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Understanding how humans weigh long-term and short-term goals is important for

both basic cognitive science and clinical neuroscience, as substance users need to

balance the appeal of an immediate high vs. the long-term goal of sobriety. We

use a computational model to identify learning and decision-making abnormalities in

methamphetamine-dependent individuals (MDI, n = 16) vs. healthy control subjects

(HCS, n = 16), in a two-armed bandit task. In this task, subjects repeatedly choose

between two arms with fixed but unknown reward rates. Each choice not only

yields potential immediate reward but also information useful for long-term reward

accumulation, thus pitting exploration against exploitation. We formalize the task as

comprising a learning component, the updating of estimated reward rates based

on ongoing observations, and a decision-making component, the choice among

options based on current beliefs and uncertainties about reward rates. We model the

learning component as iterative Bayesian inference (the Dynamic Belief Model), and the

decision component using five competing decision policies: Win-stay/Lose-shift (WSLS),

ε-Greedy, τ-Switch, Softmax, Knowledge Gradient. HCS and MDI significantly differ in

how they learn about reward rates and use them to make decisions. HCS learn from

past observations but weigh recent data more, and their decision policy is best fit as

Softmax. MDI are more likely to follow the simple learning-independent policy of WSLS,

and amongMDI best fit by Softmax, they havemore pessimistic prior beliefs about reward

rates and are less likely to choose the option estimated to be most rewarding. Neurally,

MDI’s tendency to avoid the most rewarding option is associated with a lower gray

matter volume of the thalamic dorsal lateral nucleus. More broadly, our work illustrates the

ability of our computational framework to help reveal subtle learning and decision-making

abnormalities in substance use.

Keywords: Bayesian model, decision-making, reward processing, methamphetamine stimulant, addiction,

multi-armed bandit task
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INTRODUCTION

Negotiating the tension between exploration and exploitation is
an important aspect of cognitive processing, as actions leading
to immediate reward may well-conflict with actions that aid
the attainment of long-term goals. Daily examples include
partying vs. studying, snacking vs. dieting, and relaxing vs.
exercising. Understanding how the brain solves this exploration
vs. exploitation problem is not only important for basic cognitive
science, but also clinical neuroscience, where substance abusers
are often faced with the choice between immediate high vs. long-
term sobriety. A classical behavioral paradigm used to study the
tradeoff between exploration and exploitation task is the multi-
armed bandit task (Daw et al., 2006; Behrens et al., 2007; Erev
et al., 2008; Gonzalez and Dutt, 2011; Hills and Hertwig, 2012;
Zhang et al., 2014), in which subjects must make repeated choices
among options (bandit arms) that yield rewards with fixed but
unknown probabilities. Selecting different options may either
maximize the immediate likelihood of receiving a reward, or the
gain in information useful for long-term reward accumulation,
thus creating a tension between exploitation and exploration.
Bandit problems are widely used in psychology (Steyvers et al.,
2009; Zhang and Yu, 2013a), decision neuroscience (Behrens
et al., 2007; Cohen et al., 2007), and artificial intelligence
(Kaelbling et al., 1996), to study the exploration-exploitation
tradeoff. In this work, we use a Bayesian modeling framework
to investigate how methamphetamine-dependent individuals
differ from healthy controls in performing a two-armed bandit
task.

Methamphetamine Dependence and
Cognitive Deficits
Methamphetamine dependence (MD) is a serious public health
concern (Panenka et al., 2013) associated with a high likelihood
of relapse (Brecht and Herbeck, 2014). By 2008, nearly
25 million people worldwide were estimated to have used
amphetamine/methamphetamine within the past year (Buxton
and Dove, 2008), with abuse being particularly prevalent among
younger age groups (Leland and Paulus, 2005). Importantly,
executive deficits, most prominent in cognitive control and
decision-making paradigms, have been consistently observed in
stimulant abusers and implicated in the progression of abuse
to dependence (Paulus et al., 2005; Clark et al., 2012; Gowin
et al., 2014). Identifying precise neurocognitive markers of such
alterations may therefore not only improve our understanding
of how neurochemical changes in MD affect decision-making,
but it may help identify robust neural predictors of relapse and
treatment response.

Reward Processing Impairments in MDI
Although much attention has been given to understanding
alterations in impulse control among addicted individuals,
neuroimaging studies in both animals and humans point
to equally important disturbances in incentive salience and
valuation (Goldstein and Volkow, 2011). Specifically, while
stimulant abusers exhibit enhanced sensitivity to drugs and
drug cues, they show decreased responsiveness to other types

of rewards, including secondary reinforcers such as money,
which is associated with decreased activation in the orbitofrontal
and ventromedial prefrontal cortex (Goldstein et al., 2007;
Goldstein and Volkow, 2011). This decreased responsiveness
to non-drug rewards is likely to underlie the anhedonic
symptoms consistently observed in drug dependence (Koob
and Le Moal, 2001), including stimulant dependence (Leventhal
et al., 2010), and may promote difficulties regulating stress and
negative affect in addicts (London et al., 2004; Tabibnia et al.,
2011).

Learning Deficits in MDI
Stimulant dependent individuals also demonstrate impairments
in learning new information and in using this knowledge to
guide decisions. For instance, chronic amphetamine abusers
are not as efficient at learning to avoid high penalty options
in the Iowa Gambling Task (Rogers et al., 1999; van der
Plas et al., 2009), a deficit shown to be proportional to
years of abuse (Rogers et al., 1999). Consistent with this
poor learning and difficulties “seeing the big picture,” MDI
demonstrate a greater discounting of delayed rewards (Hoffman
et al., 2006; Monterosso et al., 2007) and a more “myopic”
strategy in prediction tasks, with stronger reliance on previous
trial outcomes relative to the overall success rates of choice
alternatives (Paulus et al., 2002, 2003). Interestingly, during
risky decision-making, MDI also demonstrate hypo-activations
in the dorsolateral prefrontal cortex (DLPFC) and anterior
insula (Ersche et al., 2005; Paulus et al., 2005), brain regions
playing an important role in supporting learning and retrieval of
stimulus-response associations (Miller and Cohen, 2001; Bunge
et al., 2005) and interoceptive function (Paulus and Stein, 2006),
respectively.

