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Computational methods for deducing biological processes involved

in wound healing based on gene analysis

Eliana Phillips

Abstract

The Gene Ontology (GO) is a set of uniquely identified biological processes

defined by a set of genes and organized hierarchically. Overrepresentation

analysis is commonly used to determine the statistically significant GO terms

assigned to a list of genes. However, this method has some drawbacks to

identifying the most significant biological processes from a list of di↵erentially

expressed genes from microarray data. Namely, many GO terms are highly

overlapping, and many GO terms are too vague or too specific to provide

meaningful interpretation. In this work, I develop a pipeline to derive a short-

list of GO terms obtained from overrepresentation analysis. I do this in two

steps, “representation filtering” and “similarity filtering.” First, I use informa-

tion theory to quantify specificity of GO terms, and define metrics to quantify

representation of GO terms in the overall dataset. These metrics are used to

reduce the list in the representation filtering step. Second, I obtain pairwise

similarity scores of GO terms from the NaviGO, and use these scores to per-

form the similarity filtering step, which eliminates redundancy in the list. This

pipeline is applied to overrepresentation analysis of time-series transcriptomic

data in wound healing in mice and humans. By analyzing the resulting lists of

GO terms at each time point measured, I show that the shortlists significantly

reduce GO list size, yet provide concise descriptions of expected wound healing

stages. The main takeaways and conclusions from this study include: signif-

icant overlap between inflammation and proliferation is evident; proliferation

related processes are more pronounced and varied in humans than in mice;

and that inflammation is relatively consistent across datasets, but may appear

to be prolonged depending on the thresholds set for di↵erential expression of

genes. This method provides a tool that allows data from transcriptomic stud-

ies to be used in translational research. In future work, the tool may used for

other experiments involving time-series transcriptomic data.
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1 Introduction & motivation

1.1 Gene analysis

The main principle or “central dogma” of molecular biology is the key to

understanding how all living organisms are dependent on their genetic code.

This principle states that DNA produces messenger RNA, which in turn codes

for the amino acids that bond together to form proteins, the macromolecules

that perform nearly all biological processes in all organisms. Understanding

the genes and pathways driving gene expression helps us better understand

complex biological processes. Identifying prominent biological processes from

di↵erentially expressed genes can help scientists define stages and transitions

in complex macro level processes more rigorously. For example, the process of

wound healing occurs in four main stages with many overlapping sub-processes

in each stage; in this work I use gene analysis techniques and develop a com-

putational tool to map biological processes to stages of wound healing.

Gene analysis methods may be helpful in overcoming the barriers of using

transcriptomic data for translational research and medical discovery. Trans-

lational research is motivated by clinically relevant problems and consists of

developing medical diagnostics, procedures, and technologies. Consequently,

this field must be highly collaborative and interdisciplinary in order to bridge

the gap between theory and application. This gap is often called the “Valley

of Death”, as it is where early biological discoveries go to die before they can

be applied to medical practice.

Transcriptomics refers to studies involving the set of all RNA transcripts in an

individual or population of cells. Most studies involving transcriptomic data

are constrained to identifying di↵erentially expressed genes, and do not pro-

vide functional interpretation of how gene expression changes drive complex

biological processes. There is an unmet need for introducing new tools to draw

conclusions to assist in translational science.
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1.2 Gene ontology

To help bridge this gap between transcriptomic data and functional knowledge

of biology, the Gene Ontology (GO) database is commonly used. GO is actu-

ally composed of three ontologies, which are mostly disjoint from one another.

These are biological process, defined as higher level processes accomplished by

multiple molecular activities working together; molecular function, or molecu-

lar level activities performed by gene products; and cellular component, which

are the locations or cellular structures in which a function takes place. Each

aspect is comprised of a set of terms with relations operating between them,

and each term is annotated to one or more genes in a given species. The

database is dynamically updated to reflect current knowledge and new anno-

tations are added frequently. In this work, I will be focusing on the biological

process ontology only for simplicity and relevancy.

GO is organized as a directed acyclic graph (DAG), where the nodes are GO

terms and the edges are relations between them. The direction of the edges

determines whether, in a given pair of nodes A and B, A is a parent of B or

vice versa. A DAG is a more general mathematical structure than a tree, in

which each node can only have one parent. In a DAG, any node can have any

number of parents and children as long as it contains no cycles. If a term is a

parent of another term, then the function it represents is higher level, or more

general, than its child. The root of the graph, or the node with no parents,

is the highest level GO term, simply “biological process.” The nodes with no

children are often called the leaves of the graph; these nodes represent the most

specific or low level processes. I will introduce specific ways of measuring the

specificity of nodes in the GO in section 2.

1.3 Overrepresentation analysis

The online PANTHER database tool uses the GO annotations to perform

overrepresentation analysis on lists of genes. Overrepresentation analysis is a

statistical method that identifies a list of GO terms for a given gene list and

determines whether each GO term is significantly over or underrepresented in

the list of genes. This is also sometimes called enrichment analysis. This tool
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is extremely useful for extracting significant biological information from a list

of genes. For example, we may use it to determine what types of proteins were

produced during specific times over the course of a laboratory experiment,

based on which genes were expressed.

To use the tool, we input a list of genes that we wish to analyze, ideally

sharing common characteristics such as the top di↵erentially expressed genes

at a given time point to obtain more refined results. We also input a reference

list of genes; in our case this is the list of all the genes measured from the mi-

croarray experiment that our input list was taken from. The default reference

list in PANTHER is the entire genome for the given species, however, results

of overrepresentation analysis are much more accurate when the reference list

is set according to the microarray chip used. Otherwise, the resulting list of

GO terms will contain spurious results.

The outputs of overrepresentation analysis in PANTHER consists of statis-

tical information as well as biological. Each result includes, but is not limited

to, the following fields:

• The GO term itself, consisting of a unique numerical label and the bio-

logical process it represents.

• The list of genes in the inputted list that are annotated to that GO term.

• Level in ontology, indicating how far the GO term is from the root of

the graph (biological process). This gives us an idea of how specific

that GO term is in the overall DAG. The lowest level terms, level 0, are

farthest from the root, while the highest level terms are closest to it.

This is somewhat counterintuitive; to make matters more complex, the

more general nodes closer to the root may appear to have di↵erent levels

depending on how many ancestors are present along di↵erent paths of

the DAG. We will expand upon this issue in section 2.2.

• A + or -, indicating if the term is over or under-represented, respectively.

This allows us to easily filter out the underrepresented terms for analysis.

3



• The p-value of the term, which is the likelihood that the mapping of that

GO term to the sub-list of genes occurs purely by chance, as opposed

to carrying some biological significance. Specifically, it is the probability

of seeing at least x number of genes out of the total n genes in the list

annotated to a particualar GO term, given the proportion of genes in

the whole genome that are annotated to that GO term. All terms with

p > 0.05 are omitted in the output, thus what remains is statistically

significant terms only.

• The number of genes in the input list mapped to that GO term.

• The number of genes in the reference list (the microarray data) mapped

to that GO term.

The purpose of this analysis is to learn which GO terms are most or least

significant in the overall functions of a set of genes with similar dynamic char-

acteristics. In the case of our data, these characteristics are peak time of ex-

pression over the course of the experiment and intensity of expression. Since

many GO terms are present in a given list of genes, we can use this tool as

a mathematical reference for their relative significance and apply quantitative

reasoning to arrive at a concise yet complete list. Overall, it helps in the study

of translating transcriptomic data into useful biological information.

1.4 Previous work in GO analysis

The GO itself, which can be found at geneontology.org, contains all current

knowledge of GO terms and annotations and is updated regularly by experts in

the field. It is a computational representation of our current scientific knowl-

edge about the functions of genes from many di↵erent organisms. Users can

perform overrepresentation analysis through PANTHER on the GO website,

as well as look up any gene or GO term.

The paper “Use and Misuse of the Gene Ontology Annotations” by Rhee

et al, explains some of the drawbacks of the current approach to gene ontol-

ogy. I will highlight a few of the main drawbacks relevant to this work. First,

some information in GO may be imprecise, as some annotations are made at

4
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very high level GO terms, which limits their usefulness in drawing meaning-

ful conclusions from the data. There is also always the possibility that some

annotations are not correct and not able to be corrected by human experts

or automated tools. Some genes are also involved in several di↵erent biologi-

cal processes, but the tool weights all processes equally and cannot single out

the most relevant process with respect to the data using the context of the

other genes in the list, which can lead to extraneous results. Additionally,

existing approaches are decoupled from gene expression data obtained from

transcriptomic studies. Di↵erent genes may be regulated or expressed to dif-

ferent extents, however, GO does not provide information on how the amount

of gene regulation correlates with the intensity or relevancy of the correspond-

ing biological process. Finally, since some biological processes are more well

known than others, they have more annotations to genes and thus are more

likely to appear significant than others with less annotations, even if this is

not the case.

Other previous work related to GO includes the development of databases

designed to obtain a greater understanding of GO, namely, the GO Partition

Database (GO PaD) and the NaviGO database. The GO PaD provides a re-

organization of the GO by using information theory to partition the GO into

subsets based on their information content in bits. Applications of this study

to our work is expanded upon in section 2.2. NaviGO introduces similarity

scores that allow for pairwise comparison between GO terms, and the database

itself allows us to enter a list of GO terms and obtain these scores to use for

analysis. Section 2.3 contains further explanation on how this tool is applied

to our work.

