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ABSTRACT OF THE DISSERTATION 

 

Analysis of fluorescent calcium signals in the detection of neural circuitry abnormalities in a 

mouse model of autism 

 

by 

 

Daniel Alejandro Cantú 

 

Doctor of Philosophy in Neuroscience 

University of California, Los Angeles, 2019 

Professor Carlos Portera-Cailliau, Chair 

 

The formation, refinement and plasticity of circuits are defining features of the central nervous 

system, giving rise to many of the unique and complex functionalities of the brain. Advances in 

dynamic fluorescence imaging technology are allowing an increasing number of researchers to 

investigate the activity of neural circuits in vivo in animal models. Unfortunately, deciphering the 

data obtained through these methods is time consuming and has largely been delegated to a few 

investigators who have the expertise to do so. We present an open-source, modular, and 

adaptable software suite designed for motion correction, segmentation, signal extraction, and 

deconvolution of fluorescent calcium imaging data. We apply this EZcalcium toolbox to the 

analysis of calcium imaging data in a mouse model of autism in order to investigate the 

underlying neural circuit abnormalities in the primary somatosensory and visual cortices. These 
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contributions to the field of autism research demonstrate the utility of investigating neural 

circuits through optical methods. 
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Studying neural circuits 

Unraveling the mysteries of the human brain will require a detailed and comprehensive 

understanding of the structure and function of neurons and their connections.  Only then, will we 

begin to fathom how the central nervous system gives rise to so many of its unique and complex 

abilities, such as learning, language, creativity, or decision making (Wei et al., 2014, Li et al., 

2015, Tanaka et al., 2018).  In the history of neuroscience, tools to investigate neural signals have 

lagged behind those for studying neuroanatomy by many decades (Ugolini, 1995, Livet et al., 

2007, Chung et al., 2013).  As a result, our knowledge of how ensembles of neurons interact 

functionally to encode memories or perceive sensory inputs remains rudimentary, in comparison 

to how well the anatomical connectome or even molecular and biochemical pathways have been 

characterized.  Furthermore, developing better treatments for neuropsychiatric disorders, 

especially those caused primarily by abnormal circuit activity (e.g., autism spectrum disorders, 

epilepsy, depression, schizophrenia) (Gibson et al., 2008, Thompson et al., 2015, Foster and Conn, 

2017, Wang et al., 2017), will require a more sophisticated understanding of network function. 

 

For several decades, the only approach for recording from neurons in animal models was to use 

electrodes inserted into the brain (Piccolino, 1997, Jun et al., 2017).  However, this was limited by 

the invasive nature of the experiment and the fact that only few neurons could be recorded from at 

a time.  Additionally, the identity of different neuronal subtypes could not easily be recognized 

and chronic longitudinal recordings (over days or weeks) were not feasible.  In the 21st century, 

with the advent of powerful fluorescence microscopy techniques (e.g., two-photon microscopy, 

microendoscopes, mesoscopes) (Denk et al., 1990, Mehta et al., 2004, Sofroniew et al., 2016) and 
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novel fluorescence sensors of neuronal activity (Chen et al., 2013, Walker et al., 2013), imaging 

has emerged as one of the preferred methods for recording network dynamics in awake, behaving 

animals. Through the use of synthetic or genetically encoded fluorescence indicators, it is now 

possible to probe the dynamic signals of both neurons and astrocytes with calcium and voltage 

sensors (Antic and Zecevic, 1995, Chen et al., 2013), and even track neurotransmitter release 

(Masharina et al., 2012, Marvin et al., 2013). 

 

There are several unique advantages of recording neural activity with fluorescent indicators. First, 

the activity of dozens, hundreds or even thousands of neurons can be simultaneously imaged with 

sub-cellular resolution (e.g., dendritic spines, boutons).  Second, imaging allows one to record 

network activity in head-fixed or freely moving animals, providing a key link between circuit 

activity and behavior. Third, fluorescence imaging is much less invasive than traditional methods 

for recording the activity of large numbers of neurons (e.g., tetrodes, silicon probes). Fourth, it can 

be more easily combined with cell-type specific genetic manipulations, which makes it possible to 

not only record from specific identified cell populations (e.g., brain region-, cortical layer-specific, 

or interneuron subtype-specific Cre lines), but also combine with other approaches to manipulate 

network activity, such as optogenetics (Ernst et al., 2008) and glutamate uncaging (Pettit et al., 

1997), to create an “all-optical” approach to neural circuit interrogation. Fifth, by using imaging, 

the experimenter can precisely determine the relative spatial location of groups of cells, which is 

particularly crucial since the distance between neurons has been shown to play a role in their 

connectivity and function (Goncalves et al., 2013). Finally, these methods allow for long-term 
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chronic imaging over a period of months, allowing for the examination of how cells in a neural 

network change as an animal develops and learns (Andermann et al., 2010). 

 

Rationale for the thesis research 

Calcium imaging is increasingly popular in neuroscience, as evidenced by how just as many 

publications for calcium imaging in neurons have appeared in PubMed in the last 5 years as in the 

previous four decades. This trend is likely to continue as the availability of drastically improved 

GCaMP calcium sensors (Akerboom et al., 2013, Chen et al., 2013), transgenic mice expressing 

these genetically encoded calcium indicators (Dana et al., 2014, Sato et al., 2015), and more 

affordable commercial two-photon microscopes and do-it-yourself miniaturized head-mounted 

miniscopes (Helmchen et al., 2001, Aharoni et al., 2019) are making it increasingly easier and 

cheaper for mainstream scientists to adopt these techniques.  

 

Unfortunately, analyzing the rich data generated by these methods can be challenging and 

overwhelming. Motion correction is inherently difficult with a dynamic fluorescent signals, as 

traditional motion correction algorithms (for non-dynamic signals) may interpret a fluorescence 

change as movement, and when attempting to correct for it, often introduce artifacts. As more 

powerful imaging leads to larger data sets, manual motion correction and segmentation of the 

images into distinct regions of interest (ROI) becomes unfeasible. Manual ROI selection can also 

introduce human error, favoring more active ROIs. It also becomes difficult to distinguish and 

detangle overlapping ROIs. Furthermore, many analysis methods rely entirely on the calculation 

of a change in the fluorescence signal (ΔF/F), without directly correlating it to a biological process. 
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Scientists who routinely use calcium imaging have had to develop their own custom code (usually 

in MATLAB) to analyze their data, but because data is acquired differently in different 

laboratories, it has been difficult for others to incorporate these customized and poorly annotated 

routines.  In the past, there was also a certain degree of unwillingness by some scientists to share 

their custom-written code or provide well-documented scripts that others could understand.  

 

In recent years, several more sophisticated algorithms have been developed to address these 

problems (Vogelstein et al., 2010, Pnevmatikakis et al., 2016), but there has yet to be a unified, 

simple solution to the analysis of such data, particularly one that can be used by the amateurs and 

non-aficionados. As a result, mainstream neuroscience laboratories who were willing and able to 

answer their biological questions with calcium imaging but lacked skills in writing new code or 

modifying existing code, are still waiting for a user-friendly toolbox.  A similar platform, 

FreeSurfer, has been extremely useful to the functional MRI community (Fischl, 2012).    

 

The goal of my Ph.D. thesis was therefore to design an intuitive, easy to use toolbox with familiar-

looking graphical user interfaces (GUI) that requires no programming experience.  In Chapter 1, I 

describe a calcium analysis software suite that I developed for the detection, extraction, and 

deconvolution of fluorescent calcium signals.  This toolbox, named EZcalcium, incorporates code 

previously written by other groups, as well as new functionalities I designed, into a single GUI-

based pipeline.   I also provide examples of how each of these steps are implemented in different 

types of calcium imaging data. In Chapter 2, I demonstrate the application of the analysis of 

calcium imaging combined with synchronized sensory stimuli to discover and characterize sensory 
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abnormalities in a mouse model of fragile X syndrome. Detailed methods are provided at the end 

of each chapter. 
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Chapter 1 
EZcalcium: A comprehensive and user-friendly toolbox for analysis of 

fluorescence calcium signals 
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BACKGROUND 

The ideal solution for calcium imaging analysis would address all the core aspects of analysis: 

image registration (motion correction), segmentation into distinct regions of interest (ROI), signal 

extraction (dimension reduction), deconvolution, data exporting, and data plotting. The entire 

process should be fully automated (e.g., unbiased ROI selection), fast, and compatible with 

standard desktop or laptop computers. The code should be welldocumented with discreet variable 

and function names that allow users to examine how the code works and to make modifications. 

The code should also be modular, so that users can implement functions into their existing routines 

and add their own new functions. Additionally, the code should be wrapped in a set of user-friendly 

GUIs so that scientists who are not proficient in writing code in MATLAB can quickly and easily 

learn to work with the interface. This solution should be versatile and be compatible with a variety 

of microscope file formats, and also account for different acquisition speeds, field of view size, or 

image resolution. Additionally, it should be adaptable to accommodate yet-to-be-developed 

dynamic fluorescence indicators.  Ideally, the segmentation process should be able to differentiate 

ROIs of different cell types or cell compartments (e.g., dendrites, spines, axon boutons, astrocytic 

processes). Such an automated system would also allow for batch processing, such that even older 

computers can process multi-gigabyte video files in a few hours. 

