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Introduction
The incidence of  head and neck squamous cell carcinoma (HNSCC) is increasing, with few FDA-approved 
targeted therapy options. Cetuximab, a monoclonal antibody directed against the epidermal growth factor 
receptor (EGFR), was approved by the FDA in 2006 as the first molecular targeted agent for HNSCC. It 
performed favorably in a series of  clinical trials, leading to approval in combination with radiation as first-
line therapy for locoregionally advanced HNSCC, in conjunction with platinum-based therapy and fluoro-
uracil for recurrent or metastatic disease, or as a single agent in recurrent or metastatic disease refractory to 
platinum-based therapy (1–3). However, the variability in clinical response to cetuximab limits its clinical 
use. To date, no biomarker, including expression, copy number, or phosphorylation of  EGFR itself, has 
consistently correlated with clinical response to cetuximab in HNSCC (4–6).

A major obstacle in defining molecular characteristics predictive of  cetuximab response is the limitation 
of  HNSCC cell line models for informing clinical decisions. The genomic profiles of  many immortalized cell 
lines are highly divergent from those of  excised patient samples, with cell lines harboring mutations arising 
from time in culture that are absent from primary tumors (7). In contrast, xenograft tumors derived directly 
from patient samples are more representative of  in vivo human biology. Proteomic analysis of  patient-derived 

The epidermal growth factor receptor (EGFR) inhibitor cetuximab is the only FDA-approved 
oncogene-targeting therapy for head and neck squamous cell carcinoma (HNSCC). Despite variable 
treatment response, no biomarkers exist to stratify patients for cetuximab therapy in HNSCC. Here, 
we applied unbiased hierarchical clustering to reverse-phase protein array molecular profiles from 
patient-derived xenograft (PDX) tumors and revealed 2 PDX clusters defined by protein networks 
associated with EGFR inhibitor resistance. In vivo validation revealed unbiased clustering to 
classify PDX tumors according to cetuximab response with 88% accuracy. Next, a support vector 
machine classifier algorithm identified a minimalist biomarker signature consisting of 8 proteins 
— caveolin-1, Sox-2, AXL, STING, Brd4, claudin-7, connexin-43, and fibronectin — with expression 
that strongly predicted cetuximab response in PDXs using either protein or mRNA. A combination 
of caveolin-1 and Sox-2 protein levels was sufficient to maintain high predictive accuracy, which we 
validated in tumor samples from patients with HNSCC with known clinical response to cetuximab. 
These results support further investigation into the combined use of caveolin-1 and Sox-2 as 
predictive biomarkers for cetuximab response in the clinic.
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xenografts (PDXs) has shown that HNSCC PDXs are far more similar to human primary tumors than are 
HNSCC cell lines or xenografts derived from cell lines (8). Thus, the use of  HNSCC PDXs provides an oppor-
tunity to more accurately recapitulate human tumor biology in the preclinical setting, with greater promise 
to guide clinical decision making. Characterizing the molecular tumor profiles that correlate with cetuximab 
response in PDX models of  HNSCC may enable the identification of  biomarkers for treatment stratification.

Here, we report predictive biomarkers of  cetuximab response derived from reverse-phase protein array 
(RPPA) assessment of  247 markers across a cohort of  65 HNSCC PDXs. An unsupervised clustering anal-
ysis separated HNSCC PDXs into 2 distinct clusters defined by differential expression of  proteins implicat-
ed in EGFR inhibitor resistance. We next developed a support vector machine (SVM) classifier algorithm 
in order to define a minimalist biomarker signature able to predict in vivo treatment response. We identi-
fied an 8-gene signature able to predict cetuximab response using either protein or mRNA measurements, 
which we validated on an independent HNSCC PDX cohort (9). Finally, histopathological analysis of  
samples from patients with HNSCC revealed that high caveolin-1 and low Sox-2 was predictive of  clinical 
response to cetuximab, whereas low caveolin-1 and high Sox-2 was predictive of  intrinsic cetuximab resis-
tance. These findings motivate the combined use of  caveolin-1 and Sox-2 as biomarkers to stratify patients 
with HNSCC for cetuximab therapy.