2 Technical Background

2.1 Selecting gene lists for analysis

The data used in this study was collected using publicly available DNA mi-

croarrays; these consist of small chips containing thousands of DNA sequences

from a particular organism. These datasets can be found here. Microarrays
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are used to study genetics, specifically for transcriptomics in order to deter-

mine which genes are expressed in certain cells and tissues. In this report,

I will explore the application of time-series transcriptomic data analysis for

the study of wound healing. From microarray data, I select the most highly

di↵erentially expressed genes for my analysis.

A gene is considered di↵erentially expressed if a di↵erence observed in read

counts or expression levels between two experimental conditions is statistically

significant. The expression level of a gene is proportional to the amount of

protein it produces. Studying the genes that are di↵erentially expressed over

the course of a given experiment, such as during di↵erent intervals of time,

allows us to understand the underlying biological processes involved in that

experiment. Di↵erentially expressed genes may also be called upregulated or

downregulated, depending on if its change in expression is positive or nega-

tive. Upregulation is the process by which a cell increases the quantity of a

gene product/cellular component, such as RNA or protein, in response to an

external stimulus. The decrease of such components is downregulation. Con-

sequently, upregulated genes in an experiment at a given time point are the

ones which produce high amounts of gene product and are highly di↵erentially

expressed. For example, genes that code for the production of proteins crucial

for the body’s immune response will be highly upregulated during the inflam-

mation stage of wound healing, and less upregulated as the process continues

to later stages.

Since the microarrays we draw from contain tens of thousands of genes, many

are not significant or highly expressed enough to consider for analysis. We can

extract the most highly di↵erentially expressed genes from the list by comput-

ing the maximal fold change, or di↵erence in gene expression intensity over the

given time points during an experiment. We then filter the genes according to

their maximum fold change in intensity relative to the start of the experiment

with respect to a given threshold as detailed by Zlobina et al. The resulting

gene lists after filtering may then be used for overrepresentation analysis in

order to obtain the significant GO terms associated with them.
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2.2 Information content in bits as a metric for GO term

specificity

The GO Partition Database and corresponding paper, by Alterovitz et al, pro-

poses using information content of a GO term in bits as an alternative way of

quantifying specificity of GO terms rather than using the level in ontology as

described in section 1.3.

Testing biological hypotheses typically assumes comparable specificity or lev-

els in the DAG. However, DAG levels are not good indicators of specificity,

as they may cause misleading results or miss important biological discoveries.

One such reason for this is that the level in the ontology is not a set quan-

tity. Since GO is a DAG, following di↵erent paths of ancestry may suggest

a single term has multiple levels. PANTHER uses the path followed through

the graph to determine the level of a GO term in the results for a particular

gene list. This means that the same GO term may appear to have more than

one distinct level. This makes it di�cult to assess how specific or general that

GO term is without the context of the path followed, which PANTHER is

not able to determine. This can lead to inconsistent discoveries. Additionally,

within any single level, there is a lot of variation of specificity; for example,

level 3 in one set of GO terms may not be comparable to level 3 in another set.

Again, this is a result of the DAG structure and the fact that some pathways

in the DAG may have more ancestors or descendants than others. The GO

subgraph shown in figure 1 below illustrates these issues. This motivates the

use of information theory to quantify specificity of GO terms.

7
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Figure 1: Example DAG showing subgraph of the GO for top 100 DE genes
day 1 post-wounding of mouse skin.

2.2.1 Overview of information theory

Information theory, the study of the quantification, storage, and communi-

cation of digital information, is commonly used in mathematics, computer

science, statistics, and other fields. The fundamental unit of information is

the bit (a contraction of “binary digit”), which represents a logical state of a

system with the value of either 0 or 1. Central to the study of information

theory is entropy, a quantification of the amount of uncertainty involved in

a system or a random variable. The more possible discrete states a system

has, the higher its entropy, and the lower the probability of choosing a given

state at random. We will see that high entropy systems contain high informa-

tion content. Thus, we can understand the bit as the quantity of information

stored in a binary random variable that has an equal probability of taking the

value 0 or 1. Eight bits is equal to a byte, which constitutes the base unit

typically used to denote storage in computing as with megabytes, gigabytes,

and so forth. Any data, digital or not, can be encoded using bits, providing

a universal unit by which to quantify more abstract information that is easily

translatable to computational studies.

Claude Shannon, one of the founders of information theory, formalized that

information that can be stored in a system is proportional to log
b
N , where N

is the number of states in a system and b is the unit used to measure informa-

8



tion. This is key to understanding how the information of any system relates

to its entropy, and the use of information theory as a standard measure to be

applied to more abstract data.

2.2.2 Application to GO

Information content in bits can serve as a proxy for specificity of GO terms,

with high level or less specific terms containing few bits of information, while

low level or more specific terms contain many bits. Alterovitz et al illustrates

the use of this information based framework to partition GO into sets identi-

fied by uniform information content to create a new database for organizing

GO data, and shows that information is much more evenly distributed across

a set of GO terms containing information content in a given interval of bits

than a set of GO terms said to have the same level in the DAG. While the

database itself is not relevant to this work, the concept of quantifying GO

terms by their information in bits is a key part of this study.

Recall that the information stored in a piece of data is dependent on the

entropy of the system containing that data. In the case of GO, the system is

the entire ontology of terms and the data refers to a single GO term. Let a

GO term be represented as Vn, the gene set annotated by Vn be k(Vn), and

j be the total number of GO terms in the ontology. We can then define the

probability p(Vn) of randomly selecting a gene from the entire microarray that

is annotated to Vn as follows. In the below equation, the numerator is the

number of genes in the microarray annotated to Vn, and the denominator is

the total number of genes in the microarray,

p(Vn) =
k(Vn)

jS
m=1

k(Vm)

. (1)

The information content in bits I(Vn) of GO term Vn is then computed as

follows. This quantity is also called Shannon information, after Shannon’s

formalization of information stored in a system.

I(Vn) = � log2 p(Vn) (2)

9



The logarithmic relationship between probability and information content means

that an increase in one bit of information corresponds to a 2-fold increase in

specificity. The probability of selecting a GO term with 0 bits of information

is 1, for 1 bit of information, the probability is 1/2, and so on. We can also say

that a GO term with I(Vn) = n has a probability of 1/2n of being randomly

selected.

Using the GO data provided by PANTHER, we can easily compute the prob-

ability of selection and information content of any given GO term. For a given

microarray, the number of genes in the microarray is constant, typically around

40,000. The number of genes in the microarray annotated to a GO term is

given by the “number in reference” field in the GO output. During the data

parsing phase of the pipeline that will be explained in detail in section 3 of this

report, we assign information content to each GO term and use it to quantify

the specificity of each term as compared with its representation in the dataset.

2.3 Similarity and comparison of GO terms

The NaviGO database provides many advantages to further understanding the

relationships between GO terms. Built into the tool is an interactive rendering

of the GO DAG that provides an intuitive understanding of similarity among

them. The novel aspect of this tool is six GO similarity scoring schemes that

reflect di↵erent types of pairwise relationships between GO terms. These re-

lationships include, but are not limited to, the topological structure of GO,

protein-protein interactions between gene products annotated to GO terms,

contextual association, which provides a metric of how often the two GO terms

appear together, and annotation frequency. The quantitative analysis of GO

term distance and functional similarities provided by this database is invalu-

able to this work.

The six scores consist of three semantic similarity scores, which quantify the

closeness of the two GO terms in the GO DAG, and three functional similarity

scores, which quantify how likely two terms are to interact or co occur with

one another. Functional similarity can also often be inferred from the semantic

10



similarity scores as well, for example, if the score is low, this indicates that

the terms are far away from each other in the DAG, and thus, may perform

very di↵erent functions. On the other hand, the interaction association score

(IAS), one of the functional similarity scores represents the degree to which

the proteins annotated to a pair of GO terms interact, which may be very

high even when the semantic score is low as the IAS can identify related terms

across GO categories.

We select two of these six scores to use for our analysis, one semantic sim-

ilarity score and one functional similarity score. The methods and results sec-

tion of this paper will expand on the use of these scores to further our research.

For semantic similarity, we use the relevance semantic similarity score (RSS),

which calculates the information content in bits of the lowest common ancestor

of two terms in the DAG. If the lowest common ancestor of the two terms has

a low information content, then the two terms are likely far away and their

RSS score is low; if it has high information content, then the two terms are

likely close together and the score is high. The score is calculated as follows.

simRel(c1, c2) = max
c2S(c1,c2)

✓
2 log p(c)

log p(c1) + log p(c2)
· (1� p(c))

◆
(3)

Recalling how information content is computed from probability, p(c) repre-

sents the probability of identifying GO term c. The first term computes the

relative depth of the common ancestor c to the depth of the two terms c1

and c2 while the second term represents how rare it is to identify the common

ancestor c by chance.

We will use the co-occurrence association score (CAS) for the functional simi-

larity score. CAS was designed to quantify the frequency of co-occurrences of

two GO terms in a single gene annotation relative to random chance and is

computed as follows.

CAS(i, j) =

C(i,j)P
i,j C(i,j)⇣

C(i)P
k C(k)

⌘⇣
C(j)P
k C(k)

⌘ (4)
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Here, C(i, j) is the number of sequences of gene annotations in the Gene

Ontology Annotation database that contain both the GO terms i and j. C(k)

is the total number of sequences in the GOA annotated with GO term k

for k = i, j. In short, the CAS quantifies how often two GO terms i and

j co-annotate sequences relative to random chance. CAS also includes GO

hierarchy information in scoring the term pairs.