 

We present our version of such a solution, EZcalcium, an open-source, modular, and adaptable 

software suite designed for motion correction, ROI detection, signal extraction, and deconvolution 

of fluorescent calcium imaging data. It has already been successfully implemented in several 
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published studies (He et al., 2017, Goel et al., 2018, He et al., 2018) and is freely available at 

Github. 

 

DESCRIPTION OF THE TOOLBOX 

 

Overview 

The EZcalcium toolbox is controlled by a set of intuitive and user-friendly graphical user interfaces 

(GUI).  Once configured for a set of similarly-acquired data, preferences can be saved and reused 

for simple automation of workflow.  The toolbox is able to import a variety of imaging data file 

types (including .tif, .avi, .mat) and supports export of data in both proprietary (.mat, .xlsx) and 

open file formats (.csv).  

 

EZcalcium contains three main modules: Motion Correction, ROI Detection, and ROI Refinement. 

An algorithm for how a typical data file is processed through this workflow is shown in Fig. 1.  In 

the sections below we describe what these three modules achieve and then illustrate the results 

with specific examples from in vivo calcium imaging experiments done in mice and Drosophila, 

with 2-photon microscopy or miniscopes.  A more detailed step-by-step walkthrough tutorial is 

presented in the section entitled Procedures. The Motion Correction module consists of a non-

rigid method of template matching, background subtraction, and the ability to export corrected 

videos with lossless compression.  The ROI Detection module, built off of the CaImAn toolbox 

(Giovannucci et al., 2019), includes automated ROI detection, signal extraction, and deconvolution 

of fluorescence calcium signals. The ROI Refinement module enables the user to sort and view 
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ROIs, manually exclude ROIs, and use automated and customized ROI exclusion criteria, 

including spatial and activity-dependent metrics.  
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Figure 1 

 

Figure 1. EZcalcium control GUI. Each module of the toolbox is called by clicking on its 

respective button. Help buttons are located throughout the toolbox to provide documentation and 

resources to the user. 
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Batch processing is supported in the most resource-intensive modules (Motion Correction, ROI 

Detection) and allows for a large number of files to be sequentially loaded, processed, and saved. 

This feature is ideal for processing large data sets (>4 GB) that would best be processed overnight 

or on a dedicated analysis machine.  In the event of a system ‘crash’ or shutdown, as can occur 

during an automatic operating system update, progress is automatically saved at the end of each 

successful file processing and can be resumed from the start of the previous incomplete attempt. 

 

The MATLAB source code is freely available for all modules so that users may modify and adapt 

the code as they see fit. It is well-documented within the code itself for easy understanding and to 

facilitate modification.  The code is designed to be modular and adaptable for use with dynamic 

fluorescence data obtained from a wide variety of imaging systems, including miniscopes, and 

should easily translate to other types of dynamic fluorescence imaging, such as voltage sensors 

and indicators of neurotransmitter release.  Standalone, compiled executable files are also provided 

for users, which allows the toolbox to be used on different systems without the need of a MATLAB 

license or any programming experience. Standalone executables are ideal when using a computer 

cluster to process very large data sets, such as those acquired through prolonged continuous 

calcium imaging. 

 

We have tested the EZcalcium toolbox on calcium imaging data collected with in vivo two-photon 

microscopy in neurons of primary visual cortex expressing GCaMP6s, in the visual system of 

Drosophila larvae, in boutons of thalamocortical axons in layer 4 in barrel cortex, and in cortical 

astrocytes, as well as with miniscopes in the CA1 region of the hippocampal formation.   
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Motion Correction 

Motion correction of calcium imaging data is inherently difficult due to the nature of dynamic 

fluorescence imaging and is further complicated by movement artifacts associated with imaging 

in the living animal.  The latter problem creates primarily translational drift in x and y directions 

and is relatively easy to correct. In contrast, the fluorescence signal intensity of the profile being 

imaged (cell body, axon bouton) can fluctuate depending on whether the element is active or not, 

which simple static registration algorithms may mistake for actual translation in the x-y dimension.  

A number of different strategies have been introduced for image registration based on template 

matching (Greenberg and Kerr, 2009, Mineault et al., 2016). Hence, a variety of template matching 

options are provided in EZcalcium for the user to implement motion correction. Since the kinetics 

of current genetically encoded calcium indicators (GCaMP, etc.) are relatively slow compared to 

commonly-used acquisition speeds (typically ~8-30 frames per second), sequential frame 

matching is particularly useful as a first-pass motion correction approach for calcium imaging, as 

any given image frame is fairly similar to the previous frame.  Multiple iterations of template-

matching can be performed under EZcalcium. For GCaMP indicators, the recommended approach 

is to start with one round of sequential frame template matching, followed by multiple (3-5) 

iterations of matching to a mean image template generated using all the frames in the video (Suppl. 

Fig. S1a).  We find that this registration procedure provides excellent results for data collected 

from awake behaving mice or Drosophila with 2-photon microscopy (Fig. 2a-d), as well as data 

from freely moving mice obtained with miniscopes (Fig. 2e, f). 
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A minimal form of background subtraction is included as an option during Motion Correction 

(Suppl. Fig. S1b). This removes the minimum value from each pixel and does not alter signal 

strength.  It can be used to aid in manual refinement by eye to test and verify settings for an 

automated workflow. This is especially useful in high-background imaging, such as miniscopes 

(Fig. 2e, f). The output of Motion Correction is a corrected video of the user’s desired file type.  

Lossless compression options are available that reduce file size without losing any data.  Of course, 

it is not strictly necessary to perform the Motion Correction step if the videos do not exhibit motion 

artifacts (e.g., calcium imaging in brain slices or anesthetized mice). 
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Figure 2 

 

Figure 2: Motion correction and extracted traces of assorted animal models 

(a) Standard deviation projection of motion corrected mouse primary somatosensory cortex 

imaging 

(b) Extracted ΔF/F traces from mouse primary somatosensory cortex 

(c) Standard deviation projection of motion corrected Drosophila melanogaster imaging 
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(d) Extracted ΔF/F traces from Drosophila melanogaster imaging 

(e) Standard deviation projection of motion corrected CA1 miniscope imaging 

(f) Extracted ΔF/F traces from mouse CA1 miniscope imaging 
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ROI Detection 

After movies are aligned, the next step in processing the data is to segment the image into the 

desired regions of interest (ROI).  Automation of ROI selection can diminish the effects of bias 

and significantly reduce the time required to process large data sets.  Our GUI-based ROI Detection 

module incorporates select aspects of the CaImAn toolbox (Giovannucci et al., 2019). Although it 

can be fully automated, ROI Detection in EZcalcium also allows for manual refinement of initially-

estimated ROI centers as an optional step for adding or removing ROIs by hand.  When manual 

initialization is included, batch processing is fully automated.  ROI Detection is based on using 

both temporal and spatial correlations to identify nearby pixels that exhibit similar changes in 

fluorescence intensity at the same time.  It initializes by estimating activity using power spectral 

density or sparse non-negative matrix factorization (Maruyama et al., 2014).  Different ROI search 

methods (ellipse, dilate, etc.) are available in EZcalcium, depending on what was imaged; some 

are better suited to detect somata, while others are better for dendritic spines (Pnevmatikakis et al., 

2016). Similarly, the user can estimate the ROI size and number, to optimize the results. After a 

processing a single video, the user will be provided measurements of actual ROI size and number, 

which can be used to improve the performance of further ROI detection. 

 

Multiple temporal iterations are used to improve accuracy and to detect ROIs of complex shapes 

(which is relevant for irregular profiles in Drosophila and axonal boutons; Suppl. Fig. S2a, b). 

Overlapping components with similar activity can also be combined post-hoc to form single 

functional ROIs.   
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The ROI Detection module also generates data regarding the fluorescence intensity over time for 

each ROI through the following operations:  Background activity is subtracted, neuropil signals 

are removed, and ∆F/F data is extracted for each ROI (Pnevmatikakis et al., 2016). These signals 

can also be deconvolved into firing probability rates using various deconvolution algorithms 

(Vogelstein et al., 2010).  The modularity of the code allows for novel deconvolution algorithms 

to be implemented by the user, including calibrated deconvolution using simultaneous 

electrophysiological recordings (Golshani et al., 2009, Chen et al., 2013). In its present form 

EZcalcium only provides a ‘low hanging fruit’ level of analysis of calcium signals.  Nevertheless, 

additional features can be added as other modules depending on the specific needs of the user. For 

example, we have developed distinct modules suitable for analysis of calcium data from visual 

cortex (e.g., percent of ROIs that are orientation selective, tuning width, etc.) and barrel cortex 

(percent of ROIs that are time-locked to whisker stimulation, adaptation index, population 

coupling). 

