair.
With an appropriate expression for u0(x̄), one could in principle track U through KMC
simulations at equilibrium in order to calculate the free energy resulting from our model
at fixed composition.

E.4 Simulator code

Our custom KMC simulator code can be found at:
https://github.com/jonaskaufman/apb-kmc. It relies on the kmc-lotto library for event
selection [254].
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