Together, these findings suggest that MD is associated
with impaired tracking and updating of action values and
changing contingencies in the environment, which may promote
more rigid decision-making strategies (Aron and Paulus, 2007).
Combined with reward processing alterations, MDI might
also be more likely to make suboptimal choices in complex
multi-option environments. Disentangling and quantifying the
respective impact of such deficits in these different components
of choice behavior (e.g., learning vs. decision policy vs. reward
salience) remains a challenge, given only coarse behavioral
performance measures (such as monetary earnings or average
choice probabilities). In contrast, a model-based approach
with more sophisticated representation of individuals’ internal
computations and variables can perhaps uncover more subtle
effects.

A Bayesian Approach to Understanding
Decision-Making Deficits in MDI
We have proposed that two separable computational
components underlie human choice behavior in the bandit
task (Zhang and Yu, 2013a,b): a learning component, the
updating of internal knowledge and uncertainty based on
successive observations (e.g., successes or failures to obtain
reward from the chosen options); and a decision-making
component, the selection of an action based on current beliefs
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and uncertainties about the reward availability at different
options). Consistent with this framework, we hypothesize
that alterations in one or both of these components could
be observed in individuals with a substance disorder such as
MDI.

Bayesian models provide a way to address the learning
component by quantifying individuals’ beliefs about their
environment and the associated uncertainty. In this framework,
decision-makers are assumed to continuously update their
beliefs of the environment based on each new observation.
Specifically, we can model statistical learning about reward
rates using a version of the Dynamic Belief Model, or
DBM (Yu and Cohen, 2009), which assumes subjects believe
that environmental statistics can undergo discrete, unsignaled
changes without warning. Although reward rates are actually
fixed (but unknown) in the bandit task employed in this study,
we surmise that individuals may still exhibit sequential effects,
a persistent tendency to form expectations about upcoming
stimuli based on recent trials, which we have shown to arise
from the belief that environmental statistics are changeable
rather than fixed (Yu and Cohen, 2009). We have shown
that DBM accurately predicts sequential effects in a wide
variety of behavioral tasks in which stimulus statistics are
fixed: perceptual decision-making (Yu and Cohen, 2009), visual
search (Yu and Huang, 2014), inhibitory control (Ide et al.,
2013; Harlé et al., 2014), and multi-arm bandit tasks (Zhang
and Yu, 2013a,b). To model the decision-making component,
this Bayesian formulation can be naturally combined with
various decision-making (i.e., action selection) models to infer
individuals’ learning and decision parameters based on their
behavioral data.

The Present Study
In this work, we present data fromMDI and healthy comparison
subjects (HCS) performing a binary-choice version of the
multi-arm bandit task (Robbins, 1952). Each arm has a fixed
and initially unknown reward rate (probability of reward
per trial), though observers may have prior beliefs about
the reward rate, and each observed outcome informs the
decision-maker about the reward rate. To quantify the learning
and decision-making processes in healthy human subjects
and MDI, and to examine any subtle differences in the
neural circuitry underlying these processes, we use a Bayesian
modeling framework (DBM), in combination with five decision
policies previously suggested in the literature (Win-Stay/Lose-
Shift (WSLS), ε-Greedy, τ-Switch, Softmax, and Knowledge
Gradient).

Given evidence of impaired learning in MDI (Miller and
Cohen, 2001; Paulus et al., 2002), we hypothesized that relative
to healthy comparison subjects (HCS), MDI would be more
reliant on a simple learning-independent strategies (e.g., WSLS)
and less reliant on more complex learning-dependent, principled
strategies (e.g., Softmax). Moreover, given the reduced reward
responsiveness of MDI to non-drug reinforcers (Goldstein and
Volkow, 2011), we hypothesize that MDI subjects might have
altered reward representation before and/or after observing
reward outcomes on chosen options.

MATERIALS AND METHODS

Participants
The UCSD Human Research Protections Program and/or the
Veterans Affairs San Diego Healthcare System (VASDHS)
Internal Review Board approved the study protocol. All subjects
gave written informed consent. Sixteen (40% female; mean age=
35.4) sober MDI were recruited from a 28-day inpatient Alcohol
and Drug Treatment Program at the Veterans Affairs San Diego
Healthcare System and Scripps Green Hospital (La Jolla, CA).
To maintain sobriety during the program, participants were
screened for the presence of drugs via urine toxicology. In
addition, 16 healthy comparison subjects (HCS; 33% female;
mean age = 37.1) were recruited via flyers, internet ads (e.g.,
Craigslist), and local university newspapers. HCS were selected
to be matched in age and IQ with MDI. All subjects completed a
clinical interview session behavioral session during which they
completed the Bandit Task (these study procedures took place
between the third and fourth week of treatment for MDI).

Lifetime DSM-IV Axis I diagnoses (including substance
dependence) and Axis II antisocial personality disorder
were assessed by experienced interviewers using the Semi
Structured Assessment for the Genetics of Alcoholism (SSAGA)
(Hesselbrock et al., 1999), a semi-structured interview that
allows for quantification of lifetime drug use. Diagnoses were
based on consensus meetings with a clinician specialized in
substance use disorders (MPP) and trained study personnel. The
following were exclusion criteria for all groups: (1) antisocial
personality disorder; (2) current (past 6 months) Axis I panic
disorder, social phobia, post-traumatic stress disorder, major
depressive disorder; (3) lifetime bipolar disorder, schizophrenia,
and obsessive compulsive disorder; (4) current severe medical
disorders requiring inpatient treatment or frequent medical
visits; (5) use of medications that affect the hemodynamic
response within the past 30 days such as antihypertensives,
insulin, and thyroid medication; (6) current positive urine
toxicology test; and (7) history of head injuries with loss
of consciousness for longer than 5min. During evaluation,
participants performed the North American Adult Reading Test
(NAART; Uttl, 2002) as a measure of verbal intelligence (VIQ).