3 Methods

3.1 Gene ontology significant terms pipeline

The main novel contribution of this work is a pipeline, created as a tool in

Python, that takes in lists of di↵erentially expressed genes to be subjected to

overrepresentation analysis, and narrows down the resulting long list of GO

terms into a short list of the most significant GO terms representing that list

of genes.

3.1.1 Motivation for filtering GO terms

Many GO terms that result from overrepresentation analysis are much too

general to provide useful information about the biological function they code

for, such as the root node “biological process”, or other high-level terms such

as “metabolic process” and “immune process”. On the other hand, some GO

terms are too highly specific, meaning that very few genes in our input list are

annotated to that term. In this case, we cannot assert with confidence that

the associated biological process is in fact significant. Having such a small

sample size also increases the risk that the gene in question may have resulted

from experimental noise. Additionally, many GO terms are redundant, and

all of these redundant terms will show up when performing overrepresentation

analysis on a given gene list. This redundancy may be caused by genes in

the data that are annotated to multiple GO terms, or two or more GO terms

closely related in the ontology (such as parent-child relationships) showing up

in the result list. The GO significant terms pipeline consists of two main steps,

representation filtering and similarity filtering, to narrow down the list of GO

terms resulting from overrepresentation analysis.
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3.1.2 Representation filtering

First, data from GO is used to filter out terms that do not meet our prescribed

criteria regarding specificity and representation of the term in the dataset. Let

us denote the number of genes in the reference list, or microarray, annotated

to a particular term as NGO, and the number of genes in our input gene list

as Ninput. The intersection r of these two quantities, as shown in the below

Venn diagram, represents the number of genes in our input list annotated to

that GO term.

Figure 2: Venn diagram detailing representation metrics of GO terms.

We define two metrics to quantify how represented a GO term is in the dataset.

Let representation amount of a term be Ra = r/NGO, and normalized repre-

sentation amount of a term be Rn = r/Ninput.

The two histograms below show the distributions of the representation amount

and normalized representation amount of GO terms for successive intervals of

information content for day 1 mouse skin wound top 100 di↵erentially ex-

pressed genes. Further explanation of how these histograms are generated is

given in section 3.2; we show them here to illustrate the relationships between

the representation metrics and information content. Distributions for other

datasets follow similar patterns.
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Figure 3: Example histograms showing representation metrics for di↵erent
information content intervals.

These histograms indicate that the two quantities Ra and Rn appear to be

inversely related. While Ra favors terms with very high information content,

Rn favors terms with very low information content. We postulate that desired

GO terms for analysis will be those on the more specific, or higher information

end, however, recall that if a GO term has a high Ra and low Rn, this means

that very few genes in our input list are annotated to that term. Therefore,

we can’t be too confident that the associated biological process is in fact sig-

nificant. This motivates us to consider both metrics in our selection process.

We want to balance choosing highly specific terms with how frequently they

appear in our input list of di↵erentially expressed genes and thus how repre-

sented they are in our list.

To approach this more quantitatively, we define a new metric, the “repre-

sentation score” Rs of a GO term, as a quadratic equation that is a function

of both Ra and Rn. We take the product of the two original metrics, each

shifted by a user-determined bias constant, and scale it by 100 to get the

following equation:

Rs = 100 · (Ra � b1) · (Rn � b2), (5)

where b1 and b2 are biases chosen to balance how much Rs should depend on

each quantity. The purpose of using biases is two-fold. Firstly, we choose the

biases such that, when we plot representation score versus information content

in bits over all GO terms, we obtain a concave down parabola with a clear
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maximum, in order to give us an optimization problem. A monotonically in-

creasing or decreasing function does not yield such an optimization. Second,

the ranges of values that Ra and Rn can take is di↵erent. Using biases allows

us to find a proper threshold for the metrics to balance this discrepancy in

ranges. It is important to note that, while we don’t want to exclude highly

specific terms from our analysis, this may be a trade-o↵ of considering more

highly represented GO terms.

Since we want to choose biases that yield a concave down quadratic with

a maximum, we must empirically determine where that maximum should lie.

The example scatter plots in figure 4 below show the representation amount,

normalized representation amount, and representation score of GO terms for

day 1 mouse skin wound top 100 di↵erentially expressed genes as a function of

information content in bits. In observing these plots, we confirm the inverse

relationship between the representation amount and normalized representa-

tion amount. We choose the maximum of our quadratic to lie approximately

at the inflection point where Ra begins to increase and Rn begins to flatten

out with respect to bits. We may need to adjust the biases chosen for di↵erent

datasets. This occurs when considering larger gene lists for which the result-

ing GO terms from overrepresentation analysis skew on the lower information

side. For the data shown, which is again the top 100 di↵erentially expressed

genes day 1 post-wounding of mouse skin, this happens around 10 bits, which

we can see circled in red.
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Figure 4: Example scatter plots showing representation metrics and represen-
tation score vs information content in bits.

Finally, we take the GO terms whose representation scores are in the top 10%

of all scores, signifying the maximum of the quadratic shown above, for the

given set to move on to the second step, and discard the rest.

3.1.3 Similarity filtering

Similarity filtering consists of using the NaviGO database to perform pair-

wise similarity analysis and scoring on the resulting list of GO terms to filter

out su�ciently similar terms. This allows us to mitigate the issue of redun-

dancy of GO terms in overrepresentation analysis. NaviGO gives semantic and

functional similarity scores, and we choose the relevance semantic similarity

score (RSS) and co-occurrence association score (CAS) to use for filtering, as

explained in section 2.3. In filtering out GO terms that are similar to one

another, we consider both of these scores, with slightly more weight on the

semantic score. This is due to the relative lack of information in the database

for the CAS for many pairs, and because high semantic similarity scores can

identify parent-child pairs in the GO set, which are a common source of re-

dundancy in overrepresentation analysis.

We consider a pair to be similar if one of the following criteria is true. These
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criteria are informal heuristics we tested over several iterations of the tool’s

development and subsequently defined to select su�ciently similar pairs. A

pair of GO terms is considered similar if either the RSS is greater than 0.9,

where the range for RSS is 0 to 1, or the RSS is in the top 10% and the CAS

is in the top 25% of all scores in the group.

Similar pairs are placed in similarity groups based on mutual similarity with

other terms. The graph below shown in figure 5 is an example of a similarity

network graph of GO terms for day 1 mouse skin wound top 100 di↵eren-

tially expressed genes. There are two connected components, each represent-

ing a separate similarity group. There component to the left contains only two

terms, allowing us to choose one to represent the group. The larger component

to the right shows a more complicated structure from which we mathematically

discern the best term to represent the group.

Figure 5: Example network graph showing similarity groups of GO terms.

To determine which terms appear in the shortlist, we use another heuristic.

This criteria is as follows. All GO terms that appear in none of the similarity

groups are added to the shortlist. This allows us to avoid eliminating any

possibly significant biological processes that do not contain any redundancy in

the set, which is always possible with GO analysis. For each similarity group,

one GO term is chosen to represent the group and the rest are discarded.

For each similarity group, the GO term with the highest degree, or highest

number of connections to other terms, is chosen. The node circled in red in the

graph shown is the one with highest degree for that component of the graph.

If there is more than one node with maximum degree, or if the component

is a complete graph, then we select the max-degree term with the highest
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information content.

3.2 Generating visualizations

As illustrated in the examples shown in above sections, visualizations help us

to greater understand the abstract concepts we utilize in this paper and apply

to practical work. We use statistical data involving the relationships between

representation of GO terms and information content to create histograms and

scatter plots, and similarity data from NaviGO to create similarity network

graphs. The histograms, scatter plots, and similarity graphs for all other time

points for top 100 and 1000 mouse genes and top 100 human genes can be

found in the appendix at the end of this paper.

Histograms allow us to visualize the relationships between information con-

tent in bits of sets of GO terms and the values Ra and Rn we defined to

quantify representation in the dataset of those terms. During data parsing,

when we compute the information content in bits of each term, we partition

the set of GO terms into the intervals 0-2, 2-4, ..., 12-14 bits, where nearly all

observed GO terms contain less than 14 bits of information.

Additionally, we employ the use of scatter plots to see how the representation

amount, normalized representation amount, and representation score behave

as functions of information content in bits. There are two main motivations

for generating this visualization. First, it is easier to observe the overall trends

in Ra and Rn vs bits as a scatter plot than as a histogram. This confirms our

earlier observation that the two quantities seem to be inversely related. Sec-

ondly, and most importantly, comparing the representation score Rs to each of

its constituents allows us to qualitatively observe how much Rs resembles Ra

and Rn, and adjust the biases if need be to balance the visibility of each. Since

Rs is a quadratic model, we also can adjust the biases to construct a concave

down function with a clear maximum in the desired bit range, ensuring that

when we filter out the top 10% most highly represented GO terms, they will

have the specificity we require.
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We also generate graphs to show the similarity between terms identified by

NaviGO and used for similarity filtering. Each GO term is represented by a

node and edges between them represent similarity by our criteria. This allows

us to see which GO terms are similar and what the structure of the similarity

groups looks like. Some groups are complete subgraphs, meaning all terms

are similar to each other. This means we can choose one term arbitrarily to

represent the group, so we choose the terms with the most information out of

the group. Otherwise, if one term has more connections than the rest of the

terms in the group, we choose that term to represent the group.

3.3 Python tool

The Python tool used for this analysis consists of several codes to perform

data parsing, figure generating, representation filtering, and similarity filter-

ing. We use the tool as follows. First, we obtain the lists of the most highly

di↵erentially expressed (DE) genes for a given organism at a given peak time.

