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PREDICTING MENINGIOMA GENETICS FROM MULTI-SEQUENCE MAGNETIC 
RESONANCE IMAGING USING MACHINE LEARNING 

 
Radhika Bhalerao 

ABSTRACT 

Meningiomas, the most prevalent primary central nervous system tumors, present a 

significant challenge in neuro-oncology due to their variable clinical behaviors and 

recurrence rates (1). While magnetic resonance imaging (MRI) remains the primary 

diagnostic tool, recent advancements in our understanding of meningioma genetics have 

highlighted the critical role of molecular profiles in determining tumor behavior and 

treatment outcomes (2). This thesis presents a comprehensive exploration of the 

intersection between imaging features, genetic biomarkers, and artificial intelligence in 

meningioma management, with the overarching goal of enhancing diagnostic accuracy, 

treatment planning, and prognostication. 

The work is structured in four interconnected chapters, each addressing a crucial aspect of 

this multifaceted challenge: 

Chapter 1 introduces a novel, large-scale dataset comprising 3,101 pre-processed, multi-

sequence MR images along with corresponding genetic and demographic data from 

patients with histopathological confirmed intracranial meningiomas. This dataset serves as 

the foundation for subsequent analyses and model development, oVering researchers an 

unprecedented resource to investigate imaging-genetic correlations in meningiomas. 

Building upon this dataset, Chapter 2 presents the development of a machine learning 

model designed to predict genetic mutation status in meningiomas using preoperative 

multi-sequence MRI. By combining radiomics features, convolutional neural network 



 v 

(CNN) outputs, and clinically informed features, this approach demonstrates the potential 

for non-invasive assessment of genetic biomarkers, which could significantly impact 

clinical decision-making, especially in settings where extensive genetic testing is not 

readily available. 

Chapter 3 addresses a fundamental challenge in medical imaging AI: accurate 

identification of MRI sequences. Recognizing the limitations of existing methods, this 

chapter proposes an innovative approach using large language models (LLMs) to parse MRI 

metadata for sequence identification. This method oVers improved robustness to human 

errors in metadata entry and better generalization across institutions, potentially 

streamlining the preparation of large, multi-center datasets for AI model training. 

Finally, Chapter 4 provides a comprehensive discussion of the findings, their implications 

for clinical practice and research, and future directions for advancing the field of 

meningioma management through integrated imaging and genetic approaches. 

Throughout this thesis, we demonstrate the potential of combining advanced imaging 

techniques, genetic profiling, and artificial intelligence to enhance our understanding and 

management of meningiomas. By bridging the gap between radiological features and 

underlying genetic alterations, we aim to pave the way for more personalized and eVective 

treatment strategies, ultimately improving outcomes for patients with these complex 

tumors. 
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CHAPTER 1: A MENINGIOMA MULTI-SEQUENCE MRI AND GENE PANEL DATASET 

Background  

Meningiomas are slow growing tumors that form in the meninges, one of the three 

membranes that surround the brain and the spinal cord. Meningiomas are the most 

common primary central nervous system (CNS) tumor and are the only brain tumors more 

common in women and elderly patients. Most (80%) meningiomas are fifth edition CNS 

World Health Organization (WHO) grade I tumors and can recur with previous studies 

showing a recurrence rate of up to 47% with long term follow-up (3). Higher grade 

meningiomas with WHO grades 2 and 3 are associated with higher morbidity and 

recurrence rates despite optimal management. In 2021, WHO revised meningioma grading 

criteria to incorporate histopathological criteria and molecular profiles. The presence of 

TERT promoter mutations and CDKN2A/CDKN2B deletions indicate a grade 3 meningioma 

with increased recurrence risk (2). While the molecular landscape of meningiomas is 

evolving, MRI is the primary imaging modality for current diagnosis and treatment planning 

for meningiomas. As such, there is a need for improved understanding of the connection 

between imaging and genetic biomarkers, which can help guide patient-specific treatment 

strategies.  