Results
Unbiased clustering of  protein biomarkers reveals 2 PDX subtypes. RPPA analysis of  247 total and phospho-pro-
tein levels was performed on 65 HNSCC PDXs grown subcutaneously in NOD/SCID γ mice (Supplemen-
tal Tables 1 and 2; supplemental material available online with this article; https://doi.org/10.1172/jci.
insight.151982DS1), as described previously (8). An unsupervised hierarchical clustering approach was used 
to group the PDXs based on their protein expression signatures (Figure 1A, Supplemental Figure 1A, and 
Supplemental Table 3), which yielded 2 distinct PDX clusters defined by 2 biomarker clusters (Figure 1B; 
Supplemental Figure 1, B and C; and Supplemental Table 3). Gene set enrichment analysis of  genes within 
each biomarker cluster revealed that 1 cluster (biomarker group 1) was enriched for cell cycle processes, 
DNA repair, and transcription regulation (Figure 2, A and B), while the other cluster (biomarker group 
2) was enriched for was enriched for RTK signaling, MAPK and PI3K pathways, and extracellular matrix 
organization, highlighting regulation of  gap junctions and focal adhesions (Figure 2, A and C).

The higher signal intensity of  pathways downstream from RTKs in the lower PDX cluster, such as the 
MAPK and PI3K pathways (biomarker group 1), suggested a possible dependence on RTK-mediated sig-
naling, perhaps via mechanisms of  oncogene addiction (10), and potentially increased sensitivity to EGFR 
inhibition. Conversely, higher signal intensity of  cell cycle and transcriptional processes (biomarker group 
2) in the upper PDX cluster suggested control of  cellular proliferation that may be independent of  upstream 
RTK signaling. Furthermore, heightened expression of  Sox-2 and BRD4 in the upper PDX cluster further 
supported a phenotype of  EGFR inhibitor resistance (11–15). These observations led us to hypothesize that 
PDXs in the lower and upper clusters would be cetuximab sensitive and resistant, respectively (Figure 1B).

PDX cluster membership aligns with cetuximab response. We next sought to test our hypothesis by comparing 
our predictions to the in vivo cetuximab response of PDXs from each cluster. Seven PDXs predicted to be 
cetuximab resistant and ten PDXs predicted to be cetuximab sensitive (Figure 3A and Supplemental Table 4) 
were implanted into NOD/SCID γ mice, and once the tumor volume reached approximately 200 mm3, the 
mice were administered intraperitoneal injections of cetuximab or vehicle twice weekly for 20 days. Tumors 
demonstrating a 50% or greater reduction in tumor volume (relative to vehicle) on the final day of treatment 
were considered cetuximab sensitive; the rest were considered cetuximab resistant. All 10 of the PDXs pre-
dicted to be sensitive responded strongly to cetuximab, resulting in 100% accuracy (95% confidence interval of  
69%–100%). Five of the seven PDXs predicted to be resistant displayed resistance, resulting in 71% accuracy 
(95% confidence interval of 30%–96%) (Figure 3, A and B). In total, hierarchical clustering of protein markers 
successfully predicted in vivo cetuximab response for 15 of 17 samples, resulting in 88% accuracy (95% confi-
dence interval of 64%–99%), a true positive rate of 100%, a true negative rate of 71%, a false positive rate of  
29%, and a false negative rate of 0% (Figure 3, B and C). Although HPV status correlated well with cetuximab 
response, consistent with recent landmark trials showing poor response of HPV-positive HNSCC to cetuximab 
(16, 17), a Cramér’s V analysis revealed that protein biomarker-based clustering outperformed HPV status, 
American Joint Committee on Cancer clinical stage, sex, and primary site in predicting in vivo cetuximab 
response in the PDX samples, and it was the only significant correlate based on a χ2 test (Figure 3D).

https://doi.org/10.1172/jci.insight.151982
https://insight.jci.org/articles/view/151982#sd
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Defining a robust biomarker signature for cetuximab response. Next, we sought to define a minimalist bio-
marker signature for cetuximab response that could be used to stratify patients with HNSCC for cetuximab 
therapy. We devised an algorithm that prioritized biomarkers with the largest differences between the 2 
PDX subgroups. We first calculated the signal intensity fold change between the cetuximab-resistant and 
-sensitive clusters for each protein biomarker (Figure 4A). By imposing incremental fold change thresholds 
(absolute value of  log2FC), we defined 15 distinct protein (RPPA) biomarker sets, each with successively 
fewer proteins (Figure 4B). To evaluate the predictive power of  each candidate biomarker set, we trained an 
SVM classifier against the predicted sensitive and resistant clusters, including all PDXs except the 17 that 
were experimentally validated. We then tested the classifying performance against cetuximab response for 
the 17 validated tumors. Briefly, an SVM creates an n-dimensional hyperplane that differentiates between 
2 defined groups. Classifier performance for each fold change threshold was evaluated by measuring the 
areas under the precision-recall curves (Figure 4C, blue).