We then enter each list into PANTHER with the corresponding reference list

of the microarray data that those DE genes came from. The resulting GO

terms in the form of the JSON output of PANTHER are entered into step 1 of

the pipeline by entering the JSON file and the “rep” keyword and running the

script. This file is parsed to obtain the relevant information used for represen-

tation filtering. The script will output a spreadsheet containing the filtered

GO terms and their corresponding data. We enter these GO terms into the

NaviGO database to obtain the similarity data and download this result as

another spreadsheet, which is then fed into step 2 of the pipeline along with

the “sim” keyword. The script finally outputs the shortlist as another excel

spreadsheet detailing the results of the shortlist and corresponding data, con-

sisting of each GO term and its information content, representation amount,

normalized representation amount, and representation score. All codes and

supporting materials and files are available on GitHub at this repository.
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4 Results

4.1 Application to wound healing

We use the GO shortlisting pipeline described in the previous section to ana-

lyze time-series transcriptomic data of mouse and human wound healing. We

produce shortlists of GO terms for both species at each time point recorded

in the microarray experiments using lists of the most highly di↵erentially ex-

pressed genes at each of these time points. The goal is to map wound healing

stages to dynamic processes based on the genes expressed. Identifying promi-

nent biological processes involved from di↵erentially expressed genes may help

us define stages and transitions more rigorously.

The main goal of the work in the Gomez lab and overall collaboration is to

create a bioelectronic bandage that stimulates and accelerates wound healing.

In order to do this, collaborators are working on a predictive model using im-

ages and gene expression data to determine wound healing stage progression.

Thus, mapping biological processes to wound healing stages to augment our

predictive model is a main application of this work.

4.1.1 Overview of wound healing

The wound healing process consists of four main stages. The first stage is

hemostasis, which lasts for a few hours immediately post-wounding. During

this time, blood vessels constrict to reduce blood flow to the wound and pre-

vent the body from bleeding out and platelets stick together to repair the

blood vessel. Then, coagulation occurs and a clot composed of blood and

fibrin polymers forms over the wound. The next stage, inflammation, begins

within the first day of wounding and can last anywhere from several days to

several weeks. The injured blood vessels cause localized swelling and immune

cells such as T cells, leukocytes, and neutrophils migrate to the site of the

wound to defend the tissue from infection. Damaged cells and pathogens are

also removed. Swelling, heat and pain are normal during this stage, paving

the way for the wound to be rebuilt during the proliferative phase. During this

stage, the wound contracts, new tissues are rebuilt with collagen and extra-
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cellular matrix proteins, and new blood vessels are constructed to replace the

damaged ones. Tissue repair continues with chemotaxis of immune cells. [ver-

ify this] At the end of proliferation, the wound site epithelializes, resurfacing

a new layer of skin. The final and longest stage is maturation, or remodel-

ing. This begins a few weeks after the injury and may continue for a year.

Maturation occurs when the collagen at the wound site is remodeled and and

the wound is able to fully close. This remodeling allows the collagen fibers

to organize and cross-link, strengthening the skin of the wound. Programmed

cell death of repair cells that are no longer needed also occurs during this time.

There is a lot of overlap between these stages. For example, some processes in-

volved in inflammation may still be occurring as the proliferative phase starts,

such as immune cell migration. For this reason, it is often di�cult to say when

one stage ends and the next begins. Intermediate stages may also be defined

to address this di�culty. Identifying the genes and pathways of gene expres-

sion involved in each stage of the wound healing process helps us to better

understand each stage, overlap between stages, and how the many di↵erent

molecular-level processes work together to achieve the desired results. Lists of

the most highly di↵erentially expressed genes from DNA microarrays profiling

wound healing were used for this analysis.

4.1.2 Datasets used

The National Center for Biotechnology Information’s transcriptional profil-

ing of the wound healing process in mice and humans by way of A↵ymetrix

GeneChip microarrays is available online for public use. Three microarray ex-

periment datasets were used in this study, one mouse and two human. Series

GSE23006 examined mouse skin and tongue wound tissue samples from days

0 to 10 after wounding, spanning all stages of the wound healing process; we

study the skin wound data only. Samples were taken 6 hours, 12 hours, 1 day,

3 days, 5 days, 7 days, and 10 days post wounding. Series GSE28914 examined

human skin wound tissue samples from 8 patients 3 and 7 days after wounding,

covering the inflammation and beginning proliferation stages of wound healing

only. Series GSE50425 also studied human skin wound tissue, focusing on the
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maturation (final) stage of wound healing. Samples were taken from 4 patients

14 and 21 days post wounding.

Since the microarrays contain large numbers of genes, we filter the most highly

di↵erentially expressed genes to consider for analysis. This is done by calculat-

ing the fold-change in expression of each gene. The top 100 most di↵erentially

expressed genes for each recorded time point in both mouse and human mi-

croarrays were used for the GO shortlisting pipeline. We also performed the

analysis on the top 1000 most di↵erentially expressed genes for the mouse data

for comparison.

4.2 Shortlists, top 100 di↵erentially expressed genes

In the following section, we present the shortlists of the most significant GO

terms for the mouse and human datasets obtained from lists of the top 100

most di↵erentially expressed genes at each recorded time point.

4.2.1 Mouse data

For the following dataset, we set biases b1 = 0.08 and b2 = 0.05 for the

representation filtering stage.
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Table 1: GO shortlists for each time point in top 100 most di↵erentially ex-
pressed mouse genes.
Peak time GO ID Biological Process

6 hours
GO:0030593 neutrophil chemotaxis
GO:0007159 leukocyte cell-cell adhesion
GO:0071674 mononuclear cell migration
GO:0030593 regulation of interleukin-8 production

GO:2000379
positive regulation of reactive oxygen species metabolic
process

GO:0072676 lymphocyte migration

12 hours
GO:0030593 neutrophil chemotaxis
GO:0007159 leukocyte cell-cell adhesion
GO:0072676 lymphocyte migration
GO:0032757 positive regulation of interleukin-8 production
GO:0032653 regulation of interleukin-10 production
GO:0070098 chemokine-mediated signaling pathway

1 day
GO:0002526 acute inflammatory response
GO:0007159 leukocyte cell-cell adhesion
GO:0030593 neutrophil chemotaxis
GO:0050766 positive regulation of phagocytosis
GO:0045071 negative regulation of viral genome replication
GO:0042116 macrophage activation
GO:0032757 regulation of interleukin-10 protein
GO:0032757 positive regulation of interleukin-8 protein
GO:2000107 negative regulation of leukocyte apoptotic process
GO:0002224 toll-like receptor signaling pathway
GO:0072676 lymphocyte migration

3 days
GO:0002675 positive regulation of acute inflammatory response
GO:0071677 positive regulation of mononuclear cell migration
GO:0030593 neutrophil chemotaxis
GO:0050766 positive regulation of phagocytosis

5 days GO:0030199 collagen fibril organization
7 days GO:0030199 collagen fibril organization

10 days
GO:0030199 collagen fibril organization
GO:0045766 positive regulation of angiogenesis
GO:1904018 positive regulation of vasculature development

4.2.2 Human data

For the following dataset, we set biases b1 = 0.15 and b2 = 0.05 for the

representation filtering stage.
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Table 2: GO shortlists for each time point in top 100 most di↵erentially ex-
pressed human genes.
Peak time GO ID Biological Process

3 days
GO:0002286 T cell activation involved in immune response
GO:0002828 regulation of type 2 immune response
GO:0030593 neutrophil chemotaxis
GO:0070098 chemokine-mediated signaling pathway
GO:0032673 regulation of interleukin-4 production
GO:0002675 positive regulation of acute inflammatory response
GO:2000108 positive regulation of leukocyte apoptotic process

GO:0019886
antigen processing and presentation of exogenous pep-
tide antigen via MHC class II

GO:1901889 negative regulation of cell junction assembly
GO:0043299 leukocyte degranulation
GO:0019835 cytolysis
GO:0045429 positive regulation of nitric oxide biosynthetic process
GO:0080164 regulation of nitric oxide metabolic process
GO:0022617 extracellular matrix disassembly
GO:0034605 cellular response to heat
GO:0052372 modulation by symbiont of entry into host
GO:0060760 positive regulation of response to cytokine stimulus
GO:0032663 regulation of interleukin-2 production

7 days
GO:0048247 lymphocyte chemotaxis
GO:0150077 regulation of neuroinflammatory response
GO:0030593 neutrophil chemotaxis
GO:0030574 collagen catabolic process

GO:0010575
positive regulation of vascular endothelial growth factor
production

GO:0031424 keratinization
GO:2000403 positive regulation of lymphocyte migration
GO:0006953 acute-phase response

14 days
GO:0034110 regulation of homotypic cell-cell adhesion
GO:0030574 collagen catabolic process

GO:0090288
negative regulation of cellular response to growth factor
stimulus

GO:0060412 ventricular septum morphogenesis

GO:0010718
positive regulation of epithelial to mesenchymal transi-
tion

GO:0014911 positive regulation of smooth muscle cell migration
GO:0003179 heart valve morphogenesis
GO:0061035 regulation of cartilage development

21 days
GO:0002690 positive regulation of leukocyte chemotaxis
GO:0022617 extracellular matrix disassembly
GO:0045778 positive regulation of ossification
GO:0060688 regulation of morphogenesis of a branching structure

GO:0001960
negative regulation of cytokine-mediated signaling path-
way

GO:0032963 collagen metabolic process
GO:0032835 glomerulus development
GO:0045071 negative regulation of viral genome replication
GO:0032729 positive regulation of interferon-gamma production
GO:0030510 regulation of BMP signaling pathway
GO:0048771 tissue remodeling
GO:0003279 cardiac septum development
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4.3 Shortlists, top 1000 di↵erentially expressed genes

To test the GO shortlisting method’s e�cacy in taking in di↵erent gene list

sizes, we additionally enter the top 1000 most di↵erentially expressed genes at

each time point for the mouse data only. When we enter a list of 1000 genes

into PANTHER for overrepresentation analysis, the most significant GO terms

that come out of the algorithm are much more general than those we obtained

from entering a list of 100 genes. This is due to PANTHER’s criteria for select-

ing overrepresented GO terms for a gene list. When taking in a much larger

list of genes, there is a larger probability that a highly informative GO term is

annotated to a gene or sub-list of genes by random chance. In other words, it

is more likely that highly informative GO terms will have larger p-values and

thus not appear in the GO overrepresentation results. While plenty of specific

GO terms do still appear in the results, their Ra and Rn values might be lower

regardless of their significance.