Here we present a clinical multi-sequence MRI and gene panel retrospective dataset which 

includes 3,101 pre-processed, multi-sequence MR images, demographic data, and the 

genetic profile of meningiomas. The purpose of this dataset is to facilitate exploration of 

the relationship between imaging and genetic biomarkers in intracranial meningiomas. 
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Further predictive algorithms developed using this data will allow for assessment from 

baseline imaging identification of possible gene expressions, which can help guide 

treatment especially in care centers where such extensive gene paneling is not accessible. 

This chapter describes the data collection and processing for the meningioma dataset.  

Methods 

Study Population 

The study population consisted of adult patients diagnosed with intracranial meningioma 

of any CNS WHO grade or subtype confirmed with histopathology. The participants were 

identified through deidentified data from the cBio portal and Information Commons at 

University of California San Francisco medical center. If patients had received UCSF500 

gene panel testing and were confirmed with meningioma diagnosis, corresponding imaging 

from Imaging Commons deidentified database was obtained (Figure 1).  
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Imaging Data  

FIGURE 1: Demographic Information of the Meningioma Radiogenomic Dataset 

 

The imaging data included pre-operative and pre-treatment multi-sequence MR images of 

the brain including pre-contrast T1-weighted, post-contrast T1-weighted, T2-weighted, T2-

weighted fluid attenuated inversion recovery (FLAIR), Gradient Echo (GRE), Di_usion-

weighted imaging (DWI), and Average di_usion coe_icient (ADC) sequences. Using clinical 

notes and manual validation of images, only the pre-surgical scans were retained. Imaging 

parameters were variable between di_erent acquisitions.  

Image Processing  
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All data were converted to NIfTI format using dcm2niix v2.0. All sequences were registered 

to the anatomical space of the T1-weighted image using automated nonlinear registration 

tools and manually verified. Resampled coregistered data were skull stripped and 

segmented using a in-house meningioma segmentation pipeline. All images also 

underwent coil bias correction and intensity normalization. 

Genetic Data  

UCSF500 gene panel results were obtained from the cBio portal. All sample types were 

from the primary sample type. Presence of whether the mutated gene is present were 

recorded as a matrix of binary values, 0 for not present, 1 for present.  

Demographic Data  

Demographic data was obtained using the cBio portal. The age range of patients spanned 

from 2 to 85 years and 71.5% of the cohort was female, 28.5% male. Ethnicity, race, and 

survival status were also included.  
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CHAPTER 2 : PREDICTING MENINGIOMA GENOMICS FROM MULTI-SEQUENCE MRI 

Background  

Meningioma is the most common type of central nervous system tumor and high grade 

meningiomas have increased risk of returning after treatment. Surgery, radiation, or 

observation are the three treatment methods and for high grade meningiomas, often 

radiation plus surgery combined is often inadequate (3). Genomic understanding of 

meningiomas has been shown to identify genetic biomarkers that predict tumor behavior 

and prognosis. These genetic drivers may also provide therapeutic targets for drug therapy 

(4). However, widespread and extensive tumor genetic testing is limited due to cost and 

need for biopsy (5). In cases where biopsy is not possible, meningioma treatment is based 

of imaging alone. Therefore, there is a need to understand how clinically relevant 

meningioma biomarkers can be inferred based o_ preoperative baseline MRI.  

Previous studies in other types of brain tumors, such as glioblastoma, have shown that 

image features extracted from image segmentations through radiomics or convolutional 

neural networks (CNNs) or a combination of these features lead to successful oncologic 

inference tasks (6). Most prior work has focused on using features from segmentations or 

single slices, not preserving the location of a tumor in the whole brain as a feature. 

However, studies in underlying tumor genetics shows that tumor locations correlate with 

underlying mutations (7). Convexity meningiomas usually harbor NF2 and SMARCB1 

mutations. Brain convexity harbors more Grades 2 and 3 meningiomas than skull base. 

