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COMMUNICATION BETWEEN MOTOR CORTICAL AREAS DURING 
LEARNING 

Katherine Derosier 

ABSTRACT 

Motor cortex is known to be required for both motor learning and the execution of certain 

dexterous motor skills; however, much remains unknown about the communication between 

primary motor and premotor areas, and how it may or may not change with learning. We 

addressed this question by making simultaneous electrophysiological recordings of neural 

populations in rat primary motor (M1) and premotor (M2) cortex, first in the context of natural 

motor learning, and then in the context of M1 brain-computer interface (BCI) learning. In both 

cases, we found that activity was coordinated between the two regions. In the case of natural 

motor learning, we found that learning did not change the strength of M2-M1 interactions, but did 

increase the amount of task-related information available in the cross-area dynamics, and that 

these cross-area dynamics were necessary for learned behavioral improvements. In the case of 

BCI learning, we found that M2-M1 interactions occurred on a broader timescale than did M1-

internal interactions, and that M2 population activity evolved at a slower pace. These results are 

consistent with a model in which M2 provides top-down contextual information to M1, which more 

precisely controls the output. 
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INTRODUCTION: WHY STUDY MOTOR CORTEX? 

From a certain perspective, the purpose of the brain is to produce the correct behavior at the 

correct time. When comparing a human to a fly, the idea of "correct" behavior is certainly more 

complicated, and the timescale over which the process operates may be much longer, but the 

principle is the same: Movement is the ultimate output of all mental processes. It is how we 

respond to stimuli, and how our opinions and decisions are able to influence the world. From this 

perspective, understanding how animals generate movements is of utmost importance to 

understanding the brain. 

The mammalian motor system is a distributed network, involving many parts of the nervous 

system including cortex, striatum, thalamus, cerebellum, brain stem, and spinal cord1. Although 

all of these areas have movement-related activity, it has been shown that not all motor areas are 

strictly necessary for some motor tasks. For example, cats (and other animals) are able to perform 

some walking motions after a complete section of the spinal cord above the level of the limbs2, 

and rats that have been previously trained in a lever pressing task are still able to perform this 

task after a motor cortex lesion3. By combining these sorts of experiments with neural recordings 

from intact animals, we can generate theories about the different roles played by the parts of the 

motor system in different movements. 

Of particular interest are intentional movements, the sort that require conscious attention, either 

because they are novel and unpracticed, or because they are complicated and highly dexterous. 

Interestingly, both the performance of dexterous motor skills and motor learning in general are 

thought to require motor cortex. Relatively small lesions or strokes in motor cortex can result in 

chronic deficits to dexterous motor skills in rodents, non-human primates, and humans4-6, and rats 

that had not been trained on a lever pressing task prior to a motor cortex lesion were unable to 

learn the task afterwards3. This indicates a special role for cortex in motor tasks that require 

careful online control. 
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In rodents, motor cortex consists of two areas: the primary motor cortex (M1), and the more rostral 

premotor cortex (M2; when the regions controlling the forelimbs in particular are referred to, these 

may be called the caudal forelimb area and the rostral forelimb area). Both areas show robust 

movement-related activity7, and evoke movement when electrically stimulated8-10. Anatomical 

studies have shown that M1 and M2 are heavily interconnected, with similar patterns of local 

connectivity and similar subcortical inputs and outputs11. The connections between the regions, 

however, suggests a hierarchical relationship, with M2 providing a strong input to M1 layer 5b, 

suitable for top-down control, while M1 projections to M2 appear more like feedback input12. M1 

and M2 therefore likely have different roles in the learning and execution of motor skills, but these 

differences are only partially understood. M2 has been found to have activity related to 

anticipation and motor preparation13,14, and wide-field calcium imaging has found that coordinated 

task-related activity in M2 became earlier and more prominent with learning15. Despite this work, 

much is still unknown about the communication between M2 and M1, and about how input from 

M2 shapes M1 neural dynamics. 

In Chapter 1, we investigate the role of M2-M1 communication in motor learning. By making 

simultaneous recordings of M2 and M1 neural populations, and using a dimensionality reduction 

technique that optimizes for coordinate between the regions, we are able to identify a pattern of 

shared cross-area population dynamics that help explain how M2 inputs shape M1 activity over 

the course of motor learning. We found that learning did not change the strength of M2-M1 

interactions, but did increase the amount of task-related information available in the cross-area 

dynamics. By chemically inactivating M2 with muscimol, we show that M2 activity is necessary 

for execution of the reach-to-grasp task in well-trained rats. We also characterized the effect of 

M2 inactivation on M1 neural activity, finding that M1 neurons and population dynamics that had 

earlier been more strongly coordinated with M2 were more affected. 

In Chapter 2, we study interactions between M2 and M1 in the context of a brain-computer 

interface (BCI) paradigm, where rats learn to control external cues by manipulating the firing rate 
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of a small set of M1 neurons. The BCI approach removes several confounds of the natural motor 

learning experiments. Unlike natural movement, the target neural activity pattern and the identity 

of the M1 neurons directly controlling the output are known and experimenter-controlled. 

Additionally, in natural movement, M2 and M1 have outputs to similar subcortical structures which 

are causally involved in movement, while in BCI, M2 can only affect the output via its input to M1. 

In this context, we find that M2 units are task-modulated at similar rates to M1 units that do not 

directly control the BCI, and that the M2 population is correlated with M1 BCI-potent activity at a 

broad timescale. This is in contrast to M1 indirect units, which tend to be correlated with M1 BCI-

potent activity at short timescales. Furthermore, M2 single units and the M2 population as a whole 

are correlated with themselves over longer timescales, suggesting that M2 input to M1 is slowly-

changing and modulatory. 
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CH. 1     SINGLE-TRIAL CROSS-AREA NEURAL POPULATION 

DYNAMICS DURING LONG-TERM SKILL LEARNING 

1.1 Abstract 

Mammalian cortex has both local and cross-area connections, suggesting vital roles for both local 

and cross-area neural population dynamics in cortically-dependent tasks, like movement learning. 

Prior studies of movement learning have focused on how single-area population dynamics change 

during short-term adaptation. It is unclear how cross-area dynamics contribute to movement 

learning, particularly long-term learning and skill acquisition. Using simultaneous recordings of 

rodent motor (M1) and premotor (M2) cortex and computational methods, we show how cross-

area activity patterns evolve during reach-to-grasp learning in rats. The emergence of reach-

related modulation in cross-area activity correlates with skill acquisition, and single-trial 

modulation in cross-area activity predicts reaction time and reach duration. Local M2 neural 

activity precedes local M1 activity, supporting top-down hierarchy between the regions. M2 

inactivation preferentially affects cross-area dynamics and behavior, with minimal disruption of 

local M1 dynamics. Together, these results indicate that cross-area population dynamics are 

necessary for learned motor skills. 

1.2 Introduction 

The connectivity pattern of mammalian cortex, characterized by both local and cross-area 

connections1, suggests an important role for interactions between population dynamics 

compartmentalized locally and those coordinated between regions. But it is unknown whether 

population dynamics coordinated across multiple cortical areas contribute to long-term skill 

learning. In the motor system, it has been shown that both premotor cortex (M2)2–6 and motor 
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cortex (M1)7–11 demonstrate changes in local population dynamics with motor learning.  However, 

it remains unclear how cross-area dynamics between M1 and M2 are coordinated and change 

with long-term skill learning. Previous work on cross-area interactions during motor learning has 

focused on macroscopic population activity, such as local field potentials12–14 and wide-field 

calcium signals4,15. However, such measures of aggregate activity collapse signals from a 

heterogeneous population of neurons into a single signal, making it difficult to resolve potentially 

important multiplexed signals within that population16–18. Recent work has examined cross-area 

dynamics during motor adaptation5, but this process is fundamentally different from new skill 

learning19. 

How can we examine cross-area population dynamics during learning, especially when newly 

learned movements are still variable? To avoid the limitations of analyzing trial-averaged 

movement-related signals, we can instead build models by estimating prevalent population 

patterns from signals concatenated over time17,20,21.  One common approach in well-trained 

animals is to use dimensionality reduction methods such as Principal Component Analysis (PCA) 

to capture patterns of dominant covariance within local populations5,7,11,16,22–29. Those reduced 

local signals can then be compared across regions5,16,30. However, since PCA finds dimensions 

that maximize local variance, activity patterns which do not dominate local variance are discarded. 

Thus, this approach may dismiss as noise neural fluctuations representing activity coordinated 

across areas31. Instead, cross-area activity might be identified by directly detecting covariance 

which is coordinated across regions5,18,32. Recent work has shown that simultaneous recordings 

from two visual areas can be analyzed to identify a neural shared subspace defined by the activity 

in each region that is maximally correlated with activity in a partner region32. Two additional 

studies have also identified widespread neural signals encoding facial movements18 and thirst-

based motivational states33. These findings suggest that signals shared across brain areas may 

contribute to coordinating diverse behaviors.  But it remains unclear whether and how cross-area 

dynamics evolve during learning. Understanding these changes can help define the functional 
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role of cross-area activity, and provide new insight into learning mechanisms of distributed 

networks. 

Here, we aim to assess how population dynamics shared by M2 and M1 change during motor 

skill learning. We hypothesize that M2-M1 shared dynamics coordinate information between the 

regions and contribute to learning complex behaviors. To isolate activity shared across areas, we 

perform simultaneous multisite recordings in M2 and M1 and use the dimensionality reduction 

technique Canonical Correlation Analysis (CCA) to define the axes of maximal correlation 

between the M2 and M1 neural populations34. By simultaneously reducing dimensionality and 

optimizing for M2-M1 correlation, CCA can identify cross-area signals that may be missed by 

methods that exclusively optimize local variance. We use the term cross-area to refer to activity 

in each area which is maximally correlated with activity in the partner region. We thus aim to 

explicitly identify cross-area dynamics during both early exploratory learning and late learned 

execution of a skilled movement.  

In each region, we find that cross-area dynamics modulation is proportional to single-trial reaching 

behavior, and that modulation to reach initiation and reach duration is amplified with learning. We 

additionally find that local activity in M2 precedes local activity in M1, consistent with a top-down 

hierarchy between the signals more specific to M2 and M1. In line with this top-down functional 

role, M2 inhibition in well-trained animals impairs reach behavior and disrupts reach 

representation in M1 cross-area signals. Together, our results indicate that cross-area M2-M1 

population dynamics represent a necessary component of skilled motor learning. 

1.3 Results 

1.3.1 Learning increases movement-modulated neurons in M1 and M2 

We performed simultaneous recordings of population neural activity in M2 and M1 (Figure 1a, 

Supplementary Figure 1) in rats learning a cue-driven reach-to-grasp task, a well-established 

model for skill learning27,35,36. Both M2 and M1 are required for learning and execution of reach-
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to-grasp movements in both rodents and primates37–39. Animals learned to successfully retrieve 

pellets with training (hierarchical bootstrap, 104 shuffles used here and hereafter, 27.28% ± 3.06 

for Early, 57.64% ± 2.49 for Late, p<0.0001, n=5 rats). There were concomitant improvements in 

movement duration (hierarchical bootstrap, 0.30s ± 0.056 for Early, 0.20s ± 0.040 for Late, 

p=0.0027, n=5 rats) and reaction time (hierarchical bootstrap, 32.23s ± 24.58 for Early, 0.89s ± 

0.18 for Late, p<0.0001, n=5 rats)(Figure 1b, Supplementary Figure 2, Supplementary Table 1).  

To examine relationships between single-neuron activity and movements, we created trial-

averaged peri-event time histograms (PETHs) for both M2 and M1 in early and late learning. We 

used a circular shuffle test to quantify whether each neuron was significantly modulated 

(p<0.000125) (Figure 1c-d; Methods)40. Over learning, significantly more neurons in both areas 

were movement modulated (hierarchical bootstrap, n=5 rats; M1: 59.83% ± 8.89 for Early, 94.32% 

± 4.65 for Late, p<0.0001; M2: 48.19% ± 13.40 for Early, 88.03% ± 5.81 for Late, p<0.0001), 

consistent with prior work arguing that learning engages and amplifies representations in both 

regions4,10,27,41,42. However, as PETHs represent neural activity averaged across trials, increased 

PETH modulation can be driven by many neural and behavioral factors. Additionally, trial-

averaged activity from both early and late learning demonstrated evidence of sequential activation 

of neurons in a task-dependent manner10,17,21,40,43,44. While visual inspection of M1 and M2 PETHs 

in early and late learning suggest changes in correlated firing between areas, trial-averaged data, 

such as PETHs, inherently blur trial-by-trial variations in neural activity which may correspond to 

trial-by-trial variations in performance. Therefore, although PETHs from M1 and M2 may show 

temporal overlap, this does not indicate single trial correlated activity. PETHs also require time-

locking to a specific aspect of movement.  Thus, further analyses of single-trial data are essential 

for distinguishing between these confounding variables.  

Without modeling single-trial activity patterns, it is unclear how movement signals in M2 and M1 

correspond with single-trial performance over learning, or how task-relevant activity is coordinated 

between M1 and M2 on a moment-by-moment basis. Moreover, studies on population dynamics 
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have identified that single trial dynamics can be reliable and revealing about single-trial behavioral 

variation in well-trained animals18,28,45,46. However, these findings raise the fundamental questions 

of whether single-trial cross-area dynamics can inform our understanding of cortical 

communication during learning.   

1.3.2 Distinct cross-area dynamics versus single-unit interactions 

How then can we identify single trial activity patterns shared between M2 and M1?  We used 

canonical correlation analysis (CCA), which finds linear combinations of simultaneous M2 and M1 

activity that are maximally correlated with each other, to measure cross-area dynamics. The 

neuron weights obtained using CCA define axes in the high-dimensional M1 and M2 population 

spaces along which activity is most similar (see Methods). The projections of high-dimensional 

neural activity onto these axes provide a low-dimensional representation of shared signals (Figure 

2a-b).  

Our main analyses are done with CCA fit to neural data binned at 100ms, with no timelag between 

regions. For comparison, we also fit models to data binned at 75ms and 50ms at timelags from -

500ms to +500ms. We found that for most datasets, models fit using 100ms bins with no timelag 

resulted in the best generalizability to held out data (see Methods and Supplementary Figure 3). 

Additionally, we found that neuron weights and axes generated by CCA are different from those 

found with PCA, which instead defines axes of maximal variance in single-area population spaces 

(Supplementary Figure 4). In each region, the angles between axes of maximal local covariance 

(using PCA) and axes of maximal cross-area correlation (using CCA) are significantly different 

from zero, and did not change with learning (hierarchical bootstrap, n=4 rats; M2: 59.66º ± 4.57 

for Early, 59.34º ± 3.83 for Late, two-sided p=0.92; M1: 49.84º ± 5.49 for Early, 59.47º ± 8.68 for 

Late, two-sided p=0.43; in all cases, all bootstrap samples were >30º, p<0.0001). 

To validate the stability of this CCA axis, we calculated 10 sets of CCA neuron weights from ten 

randomly selected subsets of 90% of timebins (held out data was non-overlapping). Across all 
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datasets, the range of weights for models using the full datasets (mean ± std = 0.057 ± 0.16 a.u.) 

was much larger than the variance in each neuron’s weights between subsets (weight from subset 

– weight from full dataset, mean ± std = -2.37e-05 ± 0.02 a. u.). That CCA weights change by a 

small amount when fit to different subsets of data suggests that the CCA model for M2-M1 cross-

area activity is robust (Figure 2c). Further analyses were conducted without data subsampling.  