To attempt to mitigate this issue, we adjust the biases in computing the rep-

resentation score. Recall from section 3.1.2 that we choose biases that yield a

concave down quadratic with a clear maximum, which lies approximately at

the inflection point where Ra begins to increase and Rn begins to flatten out

with respect to bits. Since the ranges of these metrics change with respect to

gene list size, we again find biases that balance this discrepancy.

While changing the biases still may not yield the same results from the top

1000 genes as with the top 100 genes, we may obtain results that are more

similar or at least more easily comparable. Again, the process of selecting the

biases is done heuristically and tested for relative e�cacy rather than objec-

tive truth. We then analyze the results to ensure that the biological processes

represented align with the expected functions that occur at the stage(s) most

likely mapped to that particular time point. This ensures relative consistency

of the algorithm across di↵erent gene list sizes, as long as the biases are shifted

accordingly. For this dataset, we set biases b1 = 0.6 and b2 = 0.06.
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Table 3: GO shortlists for each time point in top 1000
most di↵erentially expressed mouse genes.

Peak time GO ID Biological Process

6 hours
GO:0030490 maturation of SSU-rRNA
GO:0090501 RNA phosphodiester bond hydrolysis
GO:0030216 keratinocyte di↵erentiation
GO:0050891 multicellular organismal water homeostasis
GO:1902622 regulation of neutrophil migration
GO:0002224 toll-like receptor signaling pathway

GO:0008630
intrinsic apoptotic signaling pathway in response to
DNA damage

GO:0032649 regulation of interferon-gamma production
GO:2000106 regulation of leukocyte apoptotic process

12 hours

GO:0050732 negative regulation of peptidyl-tyrosine phosphorylation
GO:1904892 regulation of receptor signaling pathway via STAT
GO:0071622 regulation of granulocyte chemotaxis
GO:0050810 regulation of steroid biosynthetic process
GO:0045069 regulation of viral genome replication
GO:0080164 regulation of nitric oxide metabolic process
GO:0030216 keratinocyte di↵erentiation
GO:0033561 regulation of water loss via skin

GO:0062208
positive regulation of pattern recognition receptor sig-
naling pathway

GO:0062207
regulation of pattern recognition receptor signaling
pathway

GO:0030490 maturation of SSU-rRNA

GO:1903426
regulation of reactive oxygen species biosynthetic pro-
cess

GO:0070098 chemokine-mediated signaling pathway
GO:0070555 response to interleukin-1
GO:0098586 cellular response to virus
GO:0009185 ribonucleoside diphosphate metabolic process
GO:0071456 cellular response to hypoxia
GO:1903578 regulation of ATP metabolic process
GO:0045089 positive regulation of innate immune response
GO:0006606 protein import into nucleus
GO:0071675 regulation of mononuclear cell migration
GO:1901216 positive regulation of neuron death

1 day

GO:0050672 negative regulation of lymphocyte proliferation
GO:0016052 carbohydrate catabolic process
GO:0046939 nucleotide phosphorylation
GO:0072593 reactive oxygen species metabolic process
GO:0007259 receptor signaling pathway via JAK-STAT
GO:0071402 cellular response to lipoprotein particle stimulus
GO:1900371 regulation of purine nucleotide biosynthetic process
GO:0035335 peptidyl-tyrosine dephosphorylation
GO:2000404 regulation of T cell migration
GO:0070229 negative regulation of lymphocyte apoptotic process
GO:0014066 regulation of phosphatidylinositol 3-kinase signaling
GO:0010883 regulation of lipid storage

GO:0043280
positive regulation of cysteine-type endopeptidase activ-
ity involved in apoptotic process

GO:0006911 phagocytosis, engulfment
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Peak time GO ID Biological Process

GO:0032088
negative regulation of NF-kappaB transcription factor
activity

GO:0071456 cellular response to hypoxia
GO:0001776 leukocyte homeostasis
GO:1903201 regulation of oxidative stress-induced cell death
GO:0045446 endothelial cell di↵erentiation
GO:0097191 extrinsic apoptotic signaling pathway
GO:1903578 regulation of ATP metabolic process

GO:2000117
negative regulation of cysteine-type endopeptidase ac-
tivity

GO:1905954 positive regulation of lipid localization
GO:0031341 regulation of cell killing
GO:0015748 organophosphate ester transport
GO:0071356 cellular response to tumor necrosis factor

3 days

GO:0009620 response to fungus
GO:0031343 positive regulation of cell killing
GO:0045621 positive regulation of lymphocyte di↵erentiation
GO:0002707 negative regulation of lymphocyte mediated immunity
GO:0043030 regulation of macrophage activation
GO:0006690 icosanoid metabolic process
GO:0050891 multicellular organismal water homeostasis
GO:0009132 nucleoside diphosphate metabolic process
GO:0006090 pyruvate metabolic process

GO:0062207
regulation of pattern recognition receptor signaling
pathway

GO:0043331 response to dsRNA
GO:0045123 cellular extravasation
GO:0070232 regulation of T cell apoptotic process
GO:0001523 retinoid metabolic process
GO:0032642 regulation of chemokine production
GO:0036294 cellular response to decreased oxygen levels
GO:0071347 cellular response to interleukin-1
GO:0072593 reactive oxygen species metabolic process
GO:1903201 regulation of oxidative stress-induced cell death

GO:0043123
positive regulation of I-kappaB kinase/NF-kappaB sig-
naling

GO:0006665 sphingolipid metabolic process
GO:1905954 positive regulation of lipid localization
GO:1901136 carbohydrate derivative catabolic process

5 days

GO:0032479 regulation of type I interferon production
GO:0032660 regulation of interleukin-17 production
GO:1903900 regulation of viral life cycle
GO:0048525 negative regulation of viral process
GO:1905521 regulation of macrophage migration

GO:0062208
positive regulation of pattern recognition receptor sig-
naling pathway

GO:0030574 collagen catabolic process
GO:0032731 positive regulation of interleukin-1 beta production
GO:0090199 regulation of release of cytochrome c from mitochondria
GO:0014066 regulation of phosphatidylinositol 3-kinase signaling
GO:0009593 detection of chemical stimulus
GO:0032757 positive regulation of interleukin-8 production

GO:2000379
positive regulation of reactive oxygen species metabolic
process

27



Peak time GO ID Biological Process
GO:0071347 cellular response to interleukin-1
GO:0031638 zymogen activation
GO:0006029 proteoglycan metabolic process
GO:0071456 cellular response to hypoxia
GO:0045089 positive regulation of innate immune response
GO:1901216 positive regulation of neuron death
GO:0003073 regulation of systemic arterial blood pressure

7 days

GO:1902624 positive regulation of neutrophil migration
GO:0010712 regulation of collagen metabolic process
GO:0002275 myeloid cell activation involved in immune response
GO:0014066 regulation of phosphatidylinositol 3-kinase signaling
GO:0045071 negative regulation of viral genome replication
GO:1903900 regulation of viral life cycle
GO:2000107 negative regulation of leukocyte apoptotic process
GO:0002224 toll-like receptor signaling pathway
GO:0002688 regulation of leukocyte chemotaxis
GO:0030510 regulation of BMP signaling pathway
GO:0032760 positive regulation of tumor necrosis factor production
GO:0006665 sphingolipid metabolic process

10 days

GO:0030199 collagen fibril organization
GO:0051785 positive regulation of nuclear division
GO:0048771 tissue remodeling
GO:0045766 positive regulation of angiogenesis
GO:0060541 respiratory system development

4.4 Reduction from original GO lists

The following table shows how each stage of the shortlisting pipeline narrowed

down the GO term list length for each dataset. We see that for the top 100

DE genes in mouse and human, for some of the time points, our original GO

list is longer than our gene list. This is due to a large amount of redundancy in

the GO list resulting from overrepresentation analysis, which overwhelmingly

occurs during the beginning of the inflammation stage; we will address this in

the next section.
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Figure 6: Length of original GO term list obtained from overrepresentation
analysis, after representation filtering, and after similarity filtering for each
dataset studied.

5 Discussion: wound healing application

In this section, we analyze the resulting shortlists for each dataset in the

context of the stages of wound healing by defining each GO term and discussing

how its function may fit in to the stage(s) most likely occurring at the given

time point as well as within the overall process of wound healing. We speculate

how these di↵erent processes work together to perform known functions in each

stage and why they may be significant.