 

ROI Refinement 

The process ROI Detection works best when searching for too many ROIs rather than too few.  As 

such, an additional step of ROI exclusion is necessary.  ROI Refinement automates ROI exclusion 

using user-defined heuristics to judge ROIs for validity. By automating this process, operator 

biases can be minimized. ROI Refinement criteria include characteristics of ROI morphology and 

activity. The ROI Refinement GUI also allows the user to readily view the characteristics of all 

detected ROIs, including a visual map of the ROI’s location, the shape of the isolated ROI, and 

the extracted fluorescence traces in raw, ∆F/F, and deconvolved formats (Fig. 3).  This helps in 
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defining what criteria should be used for excluding ROIs from further analysis. It can also be used 

to manually include or exclude ROIs. After ROI Refinement is completed, data can be exported 

into proprietary (.mat, .xlsx) or open file formats (.csv).  Additionally, ROI refinement can be re-

performed in order to select different subsets of cells (such as those of a particular level of Kurtosis 

(Ringach and Malone, 2007)) and to save the data separately.  
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Figure 3 

 

Figure 3. ROI Refinement GUI. ROI Refinement is the final step of the EZcalcium workflow and 

consists of automatically or manually excluding ROIs based on shape and activity. Following 

refinement, data can be exported in a variety of formats. An example ROI is shown following 

refinement. 
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Computational Performance  

Over the next decade or two, there will be increased pressure to record from increasingly larger 

numbers of neurons at faster temporal resolution in behaving mice, over longer recording times, 

which will inevitably lead to a geometric increase in the size of the files to be processed.  From a 

computer performance standpoint, ROI Detection and Motion Correction are the two most 

resource-intensive modules. The amount of time required for these steps expands non-linearly with 

file size. As such, image acquisition capability threatens to outpace image processing capability.  

Graphics processing unit (GPU)-powered analysis would need to be implemented by taking 

advantage of the modular nature of the code and inserting the appropriate algorithms. This would 

potentially allow multiple frames of an imaging file to be simultaneously processed, increasing the 

rate of video analysis. However, this capability is not included in this version of EZcalcium as it 

would require specific hardware, greatly limiting the number of computers that are capable of 

using the toolbox.  As the code currently stands, to process video files 10 GB or larger, a dedicated 

processing computer with a fast CPU, a large amount of RAM, and a solid-state working hard 

drive is recommended.  Using MATLAB’s capabilities to distribute a workload to an ethernet-

connected computing cluster would be another way to rapidly increasing the processing 

capabilities of the code. The simplest way to process a large number of videos is already built-in: 

install the toolbox on multiple computers without the need for a MATLAB license and batch-

process different videos on each computer. 

 

RESULTS 
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The included file EZcalcium_demo.tif will be used as a practice case study and an example for the 

user to verify that all steps are being performed correctly.  This video was recorded from neurons 

in Layer 2/3 of adult mouse primary visual cortex (V1) expressing GCaMP6s (4 weeks after 

injection of rAAV-syn-GCaMP6s) in a 2-month-old mouse at ~15 Hz using a custom built 2-

photon microscope.  This was an awake head-fixed mouse that was allowed to run on a polystyrene 

ball floating on an air cushion, while passively viewing sinusoidal gratings drifting in different 

directions (Goel et al., 2018).  The video was down-sampled spatially and temporally to a relatively 

low resolution (128 x 128 pixels, 1,000 frames, 7.81 Hz) to demonstrate the ability to extract data 

from limited videos and to ensure that the toolbox will run properly with minimal hardware 

requirements. The settings files for all steps are also included as part of the demo. 

EZcalcium_demo_motcor.mat is used for Motion Correction, EZcalcium_demo_detect.mat for 

ROI Detection, and EZcalcium_demo_refine.mat for ROI Refinement. 

 

Motion Correction (Figure 4) was performed using three iterations of an all-frames Mean template 

with Minimal background subtraction and LZW compression. The video was processed as a single 

block due to the initial stability of imaging. Although the original video file was quite stable, cell 

somata are more clearly-defined in the motion-corrected, background-subtracted video.  By 

increasing the stability of imaging, automated ROI detection will be more accurate, and the signal-

to-noise ratio of extracted traces will most likely improve. 
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Figure 4 

 

Figure 4. Comparison of images following Motion Correction. Standard deviation Z-projection 

of EZcalcium_demo.tif before (a) and after (b) motion correction and background subtraction. Cell 

soma are visibly more apparent following Motion Correction. 
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ROI Detection (Figure 5) was then performed on the motion-corrected video using Greedy 

Initialization, Ellipse search method, SPGL1 Constrained foopsi deconvolution, and Decay 

autoregression. 50 components with a component width of 6 were used to locate ROIs of the 

appropriate size.  Manipulating the component width had the largest impact on accurate ROI 

tracing.  Although manual initialization refinement was selected to be performed, no ROIs were 

added or removed following initialization.  Extracted dF/F traces exhibit the bursting activity 

patterns typically seen in layer 2/3 pyramidal cells in mouse V1. Additionally, the timing of 

elevated dF/F generally correlated with the presentation of visual stimuli. 
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Figure 5 

 

Figure 5. Automated ROI Detection in mouse primary visual cortex. ROI Detection 

initialization refinement (a), component view (b), and complete map of identified ROIs (c) 

identified from low-resolution imaging of mouse primary visual cortex expression GCaMP6s. 

Extracted dF/F traces (d) and deconvolved calcium signals (e) are shown from the first three ROIs.  
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ROI Refinement (Figure 6) was performed using the provided EZcalcium_demo_refine.mat 

settings file. As in previous experiments examining dF/F activity in mouse V1, a criteria of activity 

levels exceeding a median absolute deviation of 3 for a minimum of 4 consecutive frames was 

included.  Overall, automated ROI Refinement selected 38 out of 50 ROIs for inclusion. The 

refinement criteria generally favored rounder ROIs with clear sustained signals above baseline. 
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Figure 6 

 

Figure 6. ROIs sorted by automated ROI Refinement. Example locations (a), isolated ROIs (b), 

and raw dF/F activity traces (c) and isolated shapes of included (top two sets) and excluded ROIs 

(bottom two sets) following ROI Refinement. Included ROIs generally have rounder shapes and 

sustained bursts of activity above baseline fluorescence. 
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MATERIALS AND METHODS 

 

Equipment 

A MATLAB license or programming experience is not required to run the toolbox as a standalone 

executable file; however, the EZcalcium executable is currently only available for Windows 

operating systems. We recommend 64-bit MATLAB R2018a (or newer MATLAB) on any 

operating system for using the EZcalcium toolbox within MATLAB. The toolbox was finalized and 

tested heavily in R2018a (9.4) and is likely to be the most compatible without modification in that environment.  

A 64-bit version of MATLAB running on a 64-bit computer is required to process files over 800 

MB. The following MATLAB toolboxes are also required when running the source scripts: Signal 

Processing, Statistics, and Parallel Computing.  The amount of available system RAM necessary 

for a system depends on the size of the data being processed.  Ideally, the amount of system RAM 

should be at least 3X the file size of raw, uncompressed data.  Motion Correction is the most RAM-

intensive step of the process and significant slowdowns may occur if the necessary RAM is not 

available.  CPU requirements for the toolbox are minimal, but processing is vastly improved with 

multiple cores. The toolbox also runs faster when the data to be analyzed is located on a fast, solid-

state hard drive, since large amounts of data must be read and, in the case of Motion Correction, 

written. 

 

Software Setup 

EZcalcium is freely available to be downloaded from the Portera-Cailliau Lab Github. For running 

the executable version, a MATLAB 2018a runtime or installed version of MATLAB is required. 

MATLAB runtimes are available for free on the MATLAB website: 
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https://www.mathworks.com/products/compiler/matlab-runtime.html. When running the 

executable, a command window should be the first thing that loads. It may take several minutes 

for the first GUI to load.  To run the toolbox source code, first add the toolbox folder to the 

MATLAB path directory. Type the command EZcalcium. A GUI will load that can run all the 

individual modules (Figure 1).  When working in Windows, data saved to directories listed under 

C:\Users, C:\Program Files, and the directory in which MATLAB is installed are often protected 

against writing and deletion. Therefore, in order to process and generate data, it is recommended 

to use imaging files saved outside of C:\Users, C:\Program Files, and the directory in which 

MATLAB is installed. Failure to do so may result in an error stating “You do not have write 

permission.” 

  

https://www.mathworks.com/products/compiler/matlab-runtime.html
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PROCEDURES 

 

Below are step-by-step instructions for using the three modules of EZcalcium toolbox. 

 

Motion Correction 

1) From the initial GUI, click on the box titled Motion Correction to load the Motion 

Correction GUI (Figure 7) 
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Figure 7 
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Figure 7. Motion Correction GUI. The Motion Correction module can be used for correcting 

lateral motion during imaging, removing static background information, and compressing videos 

without losing any data.  

2) In the Motion Correction GUI, click the Load button to choose any number of videos you 

would like to load. You can drag a box or use the select or shift key to select multiple files with 

the mouse. If you close the file select window and decide to add more files later (e.g., from a 

separate folder), they will appear at the bottom of the list. If you accidentally try to add the same 

file multiple times, it will not be added to the list again and an error will display.  Compatible file 

types include multipage 8- or 16-bit .tif, .avi, and .mat in which the largest variable in the .mat 

workspace is a three-dimensional matrix of xyz dimensions. Files used need to be single-channel 

images. .tif files greater than 4 GB need to be in an uncompressed format. If your data is of an 

incompatible file type, it can likely be converted to .tif or .avi with free software such as ImageJ, 

available at https://imagej.nih.gov/ij/ 

3) To remove a file that has been added to the Files to Process list, select the file with the 

mouse and click the Remove button. 