To verify that the CCA-defined M2 and M1 cross-area activity models represented behaviorally 

significant coordinated activity, we compared the R2 between the cross-area activity to CCA 

models fit on trial-shuffled data. We generated a reference distribution of R2 values between the 

top M1 and M2 canonical variables from 104 iterations of trial-shuffled data. Canonical variables 

fit to the true dataset were considered significant if their R2 value exceeded the 95th percentile of 

the reference distribution (see Methods). Shuffling data between trials while maintaining within-

trial temporal structure preserved and controlled for coarse activity fluctuations due to movement. 

We found that most datasets had one to three significant canonical variables (Figure 2d), 

confirming that CCA identified low-dimensional activity shared across M2 and M1. For one animal, 

the early dataset had no significant canonical variables; this animal was excluded from further 

analysis. 

Finally, we examined whether CCA identifies cross-area relationships equivalent to those 

identified using a single-neuron functional connectivity measure, short-latency cross-

correlations13,44,47,48. Specifically, if CCA consistently assigns high weights to M2 and M1 neurons 

which also have high cross-correlation values, this would indicate that CCA finds M2-M1 activity 

shared by individual neurons in each region. However, if the CCA weights of M2 and M1 neurons 

do not vary with cross-correlation values, then CCA-defined activity instead reflects distributed 

shared population dynamics not obvious at the single-neuron level. We found there was a weak 

but significant correlation between the mean CCA weights of M2-M1 neuron pairs and their short-

latency normalized cross-correlation values (linear regression, R2=0.0761, p=5.98x10-89, 

t=20.399, n=5056 neuron pairs from 4 rats)(Figure 2e-f). Therefore, M2 and M1 CCA neuron 
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weights capture aspects of short-latency correlations but can also capture additional information 

about cross-area dynamics (Fig 2g). This suggests that communication between cortical areas 

maybe be better modeled based on population-wide activity patterns rather than based on 

interactions between single neurons. 

1.3.3 Correlation of cross-area activity is stable across learning 

Does learning change the correlation of cross-area dynamics? If learning simply increases M1-

M2 activity coordination, we would expect the correlation of M1 and M2 cross-area activity to be 

lower during early exploratory actions than during skilled behavior.  To address this, we correlated 

M1 and M2 cross-area activity during three types of behavior: spontaneous behavior, exploratory 

reaches in early learning, and directed reaches in late learning (Figure 3a). Surprisingly, there 

was no difference in the mean correlation values (R2) of M1 versus M2 cross-area activity during 

the different behaviors (mixed effect model, 0.31 ± 0.04 for Spontaneous, 0.34 ± 0.10 for Early, 

0.30 ± 0.08 for Late; Spontaneous vs. Early: t(6)=0.46, p=0.66; Spontaneous vs. Late: t(6) = -

0.15, p=0.89; Early vs. Late: t(6) = -0.74, p=0.49; n=4 rats) (Figure 3b). Thus, generally increased 

coordination between M2 and M1 activity by itself seems unlikely to drive performance gains. 

1.3.4 Learning amplifies cross-area encoding of reach initiation 

An intriguing alternative is that learning is due to the modification of task representations within 

cross-area dynamics. Specifically, signals within the existing range of cross-area activity may be 

remapped to represent information about the task. Thus, while the overall range of M1-M2 cross-

area signals may not change, high amplitude cross-area activity may now be associated with a 

particular behavioral state. As noted above, we observed that the door open cue was more rapidly 

followed by reach initiation after learning (Figure 1b), suggesting that the timing of reach initiation 

might be an important marker of learning. We thus explored whether M1-M2 cross-area activity 

could account for this change. To visualize this possibility, we plotted the M1 cross-area activity 

versus the M2 cross-area activity during pre-reach and at reach initiation (Figure 4a). The 
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histograms show the probability density functions of the respective subspace activity before and 

during reach initiation. Interestingly, the two behavioral states were significantly more separable 

after learning (mixed effect model, M2: 0.31 ± 0.15 for Early, 1.29 ± 0.18 for Late, t(6) = 5.3806, 

p=0.0017; M1: 0.27 ± 0.14 for Early, 1.09 ± 0.12 for Late, t(6) = 6.7227, p=0.00053; n=4 rats) 

(Figure 4b), suggesting that high amplitude cross-area activity gained task relevance with 

learning. 

The increased task relevance of high amplitude cross-area activity was also apparent on a single-

trial basis. When viewed as single trial trajectories, peaks in cross-area activity became 

associated with reach initiation after learning (Figure 4c). We quantified this association across 

trials by building a logistic regression model to distinguish cross-area activity during two seconds 

before reaching versus a 400ms window at reach initiation. Strikingly, detection of reach initiation 

based on this cross-area activity model improved with learning (mixed effect model, 0.66 ± 0.03 

for Early, 0.87 ± 0.02 for Late, t(6) = 9.77, p=6.63 x 10-5, n=4 rats) (Figure 4d). Using the logistic 

regression model, we could then probe the time course of reach initiation prediction based on M1-

M2 cross-area activity (Figure 4e). On average, while the time of reach initiation was not well 

predicted during early trials, it became highly predictable after learning (hierarchical bootstrap, 

0.12 ± 0.044 for Early, 0.30 ± 0.082 for Late, p<0.0001, n=4 rats) (Figure 4f). 

1.3.5 Learning amplifies cross-area encoding of reach duration 

Does M1-M2 cross-area activity only coordinate movement initiation, or does it affect other 

aspects of reach performance? We examined whether single-trial M2-M1 cross-area dynamics 

were informative about single-trial reach duration, and whether the reach modulation of cross-

area activity for movements of similar duration changed with learning. To quantify reach 

modulation in single-trial activity, we calculated a cross-area modulation metric (CA-modulation), 

which compared neural activity during reaching versus an equivalent baseline period for each trial 

(Figure 5a, b). This measure is equivalent to the d' (d-prime) signal sensitivity index used in signal 
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processing (see Methods). To directly test the relationship between behavioral performance and 

M1 and M2 CA-modulation, we correlated CA-modulation with reach duration on a trial-by-trial 

basis (Figure 5c). Interestingly, we found that CA-modulation reliably covaried with reach duration, 

indicating that cross-area dynamics represent information relevant to behavioral performance 

(mixed-effect model, M2: log slope = -0.27, t(1531) = -14.43, p=2.36 x 10-44; M1: log slope = -

0.23, t(1562) = -13.88, p=2.05 x 10-41; n=4 rats). Additionally, both M1 and M2 CA-modulation 

increased with learning (hierarchical bootstrap, n=4 rats; M1: 0.45 ± 0.13 for Early, 1.97 ± 0.44 

for Late, p<0.0001; M2: 0.46 ± 0.12 for Early, 2.57 ± 0.62 for Late, p<0.0001; Figure 5d). This 

modulation increase was not simply due to overall improved reach performance; instead, 

movements of similar duration in early and late learning were more modulated in late learning, 

indicating amplified representation of learned skills. Thus, the process of learning appeared to 

enhance reach-specific signals in cross-area population dynamics. Amplification of these task-

specific signals spanning multiple brain areas may be a mechanism for coordinating network-wide 

activity related to salient behaviors during learning. 

1.3.6 M2 local activity precedes M1 local activity 

A prominent model of M2-M1 interactions during learning proposes a strong top-down influence 

from M2 to M13,4. While cross-area activity may coordinate areas, we expected that local activity 

in each region might reflect a M2-to-M1 top-down relationship. For example, if M2-specific local 

activity temporally preceded M1-specific local activity, it would suggest that M2 is more likely to 

play a top-down role. To address this, we first defined local activity as the population firing not 

accounted for in cross-area activity. For each 100ms time bin, we projected the population firing 

rate vector onto the hyperplane orthogonal to the CCA subspace, and used the magnitude of this 

vector as our local activity value (Figure 6a). We then quantified, on a single-trial basis, the 

difference in median timing of M2 and M1 local activity in early and late learning (Figure 6b-c, see 

Methods). We found that M2 local activity consistently preceded M1 local activity in both early 
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and late learning (Figure 6d). These timing differences were significant when quantified via 

permutation testing. Specifically, we randomly assigned trial activity to either M1 or M2, computed 

the timing differences of the permuted data (105 permutations), and used these differences as a 

reference distribution to evaluate the significance of the M2-M1 timing differences (p<0.00001) 

(Figure 6e). We used a similar approach to evaluate the change in M2-M1 temporal coupling. We 

thus randomly assigned M2-M1 timing differences to either early or late learning, computed the 

means of the permuted datasets (105 permutations), and used the difference of those means as 

a reference distribution to evaluate the significance of the M2-M1 temporal coupling change with 

learning. M2 and M1 local activity became more tightly coupled with learning, as quantified by the 

significant decrease in the timing gap between their local activities with learning (p<0.00001) 

(Figure 6f). These timing results are consistent with a M2 to M1 top-down hierarchical relationship. 

1.3.7 M2 inhibition disrupts skilled reaching 

Based on our results, we expected M2 activity to be necessary for improvements in behavior with 

learning, as well as for amplified representations of learned movements in M1 cross-area activity. 

If activity shared between M2 and M1 helped to shape M1 representations, then disrupting M2-

M1 cross-area activity should impact reaching behavior. To test this, we inactivated M2 in well-

trained animals using the GABA agonist muscimol (Figure 7a). Unlike control saline infusions 

(Supplementary Figure 5), M2 inactivation caused severe performance deficits, with reaching 

behavior qualitatively similar to early learning (Figure 7b). M2 inactivation decreased success rate 

(hierarchical bootstrap, 56.75% ± 5.16 for Baseline, 37.45% ± 6.88 for Muscimol, p=0.0082, n=6 

rats), increased reaction time (hierarchical bootstrap, 1.26s ± 0.28 for Baseline, 3.23s ± 0.74 for 

Muscimol, p<0.0001, n=6 rats), and increased reach duration (hierarchical bootstrap, 0.18s ± 

0.018 for Baseline, 0.29s ± 0.035 for Muscimol, p<0.0001, n=6 rats). M2 saline did not decrease 

success rate (hierarchical bootstrap, 54.81% ± 5.40 for Baseline, 57.84% ± 4.18 for Saline, 

p=0.7453, n=6 rats), but did cause small but significant increases in reaction time (hierarchical 
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bootstrap, 1.60s ± 0.37 for Baseline, 2.13s ± 0.49 for Saline, p=0.0021, n=6 rats) and reach 

duration (hierarchical bootstrap, 0.20s ± 0.024 for Baseline, 0.22s ± 0.025 for Saline, p=0.0452, 

n=6 rats). 

1.3.8 M2 inhibition preferentially disrupts M1 cross-area activity 

To examine the influence of M2 inactivation on M1 neural representations, we performed 

simultaneous recordings in M1 and M2 during baseline performance and during M2 inactivation 

on the same day in well-trained animals. This approach allowed us to define the M2-M1 cross-

area activity space with M2 intact, then track the effects of M2 disruption on single-unit M1 activity, 

M1 cross-area dynamics, and M1 local dynamics. First, we compared movement modulation of 

M1 single neurons during baseline reaches and M2 inactivation. Remarkably, not only did M2 

inactivation disrupt M1 single-neuron movement modulation (hierarchical bootstrap, 48.43% ± 

16.93 for Baseline, 24.88% ± 17.01 for M2 Muscimol, p=0.0137, n=3 rats) (Figure 7c), but the M1 

neurons which contributed most to M2-M1 cross-area activity (i.e. with the highest magnitude 

CCA-weights) experienced greater drops in movement modulation (linear regression on log(CCA 

weight mag.), R2=0.12, t=2.81, p=0.0067, n=60 neurons from 3 rats) (Figure 7e). This result is 

consistent with the model that M2 population activity shapes M1 population activity through M2-

M1 cross-area signals.  

Our data predicted that M2 inactivation might preferentially affect M1-M2 cross-area population 

dynamics, thereby removing top-down influence on M1, with minimal disruption of local M1 

computations. Intriguingly, we found that M2 inactivation disrupted movement modulation of M2-

M1 cross-area activity significantly more than the movement modulation of local M1 activity 

(Figure 8a). We quantified this by computing single-trial peak-to-trough values on a 1s interval 

centered on reach start for both cross-area and local signals. We found that across animals, both 

cross-area and local signals had decreased modulation with M2 inactivation, but that the decrease 

was significantly greater for cross-area signals (hierarchical bootstrap; M2 muscimol resulted in 
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a 58.19% ± 8.71 decrease in peak-to-trough amplitude for M1 cross-area signals, and a 26.52% 

± 7.20 decrease for M1 local signals, p=0.0042, n=3 rats). These results indicate a degree of 

independence between cross-area and local dynamics. This decoupling may provide a 

mechanism for resilience of local dynamics, improving robustness in the event of distant network 

damage. 

M2 inactivation resulted in a small but significant drop in firing rate across the M1 population 

(hierarchical bootstrap, 24.65 Hz ± 2.73 for Baseline, 19.15 Hz ± 4.64 for M2 Muscimol, p<0.0001, 

n=3 rats). However, histological analysis confirmed that this was not a direct effect of the 

muscimol itself, which did not reach M1 (Supplementary Figure 6). Instead, this effect may be due 

to loss of M2 inputs49. Furthermore, mean M1 local covariance did not change, indicating stability 

in local M1 functional connectivity (two-sided hierarchical bootstrap, 0.24 ± 0.063 shared 

variance/total variance for Baseline; 0.19 ± 0.043 shared variance/total variance for M2 Muscimol, 

p=0.28, n=3 rats, see Methods).  

1.3.9 M2 inhibition disrupts M1 representation of movement  

We found that M2 inactivation decreased M1 cross-area modulation during reach initiation (Figure 

8b-e). We quantified this by comparing the difference in median activity along the cross-area 

activity axis before reach and at reach initiation (Figure 8b-d), and found that this difference was 

significantly smaller during M2 inhibition (mixed effect model, 0.35 ± 0.06 for Baseline, 0.03 ± 0.09 

for M2 Muscimol, t(4) = -3.57, p=0.02, n=3  rats). As before, we fit a logistic regression model to 

predict reach onset from M1 cross-area activity. We quantified the model’s performance and saw 

that detection of reach initiation based on M1 cross-area activity decreased with M2 inhibition 

(mixed effect model, 0.64 ± 0.03 for Baseline, 0.52 ± 0.04 for M2 Muscimol, t(4) = -3.48, p=0.02, 

n=3 rats) (Figure 8e), indicating that M1 cross-area dynamics were less informative about reach 

initiation during M2 inhibition. 
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In addition to disrupting reach initiation signals, we also found that M2 inhibition decreased reach 

modulation of M1 cross-area dynamics (hierarchical bootstrap, 0.78 ± 0.21 for Baseline, 0.27 ± 

0.050 for M2 Musimol, p<0.0001, n=3 rats) (Figure 8f). This indicated that M2 input is necessary 

for intact M1 reach modulation and implied a M2 to M1 directionality. We additionally examined 

whether M2 inactivation entirely dissociated M1 cross-area modulation from behavioral 

performance. We found that the relationship between reach duration and M1 CA-modulation was 

still significant during M2 inactivation (mixed effect model, log slope = -0.26, t(187) = -5.54, p=9.99 

x 10-8, n=3 rats) (Figure 8g), underscoring the fundamental relationship between M1 and behavior 

even during motor system disruption.  

1.4 Discussion 

This study outlines a new approach to understanding simultaneous activity shared between two 

cortical areas. First, we demonstrate that a computational method identifying maximally correlated 

activity patterns between regions can be used to isolate cross-area population dynamics. Second, 

we show that cross-area population dynamics become more related to both reach initiation and 

duration with learning. Through causal manipulations, we found that local M2 inactivation 

disrupted M1 cross-area dynamics as well as skilled reach execution.  The M1 activity remaining 

in the M1-M2 cross-area dynamics axes was still predictive of single-trial behavior, indicating 

maintenance of meaningful movement activity in M1. However, M2 muscimol inactivation led to 

slower reactions to environmental cues and less efficient reaches, consistent with the hypothesis 

that attenuation of M2-M1 cross-area activity impairs M2 top-down guidance of behavior. These 

results demonstrate that M1-M2 cross-area dynamics represent and contribute to skilled 

execution.  