5.1 Mouse data, top 100 DE genes

6 hours post-wounding, we expect that the wounded tissue is either still un-

dergoing hemostasis or is beginning the inflammation stage. The resulting

shortlist of GO terms at this time point towards inflammation. Leukocytes,

or white blood cells, are a key part of the inflammatory response. Leukocyte

cell-cell adhesion refers to the lining of blood vessels by leukocytes to protect

against invading substances at the wound site. Lymphocytes and neutrophils

are types of mononuclear cells, which are types of leukocytes, and thus also

migrate to the wound site. All these immune cells play important roles in

the body’s initial defense of the wound site from potential pathogens that

might threaten to leak in. Interleukin-8 attracts and activates neutrophils in

the inflammatory regions. Reactive oxygen species play a role in inflamma-
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tory regulation, as oxidative stress promotes migration of inflammatory cells

across the endothelial barriers of wound tissue. Several of the same process

continue 12 hours post-wounding, with the addition of interleukin-10 produc-

tion, which is another type of immune cell with anti-inflammatory properties,

and the chemokine-mediated signaling pathway, which stimulates migration of

leukocytes to the wound site.

One day post-wounding, we see a continuation of many processes from the first

6 and 12 hours, as the wound is in the midst of the inflammation stage. The

acute inflammatory response GO term reflects this overall process. Immune

cells continue to migrate to the wound site. Chemotaxis specifically refers to

migration along a gradient. Phagocytosis is the process of macrophage ac-

tivation. Some subtypes of macrophages are leukocytes that eat substances

deemed to be dangerous (a potentially dangerous biosubstance is one that does

not have on its surface proteins specific to healthy body cells). Toll-like re-

ceptors also recognize pathogen associated molecular patterns and defend the

body against them, playing an important role in inflammation as well as prolif-

eration. The negative regulation of leukocyte apoptosis is a process that stops

leukocytes from committing programmed cell suicide before they are ready to,

as they are still needed during this stage. We also see negative regulation of vi-

ral genome replication; although we assume there are no viruses at the wound

site as the mouse wounds are sterile, defending against viral replication is a

part of the immune response and thus may still be activated even if it is not

needed. This occurs because genes often perform more than one function or

are part of several di↵erent pathways, so some highly di↵erentially expressed

genes could also be involved in tangentially related inflammatory or immune

responses.

On day 3, inflammation continues with the regulation and migration of im-

mune cells and phagocytosis, again all part of the acute inflammatory response.

During the last half of the experiment, days 5, 7, and 10, the wound undergoes

proliferation and maturation, completing the healing process. Collagen fibril

organization occurs, a process by which collagen, the most abundant protein
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in the body, rebuilds the wounded skin. On day 10, new blood vessels form via

angiogenesis and vasculature development, finalizing the repair of the wounded

skin tissue.

We observe that overall, the shortlists obtained from considering the top 100

genes only are quite short, especially for the later days of the experiment. Only

one GO term shows up for days 5 and 7, and only 3 terms result for day 10.

Compare this to list sizes of 6-12 GO terms for each time point up to day 1,

and 4 GO terms for day 3. While the inflammatory/immune response is quite

complex and involves many di↵erent types of cells, proteins, and regulating

factors, proliferation and maturation mostly cover the rebuilding of wounded

tissue. It may be the case that less significant processes occur during the pro-

liferation and maturation phases of wound healing, however, there is little else

to support this claim. Perhaps a more likely potential reason for this discrep-

ancy in list lengths is that some highly di↵erentially expressed genes may not

necessarily correlate with highly significant processes. More research would be

needed to investigate this claim as we do not yet have a way of measuring this

correlation.

5.2 Mouse data, top 1000 DE genes

Analyzing the top 1000 di↵erentially expressed genes gives us some of the same

processes we saw in the top 100, with the addition of many higher-level pro-

cesses at each time point. However, some of the processes included in the top

100 results do not show up in the top 1000 results, likely due to the mismatch

in specificity. Each shortlist is substantially longer as well due to the larger

list of genes. In this section, we will discuss the shortlists for each time point,

focusing on the contrasting processes, and analyze how they each fit into the

big picture of the wound healing process.

6 hours post-wounding, immune cell production, migration, and apoptosis

related terms show up as expected. One such term that we did not previously

see is regulation of interferon-gamma production; interferon-gamma cells are

crucial for the immune response and di↵erentiate into T cells, another impor-
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tant type of immune cell. Another new term is keratinocyte di↵erentiation;

keratinocytes are responsible for restoring the epidermis after injury and their

di↵erentiation is critical for epidermal stratification, or the formation of a bar-

rier in the skin to protect the body, which may be a part of hemostasis. We

also see a term related to water homeostasis, or the regulation of the amount

of water present in the body. This may relate to preventing additional fluid

loss due to bleeding and thus be tangentially related to hemostasis, which we

expect to see during this time point.

The shortlist for 12 hours post-wounding is significantly longer as well and

introduces many new processes as well as keeping some familiar ones, such as

response to interleukin proteins and immune cell migration. A couple of terms

for the regulation of pattern recognition receptor signaling show up; pattern

recognition has to do with recognizing molecules typically found in pathogens

and is thus a part of the immune response. Tyrosine phosphorylation has

many functions such as cell adhesion, proliferation, migration, di↵erentiation,

gene regulation, and angiogenesis; this process is downregulated, potentially

indicating a change in state of the tissue in which some of these functions are

no longer needed, however the vagueness of this term makes it di�cult to say

which ones. Signal transducer and activator of transcription (STAT) mediates

immune cells as well. Neuron death is upregulated, likely due to the need to

kill nerves that were damaged during wounding and prepare for innervation,

the formation of new nerves. The cellular response to hypoxia is likely a re-

sult of the reactive oxygen species synthesis which causes oxidative stress on

cells. Hypoxia is a metabolic shift to a more active state that allows cells to

produce necessary components for proliferation. Finally, we see a few tan-

gentially related processes such as regulation of viral genome replication and

steroid synthesis. As we saw with the top 100 list, viral regulation terms show

up due to the fact that they may be activated during the immune response

even if there is no virus present. Steroids are cell membrane components and

signaling molecules, so they may have some higher level function related to

immune signaling pathways.
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On day 1 post-wounding, we know that the inflammation stage is still ongo-

ing but several processes begin to slow down in preparation for the advanced

stages. Lymphocyte proliferation is downregulated but so is its apoptosis;

these immune cells are still needed even if not in large amounts. Leukocyte

homeostasis refers to regulating the proliferation and elimination of leukocytes

following the immune response, possibly limiting the number of leukocytes

present in the wound site as well. Interestingly, we see that cysteine-type en-

dopeptidase activity is both upregulated and downregulated. Cysteine-type

endopeptidase cuts the internal peptide bonds in or around cysteine, which is

an amino acid crucial for the production of collagen; its positive and negative

regulation may indicate the breakage of damaged collagen as well as the begin-

ning of collagen rebuilding, however, it is likely too early in the wound healing

process for rebuilding as that is part of the proliferation stage. Phosphatidyli-

nositol 3-kinase signaling regulates cell proliferation and apoptosis as well as

cytoskeletal rearrangement, the latter of which is also necessary for breaking

down the damaged tissue to prepare for rebuilding. Lipoproteins also play a

role in the inflammatory process, interacting with immune cells to modulate

the immune response, hence the cellular response to lipoprotein particle stim-

ulus term. The receptor signaling pathway via JAK-STAT conveys a signal

to trigger a change in the activity or state of a cell, which could also have

many implications in terms of the regulation of immune cells. Endothelial

cells constitute the innermost layer of blood and lymphatic vessels, and their

di↵erentiation is necessary for the formation of new vessels from pre-existing

broken ones to prepare for the process of angiogenesis later on.

We expect that day 3 post-wounding covers the later segments of the inflam-

matory response, and see that at this point the wound tissue is still utilizing

lymphocytes, macrophages, T cells and chemokines, however some of these

responses seem to be slowing down as evidenced by lymphocyte immune re-

sponse downregulation and T cell apoptosis. The response to interleukin and

hypoxia is still occurring as well. NF-kappaB also plays a regulatory role in the

cellular response to pro-inflammatory cytokines. We also see many new terms

including retinoid, sphingolipid and eicosanoid metabolism, extravasation, and
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carbohydrate catabolism. Retinoids help regulate epithelial cell growth, part

of proliferation. Eicosanoids have many functions including the inflammatory

response and perception of pain. Sphingolipids play roles in signal transduc-

tion and cell recognition and are part of the immune process. Extravasation

is the emigration of cells from the blood stream through the vascular endothe-

lium into the tissue and occurs in leukocytes, which are still being recruited

to the wound site. Carbohydrates are essential for skin cell energy which is

needed more excessively during wound healing, and also help to regulate cell

adhesion, migration, and proliferation.

By day 5, the mouse tissue is undergoing proliferation, and in the top 100

genes, the only significant term that showed up was for collagen organization.