Skull base meningiomas harbor mutations in AKT1, KLF4, TRAF7, SMO, PIK3CA, and 

POLR2A genes. Spinal cord meningiomas often harbor SMARCE1 mutations. Locations of 
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Grade 3 meningiomas are highlighted in the right inset of panel (B). Grade 1 (benign) 

meningiomas commonly occur in the parasagittal and posterior fossa with alterations in 

chromosome 22 and variation in the second allele of neurofibromatosis 2 (NF2). Genetic 

alterations in AKT1, PIK3CA, SMO, TRAF7, KLF4, and SMARCB1 also take place in Grade 1 

meningiomas in the presence or absence of NF2 mutations depending on the gene. Grade 

2 (atypical) meningiomas tend to exist in the brain convexity and spine and can have a loss 

of a copy of chromosomes 1, 10, or 14 in addition to genetic alterations 

in NF2 and SMARCEl. Grade 3 (malignant or anaplastic) meningiomas are characterized by 

the absence of chromosome 9p and genetic alterations of NF2, BAP1, LDH229, CDKN2 

A/B, and pTERT. BAP1 mutations are frequent rhabdoid meningioma subtype, rhabdoid 

meningiomas with BAP1 mutations are more aggressive compared to rhabdoid 

meningiomas devoid of these mutations (7). Therefore, there is a need for anatomical MRI 

images in meningioma assessment, specifically the location of the tumor to the whole 

brain as a clinically relevant feature in machine learning models.  

TERT promoter mutations are associated with more aggressive behavior and increased 

cellular proliferation in meningiomas. Tumors with TERT promoter mutations tend to have 

higher cellularity and a higher proliferation rate, which can contribute to the restricted 

di_usion pattern observed on DWI. Shin et. al explored this relationship in a small cohort 

study with surgically confirmed grade II meningiomas. ADC 10th percentile was found to be 

an independent predictor of TERT promoter mutation status (3). As such, other modalities 

of imaging such as DWI or ADC might infer critical information about meningioma genetics.  
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The goal of this study is to build a clinically relevant, interpretable, and e_icient machine 

learning model that can predict genetic mutation status of a meningioma from 

preoperative multi-sequence MR imaging. Our method leverages not only the strength of 

predefined radiomics features and learned CNN features in a 3D space, but features based 

on clinical knowledge to provide improved prediction performance and interpretability. This 

model was trained on the large (n=443) patient cohort (See Chapter 1) of surgically 

confirmed meningioma patients who underwent a 500 cancer gene mutation panel test.  

Methods 

Image Preprocessing and Radiomics Feature Extraction 

As the di_erent MRI sequences were acquired with di_erent number of slices, the middle 3 

slices for each sequence were acquired. ADC values were computed using segmentations 

and PyRadiomics 2.2.0 command line tools with default extraction parameters. Tumor 

location was identified using MNI atlas based registration on the post-contrast T1 images.  

Network Architecture  

A CNN classifier was constructed using TensorFlow 2.4. The CNN limb consisted of a 3D 

multiscale deep convolutional autoencoder with 1, 1, 2, and 2 bottleneck residual blocks 

per level, respectively, and a max-pool down-sampling layer (pool size = [2, 2, 2]) between 

each level. Bottleneck blocks included leaky ReLU activation, batch normalization, and 

40% feature dropout. The number of features per layer was set at 32 for the top level and 

doubled after each pooling step. This yielded one logit output for each gene of interest 

which were converted to a probability using the sigmoid logistic function. A threshold of P ≥ 

0.5 was used to determine a positive result. 
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Network Inputs and Training  

The neural network training protocol employed a k-fold cross-validation methodology (k=5) 

with a data partition ratio of 0.8:0.2 for the training and test sets, respectively. Distinct 

convolutional neural networks were constructed and trained for each genetic biomarker 

under investigation. The CNN architecture's input layer was designed to accommodate 

three-dimensional tensors of dimensions 96 × 96 × 18 voxels where the slices from each 

sequence modality were stacked together. To enhance model generalization and mitigate 

overfitting, data augmentation techniques were implemented. These included stochastic 

dimension permutations and random rotations within the range of ±0–90 degrees along 

each orthogonal axis. The training data sampling strategy ensured class balance within 

each batch, with an equal representation of positive and negative cases. Network 

parameter initialization utilized the Glorot (Xavier) method to optimize initial weight 

distributions. The training regimen consisted of 40 epochs with a fixed batch size of 10 

samples. Notably, neither validation-based early stopping nor interim model evaluation 

were incorporated into the training pipeline. The objective function for optimization was 

defined as the binary cross-entropy loss between the model's predictive output and the 

ground truth genetic biomarker status. Parameter optimization was conducted using the 

Adam algorithm, a variant of stochastic gradient descent that adapts learning rates based 

on first and second moments of the gradients. 