To assess the generalizability of this protein signature to mRNA measurements, the same 65 PDX samples 
were subjected to global mRNA sequencing (see Methods and Supplemental Table 5). The same 15 biomarker 
sets were then evaluated for their predictive power using normalized mRNA measurements as the test set; the 
training set remained the RPPA protein-based measurements (Figure 4C, red). We found that an absolute value 
log2FC threshold of 1 possessed the best SVM classifier performance for both protein -and mRNA-based mea-
surements (Figure 4C), revealing a 9-member biomarker set (Figure 4B, inset). To restrict our biomarker set to 

Figure 1. Hierarchical clustering of protein markers reveals 2 HNSCC PDX subtypes. (A) Schematic of PDX derivation, reverse-phase protein array 
(RPPA), and clustering analysis. Primary patient HNSCC tumors were excised and implanted into NOD/SCID γ mice. Lysates of the xenografted cells 
were molecularly profiled using RPPA for 247 proteins and then analyzed via an unsupervised hierarchical clustering analysis. (B) Unbiased hierarchi-
cal clustering yields 2 PDX clusters (rows) defined by differential expression of candidate biomarker groups 1 and 2 (columns). Primary site, sex, HPV 
status, American Joint Committee on Cancer (AJCC) tumor stage, and age of patients in years are indicated (right). Signal is defined as the medi-
an-centered chemiluminescent signal from the RPPA assay.

https://doi.org/10.1172/jci.insight.151982
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proteins measurable by both mRNA and protein, we removed the PAR probe (which detects poly(ADP-ribose) 
polymer), resulting in an 8-member biomarker signature for cetuximab response: 4 overexpressed in cetux-
imab-sensitive tumors (connexin-43 [GJA1], caveolin-1 [CAV1], AXL, and fibronectin [FN1]) and 4 overex-
pressed in cetuximab-resistant tumors (STING [TMEM173], Sox-2 [SOX2], BRD4, and claudin-7 [CLDN7]) 
(Figure 4, D and E, and Figure 5A). Importantly, although the expression of individual candidates was clearly 
correlated with cluster membership, no single protein/gene was able to perfectly distinguish clusters, as vari-
ability was observed between PDXs (Figure 4E, bottom). The top 2 biomarkers, caveolin-1 and Sox-2, retained 
high predictive power for protein-based (AUC = 0.91), but not mRNA-based (AUC = 0.74), measurements 
(Figure 4F), suggesting that these could be good predictive biomarkers for clinical use where immunohisto-
chemistry-based approaches are more easily implemented than those requiring the extraction of mRNA.

Validation of  biomarker signature on an independent PDX cohort. To safeguard against the possibility of  mod-
el overfitting, we sought to evaluate our model’s performance on an independent PDX data set by comparing 
the concordance of  mRNA measurements from our biomarker signature with those of  other experimentally 
validated PDXs treated with cetuximab (Figure 5A). Specifically, we extracted transcriptomic measurements 
from 4 cetuximab-resistant and 7 cetuximab-sensitive PDXs from the 2013 study by Keysar et al. (9). Fold 
changes (log2FC) in mRNA levels between the predicted resistant and predicted sensitive groups in this study 
correlated well with analogous fold changes from Keysar et al. (9) (R = 0.67, P < 2.2 ×10–16; Figure 5B). To 
control for the possibility that any grouping would result in a correlation between the studies, we random-
ized PDXs labeled as sensitive or resistant and found that the correlation was abrogated (Figure 5B, inset).

Figure 2. Biological description of biomarker groups. (A) MsigDB gene set enrichment analysis using Reactome (R), KEGG (K), Biocarta (B), and PID (P) 
pathways (extracted from the MSigDB repository) for genes underlying biomarker group 1 and 2. (B) Physical and functional interaction network of genes 
upregulated in the predicted resistant PDX cluster (biomarker group 2). Functional interactions from ReactomeFI and physical interactions from Bioplex, 
IRefIndex, Mentha, HumanInteractome, and Human Protein Reference Database (HPRD). (C) As in B, physical and functional interaction network of genes 
downregulated in the predicted resistant PDX cluster (biomarker group 1). The size of the circles is proportional to the –log10(P value) derived from a Stu-
dent’s t test comparing 2 patient groups revealed by hierarchical clustering in Figure 1.

https://doi.org/10.1172/jci.insight.151982
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Next, as performed above for the mRNA-sequencing data from our PDX cohort, we passed the Keysar 
et al. (9) mRNA expression levels as inputs into the SVM models trained against our cluster-defined RPPA 
data. At each fold change threshold, model performance was evaluated and area under the precision-recall 
curve was calculated (Figure 4C, yellow). The biomarker set identified at a fold change threshold of  1 
resulted in the highest predictive accuracy for cetuximab response in the Keysar et al. (9) data set, in agree-
ment with the mRNA-based results from our PDX cohort (Figure 4C, red). (Of  the 8 markers present in 
our biomarker signature, only 7 were also measured by Keysar et al. (9): TMEM173, SOX2, BRD4, CLDN7, 
GJA1, CAV1, and AXL.) Differential mean expression between confirmed resistant and sensitive PDXs cor-
responded to the patterns seen in our RPPA and RNA-Seq data set for all transcripts, with the exception of  
AXL, which was upregulated in resistant PDXs from Keysar et al. (9) (Figure 5C).