Bandit Task
Participants completed 20 bandit games of 16 trials each on a
computer. For each game, participants had 16 tokens (stacked in
the middle of the screen) and had to assign one token on each
trial to one of the two lottery arms. After placing each token,
they either earned one point if the token turned green or zero
points if the token turned red see Figure 1A. The reward rate
for each arm was independent and identically sampled from a
Beta distribution (α = β = 2) at the beginning of each game.
In practice, the two arms always had different reward rates in
each game, even though on average they had the same mean
reward rate (0.5) and standard deviation (0.22). Participants were
instructed at the beginning of the experiment that the rewards
probability for the arms were independent, and were redrawn at
the beginning of each game. They were further instructed to try
to maximize the points earned over all trials and in all games. To
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additionally motivate the participants, we compensated subjects
with a dollar amount proportional to their total points earned
across all games at the end of the experiment (amounts paid
ranged from 6 to $11).

Modeling
Wemodeled trial-by-trial learning in humans using a form of the
hidden Markov model, which we call the Dynamic Belief Model
(DBM), which assumes the environmental statistics (i.e., reward
rate for an arm in this task) to undergo unsignaled changes
(Yu and Cohen, 2009; Zhang and Yu, 2013a,b). It includes the
stationary case (the true experimental design) as a special case,
whereby the probability of reward rate changing on each trial
is exactly 0. We modeled the decision component using five
competing decision policies: WSLS, ε-Greedy, τ-Switch, Softmax,
and Knowledge Gradient. In the following, we first describe the
statistical learning model, then the decision policies, and finally
the model-selection procedure for identifying individual decision
strategies and group learning parameters.

Dynamic Belief Model

As a simple variant of a hidden Markov model, the generative
model assumes that on each game, the two arms have reward
rates, θm, m = 1 or 2, each independently generated from the
generic Beta prior distribution q0(θm)= Beta (α0, β0) with mean
r = (α0)/(α0 + β0). For simplicity, we assumed that the sum of
its two parameters (which controls variance) to be fixed at α0 +

β0 = 4. We also assumed that the reward rate for each arm has a
probability γ of staying the same as last trial, and a probability
(1-γ) of being independently reset and re-drawn from q0 on
any trial, hence embodying the assumption of non-stationarity in
the Dynamic Belief Model see Figure 1B. We call γ the stability
parameter, since larger γ results in amore stable arm that changes

reward rates less frequently (γ = 1 is a special-case arm that
never changes reward rate at all).

Given the above generative model, we can use standard
Bayesian probability theory to compute the posterior distribution
over reward rates of the two arms on each trial, after making an
observation. We use the notation qtm (θtm) := Pr(θtm|x

t) to denote
the posterior probability distribution over the reward rate for the
mth arm on the tth trial, denoted θtm, given the observed sequence
of successes and failures from all previous trials, denoted xt :=
(x1. . . xt). On each trial t, the observer’s iterative prior distribution
marginalizes over uncertainty about whether there has been a
reward rate change on the current trial, and is therefore a mixture
of last trial’s posterior and the generic prior:

Pr(θtm = θ|xt−1) = γqt−1
m (θ)+ (1− γ)q0(θ)

To update the posterior after the current trial, for the chosen
arm only (assuming it is the mth arm), having observed the
outcome Rtm (1 for a reward, 0 for no reward), the new posterior
distribution for the chosen arm can be computed via Bayes’ rule:

qtm(θ
t
m) ∼ Pr(Rtm|θ

t
m) Pr(θ

t
m|x

t−1)

whereas, the posterior for the un-chosen arm is the same as the
prior at the beginning of the current trial (since there has been
no new observation). The mean of the prior distribution, µt

m, is
what we call estimated reward rate for armm.

In the actual experimental design, the reward rates were fixed.
This is one possible, special case setting also captured by the
DBM, by assuming the probability of the reward rate changing
on any trial is 0 (γ = 1), which we call the Fixed Belief Model (Yu
and Cohen, 2009; Zhang and Yu, 2013b).

FIGURE 1 | (A) Bandit task interface snapshot. Participants completed 20 games, each with 16 trials. (B) DBM illustration and the generative equations. The reward

rate of each arm are assumed to be independently drawn at the start of a game from a Beta distribution q0 = Beta (α0, β0), fixed throughout the game, and with mean

r = (α0)/(α0 + β0). DBM assumes that subjects believe that the reward rate θ for any arm can reset on any trial with probability 1-γ, otherwise it is the same value as

the last trial.
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Decision Policies

In the cognitive science and reinforcement learning literatures,
a number of decision policies with varying levels of complexity
have been used to model human bandit choice (Daw et al.,
2006; Steyvers et al., 2009; Zhang et al., 2014). These policies
can be conceptualized as underlying the choice of a goal-directed
action based on the individual’s current beliefs and knowledge
of their environment. Here, we considered five models, ordered
below by increasing complexity: Win-stay/Lose-shift (WSLS),
τ–Switch, ε-Greedy, Softmax, and Knowledge Gradient. WSLS
is a simple, learning-independent heuristic policy, which stays
with the last chosen arm after a reward with probability γw