There are two common approaches to understanding M2 and M1 signals during movement. First 

is to compare neural signals from each region in order to detect differences supporting their 

distinct roles. This approach has led to a model of M2 and M1 functioning within a hierarchy, with 
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M2 providing top-down signals to M1 related to movement planning4,5,16, timing50, and 

context3,50,51. In contrast, the second approach focuses on similarities between M1 and M2. 

Because M1 and M2 are both highly active during well-learned movements, many studies 

combine activity from both regions to understand cortical single-neuron and population dynamics 

during movement24,28,52. This allows analysis of a larger number of neurons with similar 

relationships to movement. These two approaches emphasizing the differences and similarities 

in M2 and M1 data are not mutually exclusive, but they are rarely5 combined to understand how 

cross-area versus local signals contribute to network function.  

Here we analyzed both the activity simultaneously shared across M1 and M2, and the otherwise 

unaccounted-for activity in each region. In any brain region, exclusively local activity is impossible 

to identify in-vivo, as this would require comprehensive recordings from the entire brain in order 

to account for activity shared with any other region. However, M1 and M2 have heavily 

overlapping inputs and outputs53, allowing us to consider the M1-M2 cross-area activity as 

encompassing most of each region’s brain-wide shared activity. We found that the local dynamics 

in M2 and M1 had a clear temporal relationship, with M2 preceding M1, consistent with the 

pervasive model of top-down M2-to-M1 signals3,4. While this analysis quantified trial-by-trial timing 

in M2 and M1 local dynamics during early and late learning, it remains unknown whether more 

detailed analysis of M2 and M1 local dynamics would reveal additional trial-by-trial processes for 

top-down learning. However, as learning signals may initially be unpredictably related to many 

aspects of motor learning (timing, vigor, etc.) such work may be better accomplished in a dataset 

with more neurons from animals performing simpler behaviors. 

Shared neural population dynamics have been identified within single brain regions7,11,28, between 

two hierarchical cortical regions5,16,32, and across sets of functionally diverse brain regions17,18,33. 

In many cases, shared dynamics are defined solely on functional relationships in neural activity, 

independent of behavior (but see54). This approach moves away from the view of fluctuations in 

neural signals as noise in a stochastic system. Instead, it frames neural activity as encompassing 
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a range of neural computations without apparent relation to behavior18,24,28,55. Despite this 

behaviorally-independent approach to understanding neural signals, one common thread in 

studies of cross-area activity is the dominance of movement signals within shared dynamics18,46. 

This privileged representation of movement emphasizes its importance as the final output of the 

nervous system, and suggests the possibility that movement signals have a role in shaping neural 

activity in a broad array of functional systems, including cognitive and motivational circuits.  

Here, we use learning as an intervention to change the behavioral salience of reach-to-grasp 

movements. In other words, we probe how learned behavioral salience of a given movement 

changes its representation in cross-area neural signals. We found that cross-area representations 

of similar movements were less modulated in early learning than late learning, consistent with a 

functional role for cross-area activity in amplifying neural signals for salient behaviors. This 

interpretation is consistent with a study of correlated variability between neurons in V448, which 

found that the relationship between correlated variability and performance was the same for 

performance improvements driven by either attention or learning, two manipulations of behavioral 

salience. Thus, we posit that shared activity specifically modulates neural representations for 

salient behaviors.  

Past work has proposed that the role of M2 is to provide top-down control and contextual 

information to M14,51. Here, we provide insight into what such a signal might look like, and how it 

evolves with learning. In early learning, when behavior was exploratory and variable, high 

amplitude cross-area dynamics were less related to specific behavioral timepoints, and 

modulation of cross-area activity was weakly related to reaching. However, even at this early 

stage, reaches with more movement-modulated cross-area activity tended to have shorter 

durations. After learning, the relationship between cross-area activity modulation and behavior 

was amplified. Notably, the single-trial M1-M2 cross-area dynamics corresponding to similarly 

efficient, short duration reaches were not identical in early and late learning. This argues against 

the notion that pre-existing representations of efficient movements are selected through 
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learning56. Instead, our results support the idea that learning transforms and amplifies the neural 

signals for behaviors that are selected10. This finding also highlights the feasibility and importance 

of analyzing single-trials in order to understand highly variable behavioral states such as early 

learning.   

Finally, the influence of cross-area dynamics on behavior appears to be causal, since M2 

inactivation disrupted both M1 cross-area dynamics and reaching behavior, while local properties 

of M1 were less affected. Examining local activity during upstream inactivation provides a valuable 

approach to differentiating between activity dynamics generated locally and those from top-down 

influences. Such analyses are impossible in purely correlative studies, and, paired with same-day 

establishment of cross-area dynamics, demonstrate a novel approach to understanding how 

several patterns of covariance and information encoding overlap16,18,32,54 and interact within 

functional neural systems5,32. Furthermore, we found that when M2 inputs are removed, M1 local 

shared variance does not change. This is important because there has been increasing concern 

that acute changes in input to an area can perturb behaviorally relevant local population 

relationships49,57. Importantly, rats do produce some successful reaches during both early learning 

and M2 inactivation, although they are less frequent and less efficient. This demonstrates that M1 

can independently produce functional reach-to-grasp behavior, and suggests that top-down input 

from M2 is a learned signal, biasing M1 towards more effective behavior. This is concordant with 

long-standing models of top-down M1-M2 interactions during learning3 and reinforces the view 

that, while M2 and M1 both represent movement, M2 is particularly important for learned, complex 

skills2,4,6,51,58–60. 

Our results provide direct evidence that M1-M2 cross-area dynamics reflect task learning and 

single-trial skill performance. Knowledge of this phenomenon should help to better understand 

mechanisms of neural plasticity and functional properties of large-scale, hierarchical networks in 

the context of flexible learned behaviors. 
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1.5 Figures 

 
Figure 1.1  Motor skill learning is associated with increased cortical movement signals. 
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(a) (Top) Rats were trained to perform the reach-to-grasp task. (Bottom) Single-trial experimental 
paradigm. (b) Example reaches in early (left) and late (right) learning. (Top) Paw trajectories. 
White dot marks reach start position. Black dot marks reach end position. (Bottom) Example 
consecutive single-trial representations of reaction time (green striped bars) and reach duration 
(green bars). Right border of plot shows accuracy, with pellet retrieval success in grey and failure 
in black. (c) Population trial-averaged peri-event time histograms (PETHs) for premotor cortex 
(M2) (top) and primary motor cortex (M1) (bottom) units in early learning (n=5 rats). Significantly 
modulated neurons are shown above the white line, ordered by the time of their peak modulation. 
Non-significantly modulated neurons are shown below the white line, ordered by channel number. 
Firing rates are z-scored per-neuron for display only. (d) As in (c), but for late learning.   
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Figure 1.2 Canonical Correlation Analysis identifies shared cross-area dynamics. 

(a) Illustration of method for identifying cross-area dynamics. A multi-dimensional neural space 
can be defined using the activity of each M2 (left) or M1 (right) neuron as one dimension. Neural 
trajectories are shown in black (artificial data). Canonical correlation analysis (CCA, yellow) is 
used to identify shared axes, such that when the neural trajectories are projected onto these axes, 
as shown in (b), the resulting trajectories, called cross-area dynamics, are maximally correlated 
between M2 and M1. The yellow dots for M1 and M2 illustrations are the projected values for the 
same timepoint in (a) and (b). (c) In yellow, distribution of CCA weights when fitting on the full 
datasets. In grey, distribution of weights differences from 10 subsamplings of each dataset (i.e. weight 
from subset – weight from full dataset). (d) Example identification of significant canonical variables 
(CVs, yellow lines), relative to trial-shuffled data (grey distribution, 104 shuffles). Significance 
threshold at 95th percentile of reference distribution. For this dataset, two CVs were significant. 
(e) Example comparison of CCA weight magnitude to single-neuron pairwise cross-correlations. 
M1 units (red) and M2 units (blue) are ordered by the absolute value of their CCA weight for the 
top CV. Color in the cross-correlogram indicates normalized peak correlation coefficient for 
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timelags between -200ms and +200ms. (f) Across animals, pairwise cross-correlation is 
correlated with mean CCA weight magnitude for that neuron pair. (g) CCA identifies moment-to-
moment shared covariation patterns that may be hard to see by eye in single trial data. (Top) 
Population raster for an example trial in M2, where each row is a single neuron, sorted by CCA 
weight. (Middle) Population raster for the same trial in M1, sorted by CCA weight. (Bottom) The 
M2 and M1 cross-area dynamics for that same trial. The R2 between the M2 and M1 cross-area 
dynamics on this example trial is 0.3733.  



26 
 

 
Figure 1.3 Correlation of M1-M2 cross-area activity is stable across behaviors. 

(a) Correlation between M2 and M1 components of the M2-M1 cross-area population activity 
during (Left) spontaneous behavior, (Middle) early exploratory reaches, and (Right) late directed 
reaches. Spontaneous behavior was during the late learning day. Each data point is M2 and M1 
data from a single 100ms bin (n = 4 rats). (b) Quantification of (A) as crossvalidated R2 values. 
Bars show mean ± SEM, open circles show data from individual animals (n=4 rats). Correlation 
is not significantly different during spontaneous behavior, early reaches, and late reaches. Mixed-
effect model, two-sided t-test, not adjusted for multiple comparisons. 
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Figure 1.4 Learning increases cross-area representation of reach initiation. 

(a) M2-M1 cross-area activity before reach and during reach initiation for example animal, in early 
(left) and late (right) learning. Probability density functions of M1 (top) and M2 (right). Pre-reach 
activity in black. Reach start activity in yellow.(b) Quantification of (a) as the difference between 
pre-reach and reach median activity during early and late learning for M2 (p=0.0017)  (left) and 
M1 (p=0.00053) (right) cross-area activity. Yellow lines show values for individual animals, black 
line shows mean±SEM, n=4 rats. **, p< 0.01; ***, p<0.0001; two-sided t-statistics, not adjusted 
for multiple comparisons. (c) Example single-trial M2 and M1 cross-area activity before and during 
reach initiation. (Left) Early learning. (Right) Late learning. Time to reach initiation is indicated by 
triangles marking door opening (grey open triangle) and reach start (black open triangle). (d) ROC 
analysis of detection of reach initiation from M2 and M1 cross-area activity using logistic 
regression (example animal). (Inset) Difference in reach detection with learning quantified as the 
area under the curve (AUC) for all animals (p=6.63 x 10-5). Grey lines show values for individual 
animals, black lines show mean±SEM, n=4 rats. ****, p<0.0001. two-sided t-statistic, not adjusted 
for multiple comparisons. (e) Example single-trial prediction of reach initiation using the models 
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built in (d), same trials as (c). (Left) Early learning. (Right) Late learning. (f) Comparison of mean 
prediction of reach initiation during early (grey) and late (yellow) learning for example animal. 
Shaded region shows SEM, n=4 rats. 
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Figure 1.5 Learning amplifies cross-area representations of reach duration. 

(a) Example single trial M2 and M1 cross-area activity in early (left) and late (right) learning. Reach 
duration is indicated by triangles marking reach start (open triangle) and reach end (filled triangle). 
Single-trial baseline modulation in grey, reach modulation in yellow. (b) Equation for calculating 
cross-area activity (CA) modulation (see Methods). (c) Single-trial CA-modulation predicts single-
trial reach duration. Single-trial CA-modulation for M2 (left) and M1 (right) cross-area activity is 
plotted against single trial reach duration. Points show randomly subselected trials from early 
(black) and late learning (grey), with ellipses fitted to 2 standard deviations of the full datasets. All 
trials were used for quantification. (d) CA-modulation increases in both M1 and M2 with learning. 
Grey lines, also marked by black open circles, show values for individual animals, bars show 
mean ± std. dev., n=4 rats. ****, p<0.0001. one-sided hierarchical bootstraps, not adjusted for 
multiple comparisons. 
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Figure 1.6 Local signals support a M2 to M1 hierarchy. 

(a) Illustration of approach to identifying local activity using artificial data. Black line represents a 
population firing rate for a single time bin. Population firing was  projected onto a shared axis 
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defined by CCA (solid yellow line) to obtain the cross-area signal (dotted yellow line), and onto 
the hyperplane orthogonal to the CCA subspace (light red plane), to obtain the local signal (dotted 
red line). (b) Example animal local activity in early learning (z-scored). (Top) Single trial local 
activity trajectories for M2. Black dots indicate reach onset and white dots indicate transition to 
grasp on each trial. (Middle) Single trial local activity trajectories for M1. (Bottom) Mean local 
activity trajectories for M2 (blue) and M1 (red). Shaded regions show SEM, n=211 trials. (c) As in 
(b), but for late learning, n=297 trials. (d) Distributions of timing differences between median timing 
of single-trial M2 and M1 local activity in early (brown) and late learning (grey) (from example 
animal in b, c). Black dotted line indicates zero lag in M2-M1 median timing of local activity. (e) 
Quantification of M2-M1 timing differences (n=4 rats). In grey, permutation-based reference 
distribution of timing differences with data randomly assigned to M1 or M2 (105 permutations). M2 
local activity significantly preceded M1 activity in early (green) and late (orange) learning. (f) 
Quantification of tighter coupling between M2 and M1 local activity from early to late learning (n=4 
rats). In grey, permutation-based reference distribution of mean difference in M2-M1 timing 
coupling with M2-M1 timing differences randomly assigned to early or late learning (105 
permutations). The true difference in M2-M1 coupling between early and late learning (purple line) 
was more negative than any of the reference values, indicating that the time lag between M2 local 
activity and M1 local activity significantly decreased with learning.    
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Figure 1.7 M2 inhibition disrupts learned reach behavior and M1 single-unit movement 

modulation. 

(a) Rats previously trained on the reach-to-grasp task were infused with muscimol in M2. (Bottom) 
Experimental paradigm for evaluation of reach behavior during M2 inactivation (see Methods). (b) 
(Top) Example reach trajectories during baseline (left) and  M2 Muscimol (right) trials. White dot 
marks reach start position. Black dot marks reach end position. (Bottom) Example consecutive 
single-trial representations of reaction time (purple striped bars) and reach duration (purple bars) 
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for baseline (left) and M2 muscimol inactivation (right). Right border of plot shows accuracy, with 
success in grey and failure in black. (c) Population PETH for M1 units across n = 3 rats during 
baseline (left) and muscimol inactivation (right). Each neuron’s PETH was tested for trial 
modulation during the baseline period using a circular shuffle test. Only neurons that were 
significantly modulated  during the baseline period are shown, ordered by their peak time during 
the baseline period in both plots. Firing rates are z-scored per-neuron. (d) Due to the same-day 
inactivation paradigm, CCA weights could be computed for the baseline session, and then used 
with the M1 data recorded during the M2 muscimol session. (e) Across animals, for each neuron 
(yellow dot), the change in task modulation between baseline and M2 inactivation was computed 
(baseline – M2 muscimol), and compared to that neuron’s absolute value CCA weight from the 
baseline period. The regression fit (purple) shows that neurons with higher magnitude CCA 
weights tended to have larger drops in modulation. Two-sided t-statistic, not adjusted for multiple 
comparisons. 
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Figure 1.8 M2 inhibition disrupts M1 cross-area movement modulation. 