4) Choose a template source from the list Template Source. Choosing Previous Frame will 

align each frame, starting with the second frame, to its previous frame. Mean and Median 

calculates the mean and median intensity value for each pixel, respectively.  Max Projection 

creates a projection of the highest intensity value of each pixel. Brightest Frame detects the frame 

with the overall highest pixel intensity 

5) Choose the number of frames from which to create the template under Template Frames. 

If a large section of the video is stable and has a representative amount of fluorescence signal, but 

https://imagej.nih.gov/ij/
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other sections exhibit a lot more motion artifact, it may be useful to restrict Template Frames to 

the stable frames of the video. Checking the box Use All Frames will automatically detect and use 

all the frames in any given video and ignore the input values. 

6) Set the number of Blocks, which refers to the number of blocks (spread vertically) that the 

image will be divided into prior to alignment.  To register the image as a single block, enter a 

Blocks value of 1.  Generally, using a larger number of blocks processes faster than using fewer 

blocks, due to the ease of aligning several smaller blocks instead of larger more complex images. 

However, it may also introduce artifacts on otherwise steady videos if blocks are too numerous. 

For example, a Blocks value of 8 for a 256x128 will break down into a total of 64 32x16 blocks in 

an 8x8 configuration (Suppl. Fig 1c). A recommended value for Blocks would be less than the 

square root of the number of pixel rows (video height). 

7) Select a format for the corrected video to be saved under Output.  8-bit or 16-bit should be 

chosen to match the bit depth of the image acquisition. Although .mat files will load quickly for 

ROI selection, they are not viewable in ImageJ and other software packages. In EZcalcium, saving 

as a .mat is currently the only way to save a compressed version of .tif files over 4 GB. 

8) Lossless compression options for saving .tif files are available under Compression. These 

can reduce file size without losing any data but will likely take longer to save.  These do not apply 

to .mat or .avi files. Deflate generally results in the smallest file size when saving 16-bit .tiff files 

smaller than 4 GB. Packbits is usually the fastest form of compression but it may not reduce file 

size as much as other methods. If the user selects None, this will result in no compression and will 

save in the fastest time, although this will also result in larger file sizes. For EZcalcium, None must 

be selected for saving .tif files over 4 GB. 
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9) Background Subtraction will remove elements of the images determined to be related to 

background changes in fluorescence intensity. The choice of Minimum removes the minimum 

value of each pixel from the pixel. This is useful for removing constant sources of brightness, such 

as bleed-through fluorescence, without impacting changes in imaged activity. 

10) Iterations refers to the number of repeated times the user wishes to perform motion 

correction.  For a Template Source such as Mean, multiple iterations are useful so that the mean 

image projection used for the template will change with each iteration and result in improved 

motion correction. Iterations should generally be less than 7. 

11) The Save Template option saves the template that was generated and used for alignment, 

for further reference.  Save Max Projection saves a maximum intensity projection of all frames, 

no matter what template source was used. 

12) The Save Settings button allows the user to save all settings under a specific name of your 

choosing. Settings are saved as .mat files. These include all settings in the Settings section as well 

as timing data that records how long it took to go through the main steps of the previous five video 

alignments. 

13) The Load Settings button allows one to load all saved settings in future sessions. 

14) Once all settings are configured, click the Run Motion Correction button. Immediately after 

attempting to start motion correction, and autosave file is automatically generated and updated as 

progress continues. This will automatically load the last used settings when the application is next 

used. Progress of motion correction will display the current iteration of motion correction, the 

current progress of the current iteration, and the overall progress of the all the files listed in the 

Files to Process list. Est. Time Remaining displays the estimated time remaining for all the files to 
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be motion corrected. Time estimates may not be updated under when loading or saving .mat files 

or when loading uncompressed .tif files. 

15) After motion correction is completed, the new file generated will be added to the bottom 

of the Processed Files list. Original files will not be overwritten. A new file will be created with 

_mcor and the number of iterations appended to the filename. 

16) The Open button will open the selected file in the default program set by the operating 

system. 

17) Clear List clears the entire list of Processed Files. 

18) The Reset Timing button can be used when creating a new configuration or working with 

files of a different size.  It will reset all timing information on how long individual steps typically 

take that are used for calculating Est. Time Remaining. After running motion correction five times 

on a new configuration, Est. Time Remaining should be the most accurate.  In the event that stored 

timing information is corrupted and Est. Time Remaining displays as “NaN”, click the Reset 

Timing button to clear it. 

 

ROI Detection 

1) From the initial GUI, click on the icon titled Automated ROI Detection to load the ROI 

Detection GUI (Fig. 8). 
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Figure 8 

 

Figure 8. ROI Detection GUI. The automated ROI Detection module can be used to detect ROIs 

from batches of videos and minimize the impact human biases in ROI tracing. Manual initial 

refinement can also be performed to select any ROIs that may be missed by the automated 

detection process. 
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2) In the Automated ROI Detection GUI, click the Load button to choose any number of 

videos you would like to load. Compatible file types include multipage .tif, .avi, and .mat in which 

the largest variable in the .mat workspace is a 3-D matrix of xyz dimensions.  One can drag a box 

or use the select or shift key to select multiple files with the mouse. The user closes the file select 

window and decides to add more files later, such as from a separate folder, the files will appear at 

the bottom of the list. If the user accidentally tries to add the same file multiple times, it will not 

be added to the list again and an error will display. File type requirements for ROI Detection are 

similar to that of Motion Correction. When troubleshooting and testing motion correction for the 

first time, it is advisable to start with correcting a single file and testing the settings. 

3) To remove a file that has been added to the Files to Process list, select the file with the 

mouse and click the Remove button. 

4) Initialization methods for providing an initial estimate of spatial and temporal components: 

Greedy is recommended for videos of neuronal somata. It relies heavily on spatial components and 

generally runs much faster; Sparse NMF is recommended for more complex structures, such as 

dendrites, dendritic spines, or axons. 

5) Search Method determines the spatial components (location) of ROIs: Ellipse assumes 

components have an ellipsoid shape, such as for neuronal somata; Dilate can be used with either 

ellipsoid or non-ellipsoid ROIs, but generally takes longer. 

6) Deconvolution determines the method for translating activity-induced changes in the 

fluorescence intensity of the indicator into approximate firing rates.  If you are imaging an 

organism that does not produce action potentials, set this to the fastest setting available. Noise-

constrained deconvolution methods include SPGL1 - Constrained foopsi and CVX - Constrained 
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foopsi. Both are also available through https://github.com/epnev/constrained-foopsi.  SPGL1 - 

Constrained foopsi works well even with medium-to-low signal-to-noise traces. CVX - 

Constrained foopsi requires CVX and is not available in the standalone version of EZcalcium. It 

is typically the fastest method of deconvolution when working with high signal-to-noise traces.  It 

is available at http://cvxr.com/cvx/doc/install.html. MCMC is a fully-Bayesian deconvolution 

method that is computationally-intensive and is recommended when higher precision is required. 

MCEM alternates between the listed Constrained foopsi deconvolution and MCMC to update time 

constants. It is significantly faster than MCMC alone and is generally recommended when 

deconvolving calcium signals from cell somata. 

7) Autoregression is used to estimate the calcium indicator kinetics. Rise and Decay estimates 

both the rise and decay kinetics of the calcium indicator and incorporates them when extracting 

fluorescence traces and deconvolving the signal.  Due to the difficulty in detecting fast rise times, 

using Rise and Decay may result in overfit data if the imaging was performed at low temporal 

resolution (<16 Hz).  Decay estimates just the decay kinetics of the calcium indicator and is the 

recommended setting for lower temporal resolution imaging.  No Dynamics will produce only raw 

traces and will not perform deconvolution. 

8) Choose the number of frames to analyze under Frames. Checking the box Use All Frames 

will automatically detect and use all the frames in any given video and ignore the inputted values 

9) Manual Initial Refinement adds an additional step following initialization to manually add 

or remove ROIs.  ROIs can also be removed in the step ROI Refinement.  To fully automate the 

process, it is recommended to optimize your settings to slightly overestimate the number of ROIs 

and then remove erroneous ROIs later. This step is included as an option for particularly 

https://github.com/epnev/constrained-foopsi
http://cvxr.com/cvx/doc/install.html
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troublesome files and for those who prefer semi-automated ROI selection.  Initial spatial 

components will be displayed in a new figure.  The center of estimates in ROIs is highlighted with 

a magenta circle, surrounded by the boundary of the ROI. To manually add an ROI, left click with 

the mouse where you want to add the center of an ROI.  The boundary of the ROI will be 

automatically computed and drawn. To manually remove an ROI, right click on any ROI center. 

Hit the enter key to continue ROI detection. 

10) Choose how you would prefer to export the data. Save to .mat exports to a .mat that is 

necessary for the final step, ROI Refinement. Output to .csv exports the same data as Save to .mat, 

but to a .csv file that can be opened in a variety of programs outside of MATLAB. 

11) Choose which additional figures you want generated.  When batch processing many files, 

it is not recommended to use these.  Display Contours shows extracted raw fluorescence data, the 

inferred trace generated, and the ROI shape and location. Display ROI Centers generates a map 

showing the centers of all ROIs following initialization Display Merging Example shows an 

example of how several components were merged to form a single ROI.  This is useful when 

optimizing Merge Threshold and Component Width.  Display ROI Map generates a map with all 

the ROI boundaries, each labeled with the same ROI number as was used in the data. 