and switches to the other arm after a loss (no reward) with
probability γl (Robbins, 1952). τ-Switch is another learning-
independent policy that assumes that the decision-maker uses
a fast-and-frugal heuristic for their choice selection depending
on the counts of previous successes and failures for both arms.
They choose randomly when the two arms have equal counts
of previous successes and failures, namely S1 = S2 and F1
= F2. The second situation is when one arm is better/worse
than the other; for example, Arm 1 is better (or Arm 2 is
worse) if S1> S2 while F1≤ F2, or F1< F2 while S1≥S2, and
the model chooses the better arm with (a large) probability γτ.
When one arm has both more previous successes and failures
than the other, it is an “exploit” option, and the other arm
is an “explore” option; in this situation, the model chooses
the explore option with probability γτ if the current trial
is before the switch point τ, otherwise chooses the exploit
option with probability γτ if the current trial is after τ. A
detailed description of this model can be found in Lee et al.
(2011). γτ is a parameter of “accuracy of execution,” which
captures the proportion of choices that are consistent with
either the exploration or exploitation policy on any given trial
(Steyvers et al., 2009). ε-Greedy assumes that one chooses
the alternative with the greatest estimated reward rate with
probability 1-ε on each trial, but chooses randomly among the
remaining arms with probability ε (Barto, 1998). The Softmax
decision policy assumes that the decision-maker chooses among
the options with probabilities related to the inferred reward
rates of the respective arms, but often with exaggerated ratios
(over-matching) compared to the estimated reward rates, but
typically not linearly (Luce, 1959). Here, we assumed that
the choice probabilities are normalized polynomial functions
of the estimated reward rates, with polynomial parameter b,
e.g., Pr(choosing arm 1) = µ

b
1/(µ

b
1 + µ

b
2), so that when b

approaches infinity, the maximally rewarding option is always
chosen (maximizing), when b is 1, it is probability matching,
and when b is 0, the arms are chosen randomly (with equal
probability. Knowledge Gradient or KG (Frazier et al., 2008;
Ryzhov et al., 2012; Zhang and Yu, 2013b) is the most
sophisticated among the heuristic policies we consider here. In
its original formulation, KG is a deterministic policy that chooses
the arm with the highest combined gain of immediate reward
(first term in the equation below) and longer-term “knowledge
gain” (second term), with the linear tradeoff parameterized
by the distance to horizon (e.g., fewer trials left results in

less emphasis on “knowledge gain”). Namely, the decision
rule is

DKG,t = argmaxmµt
m + (T − t − 1)vKG,t

m

where vKG,t
m = E[max θt+ 1|Dt =m, qt]-max θt is the approximate

value function for choosing arm m on trial t, under the current
belief state qt . This formulation is similar to the optimal policy
except that the second term in KG approximates the value of
exploration (second time) by using a lower-bound, that attained
by allowing only one more exploratory step and exploitation
thereafter, whereas the real optimal policy would also consider
the possibility of further exploratory choices, which involves
a much more expensive computation. Note that KG does not
actually choose to exploit after one more exploratory step, it
merely estimates the value of further exploration using this
computational assumption. It is interesting to note that KG
is equivalent to the optimal policy of explicitly maximizing
cumulative gain, when the reward rates are assumed to be fixed
(γ = 1) and there are only two arms (Frazier et al., 2008),
however, they are not equivalent in the problem here under the
DBM (non-stationary) assumptions. In this work, we extended
the original formulation of KG by adding a free parameter γkg

that turns this deterministic policy into a probabilistic policy,
such that Pr(choosing arm m|DKG,t = m) = γkg, so as to match
the other algorithms better in terms of the number of free
parameters. Both KG and the optimal policy increasingly favor
exploitation over exploration with fewer trials left; as we did not
see this tendency in subjects’ behavior in both a previous study
(Zhang and Yu, 2013b), and the current data set (results not
shown), we do not explicitly consider the optimal policy here.
Detailed description of the optimal policy that KG approximates
under stationary bandit setting can be found in Zhang and Yu
(2013b).

Bayesian Model Comparison
As a compromise between model specificity and statistical power,
we assumed individuals in the same group (i.e., MDI or HCS)
to share the same DBM stability parameter γ and the mean
of the generic prior r. However, we assumed that individuals
may differ in their decision policy, both in terms of which
policy and what parameter setting. Specifically, for each fixed
pair of DBM parameter values (γ, r), where γ and r each varies
from 0 to 1 in increments of 0.1 (they are bounded by 0 and
1), we can compute for every subject a sequence of trial-wise
prior distributions over reward rates for the two arms, based on
his/her actual sequence of choices and observations (reward or
no reward), and thus a likelihood of observing the subject’s choice
on each trial for each policy (and each parameter setting of each
policy). This would allow us to compute a joint likelihood of all
data (all choices of all subjects) by multiplying the likelihood
of each observation (a subject’s choice on one trial), and thus
a means for comparing estimates of (γ, r) between MDI and
HCS, and the decision policies and policy parameters across
subjects.

However, it is very computation- and memory-intensive to
compute a joint likelihood for all model parameters (e.g., by
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FIGURE 2 | Bayesian model comparison. We simultaneously infer the latent model usage and model parameters for all five different strategic decision-making

models, including two learning-independent heuristic models (WSLS, τ-Switch), two learning-dependent heuristic models (ε-Greedy, Softmax), and Knowledge