Validation of  biomarker signature in cetuximab-treated HNSCC clinical cohort. To investigate the clinical 
utility of  our biomarker signature detected in HNSCC PDXs, we next assessed expression of  signa-
ture proteins directly in tumors from cetuximab-treated patients with HNSCC with known clinical 
responses, as described previously (18). Immunohistochemistry was performed on 16 sections of  a 
tumor microarray (TMA) generated from this cohort of  9 total cetuximab-treated patients, and pro-
tein expression was evaluated by determining the percentage of  tumor cells positive for the marker of  
interest (Supplemental Figure 2 for images of  tumor sections and Methods). Specifically, we assessed 
protein expression of  caveolin-1 and Sox-2, the top 2 biomarkers from our signature. Given the wide 
spectrum of  tumor responses to cetuximab in the clinical setting, we used clinical evaluation of  com-
plete response (CR) as a proxy for cetuximab sensitivity and progressive disease (PD) as representative 
of  cetuximab resistance. In agreement with our PDX samples, we found that tumor tissue cores from 
patients with CR possessed higher caveolin-1 positivity and lower Sox-2 positivity than those from 
patients with PD (Figure 6, A–E, and Supplemental Table 6). Finally, we found a within-patient dif-
ference metric between caveolin-1 and Sox-2 — calculated as the difference between the percentage 
of  positivity of  caveolin-1 and Sox-2 in a patient’s tumor sample — to be a strong predictive metric of  
cetuximab response in these patients with HNSCC (Figure 6F).

Figure 3. In vivo cetuximab treatment efficacy aligns with predicted PDX cetuximab response. (A) Experimental endpoint average tumor volume after 
cetuximab treatment (normalized to vehicle) for 17 PDXs: 10 predicted sensitive (left) and 7 predicted resistant (right). We defined sensitivity as 50% or 
greater reduction in endpoint tumor volume relative to vehicle (black dashed line). Error bars depict the SEM. There were between 2 and 3 animals used 
per PDX (dots). (B) Contingency table detailing the accuracy of hierarchical clustering-based protein biomarkers (from Figure 1B) in predicting cetuximab 
response. 10 of 10 of implanted PDXs predicted to be sensitive responded to cetuximab (100% accuracy), whereas 5 of 7 of the PDXs that were predicted 
to be resistant demonstrated cetuximab resistance (71% accuracy). (C) True positive rate (TPR), true negative rate (TNR), false negative rate (FNR), and 
false positive rate (FPR) percentages from B. Positive was defined as sensitive to cetuximab. (D) Cramér’s V analysis assessing the strength of association 
between cetuximab response and biomarkers, HPV status, American Join Committee on Cancer (AJCC) stage, sex, or primary tumor site of the experimen-
tally validated PDXs in A. The significance of each association (i.e., P value) was determined using a Pearson’s χ2 test. **0.001 < P < 0.01.

https://doi.org/10.1172/jci.insight.151982
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Discussion
This study presents a biomarker signature to predict cetuximab response with significant clinical implica-
tions for patients with HNSCC. Using an unbiased clustering approach allowed for separation of  2 distinct 
PDX clusters, which we hypothesized would demonstrate sensitivity or resistance to cetuximab based on 
differential expression of  2 sets of  protein biomarkers. The predicted cetuximab responses were correctly 
validated in vivo for 88% (15 of  17) of  HNSCC PDXs. Further interrogation of  differential biomarker 
expression using a statistical classifier modeling approach revealed a robust 8-biomarker signature that was 
predictive of  cetuximab response using either protein or mRNA expression inputs. The appearance of  this 
signature at both the protein and mRNA levels indicates that it likely reflects a transcriptional program, 
possibly denoting a change in cell state or identity. The 8-gene signature was additionally validated using 
mRNA-sequencing data from an independent HNSCC PDX cohort. However, the drop in predictive power 
for caveolin-1 and Sox-2 at the mRNA level speaks to the possibility of  some posttranslational stability or 
processing. Further refinement revealed caveolin-1 and Sox-2 protein measurements to retain high predic-
tive accuracy for cetuximab response prediction, which we confirmed in patient samples using immuno-
histochemistry of  a TMA from cetuximab-treated patients with HNSCC with known clinical responses.