12) Estimated Components is the estimated maximum number of components in the field of 

view. Multiple components may make up a single ROI, so set this value based on your method of 

ROI detection.  This must be set to a minimum value of 1.  If you want to perform fully manual 

ROI selection, set Estimated Components to 1 and check the box to enable Manual Initial 

Refinement.  When the manual refinement step starts, delete the initial automatically detected ROI.  
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If no components are determined to be similar enough to be merged, the most likely result is that 

the number set for Estimated Components is the number that will be initially detected. 

13) Merge Threshold is the threshold at which two components will be merged into a single 

ROI. Components that share a correlation coefficient above Merge Threshold will be merged into 

a single ROI. 

14) Component Width is the estimated width, in pixels, of your components.  If you have a 

simple ROI shape, such as a cell soma, you can use the width of the entire ROI as your component 

width. 

15) Fudge Factor is useful for estimating time constants of very noisy data, in particular those 

with low temporal resolution (slow frame rate). The value indicates a multiplicative bias correction 

for time constants of each ROI during deconvolution.  Fudge Factor should generally be set to 

0.95-1. A value of 1 indicates that no bias correction will be performed. 

16) Spatial Downsampling will downsample the spatial resolution of a video by a factor set 

here.  The value entered should be a positive integer. A value of 1 means that no downsampling 

will be performed.  This is useful for rapidly troubleshooting the settings on videos with a very 

large field of view. 

17) Temporal Downsampling is similar to Spatial Downsampling, except it downsamples the 

temporal resolution.  This is useful for optimizing settings on very long, high frame rate (>15 Hz) 

videos. 

18) Temporal Iterations is the number of iterations that will be performed to calculate the 

temporal components of ROIs. This should be set to at least 2 when not rapidly testing other 

parameters. 
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19) Save Settings allows you to save all settings under a specific name of your choosing. 

Settings are saved as .mat files.  

20) Load Settings allows you to load any previously saved settings. 

21) Once all settings are configured, click the Run ROI Detection button. Immediately after 

attempting to start ROI detection, an autosave file is automatically generated and updated as 

progress continues. This will automatically load the last used settings when the application is next 

used.  Status of ROI detection will be displayed in the Status box. 

22) After ROI detection is complete, the new file generated will be added to the bottom of the 

Processed Files list. A .mat file will be created with the complete set of data generated during The 

Open button will open the selected .mat file into a MATLAB workspace, if running source scripts. 

23) Clear List clears the entire list of Processed Files. 

 

ROI Refinement 

1) From the initial GUI, click on the icon titled ROI Refinement to load the ROI Refinement 

GUI (Figure 3). In the ROI Refinement GUI, click the Load button to choose any number of data 

files generated by Automated ROI Detection you would like to load. All files should be .mat format 

files.  You can drag a box or use the select or shift key to select multiple files with the mouse. If 

you close the file select window and decide to add more files later, such as from a separate folder, 

they will add to the bottom of the list.  If you accidentally try to add the same file multiple times, 

it will not be added to the list again and an error will display. 

2) To remove a file that has been added to the Files to Process list, select the file with the 

mouse and click the Remove button. 
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3) To view an ROI, select an ROI by clicking on it, and then click the button View ROI. The 

left arrow button (<) will automatically select and load the previous ROI (lower in ROI number). 

The right arrow button (>) will automatically select and load the next ROI (higher in ROI number). 

4) The ROI field is displayed in the top left corner.  Isolated ROIs are displayed in the smaller 

figure on the right side of the screen. Below the ROI figures are the extracted traces.  The upper 

trace is the fluorescence trace and the bottom trace is the deconvolved trace. 

5) Set Automated Exclusion criteria.  Roundness measures how similar an ROI is to a circle. 

This is useful when you are looking exclusively for neuron somata or other round ROIs.  Mean 

Width indicates the mean width of an ROI and the relative size of the ROI.  It is useful for removing 

ROIs that result from having too many components coalesce together into a single profile.  Activity 

Threshold can be set to include ROIs that surpass a chosen activity threshold for a given number 

of consecutive frames. Baseline Stability is used to check if an ROI has a stable baseline throughout 

the imaging session by comparing the baseline at the beginning of recording with the baseline at 

the end. 

6) Borderline % can be set to allow an ROI to have criteria slightly outside of the desired 

range.  If an ROI has a number of criteria within the Borderline range equal to or less than the 

Borderline Allowance, the ROI will be included.  

7) Click the Run Refinement button to automatically exclude ROIs based on your chosen 

criteria. 

8) To manually exclude an ROI, select an ROI and click the Exclude ROI button. After being 

excluded, the ROI number in the list will be stricken out and the Exclude ROI button will become 

an Include ROI button. 
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9) Click the Export button to export your data in your selected format. 
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Supplemental Figure S1 

 
Figure S1: Effects of Motion Correction Options in EZcalcium 

(a) Mean templates generated for the first, second, and sixth iteration of motion correction run on 

cortical axonal boutons. Accuracy of motion correction generally improves with number of 

iterations. 

(b) Max-projection images of unfiltered and background subtracted videos obtained from CA1 

Miniscope imaging.  
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(c) A representation of how the number of blocks in non-rigid motion correction segments an 

image prior to motion correction. 
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Supplemental Figure S2 

 

Figure S2: ROI segmentation in non-round ROIs 

(a) ROI segmentation in mouse cortical axonal boutons. ROI centers are represented by 

magenta circles. 

(b) ROI segmentation in Drosophila melanogaster 
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Chapter 2 
Circuit-level defects underlying sensory abnormalities  

in a mouse model of autism 
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BACKGROUND 

It has been suggested that phenotypic heterogeneity in autism might not reflect a unique cellular 

pathology, but rather a perturbation of network properties that emerge when neurons interact 

(Belmonte et al., 2004). In other words, the development of effective treatments for specific 

functional deficits in ASD will likely require understanding the circuit-level alterations involved. 

This is challenging in human patients, as the methods available to assess network-level correlates 

of sensory dysfunction (EEG or fMRI) lack single-neuron spatial resolution. Instead, it is necessary 

to record network activity in vivo, with cellular resolution, in mouse models of inherited ASDs 

(Goncalves et al., 2013, Lu et al., 2016).  The EZcalcium toolbox I described in Chapter I is ideally 

suited for the analysis of calcium signals from neurons recorded in mouse models of autism. In 

this chapter I describe two experimental research projects that I significantly contributed to, in 

which we used in vivo 2-photon calcium imaging and EZcalcium to investigate the circuit 

alterations underlying atypical sensory processing in a mouse model of Fragile X syndrome, the 

leading inherited cause of autism.  

 

Sensory dysfunction, especially hypersensitivity, occurs in many individuals with autism spectrum 

disorders (ASD) (Marco et al., 2011, Green et al., 2015). Sensory hypersensitivity (overreactivity) 

commonly affects auditory, tactile, or visual processing, and may present as defensiveness or 

avoidance (Marco et al., 2011, Green et al., 2015, Sinclair et al., 2017). Because it likely 

contributes to other ASD symptoms, such as anxiety, hyperarousal and sleep disturbances, 

attention deficit, stereotyped behaviors or rituals, and learning difficulties (Ben-Sasson et al., 2007, 

Sinclair et al., 2017), sensory overreactivity is a symptom of central significance in autism. 
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Fragile X Syndrome (FXS), the leading single-gene cause of cognitive impairment, is caused by a 

trinucleotide repeat expansion on the X chromosome that results in transcriptional silencing of the 

Fmr1 gene coding for Fragile X mental retardation protein (FMRP) (Oberle et al., 1991, Pieretti 

et al., 1991). FMRP plays a key role in regulating many neuronal functions, particularly at synapses 

(Bagni and Zukin, 2019). Known targets of FMRP include transcription factors, growth factors, 

BK channels, and several GABA and glutamate receptors (Telias, 2019). 

 

FXS is also the most common single-gene cause of autism (approximately 2% of ASD cases) 

(Wassink et al., 2001, Reddy, 2005), and the vast majority of FXS patients experience sensory 

abnormalities, such as tactile defensiveness (Butler et al., 1991, Hagerman et al., 1991). 

Additionally, the Fmr1 knockout (KO) mouse model of FXS exhibits behavioral deficits analogous 

to human symptoms, including audiogenic seizures and increased startle responses (Bernardet and 

Crusio, 2006, Contractor et al., 2015). Fmr1 KO mice also show increased intrinsic excitability, 

delayed GABA polarity switch, reduced inhibition, and network hypersynchrony (Contractor et 

al., 2015). However, how such hyperexcitability leads to behavioral sensory hypersensitivity or 

altered motion perception, or whether Fmr1 KO mice even exhibit an avoidance response to tactile 

stimuli, has not been studied. 
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PART 1 – LOSS OF NEURONAL ADAPTATION TO REPETITIVE SENSORY 

STIMULATION IN FMR1 KO MICE 

In order to examine the somatosensory system, we tested the hypothesis that specific abnormalities 

in sensory-evoked network activity in somatosensory cortex are associated with tactile 

defensiveness in Fmr1 KO mice.  In earlier studies not shown here (He et al., 2017), we 

demonstrated that 2-week-old and adult Fmr1 KO mice show maladaptive behavioral responses to 

repetitive whisker stimulation (20 bouts of whisker deflections at 10 Hz for 1 s each, with a 3 s 

inter-stimulus interval).  Adult Fmr1 KO mice actively avoided the source of whisker stimulation, 

a behavior that closely mirrors tactile defensiveness in humans with FXS.  Next, we performed in 

vivo two-photon calcium imaging of whisker-evoked activity in Layer (L) 2/3 neurons in barrel 

cortex in order to find the circuit-level correlates of sensory hypersensitivity in neocortex that give 

rise to the tactile defensiveness. 