Network Performance Evaluation 

Genetic biomarker prediction was evaluated using receiver operating characteristic (ROC) 

analysis as well as several di_erent scalar metrics for the ROC best point: sensitivity, 
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specificity, accuracy, precision. Statistically significant di_erences between ROC curves 

were assessed using DeLong’s method with a threshold of P < .05. 

Results 

ROC curves for each genetic mutation were generated and a summary of the evaluation 

metrics are included in the table below for brevity included the top 9 most prevalent genes 

(Figure 2)(Table 1).   

FIGURE 2: ROC curves for the most frequent gene mutations 

 

 

 

 

 

 

     

NF2 AUC 0.79  MSH2 AUC 0.67 
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TABLE 1: Gene mutation frequency and AUC, sensitivity, specificity metrics  

Gene 
 
Frequency AUC Sensitivity Specificity 

NF2 0.39 0.79 0.75 0.71 
MSH2 0.227 0.67 0.87 0.74 
TRAF7 0.212 0.63 0.79 0.83 
MT-ND5 0.193 0.64 0.75 0.73 
TERT 0.176 0.61 0.68 0.65 
KIT 0.119 0.59 0.77 0.66 
AKT1 0.105 0.59 0.69 0.7 
KMT2C 0.097 0.57 0.63 0.66 
KMT2D 0.094 0.53 0.68 0.62 

 

The average AUC across all gene prediction was 0.71. Shown in Figure – are the ROC curves 

for the two most prevalent gene mutations in the dataset NF2 and MSH2. While comparing 

the frequencies of genes in the dataset to AUC performance, we observed that the lower 

the frequency of the gene mutation, the lower the AUC was. This indicated class imbalance 

and future steps of this work will require modifying the model to account for this. In 

addition, heat maps for which imaging features in di_erent sequences correspond to 

findings is being currently investigated. This work is a baseline model performance and will 

be augmented with results from unsupervised learning approaches in future.  
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CHAPTER 3: BRAIN MRI SEQUENCE IDENTIFICATION USING LARGE LANGUAGE 

MODELS 

Background 

In order to train artificial intelligence-based models to assist medical experts, a large, 

labeled training dataset is mandatory. However, this is a challenging task due to several 

reasons. These datasets are often acquired from various medical centers across the world 

and given the wide set of variations available in radiological imaging, there is a need to sort 

MRI scans, based on sequence type. Each particular MRI sequence lends di_erent clinical 

information to a radiologist. MRI file types such as the digital imaging and communications 

in medicine (DICOM) contain metadata pertaining to the scan in the file headers and 

contain information such as MRI sequence, magnet strength which are entered manually 

by technicians at the time of acquisition. This metadata is also transferred to other file 

formats such as NIFTI as json files. In such scenarios, automatic identification of the MRI 

sequence from MRI data can prove to be of immense significance in sorting these massive 

datasets out for training deep learning models. Previous work has focused on using 

convolutional neural networks to train networks that can identify sequence type as 

di_erent classes (8). Hard coded logic using regex has also been used in inhouse tools. 

None of these methods are robust to the human spelling and grammatical mistakes made 

while entering the DICOM header information. In addition, from clinical and research 

experience, these models have di_iculty generalizing to out of distribution datasets, 

especially those from other institutions.  
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In this chapter we propose the use of large language models (LLMs) in parsing MRI 

metadata to help in identifying sequences in an e_icient and interpretable manner. Our 

hypothesis is that LLMs will be able to understand grammatical mistakes and identify 

sequence type quickly while being able to give explanation as to why the sequence type 

was chosen.  