However, the results for the top 1000 show many GO terms that may relate

to both inflammation and proliferation, but do not show collagen organiza-

tion. Inflammation-related terms include regulation of interleukins, interferon,

macrophages, pattern recognition, and innate immune response, response to

reactive oxygen species, and collagen catabolism, all of which have showed up

during earlier stages. Broader terms include zymogen activation, the process of

creating an active enzyme from the inactive biomolecule zymogen, and release

of cytochrome c, part of the apoptotic process. Terms that could potentially

be related to proliferation include regulation of arterial blood pressure, since

if blood pressure is too high, cells don’t get enough oxygen and thus can-

not regenerate, and proteoglycan metabolism, since proteoglycans are a major

component of the extracellular matrix, which plays a key role in the prolifer-

ation stage of wound healing. Phosphatidylinositol 3-kinase signaling is again

present, we recall from day 1 that this term has many functions, including the

regulation of proliferation, apoptosis, and cytoskeletal rearrangement. Clearly

the proliferation regulation, and the cytoskeletal rearrangement as well, should

be part of the proliferation stage.

We expect proliferation-related terms to show up during day 7 as well, with

the top 100 results for this day being the same as those for day 5. Some inflam-

matory processes are still occurring, including neutrophil migration, toll-like
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receptor signaling, leukocyte chemotaxis, sphingolipid metabolism, and tumor

necrosis factor production. Myeloid cell activation involved in immune re-

sponse shows up as well; myeloid is bone marrow tissue which is an important

part of the immune system. Proliferation related processes include collagen

metabolism, which is needed to produce or replace collagen for proliferation

and wound tissue rebuilding, and regulation of BMP (bone morphogenetic

protein) signaling pathway, which play a role in the regulation of cell prolifer-

ation. We also see phosphatidylinositol 3-kinase signaling again as with day

5.

Day 10 post-wounding, the wound tissue is undergoing the maturation stage.

As expected from our top 100 results, we see collagen fibril organization and

angiogenesis, important processes that occur in order to rebuild the wound

tissue, as well as tissue remodeling. Positive regulation of nuclear division also

occurs; it is likely that this term relates to the cell proliferation that must

occur in order to rebuild the wound site.

We also see several processes in the shortlists for some of the time points

that do not seem to have anything to do with wound healing, which have been

omitted from this discussion. There are several reasons why these processes

might have survived the filtering process despite their irrelevance. For one,

some genes have many di↵erent functions, many of which are unknown, and

the annotation process may not cover all such functions. The Gene Ontology

also does not have the capability to produce results according to context, so it

may output all terms annotated to a given gene regardless of relevance in the

current context, or which pathways are expressed. Perhaps also some genes

are being expressed during the time of the experiment that are not directly

related to wound healing, but happen tangentially due to links we are thus

far unaware of. Finally, it is always possible that genes have been incorrectly

annotated in the database. While we have no control over the latter issue,

further edits of GO should help to fix potentially incorrect annotations.
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5.3 Human data, top 100 DE genes

Our first data point for human wound healing is day 3 post-wounding, at

which point the wound tissue is undergoing inflammation. Recalling that hu-

man wounds take longer to heal than mouse wounds due to their larger size,

and the fact that the mouse wounds were sterile while human wounds were

not, we expect the process to be slower and for the inflammatory/immune

response to go on for quite some time. As expected, nearly all resulting terms

on day 3 were inflammation related. These results include some familiar terms

we saw in the mouse data such as T cell activation, neutrophil chemotaxis,

chemokine signaling, interleukin production, response to cytokines, and leuko-

cyte apoptosis. The less specific terms acute inflammatory response and regu-

lation of type 2 immune response, which maintains metabolic homeostasis and

regulates tissue repair after injury, occur as well. Other inflammation related

terms that come up are as follows. Leukocyte degranulation, the release of

immune cell contents; response to heat, as heat generation is a part of the

immune response; antigen processing and presentation of exogenous peptide

antigen, meaning that an antigen presenting cell expresses a peptide antigen

to defend against pathogens coming from outside the organism; and nitric ox-

ide metabolism, which induces inflammation and vasodilation involved in the

immune response by cytokine activated macrophages. Finally, disassembly of

the extracellular matrix and cell junctions occur. Cell junctions are connec-

tions between two cells or between a cell and the extracellular matrix. While

these functions are not directly related to inflammation, they likely occur in

preparation for later stages in which the extracellular matrix components must

proliferate and rebuild over the wound site.

Day 7 post-wounding, inflammation is still in full swing with the migration of

leukocytes and neutrophils to the wound site. The acute phase response, or a

nonspecific reaction to injury or inflammation, also occurs; the most important

sources of acute phase proteins are macrophages and monocytes. Extracellular

matrix components continue to be broken down as signified by the collagen

catabolic process. Some proliferation associated processes are also expressed

at this time, namely, upregulation of vascular endothelial growth factor, a
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signaling protein that promotes growth of new blood vessels, and keratiniza-

tion, the process by which epithelial cells produce large amounts of keratin

filaments, a tough structural protein used in skin repair.

The processes expressed on day 14 can likely be characterized as still in the

early proliferation phase. Homotypic cell-cell adhesion may refer to the forma-

tion of an ”immunological synapse” between immune cells, an inflammatory

response, or forming new cellular structures, a proliferative activity. Collagen

catabolism is still occurring at this time as well. The downregulation of cel-

lular response to growth factor may refer to slowing down cell proliferation or

immune cell production as inflammation ends, however we do not have enough

information as to which types of cells are undergoing this response. Upregu-

lation of epithelial to mesenchymal transition occurs; mesenchymal cells are

cells with the ability to di↵erentiate into any type of smooth muscle, vascu-

lar endothelium, connective tissue, blood vessels, or lymphatic tissue. They

are also resistant to apoptosis and altered synthesis of extracellular matrix

components. The upregulation of smooth muscle cell migration occurs during

vascular development in response to injury, and is the recruitment of cells to

areas where the vessel wall is being remodeled. These processes are likely re-

lated to proliferation as we need new structures to be rebuilt out of the old

damaged skin and tissues.

On day 21, we expect that the wound tissue is undergoing proliferation and/or

remodeling, depending on the severity of the wound, both of these stages may

be long-lasting. However, we still see several inflammation related processes

showing up, likely due to the fact that many of these inflammatory responses

are very highly upregulated compared to later stage processes, and thus associ-

ated genes may take a while to stop appearing in the most highly upregulated

lists. Inflammation related processes include leukocyte chemotaxis, interferon

gamma production, and downregulation of viral replication. We discussed in

our analysis of the mouse data that the latter term is part of the immune

response whether or not viruses are actually present in the wound tissue, al-

though since the human wounds are not sterile, the viral response may have
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occurred due to actual stimuli. Extracellular matrix disassembly and down-

regulation of cytokine-mediated signaling pathway represent processes likely

taking place in between inflammation and proliferation. Proliferation related

processes include collagen metabolic process, regulation of BMP (bone mor-

phogenetic protein) signaling pathway, which plays a role in cell proliferation,

and morphogenesis of branching structures, or the generation of branching

blood vessels, lymphatics, nerves, or epithelial tubes, all of which must be

rebuilt during the proliferative phase. Finally, tissue remodeling, the main

process occurring during maturation, is also expressed. However, we do not

expect that the maturation and remodeling phase is finished by 3 weeks post

wounding, as this may go on for up to a year in humans.

5.4 Comparing mouse and human top 100 shortlists

In comparing the times and length of onset of mouse and human wound healing

stages, we notice that mouse wounds heal much faster than human wounds.

While days 0 through 10 in mouse covered each wound healing stage, we need

to look at data at least through day 21 in humans to begin reaching the final

stage, and even then, healing is not complete for much longer. The reasons for

the large di↵erential in wound healing time are that human wounds are larger

and take longer to heal than small mouse wounds. Additionally, experiments

on mice are done in a sterile lab environment and thus are much less likely to

become infected, whereas human wounds are not guaranteed to be sterile.

The shortlists for human are also on average longer than those for mouse.

Since the human genome is larger than the mouse genome, there are far more

GO terms annotated to human genes, and since a single gene can be anno-

tated to any number of GO terms, we see more significant GO terms when

performing overrepresentation analysis. This makes comparison between the

two datasets somewhat more complicated. Late-stage human data shows tissue

remodeling, an important maturation-related process, which does not come up

in the mouse data. We also see more detailed proliferation related processes

such as keratinization, smooth muscle cell migration, and development of un-

di↵erentiated cells that can produce lymphatics, endothelium, and connective
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tissue as well as blood vessels, in human but not in mouse.

However, we still saw many of the same main biological processes come up

in both datasets. Inflammatory response is mostly consistent, with migration

and regulation of di↵erent types of immune cells occurring at the earlier stages

in both mouse and human and slowing down during later stages. During the

proliferation stage, we see terms related to vasculature development and colla-

gen metabolism/extracellular matrix construction, in both, also as expected.

This verifies that many of the high level processes are the same even if the

details vary slightly.

5.5 Comparing top 100 and top 1000 in mouse

We noted in the previous section when we introduced testing the method

with a larger list size that due to the output of overrepresentation analysis,

we expect that significant GO terms for larger list sizes are on average less

specific than for smaller lists, especially when selecting for GO terms with

higher representation in the dataset. We shifted the biases in computing the

representation score to promote higher representation of more specific GO

terms, however, our method is not perfect and the resulting GO terms for

the top 1000 di↵erentially expressed genes were still largely di↵erent from the

results for the top 100. We also obtained more GO terms that were seemingly

unrelated to wound healing than for the top 100. When we increase the list by

an order of magnitude, we include di↵erentially expressed genes that may also

code for several functions or be part of several pathways that are unrelated, or

only tangentially related, to wound healing. It also may be the case that these

GO terms represent functions that do play a role in wound healing that is as

of yet undiscovered. Alternatively, including genes with low fold change could

add unrelated noise in our results, causing unrelated GO terms to show up.