(a) (Top) Comparison of z-scored, trial-averaged M1 cross-area activity magnitudes during 
baseline (yellow) and M2 inactivation (grey) for one example animal. M1 CCA weights were 
defined during baseline period and used to calculate cross-area activity during both baseline and 
M2 inactivation trials. Solid line shows mean and shaded region shows standard error of the 
mean. (Bottom) As above, but for M1 local signals during baseline (red) and M2 inactivation 
(grey), suggesting that local signals are not as impacted by M2 inactivation. n=91 trials for 
Baseline, n=92 trials for M2 Muscimol (b) Neural activity from M1 cross-area subspace before 
(black) and during (grey) reach initiation during baseline block. (c) As in (b), but during M2 
inactivation trials. (d) Quantification of (b,c) as the difference between median pre-reach and 
reach activity during baseline and M2 inactivation trials in M1 cross-area subspace. Yellow lines 
show data from individual animals, black line shows mean ± SEM, n=3 rats. p=0.02. *, p<0.05. 
two-sided t-statistic, not adjusted for multiple comparisons. (e) Detection of reach initiation from 
M1 cross-area subspace activity using ROC analysis on logistic regression model (example 
animal). (Inset) Difference in reach detection quantified as the area under the curve (AOC) for all 
animals. Grey lines show data from individual animals; black lines show mean±SEM, n=3 rats. 
p=0.02. *, p<0.05. two-sided t-statistic, not adjusted for multiple comparisons. (f) M1 cross-area 
activity (CA) modulation decreases significantly with M2 inactivation. Yellow lines, also marked 
with black open circles, show data from individual animals, bars show mean ± std dev., n=3 rats. 
****, p<0.0001. one-sided hierarchical bootstrap, not adjusted for multiple comparisons. (g) 
Single-trial M1 CA-modulation predicts single-trial reach duration even during M2 inactivation. 
Plot shows random subsampling of trials across animals, all trials were used in quantification. 
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1.6 Methods 

1.6.1 Animal Care 

All procedures were in accordance with protocols approved by the Institutional Animal Care and 

Use Committee at the San Francisco Veterans Affairs Medical Center. Adult male Long Evans 

rats (n=10, 250–400 g; Charles River Laboratories) were housed in a 12-h/12-h light–dark cycle. 

All experiments were done during the light cycles. Rats were housed in groups of 2 animals prior 

to surgery and individually after surgery. 

1.6.2 Surgery 

All surgical procedures were performed using a sterile technique under 2–4% isoflurane. Surgery 

involved cleaning and exposure of the skull, preparation of the skull surface (using cyanoacrylate) 

and then implantation of the skull screws for overall headstage stability. Reference screws were 

implanted posterior to lambda and ipsilateral to the neural recordings. For experiments involving 

physiological recordings, craniotomy and durectomy were performed, followed by implantation of 

the neural probes. For experiments involving only infusions, burr holes were drilled in the 

appropriate locations, followed by implantation of the cannulas. Postoperative recovery regimen 

included the administration of 0.02 mg kg-1 buprenorphine for 2 days, and 0.2 mg kg-1 meloxicam, 

0.5 mg kg-1 dexamethasone and 15 mg kg-1 trimethoprim sulfadiazine for 5 days. All animals were 

allowed to recover for 1 week prior to further behavioral training. 

1.6.3 Electrode array and cannula implants 

Long-Evans hooded rats were implanted with two 32-channel tungsten wire probes (TDT or 

Innovative Neurophysiology), one each in M1 (+0.5 AP, +3.5 ML, -1.5 DV)27,38,44,61 and M2 

(+4.0-4.5 AP, +1.5 ML, -1.5 DV)61,62, contralateral to reaching arm (see Supplementary Table 2). 

Infusion cannulas were implanted in M2 (+4.0 AP, +1.5 ML, -1.5 DV) for infusion-only animals. 
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For rats with both M2 electrode arrays and cannulas, the cannula was attached to the lateral side 

of the electrode array prior to surgery. 

1.6.4 Functional ICMS Mapping 

Two additional animals were used to confirm that forelimb movement could be evoked from both 

M1 and M2 (see Supplementary Figure 1). For the two mapping procedures, animals were initially 

anesthetized with a mixture of ketamine hydrochloride (100 mg kg-1) and xylazine (16.67 mg kg-

1) delivered intraperitoneally. Supplementary 0.5-1 cc doses of the mixture were provided as 

needed, based on toe-pinch response. 32-channel tungsten microwire electrode arrays (Tucker 

Davis Technologies, ~50 kΩ input impedance at 1000 Hz) were implanted in M1 (n=1) and M2 

(n=1), at a depth of 1500 µm, targeting cortical layer V.  

Consistent with prior studies63,64, we used triplet biphasic trains of 200 µs per phase (100 µs inter-

phase interval, 333 Hz triplet) were delivered at each electrode using a constant current stimulator 

(IZ2, TDT) controlled by a custom Synapse program (TDT). These trains were delivered with 60-

150 µA amplitude64,65. Movements were evoked across large portions of the M1 and M2 arrays 

(Supplementary Figure 1). Animals were placed in a prone position such that the contralateral 

forelimb remained free. Stimulation was delivered at each electrode in the array with video 

recording at 20 frames per second. Movement, if elicited, was visible immediately after onset of 

stimulation, with greater amplitude of movement at higher currents and frequencies. 

1.6.5 Pharmacological infusions 

Rats were anesthetized with 2% isoflurane before infusions. We injected 0.5 - 1µL (1 μg μL-1)44,60 

of the GABA receptor agonist muscimol into contralateral M2 (infusion rate: 1nL min-1) through a 

chronically implanted cannula using a Hamilton infusion syringe. The infused volumes were 

titrated for each animal. We first started with the larger volume (1µL). If the animal was unable to 

reach within 2 hours, we downscaled to the smaller volume (0.5µL). The infusion syringe was left 



37 
 

in place for at least 5 min post-infusion. Rats were allowed to recover in their home cages for 2 

hours before starting behavioral testing. 

1.6.6 Histology 

Final placement of the electrodes was monitored online based on implantation depth and verified 

histologically at the end of the experiments. Rats were anesthetized with isoflurane and 

transcardially perfused with 0.9% sodium chloride, followed by 4% formaldehyde. The harvested 

brains were post-fixed for 24 h and immersed in 20% sucrose for 2 days. Coronal cryostat 

sections (40-μm thickness) were mounted with permount solution (Fisher Scientific) on 

superfrosted coated slides (Fisher Scientific). Images of a whole section were taken by a HP 

scanner, and microscope images were taken by a Zeiss microscope. 

1.6.7 Behavioral training 

We used an automated behavior paradigm to train rats to perform dexterous reach-to-grasp 

movements36. Rats learn to reach through a narrow slot to grasp and retrieve a 45 mg pellet from 

a shallow dish (i.e. pellet holder) placed ~1.5 cm outside the behavioral box35. Prior to 

implantation, rats were handled and habituated to the behavioral box for at least one day, then 

manually prompted to reach for a pellet 10-30 times to determine handedness. Handedness was 

determined when rats reached with the same hand for >= 70% of at least 10 test trials. The start 

of each trial was signaled with a tone and the opening of a door allowing access to the pellet. 

Trials ended when the door was closed, which was triggered either by the pellet being dislodged 

from the pellet holder, or, if this did not occur, ~15s after door opening. 

1.6.8 Behavioral training for learning animals 

Once handedness was determined, rats were implanted with neural probes (see Surgery). For 

two days before behavioral training, rats were food restricted, followed by feeding animals a fixed 

amount during the course of training. During behavioral training, rats were placed in an automated 

reach box and completed 38-300 trials per day. The early learning training day was the first day 
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on which the rat completed at least 30 trials. The late learning training day was the second 

consecutive day on which the rat performed with at least 45% success rate (see Supplementary 

Table 1). 

1.6.9 Behavioral training for M2 inactivation animals 

Once handedness was determined, rats were trained until their success rate reached a plateau 

(at least 2 consecutive days with performance above 45% and > 100 completed trials/day), after 

which they were implanted with infusion cannulas alone (n=3 rats), or with infusion cannulas and 

electrodes (n=3 rats) (see Surgery). Rats were allowed at least a week of recovery after surgery 

before beginning behavioral testing. Rats were re-trained until plateau performance (>2 

consecutive days with performance above 40%). On M2 inactivation days, rats performed ~100 

reach trials before receiving pharmacological infusions. After 2 hours of rest post-infusion, rats 

were re-tested for ~100 trials (see Supplementary Table 1). 

1.6.10 Behavioral analysis 

Rat behavior was video recorded using a side view camera (30 - 100 Hz, see Supplementary 

Table 1) positioned outside the behavioral box, perpendicular to the main direction of movement. 

Each rat’s reach hand was painted with an orange marker at the start of each day. Reach videos 

were viewed and semi-automatically scored to obtain trial success, hand position, time points for 

reach onset, and grasp onset. To characterize motor performance, we quantified reach duration, 

reaction time, maximum movement speed, and pellet retrieval success for each trial. Percent 

reach success is the percent of trials on which the pellet was retrieved during a single day of 

training, excluding trials in which the rat did not dislodge the pellet from the holder or displayed 

abnormal behavior (i.e. licking, reaching with the wrong hand). Reach duration for each trial was 

defined as the time from the start of reach to onset of grasping or when the paw first touched the 

pellet if no grasping occurred on that trial. Reaction time was defined as the time between the 
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door open cue and movement onset – note that since the rat was freely moving in the behavior 

box, reaction time is affected by both the rat’s position and attention at the time of the cue. 

1.6.11 Electrophysiology data collection 

We recorded extracellular neural activity using tungsten microwire electrode arrays (MEAs, n=8 

rats, TDT or Innovative Neurophysiology). We recorded spike and LFP activity using a 128–

channel TDT–RZ2 system (TDT). Spike data was sampled at 24,414 Hz and LFP data at 1,018 

Hz. Analog headstages with a unity gain and high impedance (~1 GΩ) were used. Snippets of 

data that crossed a high signal-to noise threshold (4 standard deviations away from the mean) 

were time-stamped as events, and waveforms for each event were peak aligned. MEA recordings 

were sorted offline using either superparamegnetic clustering program (WaveClus66) or a 

density-based clustering algorithm (Mountainsort67). Clusters interpreted to be noise were 

discarded, but multi-units were kept for analysis. Trial-related timestamps (i.e., trial onset, trial 

completion, removal of pellet from pellet holder, and timing of video frames) were sent to the RZ2 

analog input channel using an Arduino digital board and synchronized to neural data. 

1.6.12 Cross-area neural subspace and population dynamics 

Shared cross-area subspaces were defined using Canonical Correlation Analysis (CCA), which 

identifies maximally correlated linear combinations between two groups of variables. Neural data 

in M2 and M1 was binned at 100ms, and data from -1s to +1s surrounding time of grasp onset 

was concatenated across trials and mean subtracted. CCA models were fit using the MATLAB 

function canoncorr. For analyses and figures involving times outside the -1s to +1s window around 

grasp, data from other time periods was projected onto these models.  

CCA produces as many canonical variables (CVs) as the number of neurons in the smaller 

population (e.g., if there are 30 M2 neurons and 20 M1 neurons, then CCA will fit 20 CVs). The 

R2 values of each CV were computed using 10-fold cross-validation, and the R2 values reported 

in Figure 3b are for the top CV only. The cross-validation procedure used to compute the R2 
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values is as follows: The full dataset was randomly partitioned into 10 equal folds (ignoring trial 

structure, i.e. timepoints from the same trial could be assigned to different folds). Then, ten 

different times, one fold was assigned to be the test data and the other nine to be the training 

data. CCA models were fit to the training dataset. The test data was then projected onto the 

training model, and R2 values were computed between the M1 and M2 projections for each CV. 

The R2 values reported for each CV are the average across all 10 combinations of testing/training 

data, and are intended to measure how well the models generalize to held-out data. Other than 

when reporting R2 values (Figures 2d, 3b; Supplementary Figure 3a,d), or comparing weights fit 

on different subsets of data (Figure 2c), the CCA models used were those fit to the full datasets. 

To determine which CVs were significant, the R2 of each CV was compared to a bootstrap 

distribution made of the R2 of the top CV from CCA models fit to trial-shuffled data (104 shuffles). 

Specifically, before fitting CCA, trials from M2 were concatenated in the order in which they 

occurred, while trials from M1 were randomly permuted prior to concatenation. This method 

maintains local neural patterns, as well as neural modulation which could be attributed to coarse 

behavioral variables that do not vary by trial, while breaking moment-by-moment relationships 

between the regions. Therefore, computing CCA on trial shuffled data provides a floor for the 

degree of correlation expected from the fact that many neurons in both regions have firing rate 

fluctuations around the time of grasp. A CV was considered significant if its R2 was greater than 

the 95th percentile of the bootstrap distribution. One animal was eliminated from further analysis 

because its early dataset had no significant CVs. All other datasets had 1 to 3 significant CVs. 

For evaluating cross-area signals (Figures 2-5, 7e, 8b-g; Supplementary Figures 3a-c, 4), only 

the top CV was used, as this provided a consistent dimensionality across datasets, and a signal 

with both magnitude and sign.  

To test whether results were unique to the 100ms bin width, CCA models were also fit to data 

binned at 75ms and 50ms (Supplementary Figure 3). Qualitatively, CCA trajectories fit to smaller 

bin widths appeared noisier but had peaks at similar timepoints as the 100ms models. There was 
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no significant difference in R2 between the 100ms bin width and the 75ms bin width, but the 50ms 

bin width had a significantly smaller R2 than either the 100ms or 75ms models (two-sided 

hierarchical bootstrap, 104 shuffles; 0.27±0.047 for 100ms models, 0.28±0.046 for 75ms models, 

0.22±0.037 for 50ms models; p=0.83 for 100ms vs 75ms; p=0.016 for 100ms vs 50ms; p<0.0002 

for 75ms vs 50ms;  n=160 R2 values from 8 datasets each with 10-fold cross-validation for each 

condition), suggesting that larger bin sizes are needed to capture the cross-area signal. We also 

compared the angle between the top CV for models fit to 100ms, 75ms, and 50ms data 

(hierarchical bootstrap, 104 shuffles; 13.74º ± 2.40 for angle between 100ms model weights and 

75ms model weights, 20.04º ± 3.05 for 100ms vs 50ms, 18.22º ± 2.62 for 75ms vs 50ms; n=8 

models per binwidth, each fit to early or late data from 4 rats). In M2, we found that the angle 

between the 100ms and 75ms models was significantly smaller than both the angle between the 

100ms and 50ms models (p=0.0094) and the angle between the 75ms and 50ms models 

(p=0.0041). In M1, we found that the angle between the 100ms and 75ms models was significantly 

smaller than the angle between the 100ms and 50ms models (p=0.00089) but not significantly 

smaller than the angle between the 75ms and 50ms models (p=0.097). For all models, all 

bootstrap samples were less than 45º, suggesting that models fit to different binwidths identified 

similar patterns of covariation. Additionally, we fit CCA models for all three binwidths at timelags 

from -500ms to +500ms, and found that for 6 of 8 datasets, using 100ms bins with no lag resulted 

in the highest R2 values. 

1.6.13 Normalized cross-correlation 

Normalized cross-correlations were calculated as the peak correlation coefficient for timelags 

between -200ms and +200ms minus the mean correlation coefficient for all timelags in that range. 

1.6.14 Local neural subspace and population dynamics 

Local signals were computed by projection onto the hyperplane orthogonal to the cross-area 

subspace defined by CCA. For comparison to local signals (Figures 6, 8a), all significant CVs 
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were used to define the cross-area subspace, so that the local signal would be orthogonal to all 

significantly correlated cross-area activity. This meant that dimensionality varied across datasets, 

and the signals analyzed were the magnitudes of the projections onto the cross-area and local 

subspaces. 

1.6.15 Reach start decoding 

To calculate the difference in cross-area subspace (CS) activity before reach initiation versus 

during reach initiation, we defined a pre-reach period as -2s to -0.1s before reach initiation and a 

reach initiation period from -0.1s to +0.3s surrounding reach initiation. CS activity from each of 

these periods was concatenated across trials to then calculate the median CS activity value. The 

difference between median CS activity during pre-reach and reach initiation was calculated for 

each animal. 