 

A reduced fraction of L2/3 neurons in barrel cortex respond to whisker stimulation in P14-

16 Fmr1 KO mice 

Since maladaptive whisker-induced behavioral responses are already present in young Fmr1 KO 

mice (He et al., 2017), we considered the underlying cortical circuit alterations in early postnatal 

development. P14-P16 is a critical period in sensory processing because the pattern of neuronal 

activity in barrel and visual cortices has just undergone a marked transition from high synchrony 

to a decorrelated and more computationally efficient state (Golshani et al., 2009, Rochefort et al., 

2009, Frye and MacLean, 2016, O'Donnell et al., 2017). We tested three possible cortical 

mechanisms underlying sensory hypersensitivity in Fmr1 KO mice: 1) Neurons exhibit higher-
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than-normal firing rates in response to sensory stimulation; 2) A higher proportion of neurons 

respond to stimulation; and 3) Neurons show reduced adaptation (desensitization) to repetitive 

sensory stimuli. We considered the latter possibility especially likely, based on the lack of 

behavioral adaptation to whisker stimulation we observed in Fmr1 KO mice. 

 

To record whisker-evoked activity in L2/3 neurons of the barrel cortex, we used in vivo two-photon 

imaging of GCaMP6s signals (Chen et al., 2013) in P14-16 mice. First, we injected 

AAV1.Syn.GCaMP6s.WPRE.SV40 at P1, and then implanted a glass-covered cranial window at 

P10-12; we confirmed our targeting of barrel cortex with optical intrinsic signal imaging at P12-

15 (see Methods, Fig. 9a-c). During imaging the animals were head-fixed, awake, and lightly 

sedated with isoflurane (<0.5%) and chlorprothixene. We first recorded spontaneous activity (205 

s), followed by whisker-evoked activity (103 s), for which the animals received the same 

stimulation direction, timing and frequency as during the behavioral experiments (Fig. 9d-e). We 

did not find significant differences between WT and Fmr1 KO mice in equivalent periods of 

spontaneous or whisker-evoked activity (Spontaneous: median fluorescence Z-score ± median 

absolute deviation was 4.73±0.43 for WT vs. 3.85±0.98 for Fmr1 KO, p=0.31 by two-group 

comparison; Evoked: 3.13±0.39 for WT vs. 3.14±0.74 for Fmr1 KO, p=1.00, Fig. 9f).  

 

Next, we asked whether whisker stimulation recruits a larger-than-normal cohort of barrel cortex 

neurons in Fmr1 KO mice. To do so, we calculated the proportion of L2/3 neurons that responded 

to whisker stimulation in a time-locked fashion (see Methods, Fig. 9g). Unexpectedly, we found 

that nearly half (45%) as many neurons exhibited an activity pattern that was time-locked to epochs 
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of whisker stimulation in Fmr1 KO compared to WT mice (37.2±9.1% of WT neurons vs. 

20.5±13.0% of Fmr1 KO neurons; p=0.022 by two-group comparison, Fig. 9h). This suggests that 

the behavioral overreactivity that Fmr1 KO mice manifest is not due to either exaggerated sensory-

evoked firing of local networks in barrel cortex or to higher proportions of neurons within local 

networks being recruited by whisker stimulation.  
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Figure 9 
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Figure 9: Differences in whisker-evoked network activity in Fmr1 KO mice at P14-16 

(a) Schematic of how AAV vector for GCaMP6s injection was injected into somatosensory cortex 

at P1 (left), and P14-16 in vivo imaging and whisker stimulation setup (right).  

(b) Example cranial window over right somatosensory cortex at P14 and a map of whisker-evoked 

activity obtained with optical intrinsic signal imaging (green). Black box shows location of in vivo 

calcium imaging in (c). 

(c) Example field of view of neurons in barrel cortex expressing GCaMP6s in the same mouse (at 

P15) shown in (b) at P15 (xyt SUM projection of 100 consecutive frames at 7.8 Hz). 

(d) Protocol for recording spontaneous (1600 frames ≈ 205 s) and whisker-evoked activity (800 

frames ≈ 103 s). 

(e) Example of individual fluorescent signals extracted from one L2/3 neuron during 20 whisker 

stimulations (grey) and the mean signal (black), showing how single neurons in barrel cortex can 

respond to repeated stimulations. 

(f) Median fluorescence Z-scores for spontaneous (left) and whisker-evoked activity (right) of 

L2/3 neurons in WT and Fmr1 KO mice at P14-16 (n= 10 mice per genotype). Each diamond 

shows the median Z-score across all ROIs for one animal, for equivalent durations of spontaneous 

and evoked imaging (103 s). Bars represent group medians. In panels (f) and (h), P-values from 

two-group rank-based comparisons with 10,000 resamples, and Bonferroni correction in (f). 
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(g) Example fluorescence traces from two L2/3 neurons with activity that is time-locked (top) and 

from two different neurons with activity that is not time-locked (bottom) to whisker stimulation 

epochs (light grey bars). 

(h) Local networks in barrel cortex of Fmr1 KO animals have 50% fewer time-locked L2/3 neurons 

compared with WT. 

 

  



56 
 

Impaired adaptation of local whisker-evoked neuronal activity in P14-16 Fmr1 KO mice 

persists into adulthood 

 

Our experimental design allowed us to determine whether L2/3 neurons exhibit any adaptation 

during the 20 sequential whisker deflections, i.e., a reduction in firing with successive stimulations. 

We found that some L2/3 neurons showed robust adaptation, while others did not (Fig. 10a-b). 

When we analyzed whisker-evoked activity of all neurons imaged in each P14-16 WT animal, we 

found that the decrease in activity over time could be fit by an exponential curve with a decay 

constant τ= 4.1±1.3 stimulations (Fig. 10c left). However, the Fmr1 KO mice did not show this 

clear decay in activity over time (Fig. 10c right). Based on the activity decay in the WT mice, we 

compared neuronal activity during the first five stimulations with activity during the last five 

stimulations. This analysis revealed that in WT mice at P14-P16, neuronal activity was 

significantly lower during the last five stimulations than during the first five (Z-scores: 3.56±0.27 

vs. 2.02±0.38, p=0.028 by two-group comparison, Fig. 10d).  In sharp contrast to WT mice, there 

was no significant change for Fmr1 KO mice in neuronal activity from the first five to last five 

stimulations (2.95±1.01 vs. 2.59±0.99, p=1.000, Fig. 10d), suggesting that neural circuits in the 

mutant mice are unable to adapt to repetitive tactile stimuli. 

 

We then wondered whether neuronal adaptation might only be evident in cells that responded to 

whisker stimulation in a time-locked fashion. The subpopulation of time-locked cells showed 

robust adaptation in both WT and Fmr1 KO mice at P14-16 (WT p=0.011 by two-group 

comparison; Fmr1 KO p=0.005, Fig. 10e left). Interestingly, while non-time-locked cells also 
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showed significant adaptation in WT mice, they did not in Fmr1 KO mice (WT p=0.018; Fmr1 

KO p=1.000, Fig. 10e right). It appears that the lack of modulation of the activity of non-time-

locked cells in the young Fmr1 KO mice contributes to the defect in overall network adaptation 

during repetitive whisker stimulation. As a control for possible effects of continuous calcium 

imaging, we analyzed spontaneous activity of all ROIs during the equivalent “first five” and “last 

five” time bins and found no significant change within either genotype (Fig. 10f). 

 

We also analyzed the correlation between the WT and Fmr1 KO animals’ proportions of time-

locked neurons and the degree of their neuronal adaptation (Adaptation Index, see Methods) 

during the repeated stimulations. In WT mice, these two measures were significantly correlated 

(Spearman’s ρ=0.733, p=0.021 by bootstrapping with 10,000 resamples) (Fig. 10g).  In Fmr1 KO 

mice, these two measures were not correlated (Spearman’s ρ=0.273, p=0.436) (Fig. 10g).  This 

finding indicates that the defect in L2/3 neuronal adaptation in the Fmr1 KO mice is linked to their 

reduced proportion of time-locked neurons in local networks. 
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Figure 10 
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Figure 10: Lack of adaptation of whisker-evoked activity in local networks of P14-16 Fmr1 

KO mice 

(a-b) Heatmaps of activity from example P14-16 WT L2/3 neurons showing adaptation (a) or no 

adaptation (b) during 20 consecutive whisker stimulations (y-axis). For panels (a-c), median 

fluorescence Z-scores per animal were binned from 0.2 s before stimulation onset to 2.8 s after 

stimulation end. 

(c) Median Z-scores for P14-16 WT mice (n=10) (left) and Fmr1 KO mice (n=10) (right) during 

each stimulation bin, with exponential curve fit for neuronal activity in WT mice (see Methods).  

Each symbol represents a different animal (unknown sex). 