Methods 

From the radiogenomic and imaging meningioma dataset described in Chapter 1, 48 MRI 

sequences were randomly selected and manually labeled. The associated json file 

containing DICOM metadata was extracted for each sequence. The contents of this file 

served as input to the prompt to the LLM (Figure 4). We utilized UCSF Versa, an AI platform 

that allows researchers to work with LLM API with PHI compliant data from companies 

such as OpenAI. We used GPT-4 for this preliminary test.  
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Results 

The following diagram shows the workflow of applying the LLM without any fine tuning 

(Figure 4). The sensitivity and specificity for each modality as well as the confusion matrix 

of results is shown below. For sequences classified ADC, DWI, FLAIR, and T2 the sensitivity 

was 100%, specificity was 100%. For GRE, the sensitivity was 0.98% and specificity was 

100%. For T1 pre-contrast images, the sensitivity was 100% and specificity was 0.89%. For 

T1 post-contrast, the sensitivity was 0.97% and specificity was 0.83%.  

FIGURE 3: Confusion matrix results from LLM classifier 
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Figure 4: Workflow of LLM modality classifier 

Classify the given MRI 
sequence data into one of 
the following categories: T1, 
T2, T1 post contrast, FLAIR, 
ADC, DWI, GRE, or other. 
The classification should be 
based on ALL the dicom 
header information, series 
description, the echo time 
(TE) and repetition time (TR) 
of the sequence. 
T1 sequences typically have 
a TE between 10-20 ms and 
a TR between 500-800 ms. 
T2 sequences have a TE 
between 80-120 ms and a TR 
between 2000-5000 ms. T1 
post contrast sequences are 
similar to T1 sequences, but 
the data will indicate the use 
of a gadolinium contrast 
agent. 
FLAIR sequences have a TE 
between 100-150 ms and a 
TR between 6000-10000 ms. 
ADC sequences have a TE 
between 60-90 ms and a TR 
between 3000-5000 ms. 
DWI sequences have a TE 
between 50-100 ms and a TR 
between 3000-6000 ms. 
GRE sequences have a TE 
between 15-30 ms and a TR 
between 500-1000 ms. 
Any sequences such as 
reformatted or localizers or 
ones that do not fit these 
parameters should be 
classified as "other". Provide 
the classification for the 
given MRI sequence 
data.```json file 
contents``` 
Use the following json 
format to answer: 
{ 
answer: <your choice from 
the list> 
reasoning: <your reasoning 
as to why you chose the 
option> 
} 

The MRI sequence data 
includes a Series 
Description labeled 'Ax T2 
FSE/Propeller', indicating it 
is an Axial T2-weighted 
Fast Spin Echo sequence 
enhanced with Propeller 
technology, which helps 
reduce motion artifacts 
and improve image quality. 
The Echo Time (TE) of 
95.7653 ms and Repetition 
Time (TR) of 6.2 seconds 
(6200 ms) are within the 
typical ranges for T2 
sequences, which 
generally have a TE 
between 80-120 ms and a 
TR between 2000-5000 ms. 
The additional details such 
as 'ScanOptions' and 
'EchoTrainLength' of 28 
support the use of multiple 
echoes per TR, typical in 
FSE sequences to speed 
up acquisition while 
maintaining T2 contrast. 