Figure 4. Defining a robust signature for cetuximab response. (A) Schematic of algorithmic approach for identifying 
and testing biomarker sets for cetuximab response. (B) The number of biomarker reverse-phase protein array (RPPA) 
probes at each successive absolute value log2 fold change (FC) threshold in 0.1 increments, which defined 15 distinct 
biomarker sets. The inset shows FC thresholds greater than 1. (C) Area under the precision-recall curves evaluating 
support vector machine (SVM) classifier performance of each of 15 biomarker sets defined in B for protein (RPPA; blue) 
or mRNA (RNA-Seq; red). SVM classifiers were trained based on hierarchical clustering results (Figure 1B) for PDXs not 
experimentally validated for cetuximab response and then tested on those that were experimentally evaluated. An 
independent cohort of PDXs was also evaluated (RNA-Seq; yellow; Keysar et al, ref. 9). (D) Precision-recall curves for 
the 8-member biomarker set defined at a log2FC threshold of 1, where predictive accuracy is high for both protein- and 
mRNA-based measurements. (E) (Top) Heatmap of protein (RPPA) mean signal intensities for 8-member biomarker 
set defined at a log2FC threshold of 1. (Bottom) Parallel coordinates chart displaying protein (RPPA) intensities of 
8-member biomarker set displaying median-normalized protein log2FC for the predicted resistant (red) or sensitive 
(blue) groups. (F) Precision-recall curves for the top 2 biomarkers from E, caveolin-1 and Sox-2.

https://doi.org/10.1172/jci.insight.151982
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The use of  patient-specific molecular markers to guide precision medicine has been successful, with 
patients receiving genotype-directed agents demonstrating longer survival than those who did not receive 
targeted therapy (19–22). In colorectal cancer (CRC), cetuximab use is guided by the presence of  RAS 
mutations (23), with KRAS alterations being a robust predictor of  both adverse prognosis and cetuximab 
resistance (24, 25). Clinical guidelines advise the use of  EGFR inhibitors only for CRC tumors lacking 
RAS mutations (26). However, evidence that KRAS alterations, which are rare in HNSCC (~1.4%), are 
a marker for cetuximab response in HNSCC is inconsistent, as are the data on the impact of  EGFR alter-
ations on cetuximab response, highlighting the paucity of  molecular markers available to guide the use of  
cetuximab for HNSCC treatment (27, 28).

PDXs are a promising model for discovering novel biomarkers for therapy response, as they more 
accurately reflect the biological and clinical characteristics of  primary human tumors than do cell lines 
(29, 30). One study of  25 CRC PDXs reported that a 147-gene RAS pathway transcriptomic signa-
ture significantly outperformed EGFR expression in predicting cetuximab response (31), supporting the 
development of  multigene mRNA expression signatures as predictive biomarkers for therapy responses. 
Another study of  106 primary human CRC tumor samples and 59 PDXs aimed to identify a molecular sig-
nature predictive of  cetuximab sensitivity in KRAS wild-type CRC (32). The researchers trained an SVM 
with RNA expression data and identified a 16-gene signature able to stratify cetuximab responders from 
nonresponders with high accuracy, outperforming the use of  KRAS/NRAS/BRAF mutational status.  

Figure 5. Validation of 8-member biomarker signature in mRNA data sets. (A) Heatmap of mRNA mean signal 
intensities for 8-member biomarker set defined at log2FC threshold of 1, and parallel coordinates chart displaying 
median-normalized mRNA log2FC of the 8-member biomarker set for each individual PDX of the predicted resistant 
(red) or sensitive (blue) groups. (B) Fold changes (log2FC) of mRNA levels between the predicted resistant and 
predicted sensitive groups in this study versus analogous fold changes from Keysar et al. (9) (R = 0.67, P < 2.2 × 
10–16). The inset shows patients randomized to either cetuximab-sensitive or -resistant groups prior to calculating 
the fold change in order to control for the possibility that any grouping would result in a correlation between the 
studies. (C) (Top) Heatmap of mRNA mean signal intensities for 7 genes of the original 8-member biomarker set, 
defined at log2FC threshold of 1 from Keysar et al. (9) (FN1 was not present in the Keysar et al. study). (Bottom) Par-
allel coordinates chart displaying median-normalized mRNA log2FC of 7-member biomarker set for each individual 
PDX of the resistant (red) or sensitive (blue) groups.

https://doi.org/10.1172/jci.insight.151982
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Collectively, these studies support the use of  PDXs as representative preclinical models in identifying 
biomarkers for precision cancer medicine. Of  note, one limitation of  the NOD/SCID γ mice used in this 
study is the lack of  an intact immune system, rendering it impossible to assess the impact of  the immune 
response in influencing tumor growth and drug response.