(d) Median Z-scores of whisker evoked activity across all L2/3 neurons during the specified time 

bin during First 5 and Last 5 stimulations in WT and Fmr1 KO mice at age P14-16 (n=10 mice 

per genotype). For panels (d-f), the median fluorescence Z-scores per animal were binned from 

the start of the first stimulation to 3 s after the end of the fifth stimulation. Each symbol represents 

a different animal. Bars represent group medians. P-values result from pairwise rank-based 

comparisons with 10,000 resamples and Bonferroni correction. 

(e) Median Z-scores of whisker-evoked activity across time-locked and non-time-locked L2/3 

neurons during First 5 and Last 5 stimulations in WT and Fmr1 KO mice at P14-16.  

(f) Median Z-scores of spontaneous activity across all ROIs at P14-16, binned using the same start 

and end times as used to analyze whisker-evoked activity in (d-e).  
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(g) Percentages of time-locked ROIs in WT and Fmr1 KO mice at P14-16, plotted against Z-score 

Adaptation Indices, with Spearman’s correlations.  Adaptation Index = (Z-score during First 5 

stimulations – Z-score during Last 5 stimulations) / (Z-score First 5 + Z-score Last 5).  P-values 

from bootstrapping with 10,000 resamples. 
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We next tested whether a similar lack of neuronal sensory adaptation was evident in adult Fmr1 

KO mice, given that they show a clear avoidance response to repetitive whisker stimulation.  We 

injected the AAV vector for GCaMP6s expression at 2-4 weeks before imaging and confirmed 

barrel cortex targeting using optical intrinsic signal imaging (see Methods). We did not find 

significant differences between adult WT and Fmr1 KO mice (P34-74) in equivalent periods of 

spontaneous or whisker-evoked activity (p=1.00 by two-group comparison, Fig. 11a). In contrast 

to P14-16 mice, we did not find a difference in the proportion of time-locked L2/3 neurons between 

adult WT and Fmr1 KO mice (p=0.35 by two-group comparison, Fig. 11b). However, whereas 

adult WT mice exhibited robust neuronal adaptation to repetitive whisker stimulation (Z-scores: 

2.42±0.53 first five vs. 1.58±0.53 last five, p=0.012 by two-group comparison, Fig. 11c), adult 

Fmr1 KO animals did not (2.18±0.34 first five vs. 2.20±0.50 last five, p=1.000, Fig. 11c). 

 

In adult WT mice, both time-locked and non-time-locked cells showed adaptation (p=0.012 and 

p=0.066, Fig. 11d), but adult Fmr1 KO mice did not show adaptation in either subset of cells 

(p=0.258 and p=1.000, Fig. 11d). There was again no change in spontaneous activity of all ROIs 

between the equivalent “first five” and “last five” time bins (Fig. 11e). On the whole, the data in 

adult mice was similar to the results in P14-P16 mice. The lack of modulation of the activity of 

non-time-locked cells in Fmr1 KO mice (especially at P14-P16) appears to be responsible for the 

overall network adaptation defect observed during repetitive whisker stimulation. 
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Figure 11 
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Figure 11: Lack of adaptation of whisker-evoked activity in local networks of adult Fmr1 

KO mice 

(a) Median Z-scores for spontaneous (left) and whisker-evoked activity (right) of L2/3 neurons in 

WT and Fmr1 KO mice at P34-74 (n= 10 WT mice and n=8 Fmr1 KO mice).  Each circle shows 

the median Z-score across all ROIs for one animal, for equivalent durations of spontaneous and 

evoked imaging (103 s). In (a-e), circles represent female mice, squares represent male mice, and 

diamonds represent mice with unknown sex; bars represent group medians and p-values were 

obtained from two-group rank-based comparisons with 10,000 resamples, with pairwise 

comparisons and Bonferroni correction for (c-e). 

(b) The proportion of time-locked neurons is not different between WT and Fmr1 KO adult mice 

(n= 10 WT mice and n=8 Fmr1 KO mice). Each symbol represents a different animal. 

(c) Median Z-scores of whisker evoked activity across all L2/3 neurons during the specified time 

bin during First 5 and Last 5 stimulations in WT and Fmr1 KO mice at age P34-74. For panels (c-

e), the median Z-scores per animal were binned from the start of the first stimulation to 3 s after 

the end of the fifth stimulation. 

(d) Median Z-scores of whisker-evoked activity across time-locked and non-time-locked L2/3 

neurons during First 5 and Last 5 stimulations at P34-74. 

(e) Median Z-scores of spontaneous activity across ROIs at P34-74, binned using the same start 

and end times as used to analyze whisker-evoked activity in (c-d). 
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PART 2 – IMPAIRED PERCEPTUAL LEARNING IN FRAGILE X SYNDROME IS 

MEDIATED BY PARVALBUMIN NEURON DYSFUNCTION AND IS REVERSIBLE  

In this study, we investigated whether motion perception is impaired in Fmr1 KO mice. and then 

used calcium imaging to record from neurons in visual cortex to identify the underlying circuit-

level alterations.  First, we used an identical perceptual discrimination task in mice and humans 

and then deciphered specific circuit-level disruptions in Fmr1 KO mice that bring about the altered 

behaviors. This parallel “mouse/human” perspective, derived from a circuit-level understanding 

of FXS symptoms, is a novel approach to targeting therapeutic interventions.  Additionally, 

although many human psychophysical studies have demonstrated deficits in visual perception in 

individuals with FXS (Kogan et al., 2004, Farzin et al., 2008), whether fragile X mice also exhibit 

impaired visual processing is not known. 

 

Impaired performance of Fmr1 KO mice in a ‘reduced angle’ visual discrimination task: 

Fmr1 KO mice exhibit sensory hypersensitivity, which could impair their ability to learn and 

perform certain decision-making tasks. In studies not shown here, we found that Fmr1 KO mice 

showed a significant delay in learning a Go/-No-Go visual discrimination task in which they must 

associate a ‘preferred’ visual stimulus (a drifting sinusoidal grating) with licking for a water 

reward, whereas they must withhold licking for a similar visual stimulus that is drifting in the 

orthogonal direction (‘non-preferred’)  (Goel et al., 2018). However, Fmr1 KO mice eventually 

learned the task and performed at similar levels as control wild type mice.   
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Fmr1 KO mice are known to exhibit a broadening of receptive fields in somatosensory cortex 

(Arnett et al., 2014, Zhang et al., 2014, Juczewski et al., 2016).   Similar broader tuning in V1, if 

it exists, could affect the discrimination of visual stimuli with very similar orientations.  Therefore, 

we tested whether Fmr1 KO mice would be particularly challenged by a reduced angle task, in 

which the difference in angle between the preferred and non-preferred orientation was gradually 

reduced to 7.5o, after the animals had learned the basic 90o task (Fig. 12a-c). Mice that had already 

maintained an expert-level performance (d’ > 2) on the 90o task were tested for only two sessions 

at each of the reduced angle tasks (starting at 15 o, then 10 o and finally 7.5 o). The d’ values shown 

Fig. 12d are an average of those two sessions. Overall there was a significant decrease in 

performance of the both groups when the angle between the orientations was reduced. (Friedman 

test: F 2,57 = 1.96, p= 5.5 X 10-5). In particular there was a significant decrease in performance of 

Fmr1 KO mice on the 10o (Mann-Whitney test, p= .001) and 7.5 o (Mann-Whitney test, p= 0.02) 

task compared to WT. A difference in orientation angle of 15o did not impair the performance of 

either WT or Fmr1 KO mice (n= 10 for each); however, a further reduction down to 10o resulted 

in a significant reduction in d’ values of Fmr1 KO mice, but not in WT controls (Fig. 12d; kruskal-

wallis test; WT: χ22,28 = 12.66, p= 0.03; Mann- Whitney test between 15o and 10o, p=0.09, and 

between 10o and 7.5o, p=0.03. kruskal-wallis test; Fmr1 KO  : χ22,28 =6.63, p= 0.002; Mann- 

Whitney test between 15o and 10o, p=0.02, and between 10o and 7.5o, p=0.85. 

A reduction in the angle difference to 7.5o did not further impair the performance of Fmr1 KO 

mice (p=0.85), indicating that many of the Fmr1 KO mice were already performing at chance on 

the 10o task. However, there was a further decline in the performance of WT mice (p=0.03) (Fig. 