UCSF Versa prompt 

{ 
"Modality": "MR", 
"MagneticFieldStrength": 1.5, 
"ImagingFrequency": 63.8539, 
"Manufacturer": "GE", 
"ManufacturersModelName": "Signa 
HDxt", 
"DeviceSerialNumber": 
"0000000000001234", 
"StationName": "EXTERNAL_MROT", 
"PatientPosition": "HFS", 
"ProcedureStepDescription": "MRI 
BRAIN, W/", 
"SoftwareVersions": "15\\MX\\MR 
Software release:15.0_M4_0910.a", 
"MRAcquisitionType": "2D", 
"SeriesDescription": "Ax T2 
FSE/Propeller", 
"ProtocolName": "SCREEN 
7A5B0886A4848/5", 
"ScanningSequence": "SE", 
"SequenceVariant": "SK", 
"ScanOptions": 
"FAST_GEMS\\PROP_GEMS\\TRF_G
EMS\\FILTERED_GEMS", 
"ImageType": ["ORIGINAL", 
"PRIMARY", "PROPELLER", "NONE"], 
"SeriesNumber": 5, 
"AcquisitionTime": 
"15:12:32.552880", 
"AcquisitionNumber": 1, 
"SliceThickness": 5, 
"SpacingBetweenSlices": 5, 
"SAR": 1.50224, 
"NumberOfAverages": 1.5, 
"EchoTime": 0.0957653, 
"RepetitionTime": 6.2, 
"FlipAngle": 90, 
"CoilString": "8HRBRAIN", 
"PercentPhaseFOV": 100, 
"PercentSampling": 157.5, 
"EchoTrainLength": 28, 
"AcquisitionMatrixPE": 320, 
"ReconMatrixPE": 512, 
"PixelBandwidth": 244.141, 
"PhaseEncodingAxis": "i", 
"ImageOrientationPatientDICOM": 
[1,0,0,0,0.995826,0.091271 ], 
"InPlanePhaseEncodingDirectionDI
COM": "ROW",} 

Example json file 
with metadata 

Example response 
from GPT-4 
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CHAPTER 4: CONCLUSION AND DISCUSSION 

This thesis has explored the intricate relationship between imaging features, genetic 

biomarkers, and artificial intelligence in the context of meningioma management. Through 

a series of interconnected studies, we have demonstrated the potential for significant 

advancements in diagnosis, treatment planning, and prognostication of these common 

intracranial tumors. 

The development of a large-scale, multi-sequence MRI dataset with corresponding genetic 

and demographic data (Chapter 1) represents a significant contribution to the field. This 

resource enables researchers to conduct more comprehensive studies on imaging-genetic 

correlations in meningiomas, potentially leading to new insights into tumor biology and 

behavior. 

Our machine learning model for predicting genetic mutation status from preoperative MRI 

(Chapter 2) demonstrates the feasibility of non-invasive genetic assessment. With an 

average AUC of 0.71 across all gene predictions, this approach shows promise for clinical 

application, particularly in settings where genetic testing is limited by cost or accessibility. 

This could lead to more informed treatment decisions and personalized management 

strategies. 

The use of large language models (LLMs) for MRI sequence identification (Chapter 3) 

addresses a critical challenge in medical imaging AI. By leveraging the natural language 

understanding capabilities of LLMs, we've shown potential for more robust and 

generalizable sequence identification, which could streamline the preparation of multi-

institutional datasets for AI model training. 
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Limitations and Challenges 

While our work presents significant advancements, several limitations should be 

acknowledged: 

1. The dataset, although large, is from a single institution, which may limit generalizability. 

2. The genetic prediction model's performance, while promising, still leaves room for 

improvement. Data imbalance needs to be addressed in future models. In addition, by 

excluding patients who have not received biopsy, the findings of the model are limited to 

patients whose meningiomas can be safely resected.  

3. The LLM approach to sequence identification, while innovative, requires further 

validation on larger and more diverse datasets. 

Future Directions 

Building on the foundation laid by this thesis, several avenues for future research emerge: 

Expanding the dataset to include images and genetic data from multiple institutions would 

enhance the generalizability of our findings and models. Incorporating data from advanced 

MRI techniques such as perfusion imaging, spectroscopy, or radiomics could potentially 

improve the accuracy of genetic prediction models. Conducting longitudinal studies to 

correlate imaging features, genetic profiles, and long-term patient outcomes could provide 

valuable insights into tumor progression and treatment response. 

In conclusion, this thesis represents a significant step forward in the integration of imaging, 

genetics, and artificial intelligence for meningioma management. By bridging these diverse 

fields, we have opened new possibilities for personalized medicine in neuro-oncology. As 

we continue to refine these approaches and expand their applications, the potential for 
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improving patient care and outcomes becomes increasingly tangible. The future of 

meningioma management lies in the synergistic application of advanced imaging, genetic 

profiling, and artificial intelligence, paving the way for more precise, e_ective, and 

personalized treatment strategies. 
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