Gradient, based on observed data (subjects’ actual choices and outcomes). See Materials and Method for more details. In the Bayesian graphical model, a node is

double-bordered if it is deterministic (on its parents), otherwise stochastic; a node is gray if it is known/observed, otherwise unknown and to be inferred. Circle node is

continuous, whereas rectangular node is discrete. η is the probability for choosing arm 1 for subject k, at trial i of game j. This choice probability is deterministically

dependent on the estimated reward rates and the decision policy.
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discretizing each parameter) for all data. We therefore specified
a Bayesian graphical model of how the data (subjects’ observed
choices) are generated from the underlying model parameters
see Figure 2, and use WinBUGS (Spiegelhalter et al., 2003), to
sample (using Markov chain Monte Carlo or MCMC) from
the full joint posterior distribution over all the decision-policy
parameters conditioned on the observed data. Specifically, we
assumed each subject k utilizes policy l, zk = l, for all trials
with a categorical probability distribution that has a Dirichlet
prior distribution, Dir(1,1,1,1,1), which yields a marginal prior
probability of 1/5 for each policy, and each decision policy
parameter has a prior distribution that is uniform over the unit
interval (γw, γl, ε, and γτ) except for b, the Softmax parameter,
which has a very flat Gamma prior with support over R+ (mean=
10, std = 10). Because all the priors are flat (or nearly flat),
the posterior surface is approximately proportional to the data
likelihood, but represented by samples, such that the likelihood
(posterior probability) for a region of the parameter space is
reflected in the relative number of samples. We compared the
“average” likelihood of different settings of (γ, r) for each group
(by marginalizing over the uncertainty associated with the choice
of decision policies and their parameters), or the “average”
likelihood of each policy for every subject (by marginalizing over
the uncertainty associated with the parameters of each policy).
This constitutes a form of Bayesian model comparison, which
has the convenient feature of automatic penalization of model
complexity.

Based on the specified generative model, for each setting of
(γ, r), we obtained from WinBUGS 2000 samples (two MCMC
chains, each containing 1000 samples with a burn-in period
of 1000 samples, and using standard checks for convergence,
Gelman and Rubin, 1992) of model parameters, each sample
containing the setting of the indicator variable zk specifying
subject k’s decision policy, and the parameter setting of the
relevant policy; WinBUGS also returns the data likelihood
associated with each sample. To identify the DBM parameters (γ,
r) for each group (MDI or HCS), we computed the marginal data
likelihood by integrating out uncertainty over zk and all decision
policy parameters [i.e., adding up the likelihood of all samples for
(γ, r)] and use the maximal marginal likelihood estimates for (γ,
r). Having fixed (γ, r) for each group (MDI or HCS), we could
then identify the policy used by each subject, ẑk, by again finding
the maximal marginal likelihood estimates for zk (i.e., adding up
the number of samples for each setting of the categorical variable
zk). Finally, to identify the decision policy parameter used by
subject k, we considered all samples where zk = ẑk, and found
the policy parameter setting (sample) with the highest likelihood.

Group Comparison Statistics
For behavioral variables with repeated measures (e.g., trial-wise
reaction times and game points), we fit hierarchical generalized
mixed-effect linear models treating subject as a random factor
(with varying intercepts in one model, and also varying slopes
in another model) and other variables as fixed effects (Baayen
et al., 2008). For group comparison of individually fit parameters,
independent two-sample t-tests were used. To compare the
learning (DBM) parameters (γ, r) between the two groups, we

estimated the “mean” and “variance” of γ, r, by resampling
from the marginal data likelihood (shown as grayscale maps
in Figure 3), or equivalently the marginal posterior distribution
assuming a uniform prior over (γ, r), using one MCMC chain
of length 107. The mean was estimated by the sample mean, the
variance was estimated by the sample variance. These estimates
were then used, together with the actual group sizes (16) for MDI
and HCS, to construct the 95% CI (t-critical value of 2.04 for a
two samples t-test; df= 16+16-2= 30).

MRI Image Acquisition and Voxel-Based
Morphometry (VBM)
High-resolution in vivo structural MR-images (T1-weighted
spoiled gradient recalled [SPGR] imaging, TR = 8ms, TE =

3ms, slices = 172, FOV = 25 cm, approximately 1mm3 voxels)
were acquired in all subjects on a 3.0 Tesla Signa EXCITE
scanner (GE Healthcare, Milwaukee, WI). Optimized voxel-
based morphometry (VBM) was performed with the FSL-
VBM pipeline (Douaud et al., 2007); http://fsl.fmrib.ox.ac.uk/fsl/
fslwiki/FSLVBM) using FSL tools (FSL-4.1.6; (Smith et al., 2004).
Optimized VBM uses an iterative approach to segmentation
and normalization that results in a more accurate identification
of gray and white matter (Good et al., 2001). Brains were
first automatically extracted from the skull with BET (Smith,
2002). Tissue-types (i.e., gray matter, white matter, CSF) were
then segmented with FAST4 (Zhang et al., 2001). The gray
matter images were aligned with the MNI-152 standard space by
affine registration (d.f. = 12) using the FLIRT tool (Jenkinson
et al., 2002) followed by non-linear registration using FNIRT
(Andersson et al., 2007) and averaged to create a study-specific
template. Segmented gray matter images in native space were
then re-registered to this template. To preserve information
about absolute volume, partial volume images were modulated
by the non-linear component of the Jacobian determinants
generated during spatial normalization thus obviating the need
to correct for total intracranial volume (Scorzin et al., 2008).
To make the residuals in subsequent analyses conform more
closely to a Gaussian distribution and to account for individual
differences in brain anatomy, the modulated GM images were
smoothed with an isotropic Gaussian kernel, σ = 3mm ≈

7.06mm FWHM. The average modulated gray matter volume
was extracted from 70 cortical and subcortical regions of interest
(ROIs). The ROIs were defined by a maximum probability map
based on the Talairach atlas. The construction of these ROIs are
described elsewhere (Fonzo et al., 2013; Ball et al., 2014).