For reach start prediction, activity from pre-reach and reach initiation was labelled as 0 or 1, 

respectively, which was then used as the response values to train a logistic regression model 

using the MATLAB function fitglm. The probability that CS activity values corresponded to a 

timepoint during reach initiation was returned as scores. We then used these scores to compute 

the receiver operating characteristic (ROC) curve of the classification results using the MATLAB 

function perfcurve. The area under the curve (AUC) was returned for each animal, and these 

values were used in mixed effect modeling to detect difference in pre-reach versus reach initiation 

activity during early versus late learning, and baseline versus muscimol behavior. 

The logistic regression model was used to calculate the probability of reach initiation based on 

CS activity on single trials. We calculate the single-trial difference in the mean predicted 

probability of reach initiation during the pre-reach versus reach initiation periods. We compared 

this difference using all trials in early versus late learning, and baseline versus muscimol behavior. 

We plotted the median probability of reach initiation across trials aligned to reach initiation. 
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1.6.16 Neural reach modulation 

Single-trial neural reach modulation of the first canonical variable from CCA was calculated using 

the signal processing d' (d-prime) signal sensitivity metric defined by the equation below68, where 

𝜇 indicates the mean and 𝜎 indicates the standard deviation of the signal. For each trial, the reach 

period was defined as -0.1 s before reach onset to + 0.1s after grasp onset; the baseline period 

was defined as a length of time equal to the reach period, ending 1s before the start of the reach 

period. To produce single-trial normalization, the median value from the baseline period was 

subtracted from both the movement signal and the baseline signal before calculating the single-

trial modulation value (d'), as below.  

 

(1)    𝑑′ =  𝜇reach−𝜇baseline
1
2√𝜎reach+𝜎baseline 

 

1.6.17 Mean local covariance 

Each neuron’s shared over total variance was calculated as in Athalye et al., 20177 using code 

adapted from Yu et al., 200969. Briefly, we used the factor analysis function fastfa to model each 

neuron’s firing rate distribution as the sum of three elements: (1) a mean rate; (2) private variance 

from neuron-specific firing fluctuations not shared by the population being analyzed, and (3) 

shared variance driven by population signals (factors). For each neuron, shared over total 

variance is calculated as shared variance / (shared variance + private variance). 

Using the fastfa function, we represent a column vector of N neurons’ mean firing rates as µ (rank  

N). Each neuron’s private variance is an element of the diagonal matrix ∑private (rank N x N). Each 

neuron’s weights for creating k shared population signals are rows in the matrix U (rank N x k, 

where k < N). The population covariance matrix is calculated as ∑shared = UUT (rank N x N), with 

the diagonal values representing the shared variance for each neuron. Therefore, the matrix of 

total variance for the population of neurons is represented as ∑total = ∑shared + ∑private. Neuron i’s 
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shared over total variance is ∑shared
ii/∑tota

lii. We chose to use k = 3 latent shared variables using 

the leave-one-out strategy outlined in Yu et al., 200969. 

1.6.18 Subspace alignment 

The alignment between the subspaces defined by CCA and by PCA (Supplementary Figure 4) 

was calculated using the MATLAB function subspace. Weights for the top 3 PCs were included 

for the local subspace. Weights for only the top 1 CV were included for the shared subspace. 

1.6.19 Statistical analysis 

Unless stated otherwise, all measurements were taken from distinct samples. We did not adjust 

for multiple comparisons. Normality was explicitly tested via Anderson-Darling test. For 

distributions that were non-normal, statistical testing was done using hierarchical bootstrap 

analysis, which is non-parametric70 and p-values were computed as a one-sided test unless 

otherwise noted. For hierarchical bootstrap tests, statistics are written as mean ± standard 

deviation, and data was clustered by rat identity and, where relevant, condition (early vs. late, or 

baseline vs. infusion). Unless otherwise noted, 104 permutations were used. For one-sided tests 

the lowest obtainable p-value was 0.0001, and for two-sided tests the lowest p-value obtainable 

was 0.0002; therefore, some p-values are reported as p<0.0001 or p<0.0002 rather than precise 

values. When distributions were normal, we used linear mixed effect modeling by the MATLAB 

function fitlme. For mixed effect models, statistics are written as mean ± standard error of the 

mean, and rat identity was always considered a random effect. When calculating changes in 

neural reach modulation between early and late learning, we included reach duration as a 

covariate to control for changes in reach duration between early and late learning. When 

calculating the relationship between neural reach modulation (log) and reach duration (log), only 

trials with positive neural modulation were included, and we included learning stage (early vs. 

late) as a covariate. 
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1.7 Supplementary Materials 

 
Figure 1.9 M1 and M2 implantation coordinates. 

(a) Stimulation-based coordinates for M1 and M2 in Long-Evans rats. Shown in green and teal 
are regions where ICMS evoked forelimb movement in the two Long-Evans rats reported in 
Neafsey et al. 198661; the maps were translated from diagrams of insufflated brains to flat 
coordinates. Shown in purple are array locations for two animals from our lab, each with a single 
array implanted in either M1 or M2. Electrical stimulation on these arrays evoked forelimb 
movements for both animals while under anesthesia. Shown as black x marks are the implantation 
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coordinates for animals in the present study (see Supplementary Table 2). All reaching animals 
were implanted contralateral to their dominant hand, but coordinates for right hemisphere implants 
have been transposed onto the left hemisphere. Anterior medial sites are for M2 arrays, while 
posterior lateral sites are for M1 arrays. We observed neural responses evoked by awake, 
behaving forelimb movement across both arrays in all experimental animals. (b) M2 muscimol 
spread included most M2 recording sites and excluded all M1 recording sites. Colored markers 
indicate center of implantation sites for experimental animals. Unlike (a), markers have been 
jittered at sites where multiple animals had an implant. Marker color corresponds to animal ID, 
and marker shape indicates animal cohort (see Supplementary Table 2 for detailed legend). 
Green shaded circle indicates estimated M2 muscimol spread. The center of the circle is placed 
at the surgical coordinates for the two animals that underwent acute injection only (see Methods), 
and the radius of the circle is calculated based on histology from these animals (see 
Supplementary Figure 6). The gray shaded region shows the combined silhouette of all M2 arrays, 
and the red shaded region shows the combined silhouette of all M1 arrays. As in (a), all right 
hemisphere implants were transposed to the left hemisphere. (c) Grids represent the arrays 
shown in purple in (a), with color indicating channels where stimulation evoked reach-like, grasp-
like, or other forelimb movement. Arrays are shown in the same orientation as in (a), dimensions 
are not to scale. 
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Figure 1.10 Elaboration of reach-to-grasp learning behavior. 

(a) (Top) Speed profile for example trials in early (left) exploratory reaches and late (right) directed 
reaches. White dot marks reach start time. Black dot marks reach end time. Single-trial reach 
duration is driven by efficiency of reach targeting rather than maximal reaching speed. (Middle) 
Probability distribution of reaction times in early (left) exploratory reaches and late (right) directed 
reaches for example animal. (Bottom) Probability distribution of reach durations in early (left) 
exploratory reaches and late (right) directed reaches for example animal. For further details, see 
Supplementary Table 1. (b) Raster and PETH for example task-modulated unit from M2 in early 
learning. (c) Raster and PETH for example task-modulated unit from M2 in late learning. This unit 
was recorded on the same channel as (b). (d) Raster and PETH for example task-modulated unit 
from M1 in early learning, from same animal as (b,c). (e) Raster and PETH for example task-
modulated unit from M1 in late learning. This unit was recorded on the same channel as (d).  
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Figure 1.11 Fitting CCA with different bin-widths. 
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(a) CCA models were fit to data binned at 100, 75, and 50ms. For each dataset and model, R2 
values of the top CV were computed on 10 folds of data (90% of time bins 10 ways, held out time 
bins were randomly chosen and non-overlapping). Bars show mean ± std. dev. R2 values for all 
models fit to data at a particular binwidth, open circles show R2 values for individual models (4 
animals x 2 sessions x 10 folds = 80 models per bin width). R2 values were not significantly 
different between the models fit on 100ms data and the models fit on 75ms data (p=0.83), but 
were significantly lower for the models fit on 50ms data (p=0.016 for 100ms vs 50ms; p<0.0002 
for 75ms vs 50ms). *, p<0.05; ***, p<0.001; two-sided hierarchical bootstraps, not adjusted for 
multiple comparisons. (b) Angle between the top CVs of CCA models fit on 100ms, 75ms, or 
50ms binned data. Shaded circular histogram shows bootstrap distribution of angles, black line 
shows median value of bootstrap distribution. Radius indicates proportion of bootstrap samples 
belonging to a bin. For all comparisons, the angle between models was much smaller than 90º, 
indicating that models fit on different binwidths indentified similar patterns of covariation. For M2 
(bottom), the angle between the 100ms and 75ms models (left) was significantly smaller than the 
angle between the 100ms and 50ms models (center) or between the 75ms and 50ms models 
(right). For M1 (top), the angle between the 100ms and 75ms models was significantly smaller 
than the angle between the 100ms and 50ms models, but not significantly smaller than the angle 
between the 75ms and 50ms models. (c) Single trial trajectories were qualitatively similar at 
different bin widths. Data shown is the same time range the models were fit on. Trials are sorted 
by duration and max-normalized for visualization. (d) Canonical correlation values (left two plots) 
and cross-validated R2 values (right two plots) across canonical variables. For both metrics, 
values drop off at a low dimensionality. Larger, filled circles indicate CVs that were statistically 
significant relative to models fit on trial-shuffled data (see Methods). Light colors indicate early 
learning datasets, dark colors indicate late learning datasets. 
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Figure 1.12 PCA identifies a mix of local and cross-area dynamics. 

(a) Length of stems indicate weights for each neuron’s contribution to local or cross-area activity, 
derived using PCA and CCA respectively. Neuron weights were normalized by the maximum 
value for any neuron in that subspace. PCA and CCA weights are shown offset and opposing for 
visual clarity; for all models, more neurons had positive weights than negative. M2 and M1 
subspace neuron weights in early (left) learning and late (right) learning. (b) Angle in multi-
dimensional neural space between PCA and CCA subspaces for M2 (top) and M1 (bottom), for 
both early (left) and late (right) learning. Shaded histograms show bootstrap distribution of angles, 
solid black lines show median value of the bootstrap distribution. Radius indicates the proportion 
of bootstrap values in each bin. 
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Figure 1.13 M2 saline infusions do not severely affect learned reach behavior. 

(a) (Left) Rats previously trained on the reach-to-grasp task were infused with saline in M2. (Right) 
M2 saline increased reaction time (p=0.0021) and reach duration (p=0.0452), but did not decrease 
success rate (p=0.7453). Brown lines show values for individual animals, black lines show mean 
± std. dev. *, p<0.05; **, p<0.01, hierarchical bootstraps, one-sided, not adjusted for multiple-
comparisons. (b) Experimental paradigm for evaluation of reach behavior during M2 saline 
infusion. (c) Example reach from a single animal during baseline (left) and M2 saline infusion 
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(right). (d) Example consecutive single-trial representations of reaction time and reach duration. 
Right border of plot shows accuracy, with success in grey and failure in black. 
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Figure 1.14 Histological verification of M2 muscimol spread. 

(a) Images showing fluorescent muscimol spread at the injection site (top), M2 (center), and M1 
(bottom) in one acute injection animal (T409, see Methods). AP position is reported by 
comparison to brain atlas71. Fluorescent muscimol is shown in red, DAPI in blue. Scale bar 
represents 500 μm. (b) Estimated muscimol spread was measured independently in two animals, 
with similar results. Slices were imaged starting with the injection site (determined based on tissue 
damage) and moving posteriorly until no fluorescence was seen for several slices. Fluorescence 
area was calculated using ImageJ after correcting to a baseline fluorescence value from a distant 
slice. Circles indicate slices where AP position was determined with reference to a brain atlas. 
Triangles indicate slices where AP position was inferred based on slice width and atlas-referenced 
slices. In both animals, fluorescence was close to zero starting at +2.7 AP. By averaging the two 
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animals, we estimated muscimol spread to be 1.8mm from the injection site. Red arrows indicate 
the slices shown in (a).  



56 
 

Table 1.1 Behavior summary. 

For the learning cohort, training day is measured from the first day the rat is exposed to the 
reaching task (excluding small number of handedness trials performed prior to implantation, see 
Methods). For the inactivation cohorts, animals received extensive reach training (often > 14 days) 
prior to their implantation and use in this study, however several of the animals also experienced 
extended periods of no reach training, and were therefore retrained to plateau performance prior 
to the muscimol and saline experiments. For these animals, training day is measured from the 
beginning of the most recent bout of training (same training bout for muscimol and saline 
experiments). For all animals, reaction time and reach duration are reported as median (min – 
max), and measured in seconds. †Rat T313 is the animal excluded from most of the neural 
analyses due to having no significant CVs in the Early condition (see Methods). 
 

Rat ID Condition Day 
Camera 
Frame-
rate 

Trials 
Offered 

Completed 
Trials 

Successful 
Trials 

Success 
Rate 

Reaction 
Time 

Reach 
Duration 

Learning Cohort (Reach training + neural recordings, no inactivation) 

T131 
Early Training day 1 

30 Hz 
313 183 43 23.50% 4.39 (0.15 - 

14.73) s 
0.23 (0.03 - 
1.07) s 

Late Training day 3 315 291 144 49.49% 0.27 (0.15 - 
11.84) s 

0.21 (0.10 - 
0.77) s 

T213 
Early Training day 1 

75 Hz 
224 211 71 33.65% 0.34 (0.00 - 

14.92) s 
0.11 (0.00 - 
0.56) s 

Late Training day 3 301 298 178 59.73% 0.20 (0.00 - 
7.52) s 

0.08 (0.00 - 
0.32) s 

T241 
Early Training day 1 

75 Hz 
250 184 50 27.17% 3.02 (0.32 - 

24.18) s 
0.34 (0.07 - 
2.00) s 

Late Training day 3 300 273 162 59.34% 0.58 (0.03 - 
15.76) s 

0.32 (0.06 - 
0.91) s 

T313† 
Early Training day 2 

100 Hz 
87 38 15 39.47% 11.73 (2.51 - 

29.69) s 
0.18 (0.06 - 
0.66) s 

Late Training day 15 213 211 133 63.03% 0.33 (0.00 - 
13.34) s 

0.15 (0.05 - 
0.81) s 

T314 
Early Training day 1 

100 Hz 
299 142 28 19.72% 5.96 (0.41 - 

24.39) s 
0.38 (0.11 - 
1.22) s 

Late Training day 10 259 250 145 58.00% 0.42 (0.00 - 
12.62) s 

0.11 (0.02 - 
0.62) s 

Inactivation-Only Cohort (Reach training + infusion cannulas, no neural recordings) 