Recent trials of cetuximab in HPV-positive oropharyngeal squamous cell carcinoma (De-ESCALaTE and 
RTOG 1016) found that cetuximab combined with radiotherapy was associated with significantly worse over-
all survival and increased tumor recurrence compared with the combination of cisplatin and radiotherapy (16, 
17). Interestingly, in our cohort, we observed that 14 of 15 HPV-positive PDXs were predicted to be cetuximab 
resistant (Figure 1B). However, while HPV status was clearly associated with predicted cetuximab response, 
it is notable that 22% (11 of 50) of the HPV-negative PDXs in the cohort were also predicted to be cetuximab 
resistant. In this study, we found that our biomarker signature significantly outperformed HPV status for cetux-
imab response prediction, as evidenced by Cramér’s V analysis (Figure 3D). This emphasizes the benefit of  
patient stratification based on molecular tumor characteristics rather than relying on binary HPV status.

Of  all of  the candidate biomarkers identified in our signature, Sox-2 and caveolin-1 demonstrated the 
largest overall change between the cetuximab-resistant and -sensitive HNSCC PDX clusters. Aberrant 
Sox-2 expression is associated with many malignancies and has well-characterized roles in tumor growth, 

Figure 6. Validation of caveolin-1 and Sox-2 as biomarkers in HNSCC clinical samples from patients with known 
clinical responses to cetuximab. (A) Representative images of tumor sections from patients with progressive disease 
(PD; top) or complete response (CR; bottom), proxies for resistance and sensitivity, respectively. Cells are stained for 
caveolin-1 (purple), cytokeratin 5,6 (yellow), and DNA (blue). Image deconvolution was applied computationally to 
extract the caveolin-1–only part of the image. (B) Representative images of tumor sections from patients with progres-
sive disease (top) or complete response (bottom), proxies for resistance and sensitivity, respectively. Cells were stained 
for Sox-2 (purple), keratin (yellow), and DNA (blue). Image deconvolution was applied computationally to extract the 
Sox-2–only part of the image. (C) CAV1 (top) and SOX2 (bottom) staining in nontumor tissue control samples (healthy 
human hepatocytes). (D) The percentage of cells positive for caveolin-1 staining was calculated for each tumor section 
and segregated by grouping: complete response, progressive disease, or controls (healthy human hepatocytes). (E) 
The percentage of cells positive for Sox-2 staining was calculated for each tumor section and segregated by grouping: 
complete response, progressive disease, or controls. (F) The within-tumor section difference between percentages 
of caveolin-1–positive and Sox-2–positive cells for patients experiencing complete response or progressive disease in 
response to cetuximab treatment. Gray dots denote tumor sections that may be misclassified according to this metric. 
When available, multiple tumor sections are included from the same patient (total tumor sections = 16, total patients = 
9). Original magnification, ×20 (A–C).
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metastasis, and drug resistance (33). In cutaneous squamous cell carcinomas, chromatin immunoprecip-
itation–sequencing experiments indicated that Sox-2 directly regulates gene networks promoting cancer 
stemness, proliferation, and cell survival (34). In HNSCC, PI3K signaling via mechanistic target of  rapa-
mycin (mTOR) increases SOX2 expression, resulting in the transcription of  key cancer stem cell (CSC) 
genes, such as ALDH1A1 (11). HNSCC CSCs promote the resistance of  HNSCC tumors to standard 
therapeutics, including cetuximab and docetaxel; in contrast, direct PI3K inhibitors substantially inhibit 
CSC-mediated tumorigenesis (11). Additionally, inhibition of  PI3K signaling decreases Sox-2 protein levels 
in CSCs, while direct EGFR targeting does not, suggesting that PI3K/mTOR inhibition may successfully 
circumvent cetuximab resistance via downregulation of  Sox-2 and modulation of  downstream transcrip-
tional programs (11). It would be interesting for future in vivo studies to assess Sox-2 levels in response to 
cetuximab treatment. Previous studies in lung cancer support Sox-2–mediated resistance to EGFR tyrosine 
kinase inhibitors. In vitro, treatment of  EGFR mutant lung cancer cells with erlotinib induces Sox-2 expres-
sion, with SOX2 knockdown resulting in increased erlotinib-mediated apoptosis and delayed resistance to 
EGFR inhibition (35). In HNSCC, increased Sox-2 expression correlates with worse prognosis and disease 
recurrence (36). Notably, knockdown of  SOX2 in HNSCC CSCs diminishes cellular self-renewal, invasive 
potential, and chemoresistance (14).