RESULTS

Behavioral Measures
Figure 1A illustrates the bandit task we used in this study.
Combining all subjects, we found a negative linear relationship
between reaction times (RT) and game number (B = −12ms,
t = −3.6, p < 0.001, model omnibus test: χ2 = 35.9, p < 0.001;
Mean RT= 1428ms), such that individuals made faster decisions
as they had more experience with the bandit task. However,
neither the group main effect (χ2 = 0.46, p = 0.50) nor the
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FIGURE 3 | -Log likelihood grayscale plots for each pair of DBM parameter values (γ, r) fitted at the group level (MDI, methamphetamine dependent

individuals; HCS, healthy comparison subjects). Values represent −2*log likelihood, where the likelihood is marginalized over uncertainty associated with the

decision policy utilized by each subject and the parameter setting of the policy. Darker color indicates lower log likelihood, thus better fit.

group× game interaction (χ2 = 0.86, p = 0.35) were significant,
i.e., MDI did not differ from HCS on their general latency to
select an option nor on their decrease in latency for later trials.
In general, we did not find earnings to vary significantly as a
function of game number (χ2 = 0.02, p = 0.89; Mean Game
Points = 8.9)—in particular, subjects did not improve in their
performance as they had more experience. Correspondingly, we
also found no group difference in total earnings, both in terms
of overall group effect (χ2 = 0.01, p = 0.93) or group × game
interaction (χ2 = 0.03, p = 0.86). Thus, MDI and HCS had
similar overall performance in the bandit task.

Learning Model
The best data-fitting parameters for the learning model (DBM,
see Figure 1B) were inferred for each group: these consist
of estimates for the prior expectation of reward rate, r̂ =

(â)/(â + b̂), and the stability parameter, γ̂, which also controls
the effective exponential memory window size and thus can
be thought of as a discount rate parameter (larger γ = less
assumed volatility in reward rates = longer memory window
= slower/less discounting, see Yu and Cohen, 2009). Figure 3
shows the logarithm of the marginal likelihood values for each
setting of (γ, r) where each variable varies between 0 and 1 in
increments of 0.1, i.e., how well different settings of (γ, r) can
account for all the observed choices of all subjects in a group
(MDI or HCS), after marginalizing over uncertainty about the
hidden parameters that specify which decision policy each subject
uses and the parameter setting of that policy (see Materials and
Methods for details). As shown in Figure 3, we found that MDI
and HCS have similar estimated stability parameter γ̂ (MDI:
Mean= 0.60; HCS: Mean= 0.59; CI95%:−0.005 < µHCS–µMDI

< 0.006). Both HSC and MDI behave as though they believe
the environment to be changeable—in fact, at approximately
once every 1/(1-γ̂) = 1/(1-0.6) = 2.5 trials—instead of assuming
the reward rates to be static, which was the “true” experimental

design. The estimated ∩γ is smaller than values found in most
other tasks, which tends to be around 0.7–0.8 (Yu and Cohen,
2009; Ide et al., 2013; Yu and Huang, 2014; Zhang et al., 2014;
Ma and Yu, 2015), and may potentially be due to the longer
inter-trial interval used in this task (temporal discounting may
be influenced also by absolute time, not only discrete trials as
assumed in DBM).

Unlike the estimates for stability/volatility, we found thatMDI
and HCS do differ in their prior beliefs about mean reward rate
(MDI: Mean = 0.11; HCS: Mean = 0.40; CI95%: 0.28 < µHCS–
µMDI < 0.31), such that MDI seem to have lower prior belief
of receiving reward from any lottery arm (probability = 0.11)
relative to HCS (probability = 0.40), i.e., MDI individuals are
overall more pessimistic about the same reward environment
than HCS.

Decision Policy
To identify the decision policy utilized by each individual, and
to estimate the relevant model parameter(s), we first fixed the
DBM parameters at the values estimated for each group (see
previous section), found the policy for each individual that
yield the highest marginal likelihood for the observed choice
data for that subject (marginalized over parameter settings), and
then estimated the policy parameter setting that achieves the
highest likelihood. We found that WSLS or Softmax to best
explain each participant’s data, or in other words, Knowledge
Gradient, τ-switch, and ε-greedy are not as good at predicting
any participant’s behavioral data. While WSLS and Softmax were
each found to be the best fitting policy for some individuals
in each group, there is was a statistical trend toward a higher
proportion of MDI relying on the learning-independent WSLS
(8/16 = 50%) compared to HCS (only 3/16 = 19%; χ2 = 3.46,
p = 0.06). Conversely, while a majority of HCS used a Softmax
strategy (81%), only half of MDI used such model (50%; see
Figure 4A).
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FIGURE 4 | (A) Classification of all subjects by group (MDI, methamphetamine dependent individuals; HCS, healthy comparison subjects) and model usage based on

posterior mode of the zijk parameter. (B) Posterior distributions for the parameters associated with the strategic control model used by participants:

Win-Stay/Lose-Shift (WSLS; γw γl: top two graphs) and Softmax (b parameter; bottom graph). The y-axis depicts a histogram of the counts of MCMC samples

obtained for each of these parameters for each individual (overlaid) identified to be most likely to be using the corresponding policy.

Based on this result, we only provide group comparisons
of the parameter values of the two best-fitting models (γw

and γl for WSLS; and b for Softmax). Figure 4B shows the
posterior distribution over model parameters (assuming uniform
priors) for different subjects (overlaid), where each figure only
contains the posterior of individuals whose choices are best
explained by the corresponding policy. In practice, the posterior
distributions are approximated by the counts of MCMC samples
obtained by WinBUGS for each of these parameters for each
individual (seeMaterials andMethods). In the following, we used
only maximum-likelihood estimates (MLE) for decision policy
parameters. Among individuals using WSLS, MDI, and HCS did
not differ in their tendency to lose-shift, i.e., switching arms after
not receiving a reward (MDI: Mean γl = 0.54; HCS: Mean
γl = 0.45, t(9) = 1.2, p = 0.25), but MDI had significantly
higher tendency than HCS to win-stay, i.e., choosing the same
arm after receiving a reward (MDI: Mean γw = 0.91; HCS:
Mean γw = 0.81, t(9) = 2.7, p = 0.03). Among those using
the Softmax strategy, relative to HCS, MDI had a significantly
lower reward maximization parameter (MDI: Mean b = 1.58;
HCS: Mean b = 6.99, t(19) = 5.6, p < 0.001), indicating
that MDI select actions more like matching, while HCS act
more like maximizing, which has also been found for healthy

individuals in other learning and decision-making task (Zhang
et al., 2014).