T282 

Baseline (M) 
Re-training day 7 

75 Hz 

100 97 70 72.17% 0.37 (0.00 - 
4.03) s 

0.17 (0.01 - 
0.40) s 

M2 Muscimol 99 94 42 44.68% 0.59 (0.00 - 
5.44) s 

0.19 (0.01 - 
0.85) s 

Baseline (S) 
Re-training day 7 

100 93 75 80.65% 0.04 (0.00 - 
9.76) s 

0.23 (0.01 - 
0.49) s 

M2 Saline 100 97 74 76.29% 0.09 (0.00 - 
16.23) s 

0.23 (0.04 - 
0.80) s 

T291 

Baseline (M) 
Re-training day 8 

100 Hz 

106 105 45 42.86% 0.16 (0.00 - 
6.48) s 

0.11 (0.01 - 
0.34) s 

M2 Muscimol 105 90 31 34.44% 0.77 (0.00 - 
11.15) s 

0.16 (0.02 - 
0.59) s 

Baseline (S) 
Re-training day 6 

100 100 50 50.00% 0.24 (0.00 - 
2.31) s 

0.10 (0.02 - 
0.48) s 

M2 Saline 100 100 53 53.00% 0.20 (0.00 - 
6.32) s 

0.10 (0.03 - 
0.34) s 



57 
 

Rat ID Condition Day 
Camera 
Frame-
rate 

Trials 
Offered 

Completed 
Trials 

Successful 
Trials 

Success 
Rate 

Reaction 
Time 

Reach 
Duration 

T315 

Baseline (M) 
Re-training day 2 

75 Hz 

100 98 65 66.33% 0.94 (0.55 - 
8.65) s 

0.21 (0.03 - 
0.51) s 

M2 Muscimol 100 82 34 41.46% 2.35 (0.89 - 
17.05) s 

0.37 (0.03 - 
0.91) s 

Baseline (S) 
Re-training day 2 

111 101 50 49.51% 1.79 (0.88 - 
13.81) s 

0.25 (0.04 - 
0.72) s 

M2 Saline 139 125 60 48.00% 2.13 (0.84 - 
16.47) s 

0.29 (0.03 - 
0.87) s 

Inactivation + Recording Cohort (Reach training + infusion cannulas + neural recordings) 

T336 

Baseline (M) 
Re-training day 2 

63.58 Hz 

99 91 38 41.76% 1.47 (0.63 - 
11.76) s 

0.22 (0.06 - 
0.51) s 

M2 Muscimol 100 93 20 21.51% 4.82 (0.94 - 
13.40) s 

0.30 (0.09 - 
1.00) s 

Baseline (S) 
Re-training day 2 

106 79 44 55.70% 1.36 (0.66 - 
6.94) s 

0.23 (0.03 - 
0.39) s 

M2 Saline 149 118 66 55.93% 1.93 (0.83 - 
12.52) s 

0.22 (0.05 - 
0.44) s 

T349 

Baseline (M) 
Re-training day 3 

63.58 Hz 

97 97 61 62.89% 1.07 (0.55 - 
7.05) s 

0.19 (0.06 - 
0.58) s 

M2 Muscimol 199 81 13 16.05% 5.00 (0.31 - 
13.89) s 

0.36 (0.15 - 
0.72) s 

Baseline (S) 
Re-training day 3 

109 103 44 42.72% 1.44 (0.00 - 
13.86) s 

0.23 (0.06 - 
0.52) s 

M2 Saline 99 96 60 62.50% 1.61 (0.64 - 
12.79) s 

0.23 (0.06 - 
0.42) s 

T391 

Baseline (M) 
Re-training day 3 

100 Hz 

113 89 48 53.93% 0.91 (0.00 - 
7.56) s 

0.15 (0.028 - 
0.55) s 

M2 Muscimol 136 85 56 65.88% 1.57 (0.00 - 
15.27) s 

0.17 (0.04 - 
2.74) s 

Baseline (S) 
Re-training day 3 

112 92 48 52.17% 1.91 (0.00 - 
12.33) s 

0.13 (0.05 - 
0.66) s 

M2 Saline 122 94 51 54.26% 2.50 (0.04 - 
16.99) s 

0.13 (0.05 - 
1.66) s 
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Table 1.2 Implantation coordinates for all experimental animals 

Rat ID Handedness Implant Stereotaxic coordinates (mm) Marker in Supp. Fig. 1b 

Learning Cohort (Reach training + neural recordings, no inactivation) 

T131 Left 
M2 array ML: 1.5; AP: +4.5; DV: -1.8 

 M1 array ML: 4.0; AP: +1.2; DV: -1.7 

T213 Left 
M2 array ML: 1.5; AP: +4.0; DV: -1.5 

 M1 array ML: 3.5; AP: +0.5; DV: -1.5 

T241 Right 
M2 array ML: 1.5; AP: +4.5; DV: -1.5 

 M1 array ML: 3.5; AP: +0.5; DV: -1.5 

T313† Right 
M2 array ML: 1.5; AP: +4.0; DV: -1.5 

 M1 array ML: 4.0; AP: -0.5; DV: -1.5 

T314 Right 
M2 array ML: 1.5; AP: +3.0; DV: -1.5 

 M1 array ML: 3.5; AP: +1.0; DV: -1.4 

Inactivation-Only Cohort (Reach training + infusion cannulas, no neural recordings) 

T282 Right 
M2 cannula L ML: 1.5; AP: +4.8; DV: -1.7 

 M2 cannula R ML: 1.5; AP: +4.5; DV: -1.5 

T291 Right 
M2 cannula L ML: 1.5; AP: +4.5; DV: -1.7 

 M2 cannula R ML: 1.5; AP: +4.5; DV: -1.5 

T315 Right 
M2 cannula L ML: 1.5; AP: +4.5; DV: -1.7 

 M2 cannula R ML: 1.5; AP: +4.5; DV: -1.5 

Inactivation + Recording Cohort (Reach training + infusion cannulas + neural recordings) 

T336 Right 

M2 array ML: 1.5; AP: +4.0; DV: -1.6 

 

M2 cannula ML: 2.5; AP: +4.0; DV: -1.6 

M1 array ML: 3.5; AP: +0.5; DV: -1.6 

T349 Right 

M2 array ML: 1.5; AP: +3.5; DV: -1.6 

 

M2 cannula ML: 2.0; AP: +3.5; DV: -1.6 

M1 array ML: 3.0; AP: -0.25; DV: -1.6 

T391 Right 

M2 array ML: 2.0; AP: +4.0; DV: -1.6 

 

M2 cannula ML: 2.5; AP: +4.0; DV: -1.6 

M1 array ML: 3.5; AP: +0.5; DV: -1.6 
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Rat ID Handedness Implant Stereotaxic coordinates (mm) Marker in Supp. Fig. 1b 

Acute Fluorescent Muscimol Injection Cohort 

T409 N/A 
M2 injection L ML: 2.0; AP: +4.0; DV: -1.5 

 M2 injection R ML: 2.0; AP: +4.0; DV: -1.5 

T410 N/A 
M2 injection L ML: 2.0; AP: +4.0; DV: -1.5 

 M2 injection R ML: 2.0; AP: +4.0; DV: -1.5 
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CH. 2     PREMOTOR ACTIVITY DURING M1 BRAIN-COMPUTER 

INTERFACE LEARNING 

2.1 Abstract 

In brain-computer interface (BCI) experiments, neural activity is used to drive the movement of 

external devices or stimuli. With practice, subjects learn to produce experimenter-defined target 

neural states to achieve reward. As with natural motor learning, BCI learning depends on other 

brain areas, but little is known about the role of other cortical areas not used as input to the BCI. 

Here, we trained rats to perform an M1 BCI task, and analyzed the activity patterns of M2 neurons 

and M1 indirect neurons, i.e. those that were not used as input to the BCI. We found that there 

were task-modulated neurons in both populations, and that both populations could be used to 

predict M1 BCI-potent activity. Compared to M1 indirect units, M2 units were correlated with BCI-

potent activity at a broader range of timescales, and their activity evolved at a slower timescale 

as well. We also found that M2 units predicted the activity of M1 indirect units as well as BCI-

potent activity. We suggest that M2 population dynamics provide a continuous modulatory 

influence on M1 population activity. 

2.2 Introduction 

Brain-computer interfaces (BCI) provide an important opportunity to study and understand neural 

activity. In BCI experiments, specific neural activity patterns are selected as target goals. The 

neurons necessary for this neural activity are exclusively and directly responsible for task 

accomplishment. Most studies focus on BCI performance and the activity of direct neurons that 

drive the decoder. However, due to the heavily interconnected nature of neural networks, other 

neurons in the functional network are likely to be necessary for and affected by BCI learning.  

A particularly interesting question is the relative contributions of neurons embedded in the BCI 

control circuit as compared to neurons in other areas that project to the BCI control circuit. There 



68 
 

is a growing body of work that indicates that local neurons that are not part of the BCI decoder 

(“indirect local neurons”) are modulated in a manner that is analogous to (“direct neurons”) during 

the process of learning1–5. Interestingly, a recent study of BCI control in the non-human primate 

M1 found that neurons in other motor cortical regions (“cross-area indirect neurons”) were 

modulated during BCI learning6.  These studies suggest that, although only a subset of neurons 

is required to accomplish BCI tasks, local and cross-area indirect neurons are implicated in BCI 

control. Consistent with this, Korelek et al., (2012)2 showed that M1 BCI learning depends on 

striatal plasticity. An open question is how local and cross-area indirect neurons differentially 

contribute to BCI control. This question is essential to understanding how complex, modular 

neural networks function when trained to perform specific neural patterns.  

Here, we focus specifically on the role of premotor cortex (M2) during the performance of a simple 

M1 BCI task. M2 is one of the dominant inputs to M17–10, and M2 activity is necessary for learning 

and control of natural motor tasks11–15. Also, while M2 and M1 have similar representations of 

movement16, M2 may represent more information about task context than M117–20. Consequently, 

M2 is likely crucial for guiding context-sensitive neural activity, such as BCI performance. In our 

experiments, we allowed BCI control using a small subset of M1 neurons; we also monitored M2 

neurons and indirect local M1 neurons as the animal learnt BCI control. We confirm that indeed 

M2 neurons were modulated during the BCI learning using only a subset of M1 neurons. However, 

we found evidence for different mean timescales M2 neural activity modulation than for M1-

indirect neurons. Intriguingly, M2’s long temporal task modulation is correlated with M1-direct 

neural activity at many timescales and time lags, suggesting continuous rather than intermittent 

influence on M1 activity. Also, as M2 neural activity is equally predictive of M1 direct and indirect 

neural activity, we suggest that M2 interacts with M1 as a whole for BCI tasks, rather than 

specifically modulating direct neurons as a task-relevant functional group. Together, our results 

suggest that, in BCI task performance, M2 population dynamics provide continuous influence on 

M1 population activity, rather than intermittent pulses.  
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2.3 Results 

2.3.1 M2 units are modulated by a simple M1 BCI task 

We recorded simultaneously from both M1 and M2 in rats learning a simple linear BCI task1-5. In 

each recording session, a subset of M1 neurons were chosen to drive the decoder (M1 direct, or 

M1d, units). M1 neurons that were excluded from the decoder were considered indirect (M1i) 

units. The M1 direct units were split into two groups: the positive pool (M1d+) and the negative 

pool (M1d-), each consisting of 1 to 4 arbitrarily selected units (Figure 1c). At each timestep during 

the experiments, online firing rates were computed for all of the M1 direct units. Firing rates were 

summed within the two pools, and then the summed negative pool firing rate was subtracted from 

the positive pool to obtain the “neural state” used to drive the BCI. Neural state values were 

compared to a baseline distribution, and a trial was successful when the neural state exceeded a 

target threshold (see Methods). Therefore, rats were rewarded when they increase the difference 

in firing rate between the positive and negative pools. Feedback was given via the movement of 

a water spout (all n=4 rats) and by a visual cue placed outside the behavior box (n=3 rats)(Figure 

1b). Water reward was delivered upon successful task completion; trials that were not completed 

within 15 (n=1 rat) or 10 (n=3 rats) seconds were considered failures and were punished with a 

time out. Rats were generally able to learn the task over the course of 100 to 200 trials, as 

indicated by increased success rate (Figure 1d). 

First, we asked whether M2 units and M1 indirect units were task modulated. Although these 

neurons do not directly drive the BCI decoder (Figure 2a), it is possible that they directly affect 

the M1 direct units. We computed peri-event time histograms (PETHs) for all offline-sorted units 

relative to the end of successful trials, and used a circular shuffle modulation test to determine 

which units were significantly modulated. We found that 31.68% of M2 units and 36.02% of M1 

indirect units were significantly modulated, compared to 70.83% of offline-sorted units from 

channels that had contained an online-sorted direct unit (Figure 2b,c). This indicates that during 
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this relatively early stage of BCI training, a large portion of recorded M1 and M2 neurons are 

involved in rats’ attempts to perform the BCI task, even though only a few neurons were directly 

causal to the BCI. 

2.3.2 M2 population activity predicts M1 BCI-potent activity at broad timescales 

Although we found that many M2 neurons were significantly task-modulated, it is not necessarily 

the case that their activity pattern is related to BCI control: an M2 neuron could have a stereotyped 

activity pattern without being correlated with moment-by-moment BCI activity. To address this 

question, we used generalized linear models (GLMs) to perform regression predicting M1 BCI-

potent activity from M2 population activity (“GLM-2D models”, Figure 3a). First, M1 BCI-potent 

activity was reconstructed, re-binned at different binwidths, used as the response variable in the 

GLMs. The predictors were binned M2 firing rates, where each neuron appeared more than once 

with variable time lags ranging from -0.2s to +0.2s relative to the M1 BCI-potent activity. Models 

were fit for data binned at 15, 25, 35, 50, and 100ms. Crossvalidated R2 values were computed 

for all binwidth models (Figure 3b), and weight structures were qualitatively similar across 

binwidths. Further analysis was performed with 25ms binwidth models. Model significance was 

computed for 25ms models by comparison to a reference distribution of models fit to trial-shuffled 

data. By this metric, M2 population activity had significant predictive power for moment-by-

moment M1 BCI-potent activity in all datasets (see Methods). 

Next, we examined the temporal structure of the regression weights. Looking at single units, we 

observed that many M2 units had large regression weights at multiple time lags, often including 

both positive and negative weights (Figure 3d). Across the population, different M2 units had their 

largest magnitude weight at a wide range of time lags (Figure 3c). Across all datasets, the 

distribution of time lags at which any neuron had its largest magnitude regression weight was not 

significantly different from a uniform distribution (Figure 3e; Bootstrap, p=0.2435, see Methods for 
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details). We hypothesized that this broad timescale of correlation reflects the complex and often 

polysynaptic connectivity between M2 and M1. 

2.3.3 M1 direct units do not have a privileged functional relationship with M2 

Next, we wondered whether M2 activity was particularly predictive of M1 direct unit activity, or 

whether it had similar predictive power for any arbitrarily chosen subset of M1 units. To address 

this, we randomly chose M1 indirect units to use as “surrogate direct” units, matched in number 

to the M1 direct units from each dataset, and built GLMs to predict their activity as before (“GLM-

2I models”). For each dataset, we repeated this process with 50 different sets of M1 indirect units. 

As with the GLM-2D models, we found that many M2 units had large regression weights at 

multiple time lags, with both positive and negative weights (Figure 4c). The distribution of time 

lags for maximally predictive weights was also consistent with a uniform distribution (Figure 4d,e; 

Bootstrap, p=0.491). For the 25ms models, we also compared crossvalidated R2 values, and 

found that the R2 values for the GLM-2D models were within the range of R2 values for the GLM-

2I models (Figure 4b), and were not significantly different from the mean GLM-2I R2 models for 6 

of 7 datsets (permutation tests, p = 0.1164, 0.1568, 0.8609, 0.9609, 0.3701, 0.6454), but was 

significantly greater than the mean for the remaining dataset (permutation test, p=0.0192). This 

suggests that, at least at this early stage of learning, the complex causal relationships between 

M2 and M1 have not been reshaped by the BCI task, and, if M2 activity is causally involved in 

task performance, its influence on M1 does not seem to be specific to direct units.  