While genes with low fold change may correspond to wound healing related

processes that are simply less expressed, they may also represent functions

completely unrelated that show up in the microarray in addition as a result of

enforcing a lower threshold. Further research will be needed to assess this.
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6 Conclusions & further research

In this work, we presented a method for producing shortlists of GO terms from

the often superfluous lists of GO terms resulting from standard overrepresen-

tation analysis. This study addressed two outstanding issues with the current

state of GO analysis, namely, the inclusion of GO terms that are overly general

or too specific to be significantly represented, and the addition of redundant

GO terms. We provided a heuristic solution for both of these issues in the form

of a pipeline that shortens a GO list using a stage of filtering for each issue;

specificity/representation and similarity of GO terms. Applying this method

to timeseries transcriptomal profiling of mouse and human skin wounds, we

were able to identify some of the significant dynamic biological processes oc-

curring during each stage of wound healing. We discuss the main takeaways

from this study and areas that need improvement in this section.

While this work presents progress in computational methods for gene ontology

analysis, there remains a need for further analysis and development in future

work. One significant such issue is that we do not set an exact threshold for

di↵erential expression, but rather rank genes in fold change from highest to

lowest and take the top x number of genes. This may result in a di↵erent

threshold being implicitly set for each day of the experiment. Additionally,

amount of upregulation does not necessarily equate to level of significance. For

example, many inflammation related genes start out very highly upregulated

in the beginning days, and progressively become somewhat less upregulated

later on, while genes related to proliferation and maturation may be less up-

regulated according to measured fold change even if their expression appears

to be significant enough from a visual standpoint. This could result in many

inflammation related terms showing up in almost all of the time points, while

fewer proliferation and maturation related terms show up towards the end

than we might expect.

We also see a lack of GO terms related to the hemostasis stage of wound

healing. While hemostasis typically only lasts for a few hours post-wounding,

we would expect hemostasis-related biological processes to show up at the 6
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hour time point in mouse, however, we only see inflammation-related processes

at this time. There are several reasons that this may have occurred. First,

there are, in general, less GO terms related to hemostasis processes than in-

flammation, which is a highly involved stage with many subprocesses. Also,

processes related to hemostasis may simply be less highly upregulated than

those related to inflammation, regardless of their importance.

Fine-tuning the thresholds to reflect how much upregulation is actually signif-

icant for each type of gene or stage in wound healing is one potential way to

mitigate these issues. However, there are far too many unknowns to reliably

test this as we have not yet measured the correlation between amount of up-

regulation and functional significance. Another, more realistic way we might

go about resolving this issue is the integration of our computational gene

ontology-based method with other predictive models, namely, an image-based

prediction algorithm that maps actual images of wounds to their correspond-

ing stage based on machine learning data. This may help us obtain more

accurate data regarding mapping wound healing stages to dynamic biological

processes with respect to both gene expression data and real-time wound data.

Another significant limiting factor in the e�cacy of this method is the accuracy

of the PANTHER database and the GO itself. Although overrepresentation

analysis is based on statistical data from many sources, and the database is

updated frequently, there are still many unknowns that modern science has

yet to provide an answer for. Again, combining this method with other mod-

els could help mitigate issues related to the gene analysis side of the wound

healing problem.

In future work, the shortlisting pipeline could be improved by automating the

bias selection process. As we mentioned in the methods section, we currently

choose biases in order to shape our optimization function for representation

score as a concave-down quadratic with a maximum in the 10-12 bit range.

This resulted in a lot of time being spent in testing which biases produced

such a result for each dataset, as the optimal point was slightly di↵erent for
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each one. This was most noticeable in testing larger gene lists in which the

GO terms were more general on average; the biases needed to be changed

drastically in order to push the GO terms in the 10-12 bit range to the maxi-

mum of the representation score function, else the resulting terms would have

much too low information content to be relevant. While exhaustive testing of

which biases produced the most accurate results worked well for this study,

it may not scale to larger scope experiments. Automating the bias selection

may take the form of a program that computes the representation score with a

wide variety of biases, plots the results, and applies a best-fit quadratic to the

data and computes the maximum. It would then find the b1 and b2 that gave a

maximum closest to the desired value and whose quadratic fit was most precise.

We could also improve the method with further understanding of the simi-

larity filtering aspect. Currently, we weight the semantic similarity score more

than the functional score. As mentioned earlier, this is mainly motivated by

the lack of functional score availability for many of the pairs of GO terms in

the database, but also due to the fact that the semantic similarity gives us

more consistent results; pairs of terms that are very closely related in the GO

DAG are very likely to be redundant, while relatively less is known about the

functional similarity of annotation frequency. More data on the latter would

help us to develop a more balanced understanding of the similarity process as

a whole.

From a purely technical perspective, the current method still leaves a lot to

be desired. The codes still require some grunt work from the user in terms

of entering data into the PANTHER and NaviGO databases, keeping track of

the di↵erent spreadsheets and data produced by each step of the pipeline, and

manually adjusting the dataset to be used as well as customizing biases for

each dataset. Integrating the data-entry and online database interface into the

code would make the tool much more powerful for collaborative use. Further

work on the computer science side of developing the pipeline could greatly

improve the value of this method as a whole.
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8 Appendix

All figures generated in this work – histograms and scatter plots from the represen-

tation filtering stage and similarity network graphs from the similarity filtering stage

of the pipeline – are presented in this appendix. The histograms, scatter plots, and

similarity graphs were produced for the top 100 and top 1000 di↵erentially expressed

(DE) mouse genes at each time point, and the top 100 DE human genes at each

time point. The histograms, labeled (a) and (b) in each figure, illustrate the distri-

butions of the representation amount and normalized representation amount of GO

terms, respectively, for successive intervals of information content in bits. The scatter

plots, labeled (c) in each figure, show representation amount, normalized representa-

tion amount, and representation score versus bits, where each dot represents a single

GO term. The similarity graphs, labeled (d) in each figure, show which GO terms

were determined to be su�ciently similar to one another. Figures with no similarity

graph were datasets for which no pairs of GO terms met the similarity criteria used

in this study. Refer to section 3.2 for full descriptions on how each of these figures

are produced.

8.1 Mouse data, top 100 DE genes

Gene expression data was taken at 6 and 12 hours, and days 1, 3, 5, 7, and 10 post-

wounding of mouse skin. Figures corresponding to the top 100 DE genes at each time

point are shown in this section.
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(a) Representation amount (b) Normalized representation amount

(c) Representation metrics vs bits (d) Similarity graph

Figure 7: Mouse top 100, 6 hours

(a) Representation amount (b) Normalized representation amount

(c) Representation metrics vs bits (d) Similarity graph

Figure 8: Mouse top 100, 12 hours
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(a) Representation amount (b) Normalized representation amount

(c) Representation metrics vs bits (d) Similarity graph

Figure 9: Mouse top 100, 1 day

(a) Representation amount (b) Normalized representation amount

(c) Representation metrics vs bits (d) Similarity graph

Figure 10: Mouse top 100, 3 days
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(a) Representation amount (b) Normalized representation amount

(c) Representation metrics vs bits

Figure 11: Mouse top 100, 5 days

(a) Representation amount (b) Normalized representation amount

(c) Representation metrics vs bits

Figure 12: Mouse top 100, 7 days
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(a) Representation amount (b) Normalized representation amount

(c) Representation metrics vs bits

Figure 13: Mouse top 100, 10 days

8.2 Mouse data, top 1000 DE genes

Gene expression data was taken at 6 and 12 hours, and days 1, 3, 5, 7, and 10 post-

wounding of mouse skin. Figures corresponding to the top 1000 DE genes at each

time point are shown in this section.
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(a) Representation amount (b) Normalized representation amount

(c) Representation metrics vs bits (d) Similarity graph

Figure 14: Mouse top 1000, 6 hours

(a) Representation amount (b) Normalized representation amount

(c) Representation metrics vs bits (d) Similarity graph

Figure 15: Mouse top 1000, 12 hours
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(a) Representation amount (b) Normalized representation amount

(c) Representation metrics vs bits (d) Similarity graph

Figure 16: Mouse top 1000, 1 day

(a) Representation amount (b) Normalized representation amount

(c) Representation metrics vs bits (d) Similarity graph

Figure 17: Mouse top 1000, 3 days
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(a) Representation amount (b) Normalized representation amount

(c) Representation metrics vs bits (d) Similarity graph

Figure 18: Mouse top 1000, 5 days

(a) Representation amount (b) Normalized representation amount

(c) Representation metrics vs bits (d) Similarity graph

Figure 19: Mouse top 1000, 7 days
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(a) Representation amount (b) Normalized representation amount

(c) Representation metrics vs bits (d) Similarity graph

Figure 20: Mouse top 1000, 10 days

8.3 Human data, top 100 DE genes

Gene expression data was taken at days 3, 7, 14, and 21 post-wounding of human

skin. Figures corresponding to the top 100 DE genes at each time point are shown in

this section.
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(a) Representation amount (b) Normalized representation amount

(c) Representation metrics vs bits (d) Similarity graph

Figure 21: Human top 100, 3 days

(a) Representation amount (b) Normalized representation amount

(c) Representation metrics vs bits (d) Similarity graph

Figure 22: Human top 100, 7 days
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(a) Representation amount (b) Normalized representation amount

(c) Representation metrics vs bits (d) Similarity graph

Figure 23: Human top 100, 14 days

(a) Representation amount (b) Normalized representation amount

(c) Representation metrics vs bits (d) Similarity graph

Figure 24: Human top 100, 21 days
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