Relationship Between Computational
Parameters and Gray Matter Brain Volumes
To further investigate the potential neural substrate of individual
behavioral differences, we conducted exploratory correlational
analyses within each set of model users (i.e., WSLS and Softmax
users) between individual parameter values and average VBM
gray matter relative volumes for 70 ROIs. No association was
found between WSLS parameters (γw and γl) and anatomical
gray matter volumes. Within Softmax users, we found a positive
association between the reward maximization b parameter and
gray matter volumes of the thalamic lateral dorsal nucleus (LD;
r = 0.45, p < 0.05; see Figure 5A).

Given the strong relationship between clinical group status
and Softmax b parameter, we further investigated the relationship
between clinical status and gray matter volume in this thalamic
region and the potential mediating role of the Softmax
parameter in this relationship. To do so, we used a hierarchical
regression method, with both linear and logistic regressions to
accommodate for the dichotomous clinical group variable (Baron
and Kenny, 1986). As expected, a first model showed that higher
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FIGURE 5 | (A) Left panel: thalamic lateral dorsal nucleus (LD) ROI in axial, coronal, and sagittal planes; Right: correlation between Softmax b paramter and VBM

based gray matter volume in the thalamic LD in Softmax users (N = 17). (B) Mediation analysis with hierarchical generalized linear models (with a logit link function for

models predicting clinical group). Softmax b parameter was found to fully mediate the negative relationship between thalamic LD gray matter volume and likelihood to

be MDI vs. HCS (MDI, methamphetamine dependent individuals; HCS, healthy comparison subjects); *p < 0.05.

Softmax b parameter was associated with a lower likelihood to
belong in the MDI group (ominibus χ2

(1) = 17.1, p < 0.001;

odd ratio = 0.02). Another model showed that higher thalamic
LD gray matter volume was associated with a lower likelihood to
belong in the MDI group (ominibus χ2

(1) = 4.9, p < 0.05; odd

ratio = 0.26). Thalamic LD gray matter volume was positively
related to Softmax b parameter, F(1, 18) = 4.2, p = 0.05 (beta
= 0.45). Importantly, adding Softmax b parameter as a second
predictor of clinical status removed the effect of thalamic LD gray
matter volume (p = 0.71), leaving the Softmax parameter as the
only significant predictor of clinical status (ominibusχ2

(1) = 17.2,

p < 0.001; odd ratio = 0.03), consistent with a full meditation of
the Softmax parameter (see Figure 5B).

DISCUSSION

In this study, we applied a probabilistic learning and decision-
making model human choice behavior data in a bandit task,
in order to investigate cognitive differences in learning and
decision-making between recently sober MDI and HCS. To
model the representation and updating of individuals’ beliefs, we
used the Dynamic Belief Model, a Bayesian iterative inference
model which assumes the environment to undergo unpredictable
and discrete changes (Yu and Cohen, 2009). The decision-
making component was modeled with a set of five well-
established decision policies from the cognitive science and

reinforcement learning literatures, includingWin-stay/Lose-shift
(WSLS), ε-Greedy, τ-Switch, Knowledge Gradient, and Softmax.
To our knowledge, this is the first study using such hierarchical
Bayesian approach to assess reward processing in a clinical
population such as MDI.

Bandit Choice Behavior
The bandit task has been a popular behavioral paradigm
for studying the exploration-exploitation tradeoff, as the task
involves a potential conflict between actions that maximize the
short-term potential of immediate reward and the long-term
gain of information that maximizes total rewards. Our modeling
framework decomposes the task into a learning component,
which consists of learning about initially unknown reward rates
for the two arms in each game, and a decision component, which
consists of choosing an arm on each trial based on previous
observations and any prior beliefs. We found that the learning
algorithm that best describes each of HCS and MDI subjects (in
the latter group, only those who show learning) indicates the
subjects to be assuming the reward rate statistics to be changing
on a relatively fast timescale (about once every 2.5 trials), despite
the experimental reward rates to be actually constant in a game,
but consistent with healthy human choice behavior in a variety of
behavioral tasks. A consequence of this peculiar non-stationarity
belief is that a subject’s belief (reflected in his/her choice) on
the current trial is strongly influenced by the outcome of the
most recent trials in the past, and exponentially less by outcomes
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farther into the past (Yu and Cohen, 2009), producing what is
classically known in psychology as sequential effects. In terms of
the decision policy, we found that every HCS and MDI subject
was best described as utilizing a heuristic Softmax policy or the
even the simpler, learning-independent WSLS policy. Unlike the
more sophisticated Knowledge Gradient policy (and of course
the optimal policy, see Zhang and Yu, 2013b), Softmax does
not explicitly assess the relative value of future exploratory
gain vs. immediate exploitative gain, but rather uses a single
fixed parameter (b in this paper) to heuristically “loosen” up
the choice policy relative to the estimated reward rates of the
given options. Consequently, one important difference between
Softmax and Knowledge Gradient (and also the optimal policy)
is that the former policy is insensitive with respect to the number
of trials left (known as the horizon in reinforcement learning
literature), while Knowledge Gradient (and the optimal policy)
weigh exploratory gain less relative to exploitative gain as the
horizon gets closer and there is less time left to take advantage
of any additional information gained. This insensitivity to
horizon finding is consistent with what we previously found
for healthy human subjects in the bandit task (Zhang and Yu,
2013b). However, in addition to these coarse similarities between
MDI and HCS in both learning and decision-making, there
are also some subtle but important differences, as we detail
below.