2.3.4 M2 units are distinct from M1 indirect units 

Do M2 and M1 indirect units have similar roles? M2 and M1 are heavily interconnected, include 

task-modulated indirect units, and are jointly involved in natural motor tasks. To test this idea, we 

built GLMs to predict M1 BCI-potent activity from M1 indirect population activity (“GLM-ID 

models”). Unlike the GLM-2D and GLM-2I models, predictor units in GLM-ID models tended to 

have large weights for small time lags (Figure 4f), and simultaneous data (𝝉=0) was most 
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commonly given the largest magnitude weight (Figure 4g,h). In contrast to the GLM-2D and GLM-

2I models, the distribution of time lags with the largest magnitude weights was significantly non-

uniform (Bootstrap, p<0.00001). Additionally, the GLM-ID models had higher crossvalidated R2 

values than the GLM-2D models (Figure 4b; Permutation test, p=0.0079). Together, this shows 

that there is a meaningful difference between M2 and M1 indirect units’ functional relationship 

with M1 direct units. Specifically, M1 indirect units tend to be more correlated with M1 BCI-potent 

activity than M2 units, and at shorter time lags; perhaps reflecting their belonging to the same 

local population. 

2.3.5 M2 population activity evolves at a slower pace than M1 indirect activity 

Finally, we examined M2 and M1 indirect populations activity immediately before successful trial 

completion, and how this activity relates to trial outcome. We observed that M2 population activity 

included broad modulation near the end of successful trials (Figure 2b), and hypothesized that 

M2 population activity was changing at a slower timescale than M1 indirect population activity. 

We tested this hypothesis in two ways. First, we computed single unit autocorrelation functions, 

and found that the average width-at-half-max was significantly wider for M2 units than for M1 

indirect units (Permutation test, p<0.00001). Second, we binned neural data at 50ms and 

correlated M2 or M1i population vectors with their respective population vectors during the final 

2s of correct trials; we found that the mean correlation coefficient was significantly higher for M2 

than M1i (Figure 5; Permutation test, p<0.00001).  

2.4 Discussion 

In this study, we demonstrate differential roles for M2 and M1 during brain-computer interface 

task performance. Specifically, we trained rats to perform a M1 BCI task and compared 

characteristics of M2 population activity with the activity of M1 indirect neurons excluded from the 

BCI decoder. We found that many M2 and M1 indirect neurons were task modulated, and that M2 

population activity is correlated with moment-to-moment BCI performance at a broad range of 
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time lags. We also found that M2-based models predicting either M1 direct or M1 indirect activity 

had similar R2 values, and their regression weights were similarly distributed across time lags, 

suggesting that M1 direct units do not have a privileged relationship with M2. In contrast, models 

predicting M1 direct unit activity from M1 indirect unit activity had higher R2 values, and most 

predictive power was found at small time lags. Furthermore, M2 population activity patterns 

changed more slowly than M1 indirect population activity. Together, this supports a model of M1-

M2 communication in which M2 provides a consistent pattern of input to M1, on a slower timescale 

than communication within M1. Within this framework, moment-to-moment control of the BCI is 

largely internal to M1, and perhaps contextual or other top-down input is provided by M2. 

Understanding of these differential roles can provides insight into natural movement control and 

can be harnessed to improve design of multi-area BCIs. 

2.4.1 Hierarchical control of BCI performance 

BCI experiments provide an opportunity to select target neural patterns in a region of interest, and 

to analyze neural correlates of task performance in other brain regions. The creation of an 

arbitrary neural pattern eliminates many of the confounds associated with natural movements, 

including multi-area control of natural movements, and baseline correlations in population activity 

across brain regions11,21,22. In BCIs, the target neural pattern is unlikely to be correlated with 

unrelated processes in other brain regions. Therefore, correlations between BCI direct neuron 

output and other neural populations’ activity allow us to make hypotheses about which regions 

are involved in BCI performance without having to disrupt the circuit through artificial regional 

inactivations. For example, here, the correlation between M2 and M1 direct neurons is weaker 

and at longer timescales than the correlation between M1 indirect and direct neurons. This 

suggests that M2 provides inputs to M1 that are task-specific, but temporally imprecise; in 

contrast, internal M1 population dynamics are more robust but are temporally limited. One 

interpretation is that M1 indirect units are better positioned to steer M1 direct units to the target 
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state, while M2 units appear more likely to provide a modulatory input. This is analogous to the 

finding in sensory systems that task information in higher level regions is present at greater 

latencies and maintained for longer durations23. 

2.4.2 BCIs control of static versus dynamic target states 

BCIs are often framed as a substitute for natural movement, but there are important differences 

between BCI and natural movement tasks. For one, while natural movements involve body parts 

which must move continuously though space, BCIs need not have this restriction. Studies also 

suggest that, within motor cortex, neural activity during natural movement progresses through 

continuous states24. However, high-dimensional neural activity is not inherently constrained by 

continuous paths through activity space. Instead, neural activity can jump between states. This 

has been exploited in NHP and human experiments in which participants use a BCI to type on a 

digital keyboard25 rather than trace paths through virtual space, as is more common with artificial 

limb research. In the simple BCI used in our experiments, BCI control occurred over discrete time 

bins and output was only smoothed over short timescales. Neural activity was therefore less 

constrained to be continuous than for BCIs mimicking dynamic movements6. Furthermore, the 

target neural activity pattern was a single static state, and the approach to it was unconstrained 

within the BCI-potent space. Because of this, it may be appropriate to compare the BCI task to 

reaction time and waiting time tasks, rather than natural movement. In waiting time tasks, animals 

must hold a position until an arbitrary internal threshold is reached, similar to common simple BCI 

paradigms in which the target neural activity must be maintained for a set period of time for trial 

success. Waiting experiments have demonstrated encoding of hold time within mPFC26 and M219 

single neurons, with single neurons displaying a variety of activity patterns, including a slow ramp 

to threshold. This may be similar to the slow evolution of M2 activity seen here. 

In contrast to the static neural activity targeted in simple BCI tasks, natural movements are thought 

to require execution of dynamic paths in high-dimensional neural space27. There is also evidence 



75 
 

that natural movements are initiated more quickly if they are preceded by preparatory activity in 

the same high-dimensional direction as the neural activity required for the movement24. Therefore, 

to better understand natural movement dynamics, experimenters may want to use BCIs with 

dynamic rather than static neural activity targets28,29.  

2.4.3 Timescales of BCI learning 

Natural motor learning is widely considered to occur in several phases, from early exploration to 

a well-consolidated over-trained state30–33. There is evidence that cortical regions are necessary 

for early learning, while sub-cortical regions are necessary for well-learned performance15. It is 

likely that a similar process underlies BCI learning. Here, we focus on an early, still largely 

exploratory, stage of BCI learning by using a single-session training paradigm. BCI studies which 

included a sleep consolidation period3,5,34 or which used multi-day learning paradigms1,35 have 

found that M1 indirect units become less modulated with learning. It is possible that at later stages 

of learning, M2 task-modulation is similarly decreased; however, it is also possible that 

consolidation has a different effect on local and cross-area indirect neurons. To our knowledge, 

only one other study has analyzed the activity of cross-area indirect neurons in cortex; they found 

robust task-related modulation in several cortical areas, including premotor cortex, after a multi-

day learning paradigm6. This suggests that the M2 activity patterns we see here may be refined 

and maintained even in later learning. This parallels evidence from natural motor learning showing 

that the overall amount of correlated activity between M2 and M1 does not change with learning11. 

2.4.4 Limitations and future work 

Comparisons with results from prior studies are limited by differences in experimental paradigms. 

For example, the learning sessions were shorter than those from similar BCI tasks2,3,5,34. 

Consequently, our results may specifically capture an earlier stage of learning, and the role of M2 

may evolve beyond what we see here during the early, exploratory stages of learning. 

Additionally, although only M1 direct units causally drive the BCI output, it is still unknown whether 



76 
 

M1 indirect neurons or neurons from other brain regions are necessary for BCI learning and 

performance in this task. Inactivation experiments could directly test necessity of other brain 

regions for BCI performance, though such inactivations may also disrupt the larger motor network 

function36. 
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2.5 Figures 

 

 

Figure 2.1 Learning the BCI task 

(a) Rats learned a BCI task using only M1 neurons as inputs to the BCI decoder. Neural activity 
from M2 was recorded but was not directly decoded for BCI control. (b) Experimental setup (not 
to scale). Rats were allowed to move freely inside a clear plastic behavior box during the task. 
Online feedback about neural state was provided via a moving water spout (all n=4 rats) and 
visual cues on a computer monitor placed outside the box (n=3 rats) (see Methods). When the 
target neural state was reached, the water spout moved within reach and a water reward was 
given. Auditory cues marked trial start, reward, or task timeout. (c) A subset of M1 neurons were 
arbitrarily chosen as “direct” units (green), used to drive the BCI decoder, while the rest were 
considered “indirect” units (purple). 1 to 4 direct units were assigned to the “positive pool” (d+) and 
1 to 4 direct units were assigned to the “negative pool” (d-). Online firing rates were summed within 
the pools, and then the d- firing rate was subtracted from the d+ firing rate to obtain the neural 
state used to control BCI output. The neural state was compared to a baseline distribution, and 
when it exceeded a threshold value, the trial was considered a success (see Methods). (d) 
Example learning curve from one rat showing an improvement in success rate across the course 
of the BCI session. Small gray points indicate actual trial duration. Dashed gray line shows running 
average trial duration (smoothed over 30 trials). Light brown boxes at the top of the plot indicate 
successful trials. Brown line shows running average success rate (smoothed over 30 trials). X-
axis is slightly cropped to remove smoothing artifact at the ends for visualization only, this session 
included 104 trials total.  
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Figure 2.2 Indirect neurons in both M2 and M1 are modulated during BCI control. 

(a) Illustration of the relationship between recorded neurons and the BCI decoder. Neurons 
were recorded in both M2 (blue) and M1. A subset of M1 neurons were chosen to be direct 
neurons (green) and used to drive the BCI, while rest of M1 neurons were indirect (purple). (b) 
Peri-event time histogram (PETH) showing average activity patterns from significantly 
modulated units in all rats. Units are grouped as: M2, M1i, M1d+, M1d-. Within each group, units 
are ordered by the time of their peak firing rate. Time is relative to the end of successful trials. 
Color indicates normalized firing rate. (n = 387 units from 7 BCI sessions in 4 animals). (c) 
Rasters and PETHs for example M2 (top), M1i (middle) and M1d (bottom) units. Data is aligned 
to the end of successful trials (red bar). Grey shaded region represents a circular shuffle test 
(see Methods).  
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Figure 2.3 M2 neural activity predicts M1 BCI-potent neural activity at multiple 

timescales. 

(a) Regression was used to identify a M2 neural population space that predicted BCI-potent M1 
activity. GLMs were fit to predict the M1 BCI neural state from M2 population activity; multiple time 
lagged copies of each M2 unit were used as predictors. (b) Crossvalidated R2 values for GLM 
models (yellow) were higher than for models fit to trial shuffled data (gray, circles show mean, 
shaded area shows 95% confidence interval). Datasets are ordered from lowest to highest R2. (c) 
Distribution of regression weight magnitude in one example session. (Top) For each M2 unit, 
regression weights were assigned for a variety of time lags, and the absolute value of those 
weights is indicated by color. Units are sorted according to the time of the largest magnitude 
weight. Tick marks on the right edge indicate the units shown in (d). (Bottom) Histogram of the 𝝉 
values with the largest magnitude weight for this dataset. (d) Example weights for two M2 neurons 
from one example session (neural data binned at 25ms). Height of green lines indicates weights 
for example neurons at different time lags (𝝉) relative to the M1 BCI-potent activity, with negative 
𝝉 values meaning that M2 leads. (e) Histogram of time lags that had the largest magnitude 
regression weight for all M2 units in all animals, for models fitted to neural data binned at 25ms. 
Yellow lines show kernel density fit to equivalent histograms for models fit to neural data binned 
at 15ms (lightest), 25ms, 35ms, 50ms, and 100ms (darkest). Dashed gray line shows theoretical 
uniform distribution, empirical distribution is not significantly different.   
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Figure 2.4 Comparison of timescales of M2 and M1-indirect units’ predictions of M1-

direct units. 

(a) Models which predict M1 direct activity from M2 activity (“GLM-2D”, see Figure 3) were 
compared to models which predict M1 direct activity from M1 indirect activity (“GLM-ID”) and to 
models which predict a subset of M1 indirect neurons from M2 activity (“GLM-2I”). (b) 
Crossvalidated R2 values for GLM-ID, GLM-2D, and GLM-2I models. Each line is one dataset. 
For the GLM-2I models, 50 different models were fitted to different choices of indirect units. Circle 
shows mean, error bars show full range. (c) Example regression weights for an M2 neuron from 
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one example learning session, for a model fitted to neural data binned at 25ms. Height of the 
green lines indicates regression weights for the example neurons at different time lags (𝝉), with 
negative values meaning that M2 leads. (d) Distribution of regression weight magnitudes in one 
example learning session. For each unit, regression weights were assigned for a variety of time 
lags (as in c), and the absolute value of those weights is indicated by color. Units are sorted 
according to the time of the largest magnitude weight. (e) Histogram of time lags that had the 
largest magnitude regression weight for all M2 units in all animals, for models fitted to neural data 
binned at 25ms. Solid lines show kernel density fit to equivalent histograms for models fit to neural 
data binned at 15ms (lightest), 25ms, 35ms, 50ms, and 100ms (darkest). Dashed gray line shows 
theoretical uniform distribution. (e) As in (b), but for GLM-ID models. (f) As in (c), but for GLM-ID 
models. (g) As in (d), but for GLM-ID models.  
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Figure 2.5 M2 population activity evolves more slowly across trials than M1 indirect 

population activity. 

Correlation of population firing vectors across time for neural data binned at 50ms. Color indicates 
the average correlation coefficient between population vectors at the given time for all successful 
trials of at least 2s duration, for all animals. Data above the diagonal shows correlation coefficients 
for M2 population vectors; data below the diagonal shows correlation coefficients for M1i 
population vectors. 
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2.6 Methods 

Animal care 

All procedures were in accordance with protocols approved by the Institutional Animal Care and 

Use Committee at the San Francisco Veterans Affairs Medical Center. Adult male Long Evans 

rats (n = 10, 250–400 g; Charles River Laboratories) were housed in a 12-h/12-h light–dark cycle. 

All experiments were done during the light cycles. Rats were housed in groups of 2 animals prior 

to surgery and individually after surgery. 

Surgeries 

All surgical procedures were performed using a sterile technique under 2–4% isoflurane. Surgery 

involved cleaning and exposure of the skull, preparation of the skull surface (using cyanoacrylate) 

and then implantation of the skull screws for overall headstage stability. Reference screws were 

implanted posterior to lambda and ipsilateral to the neural recordings. For experiments involving 

physiological recordings, craniotomy and durectomy were performed, followed by implantation of 

the neural probes. For experiments involving only infusions, burr holes were drilled in the 

appropriate locations, followed by implantation of the cannulas. Postoperative recovery regimen 

included the administration of 0.02 mg kg-1 buprenorphine for 2 days, and 0.2 mg kg-1 meloxicam, 

0.5 mg kg-1 dexamethasone and 15 mg kg-1 trimethoprim sulfadiazine for 5 days. All animals were 

allowed to recover for 1 week prior to further behavioral training.  

Electrode array and cannula implants 

Long-Evans hooded rats were implanted with two 32-channel tungsten wire probes (TDT or 

Innovative Neurophysiology), one each in M1 (+0.5 AP, +3.5 ML, -1.5 DV) and M2 (+4.0-4.5 AP, 

+1.5 ML, -1.5 DV). One rat (T391) had a cannula attached to the lateral side of the M2 electrode 

array prior to surgery for use in a different experiment11. 
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General brain-machine interface paradigm 

Rats were trained using an automated behavior box, with components controlled by Matlab 

R2015a and an Arduino running the Adafruit Motor Library V1. Within the box, rats were 

unrestrained. Neural data was recorded and sorted online using software from Tucker Davis 

Technologies: for spout BMI, the software used was OpenEx; for visual BMI, it was Synapse. 