All together, our findings expand the knowledge base for designing future biomarker-guided clinical tri-
als of  cetuximab therapy, highlighting a potentially novel signature for cetuximab response based on molec-
ular tumor profiling of  either protein or mRNA. Remarkably, the 8-biomarker signature we present here 
demonstrates high accuracy for in vivo cetuximab response prediction using PDX samples, and a 2-protein 
signature consisting of  caveolin-1 and Sox-2 retains high accuracy for predicting cetuximab response, both 
in PDXs and directly in samples from patients with HNSCC. Future studies should assess these findings in 
larger PDX and patient cohorts. In addition, further work is needed to determine whether these biomarkers 
mechanistically contribute to therapy response in HNSCC. However, even in the absence of  detailed mech-
anistic understanding, the signature may successfully guide rational and personalized clinical decisions 
regarding cetuximab use for patients with HNSCC.

Methods
PDX generation. PDXs were derived from patients with HNSCC upon written consent and were established 
as described previously (8). All PDXs were established in 5- to 6-week-old NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ 
mice (The Jackson Laboratory).

Determining in vivo cetuximab response. Ten predicted sensitive PDXs and seven predicted resistant PDXs 
were assessed for in vivo response to cetuximab. When the PDX tumor volume reached approximately 200 
mm3, the mice were randomized into groups and treated with vehicle (saline) or 20 mg/kg cetuximab twice 
per week by intraperitoneal injection. Tumor dimensions were measured with calipers 2 times per week, 
and tumor volume was calculated using the formula length × width × width/2. Endpoint tumor volume for 
cetuximab-treated versus vehicle-treated PDXs was calculated on the final day of  treatment for each PDX, 
which varied between day 15 and day 26. Cetuximab-sensitive PDXs were defined as those with at least a 
50% reduction in normalized endpoint tumor volume in cetuximab-treated tumors relative to vehicle-treat-
ed tumors; the other PDXs were deemed cetuximab resistant.

RPPA. PDX samples were prepared and submitted as described previously (8), in accordance with 
procedures provided by the Functional Proteomics RPPA Core Facility of  the University of  Texas MD 
Anderson Cancer Center (Houston, Texas, USA). The RPPA Core Facility possesses a preselected set of  
247 antibody probes quantifying total or modified proteins (i.e., phosphorylation) that have been demon-
strated to be relevant to cancer disease progression. Median-centered log2 RPPA values for each protein of  
the samples was used in subsequent clustering and regression analyses.

RNA-Seq. Total RNA was extracted from 69 whole PDX tumors using the RNAeasy kit (Qiagen) 
following manufacturer’s instructions (only 65 were retained for downstream analyses). Total RNA 
was enriched for poly-A transcripts and sequenced using the NovaSeq 6000 platform (100PE) at the 
QB3-Berkeley Genomics center at the University of  California Berkeley. Following sequencing, the 
unaligned reads contained a mix of  human stroma, mouse germline, viral, and ostensibly other sequenc-
es. Hence, prior to mapping to human reference and expression counting, reads were classified to a prob-
able source. For convenience, each sample had been previously split between 2 fastq files. Adapters were 
trimmed and reads failing QC were removed using fastp (v0.20.0). Reads were classified as “human,” 
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“mouse,” “both,” “neither,” and “ambiguous” using Xenome (v1.0.0), a k-mer index–based pseudoalign-
er, with each sample’s split files classified independently of  each other. Only reads classified as uniquely 
human progressed to the human expression pipeline. Uniquely human reads were merged into a single 
fastq file for each sample and next aligned against a ribosomal reference using bwa, removing rRNA 
matches. Finally, remaining reads were mapped against an Ensembl GRCh38.90 reference. Expression 
counts were estimated using RSEM (v1.3.1). mRNA-sequencing data (in units of  FPKM) was median 
centered across patients by dividing by the median expression value for each gene. The log2 of  these val-
ues was then calculated to generate the final RNA expression values used for subsequent analyses. Raw 
and processed mRNA-sequencing data can be accessed at GEO under the accession GSE183881.

Hierarchical unbiased clustering analysis. We used an unbiased and unsupervised hierarchical clustering anal-
ysis to cluster the 65 PDX tumors using 247 median-centered log2 intensities from RPPA antibody probes. 
The “ward” algorithm in MATLAB (R2018a) was used for this analysis. Once completed, visual inspection 
revealed 2 predominant biomarker groups with clear and strong differential expression between the 2 clusters.