Learning Alterations in MDI
Relatively fewer MDI (50%) than controls (81%) used the
Softmax decision policy, instead favoring the WSLS policy. Thus,
less MDI were likely to use a learning-supported strategy, which
uses estimated reward rates for all arms, and instead used
a myopic heuristic relying solely on previous trial outcome.
This result is consistent with research suggesting that MDI
are impaired in learning and updating their knowledge of the
environment and generally have difficulties “seeing the big
picture.” For instance, along with weaker recruitment of neural
regions associated with learning such as the DLPFC and anterior
insula, impairments in working memory (Chang et al., 2002)
and sequential decision-making (Rogers et al., 1999; Paulus
et al., 2002) have been noted in this population, along with
difficulties detecting trends and integrating new information to
predict future outcomes (Aron and Paulus, 2007).The present
results suggest such deficits may also manifest in the type
of decision policies implicitly chosen to make reward-based
decisions.

Non-drug Reward Hyposensitivity in MDI
We also found that among individuals using a Softmax
strategy, MDI had on average lower reward maximization
(b) parameter values compared to HCS. Because this
parameter reflects the weight given in the action policy
to the options with highest predicted reward rates, this
individual metric may be conceptualized as an individual’s
reward sensitivity bias, independently of their expectations
of reward. Interestingly, such parameter value tended toward
a value of 1 in MDI, which is equivalent to the special case
of probability matching for this policy (i.e., choosing arms

in the same proportion as the estimated reward rates). Thus,
those MDI who are presumably good learners (i.e., using
a DBM learning-based strategy) showed lower preference
toward options they estimated to have the highest pay-off
rate. Further consistent with this reward hyposensitivity,
MDI as a group appears to have a lower prior expectation
of reward in their environment (10% reward rate) relative to
controls (40%).

These findings are congruent with evidence of decreased
incentive salience and altered reward sensitivity toward non-
drug rewards observed in substance users (Chang et al., 2002).
For instance, relative to control subjects, cocaine-addicted
individuals showed reduced activation of the left OFC for
high gains in a forced-choice task under three performance-
based monetary reward conditions (Goldstein and Volkow,
2011). In this study, cocaine abusers were also less sensitive to
differences betweenmonetary rewards in left OFC and inDLPFC,
with a majority exhibiting flat value ratings of all monetary
amounts received in the task. Similarly, a recent study found
that MDI had weaker neural responses to the anticipation of a
pleasant interoceptive stimulus with mechano-receptive C-fiber
stimulation (i.e., forearm and palm pleasant touch), which was
apparent in the anterior insula, dorsal striatum, and thalamus
(Goldstein et al., 2007). Together with the present findings, this
research points to a decreased sensitivity to non-drug rewards
in MDI, which has been linked to negative emotionality and
thus may pause a challenge for the therapeutic rehabilitation of
these patients (Koob and Le Moal, 2001; Goldstein and Volkow,
2011; May et al., 2013). Thus, future studies should examine how
stimulant and other substance-dependent individuals respond
to non-drug related reinforcers. A computational approach, as
shown here, may be particularly useful to tease apart subtle
reward sensitivity and strategic alterations based on behavioral
data, without the use of cost-heavy methods such as fMRI.

Finally, using VBM analysis of structural brain scans, we
found a positive correlation between participant’s Softmax
reward maximization parameter and gray matter volume of
the thalamic LD nucleus. Importantly, MDI also had lower
LD gray matter volumes relative to HCS, and this relationship
was mediated by the Softmax reward maximization parameter.
The lateral dorsal nucleus is part of the limbic system and
has been implicated in emotional processing. It receives input
from the hippocampal gyrus (Leventhal et al., 2010) and
is connected reciprocally with the cingulate gyrus, a region
involved in decision-making and the processing of conflict and
expectancy violation (Somerville et al., 2006; Alberstone, 2009).
Moreover, through its connections to the retrosplenial area as
well as the pre− and parasubiculum, the LD is thought to
be involved in the integration of directional information for
spatial navigation (Kennerley et al., 2011) and may contribute to
supporting episodicmemory andmental imagery of future events
(Kaitz and Robertson, 1981; Maguire et al., 2003). Thus, while
these data are preliminary and require confirmation in larger
samples, our findings suggest that this thalamic structure could
also play an important role in modulating reward sensitivity
and choice behavior during sequential goal-directed decision-
making.
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SUMMARY

Using a computational approach, we found evidence of cognitive
abnormalities underlying reward-based learning and decision-
making in MDI. Such alterations were apparent at several levels,
including beliefs about hidden reward rates in the environment
(MDI had lower prior expectations of reward), the type of
strategy/decision policy used (more MDI relied on a myopic
learning-independent strategy), and the extent of bias toward
choosing the options believed to have the highest reward rates
(MDI exhibited lower reward maximization bias based on the
Softmax policy).

Given the absence of group differences on coarse behavioral
measures, such as reaction times and points earned in the game,
our results suggests that a sophisticated computational modeling
approach can be a powerful neuropsychological tool to capture
a combination of subtle learning and strategic abnormalities in
clinical populations. Therefore, suchmodels could be particularly
useful to more precisely and comprehensively identify behavioral

and neurological markers of cognitive deficits in substance-
using individuals, which in turn may help develop better clinical
risk prediction models. It will be critical in future research to
identify how these computationally derived cognitive biases can
predict the development and maintenance of the addiction cycle,
including the recurrence of cravings and drug seeking behavior.
For instance, while all cognitive abnormalities identified here
are likely to partly contribute to behavioral dysfunction in MDI,
a decreased responsiveness to non-drug rewarding stimuli may
play a prominent role in perpetuating anhedonia and negative
emotionality, which in turn may lead to craving and increased
likelihood of relapse. Behavioral interventions aimed at boosting
healthy reward responsiveness and positive affect are thus worth
investigating as possible tools for promoting substance abuse
prevention and recovery.
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