Spike counts from online sorting were imported into Matlab and used to control the feedback 

stimuli (see “Spout BMI” and “Visual BMI” for details). Trials started with an auditory cue and the 

opening of the plastic gate covering a slot in the back of the behavior box. When rats achieved 

the neural firing rate target, success was indicated with an auditory cue, and water reward was 

delivered via a metal spout through the slot. If rats failed to achieve the target in the set time, 

failure was indicated with an auditory cue and the closing of the gate, followed by a timeout period. 

The maximum trial length and the timeout period following failures were both manipulated over 

the course of the experiments to encourage learning, and ranged from 10-20s and 5-10s 

respectively. 

Spout BMI 

The spout BMI paradigm was used to train n = 1 rat. In this paradigm, feedback about progress 

to the firing rate target was given via the movement of the water spout used for reward. Eight 

“direct” units were chosen based on having good signal-to-noise and neither unusually high nor 

unusually low firing rates. Of the direct units, 4 units were arbitrarily assigned to the “positive 

pool”, and 4 units were arbitrarily assigned to the “negative pool”. The same channels were used 

for all sessions, but we did not directly test for unit similarity across days. At the beginning of each 

session, a 30 minute baseline recording was taken and used to fit mean firing rates for each unit. 

During the task, for every 100ms bin, direct unit firing rates were computed, mean subtracted, 

and summed within pools. The “neural state” was computed as s = g * (p - n), where p is the firing 

rate of the positive pool, n is the firing rate of the negative pool, and g is an experimenter-

controlled gain parameter. The neural state was smoothed by averaging it with its previous value, 
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and then used to control the position of the water spout, such that increasing the difference 

between p and n moved the spout towards the rat. Once the spout crossed a threshold value, the 

trial was considered a success. 

Visual BMI 

The visual BMI paradigm was used to train n = 3 rats. In this paradigm, feedback about progress 

to the firing rate target was given via the movement of both a visual cue on a computer monitor 

placed outside the behavior box and of the water spout used for reward. 4-8 “direct” units were 

chosen based on having good signal-to-noise and neither unusually high nor unusually low firing 

rates. Of the direct units, 2-4 units were arbitrarily assigned to the “positive pool”, and 2-4 units 

were arbitrarily assigned to the “negative pool”. The same channels were used for all sessions, 

but we did not directly test for unit similarity across days. At the beginning of each session, a 5-

10 minute baseline recording was taken. The baseline data was divided into overlapping 100ms 

bins. For every bin, firing rates were summed within the positive and negative pools, and the 

difference between the two pools was computed. Gamma distributions were fitted to the histogram 

of firing rate differences using the Matlab function fitdist. During the task, for every 100ms bin, 

firing rates were summed within the positive and negative pools, and the difference between the 

two pools was computed. This difference was fed into the cumulative distribution function of the 

baseline distribution to obtain the “neural state”. When the neural state crossed an experimenter-

defined threshold, the trial was considered a success. Typical threshold values were 0.85 - 0.95. 

The neural state was smoothed by averaging it with its previous value, and then used to give rats 

feedback in two ways. First, a computer monitor outside the behavior box displayed a circular 

“cursor” that moved along a line towards a stationary “target” circle. The position of the cursor 

along the line was a direct readout of neural state, moving from the top left to the bottom right of 

the screen (i.e., closer to the rat) as neural state increased. Second, the neural state was also 

used to control the position of the water spout. The angular speed of the water spout was limited 
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to 1 degree/s, but otherwise the position of the spout was proportional to the neural state such 

that as neural state increased, the spout moved closer to the rat. 

Electrophysiology data collection 

We recorded extracellular neural activity using tungsten microwire electrode arrays (MEAs, n = 8 

rats, TDT or Innovative Neurophysiology). We recorded spike and LFP activity using a 128–

channel TDT–RZ2 system (TDT). Spike data was sampled at 24,414 Hz and LFP data at 1,018 

Hz. Analog headstages with a unity gain and high impedance (~1 GΩ) were used. Snippets of 

data that crossed a high signal-to noise threshold (4 standard deviations away from the mean) 

were time-stamped as events, and waveforms for each event were peak aligned. For BCI control, 

spikes were sorted online using either TDT OpenEx (1 animal) or TDT Synapse (3 animals) 

software. MEA recordings were sorted offline using a density-based clustering algorithm37. 

Clusters interpreted to be noise were discarded, but multi-units were kept for analysis. Trial-

related timestamps (i.e., trial onset, trial completion) were sent to the RZ2 analog input channel 

using an Arduino digital board and synchronized to neural data. 

Circular shuffle test for single unit modulation 

A circular shuffle test was used to determine if single units were significantly task-modulated. 

First, the unit’s true peri-event time histogram (PETH) was calculated by aligning data to the end 

of successful trials and binning at 15ms. Then, the PETH was given a modulation score by 

calculating its difference from a flat mean using the Matlab function immse. Then, for 105 

repetitions, trials were independently randomly circularly shuffled, and a shuffled PETH and 

modulation score were calculated. A unit was considered significantly task-modulated if its true 

modulation score exceeded the 95th percentile of shuffled modulation scores. 

M1 BCI-potent space 

M1 BCI-potent activity was reconstructed from offline-sorted data by binning the data according 

to online timestamps and identifying the units on M1 direct channels that were most correlated 

with the recorded online firing rates. Once the offline-sorted M1 direct units had been identified, 
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neural data could be binned at any binwidth, and M1 BCI-potent activity could be computed as 

the difference between summed M1d+ activity and summed M1d- activity and used as the 

response variable in the GLMs. 

Generalized Linear Models 

Regression was performed using generalized linear models fitted with the Matlab function fitglm. 

Predictors were binned firing rates of either M2 units or M1 indirect units, and the response 

variable was either M1 BCI-potent space activity (described above), or surrogate M1 indirect 

activity (for GLM-2I models, described below). In all cases, each predictor unit was represented 

multiple times, with data shifted to include all time lags from -0.2 to +0.2 s relative to the response 

variable. For the response variable, data used was the final 2s of all trials of at least 2s duration; 

for the predictors, the incorporation of time lags meant that data between 2.2s before the end of 

the trial to 0.2s after the end of the trial was used. Models were fit to data binned at 15, 25, 35, 

50, and 100ms; statistics were performed on 25ms models. In the case of GLM-2I models, a 

“surrogate BCI-potent space” was created from M1 indirect activity by randomly selecting 

matched numbers of indirect units to stand in for the true direct units. The randomly chosen 

indirect units were summed within pools and the difference between the pools was used as the 

response variable. This process was repeated for 50 choices of indirect units per dataset. 

For each model, a crossvalidated R2 was computed and used as a metric of how well the model 

generalized to held out data. The full dataset was randomly partitioned into 10 equal folds 

(ignoring trial structure, i.e. timepoints from the same trial could be assigned to different folds). 

Then, ten different times, one fold was assigned to be the test data and the other nine to be the 

training data. GLM models were fit to the training dataset. The test data was then projected onto 

the training model, and R2 values were computed between the true response variable and the 

model output. The R2 values reported are the average across all 10 combinations of 

testing/training data. 
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Population correlation 

Population correlation was computed for either M2 or M1 indirect units. Neural data from the given 

population was binned at 50ms, and the set of firing rates at a given time bin was considered a 

population vector. For all successful trials of at least 2s duration, pairwise correlations were 

computed between population vectors for all time bins from -2s to 0s (relative to success) using 

the Matlab function corrcoef. The results were averaged across all trials and all datasets. 

Statistical Analysis 

Statistical tests were done using bootstrapping and permutation tests. Unless otherwise specified, 

simulations had 105 repetitions, and the significance threshold was set at α = 0.05, meaning that 

tests were significant when the true value was greater than the 95th percentile of the reference 

distribution. 

To determine whether GLMs had significant predictive power, their crossvalidated R2 (described 

above) was compared to a reference distribution of crossvalidated R2 values for models fitted to 

trial-shuffled data. Shuffling the trials in the response variable before fitting the models created a 

control dataset with equivalent firing rates and the same characteristic pattern of neural state 

increasing at the end of successful trials, but broke true moment-by-moment correlations. Trial-

shuffling was performed for 25ms models only. 103 shuffles were performed. Models were 

considered to have significant predictive power if the true R2 exceeded the 95th percentile of the 

reference distribution, which was the case for all 7 datasets. 

To determine whether the distribution of timelags that had the largest magnitude GLM weight 

(𝝉max) were significantly non-uniform, the 𝝉max histograms were compared to surrogates drawn 

from a uniform distribution as follows: First, the probability-normalized 𝝉max histogram was 

considered to be the empirical distribution, and a theoretical discrete uniform distribution was 

calculated as the mean value of the empirical distribution. The difference between the empirical 

and theoretical distributions was computed using the Matlab function immse. Then, for each 

bootstrap repetition, a surrogate set of 𝝉max values was drawn from a uniform distribution using 
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the Matlab function datasample, and the difference from the theoretical distribution was calculated 

in the same manner to create the reference distribution.  

To determine whether the GLM-2D models had significantly different R2 values from the GLM-2I 

models, permutation tests were performed separately on each dataset. First, for each dataset, 

the true difference between the GLM-2D R2 value and the mean GLM-2I R2 value was calculated. 

Then the true GLM-2D R2 value was pooled with the 50 GLM-2I R2 values (from different choices 

of indirect units, see “Generalized Linear Models” above), resulting in a set of 51 R2 values. Then, 

for each permutation, one of the R2 values was chosen to stand in for the GLM-2D R2 value, and 

the difference between that and the mean of the remaining 50 R2 values was calculated to create 

the reference distribution. By this metric, the GLM-2D R2 values were not significantly different 

from the GLM-ID R2 values for 6 of the 7 datasets; for the remaining dataset the GLM-2D R2 value 

was significantly higher than the mean GLM-ID R2 value. 

To determine whether the GLM-2D models had significantly lower R2 values from the GLM-ID 

models, a permutation test was used. First, the mean GLM-2D and GLM-ID R2 values were 

calculated across datasets, and the true difference between them was computed. Then, for each 

permutation, the GLM-2D and GLM-ID R2 values were randomly swapped (or not) with 50% 

probability, and the difference in means between the two groups was calculated to create the 

reference distribution. 

To determine whether M2 single units had a significantly wider autocorrelation function than M1 

indirect units, a permutation test was used. First, the autocorrelation of each M2 and M1 indirect 

unit was computed using the Matlab function xcorr, the width-at-half-max was calculated for each 

autocorrelation, and the true difference in mean values between M2 and M1 indirect was 

calculated. Then, for each permutation, units were randomly assigned to two groups, matched in 

size to the true M2 and M1 indirect populations, and the difference in mean autocorrelation width 

between the two groups was calculated to create the reference distribution. 
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To determine whether M2 population activity was more correlated across time than M1 indirect 

population activity, a permutation test was used. First, M2 and M1 indirect population correlations 

were computed as described above. Then, the mean M2 and M1 indirect population correlations 

was taken across all time bin pairs, and the true difference between the two means was 

calculated. Then, for each permutation, correlation values were randomly swapped between M2 

and M1 and the difference between the mean values was calculated to create the reference 

distribution. 
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CONCLUSION 

In this dissertation, we studied communication between primary motor (M1) and premotor (M2) 

cortex while rats learned either a dexterous natural motor task or a simple linear M1 brain-

computer interface (BCI) task. In both cases, we found that activity was coordinated between the 

two regions. In the case of natural motor learning, we found that learning did not change the 

strength of M2-M1 interactions, but did increase the amount of task-related information available 

in the cross-area dynamics, and that these cross-area dynamics were necessary for learned 

behavioral improvements. We also found that when M2 was inactivated, M1 neurons and 

population dynamics that had earlier been more strongly coordinated with M2 were more affected. 

In the case of BCI learning, we found that M2-M1 interactions occurred on a broader timescale 

than did M1-internal interactions, and that M2 population activity evolved at a slower pace. These 

results are consistent with a model in which M2 provides top-down contextual information to M1, 

which more precisely controls the output. 

An important point for the interpretation of both of these studies is the distinction between using 

correlation to estimate neural connectivity and using correlation to estimate population signals. It 

has been shown that correlated activity is not a reliable predictor of true anatomical connectivity 

between single neurons1, and we do not wish to make any claims of connectivity between the 

units we have recorded here. Although there are direct projections between M2 and M12,3, it is 

possible that none of the M2 neurons we recorded were directly connected to the M1 neurons we 

recorded. Instead, we used correlations between the neurons we did record as a method for 

estimating the influence of one region on the other. In this perspective, the high level of correlation 

between units within each population that is a confound when estimating true connectivity is 

instead a strength, because it means that even though experimental limitations prevent us from 

recording from exactly the M2 neurons that project to M1 and the M1 neurons that receive those 

projections, we are recording from neurons that are highly correlated with them. 
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Another caveat is that both the canonical correlation analysis used in Ch. 1 and the generalized 

linear models used in Ch. 2 are linear methods, and cannot capture higher order statistical 

dependencies. It is therefore likely that we were only able to estimate some of the coordination 

between M2 and M1, and that the true relationship is more complex. 

This work could be improved by performing more extensive anatomical mapping prior to 

implantation. Although we had robust movement-related responses on all arrays in all animals, 

we were not able to verify the placement of the M2 and M1 arrays with respect to each other, and 

it is possible that much of the variability seen across animals is due to differences in relative 

anatomical placement. Concerns about surgery time prevented us from performing complete 

ICMS mappings of M2 and M1, but the incorporation of an abridged ICMS mapping or even of 

tract imaging4 could be beneficial.  

Both learning paradigms would also be improved by tracking the same neurons across days, and 

extending the training sessions to go from exploration all the way to stereotyped behavior. In the 

BCI task, we used a single session learning paradigm, analyzing the early exploratory stages of 

BCI learning. In the natural learning task, learning took place across several days, but large gaps 

between recording sessions prevented us from confidently identifying neurons that had been 

maintained between sessions. Advances in recording technology are increasing the feasibility of 

maintaining and identifying the same neurons across days5. Being able to match neurons between 

different sessions would enable characterization of the effects of learning on single units, in 

addition to population level analyses. 

Another interesting future direction would be optogenetic inhibition of M2 during the M1 BCI task. 

In the natural learning task, we used muscimol to inactivate M2 in a block design. However, this 

required a gap of several hours between the sessions, and caused a small but significant 

reduction in M1 baseline firing rates, both of which would pose problems for the ability to use the 

same decoder before and after inactivation in the BCI task. Therefore, to test whether task-related 

modulation in M2 is necessary for M1 BCI performance, it may be better to use optogenetics to 
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briefly perturb M2 activity on a minority of trials. Viral optogenetics can be done in rats6,7, but it is 

often technically challenging to achieve sufficient expression. Alternatively, similar BCI tasks have 

been done in mice8, where genetic tools are generally considered to be more reliable.  

A key innovation in both of the studies is the use of dimensionality reduction methods that optimize 

for coordination between the populations of interest. Many previous studies of cortical 

communication have used dimensionality reduction methods that optimize local properties alone 

(e.g., principal components analysis, factor analysis) before comparing regions9,10, or compare 

bulk population signals like wide-field calcium signals11,12 or local field potentials13-1. These 

strategies run the risk of missing activity patterns that are coordinated between regions but do not 

dominate the local population. We think that an approach that focuses on coordination between 

regions first is better suited to studying inter-area communication. 

Overall, this work has studied the role of M1-M2 communication in learning. We characterized 

cross-area activity patterns in both natural motor learning and BCI learning, and saw that M2 

activity had the potential to provide contextual signals in both cases. In natural motor learning, we 

were able to inactivate M2 and show that it is necessary for both learned improvements in 

behavior and for M1 cross-area dynamics. 
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