Enrichment analysis and network creation. Corresponding genes were extracted from biomarker groups 1 
and 2. MSigDB was used to perform gene set enrichment analysis against Reactome (37), KEGG (38), Bio-
carta, and PID pathway terms to probe broad functionality of  collective lists of  genes potentially responsi-
ble for cetuximab resistance (c2.cp.v7.1.symbols.gmt). The top 10 most-enriched terms with FDR < 0.05 
were kept (Figure 1). To create interaction networks, subgraphs were created using genes extracted from 
biomarker groups 1 and 2. Functional interactions were extracted from the ReactomeFI network. Phys-
ical interactions were extracted from a union of  several protein-protein interaction networks, including 
BioPlex, IRefIndex, Mentha, Human Interactome, and Human Protein Reference Database (HPRD), as 
previously described (39). The union of  functional and physical interactions was depicted for biomarker 
group 1 and 2 separately (Figure 1).

Defining and validating biomarker sets using SVM classifier. For each RPPA probe, the average of  the log2 
median-centered values for each PDX cluster (CTX-R and CTX-S) was calculated. Next, the fold changes 
between the 2 patient clusters were calculated by taking the difference between their means (CTX-R – 
CTX-S). The statistical significance of  the difference was calculated using Student’s t test. Only RPPA 
probes with a P value of  < 0.01 were considered for subsequent analyses. Absolute value fold change 
thresholds were imposed in 0.1 increments from 0.1 to 1.5, and RPPA probe sets were extracted at each 
threshold increment, resulting in 15 total biomarker sets. Each biomarker set was then used to isolate bio-
markers for training a SVM in MATLAB, excluding the 17 PDXs that had undergone experimental testing 
for in vivo cetuximab response. These 17 were then used to test the performance of  the trained model. 
The classifier’s performance was evaluated by plotting receiver operator characteristics and precision-recall 
curves and extracting the area under these curves. To test the mRNA-sequencing data, the same approach 
was used as above. SVM models were always trained on the RPPA data and subsequently tested using 
expression values from the median-centered log2 RNA-Seq data. The same approach was used to evaluate 
the performance of  the RNA-Seq data from Keysar et al. (9). The training data used was also the RPPA 
protein data from this study. This trained model was tested using the RNA-Seq data from Keysar et al. from 
PDXs with known cetuximab response.

Immunohistochemistry and imaging analysis. TMA slides were stained with the Sox2 (D1C7J) and caveo-
lin-1 (D46G3) from CST and cytokeratin 5,6 (RM341) from Invitrogen. Sox2 and caveolin-1 were detected 
by purple and cytokeratin 5,6 by yellow chromogen. Nucleic acid was stained using DAPI (blue). All 
antibodies were optimized and stained on a Ventana Discovery Ultra autostainer using Discovery reagents 
(Ventana Medical Systems). Slides were then scanned in bright-field mode with Plan-Apochromat 20×/0.8 
M27 objective and HV-F202SCL CCD camera (Hitachi). Scanned images were imported to QuPath (40) 
for cell quantification. First, cell nuclei were detected with the StarDist algorithm (41). Then QuPath’s 
default algorithm was used to determine the cell boundaries. Mean intensity of  each cell was calculated. 
Based on an intensity threshold, cells were labeled as either positive or negative for each marker. The 
threshold value was determined by comparing the staining pattern with that of  the optimized antibody on 
control tissue (healthy human liver sections). Automated quantification of  CAV1 and SOX2 positivity was 
done using all cells in each section, not simply those labeled positive by cytokeratin 5,6 staining. Segmen-
tation using cytokeratin 5,6–positive staining is a difficult manual process prone to human error. However, 
we did perform manual segmentation for 1 set of  images (CAV1-positive images) in order to compare if  
the results were significantly different than an automated analysis of  the entire section. We found the 2 
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approaches to be highly correlated (R = 0.98) in terms of  the percentage of  CAV1-positive cells per section. 
Due to this, we opted to proceed with the automated whole-section analysis pipeline as described above.

Statistics. To calculate differential expression of  RPPA probe intensities, a 2-tailed Student’s t test was 
used, and a P value cutoff  of  0.05 was applied. For the enrichment analysis, the top 10 most-enriched terms 
were determined using a 1-tailed Fisher’s exact t test, and a cutoff  of  FDR < 0.05 was applied.

Study approval. All experiments using mice were approved by the Institutional Animal Care and Use 
Committee of  the University of  California, San Francisco (protocol no. AN173372). The use of  the human 
patient tumor sections was approved through Tissue Bank IRB no. 14-15342.
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