12d). 
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Figure 12 

 

Figure 12: Reducing the angle between preferred and non-preferred stimuli impairs 
discrimination in Fmr1 KO 

a. Cartoon of the behavioral apparatus.  

b. Timeline of an individual trial for the go/no-go visual discrimination task in water-deprived 

mice. FA, false alarm; CR, correct rejection. 

c. After mice reached a d’ > 2 on the 90o task (at 100% contrast), they were tested for only two 

sessions at the reduced angle tasks: 15 o, then 10 o and finally 7.5 o. 
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d. Selective impairment of Fmr1 KO mice in task performance when the angle difference between 

preferred and non-preferred stimuli drops below 15o.   
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Orientation tuning deficits in V1 correlate with task performance in Fmr1 KO mice 

Having established a defect in perceptual learning in the fragile X mouse model that is relevant to 

the human disease, we next adopted a reverse engineering approach to identify the circuit- and 

neuronal-level alterations that might underlie the impaired visual discrimination.  In light of 

various reports of cortical hyperexcitability and network hypersynchrony in Fmr1 KO mice 

(Goncalves et al., 2013, La Fata et al., 2014, Contractor et al., 2015) , we first investigated whether 

the perceptual learning deficit we observed in Fmr1 KO mice, was caused by abnormal orientation 

tuning of pyramidal cells in V1. To test this, we performed in vivo 2-photon calcium imaging in 

layer (L) 2/3 neurons in awake mice running on a floating polystyrene ball (Fig. 13a-c; Materials 

and methods).  A rAAV to express GCaMP6s (Chen et al., 2013) was injected in V1 following 

stereotaxic coordinates, and successful targeting was confirmed using intrinsic signal imaging 

(Fig. 13b).  We recorded both spontaneous and visually evoked activity from L2/3 neurons in mice 

that were fully acclimated to the experimental rig and running vigorously throughout the calcium 

imaging session (Fig. 13c).  For the latter, WT and Fmr1 KO mice (n= 9 and 10, respectively) 

were presented with four sequential presentations of sinusoidal gratings drifting in 8 different 

directions (4 orientations), at random (Fig. 13d; Materials and methods).  Although previous 

studies have reported hyperexcitable cortical circuits in Fmr1 KO mice (reviewed in (Contractor 

et al., 2015)), we did not observe a significant increase in either spontaneous or visually evoked 

activity in Fmr1 KO mice (Fig. 13e).  

 

Despite the seemingly normal frequency of visually evoked activity in Fmr1 KO mice, mutant 

mice had a significantly lower percentage of orientation selective (OS) cells in L2/3 (Fig. 13f; 49.5 
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± 2.1% in WT vs. 31.2 ± 4.6% in Fmr1 KO; p= 0.003, t-test).  Importantly, when we trained these 

mice on the visual discrimination task, we found a significant inverse correlation between the 

percentage of OS cells and the number of days it took animals to reach a d’ > 2 (Fig. 13g; r= -

0.605, p= 0.006). This implies that, with fewer available OS cells in V1, Fmr1 KO mice had more 

difficulty discriminating between two different orientations, particularly when the difference was 

small (Fig. 12 a-d).  In addition, in vivo calcium imaging revealed that L2/3 neurons in V1 of 

Fmr1 KO mice had a significantly broader tuning compared to those in WT mice (Fig. 13h; 36.7 

± 1.0o in WT vs. 43.3 ± 1.4o in Fmr1 KO; p= 0.002, t-test).  This 6.6o difference in the mean tuning 

width of pyramidal neurons in V1 between WT and Fmr1 KO mice, though slight, might be 

sufficient to explain why Fmr1 KO mice can discriminate at 15o but not at 10o.  Additionally, we 

found a significant correlation between the tuning width of L2/3 cells and the number of days it 

took the animals to reach a d’ > 2 (r= 0.48, p= 0.041).  
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Figure 13 
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Figure 13: Orientation tuning deficits in V1 correlate with task performance in Fmr1 KO 

mice. 

a. Cartoon of rAAV-GCaMP6s injection into V1. 

b. Intrinsic signal imaging was then performed 2-3 weeks after rAAV injection to confirm 

appropriate targeting of V1 (green map). 

c. Representative field of view for in vivo two-photon calcium imaging experiment in V1.  Imaging 

was performed 3-4 weeks after rAAV injection at 15 fps. 

d. Example traces of changes in GCaMP6s fluorescence intensity (∆F/F) for 6 representative 

neurons in V1 that exhibit a range of responses from narrow tuning (cell 1) to broad tuning (cells 

2 & 3).  Responses to single trials are shown in gray, averages of 4 responses are in black.  

e. Visual evoked activity (as measured by the frequency of fluorescence peaks) is similar between 

WT and Fmr1 KO mice. Symbols in panels E-H represent different mice. Unpaired, one-tailed 

Student t-test was used for panels E-F, H. 

f. The percentage of orientation selective neurons in V1 is significantly lower in Fmr1 KO mice. 

g. Inverse correlation between the percentage of orientation selective neurons in V1 and 

performance on the visual discrimination task (as measured by the number of days required to 

reach a d’>2). 

h. The mean orientation tuning width for V1 neurons is significantly higher in Fmr1 KO mice. 

Tuning width also correlates with task performance 
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Reduced activity of parvalbumin cells in V1 in Fmr1 KO mice  

Abnormal V1 network dynamics pertaining to orientation selectivity and tuning width could be 

the result of dysfunction in parvalbumin (PV) interneurons, the most prevalent inhibitory neuron 

in V1 (Gonchar and Burkhalter, 1997).  PV cells exhibit very broad orientation tuning by simply 

responding to all orientations, since they receive local input from a wide range of orientation tuned 

pyramidal cells (Hofer et al., 2011, Zariwala et al., 2012, Runyan and Sur, 2013).  Furthermore, 

selective stimulation of PV cells in V1 with channelrhodopsin-2 leads to improved feature 

selectivity and visual discrimination(Lee et al., 2012).  For these reasons, we tested the hypothesis 

that PV cells were hypoactive in fragile X mice.  We used in vivo calcium imaging to record the 

activity of PV neurons in V1 of WT and Fmr1 KO mice (n= 6 and 7, respectively) that expressed 

Td-Tomato in PV neurons (PV-Cre mice x ai9 mice; see Materials and methods).  At the time of 

the cranial window surgery, we injected a Cre-dependent virus into V1, to selectively express 

GCaMP6s in PV cells (Fig. 14a, b).  Our calcium imaging recordings revealed stark differences 

in the activity of PV cells between WT and Fmr1 KO mice; whereas traces of PV cell activity in 

WT mice showed the expected broadly tuned, non-selective responses to visual stimuli, traces of 

PV cells in Fmr1 KO mice exhibited reduced visually evoked activity (Fig. 14c). (Fig. 14d), Fmr1 

KO mice exhibited a significantly lower frequency of events triggered by visual stimuli (Fig. 14d; 

4.1 ± 0.5 for WT vs. 2.1 ± 0.5 for Fmr1 KO; p= 0.03, Mann-Whitney test; 14e; 1.8 ± 0.5 for WT 

vs. 0.3 ± 0.1 for Fmr1 KO; p= 0.03, Mann-Whitney test). One of our criteria for selecting PV cells 

for analysis in both WT and Fmr1 KO mice was that they exhibit at least one calcium transient in 

the recordings (Materials and methods), and neither the proportion of active PV cells (Fig. 14f; p= 

0.7, Mann-Whitney test), nor the amplitude or frequency of spontaneous calcium transients in PV 
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cells, were significantly different between WT and Fmr1 KO mice. We also found a significantly 

lower fraction of stimulus-responsive PV cells in Fmr1 KO mice (Fig. 14g; 0.7 ± 0.02 for WT vs. 

0.4 ± 0.03 for Fmr1 KO; p < 10-5, t-test), which would also ultimately be expected to affect the 

functional output of V1.  
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Figure 14 
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Figure 14: Parvalbumin interneurons in V1 in Fmr1 KO mice show reduced functional 

output. 

a. Cartoon of strategy for selective GCaMP6s expression in PV interneurons.  

b. Representative field of view for in vivo 2-photon calcium imaging in PV neurons expressing 

GCaMP6s (green) and Td-Tom (red). 

c. Example traces of changes in GCaMP6s fluorescence intensity (∆F/F) for 8 representative PV 

neurons in V1 from 4 WT (left) and 4 Fmr1 KO mice (right). Responses to 8 different directions 

from single trials are shown in gray, while the averages of 4 trials are in black. 

d. The magnitude of visual evoked calcium transients (as measured by the mean fluorescence Z-

scores) is similar between WT and Fmr1 KO mice (sample size in parenthesis). Symbols in panels 

d-j represent different mice. Unpaired, one-tailed Student t-test was used for panels d-g. 

e. The frequency of visually evoked calcium transients in PV neurons is significantly lower in 

Fmr1 KO mice. 

f. WT and Fmr1 KO mice and similar percentages of PV cells that were active. 

g. The fraction of visually-responsive PV cells is significantly reduced in Fmr1 KO mice.  There 

is an inverse correlation between the fraction of stimulus responsive PV cells and behavioral 

performance.  
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A DREADD strategy that restores PV cell activity and orientation tuning in V1 accelerates 

learning of the visual task in Fmr1 KO mice. 

 

Based on the finding that PV cells were indeed hypoactive in Fmr1 KO mice, we hypothesized that 

a successful manipulation of PV cell activity that would restore their output in these animals, might 

also improve their performance on the visual discrimination task. Hence, we used a Designer 

Receptors Exclusively Activated by Designer Drugs (DREADD) approach (Armbruster et al., 

2007) (see Materials and methods) to selectively express the excitatory hM3Dq receptor in PV 

cells of Fmr1 KO mice (n= 6; Fig. 15a). We then used the hM3Dq ligand, clozapine-N-oxide 

(CNO, 5 mg/kg, i.p.), to excite PV cells and increase their output in these Fmr1 KO, hM3Dq mice.  

Overexpressing hM3Dq in PV cells alone (before administering CNO) did not affect visually 

evoked activity of PV cells in Fmr1 KO, hM3Dq mice. In contrast, 30 min after a single CNO 

injection, we observed a robust increase in visually evoked PV cell output in these Fmr1 KO, hM3Dq 

mice (Fig. 15 b-e); Spontaneous activity was unaffected by CNO.  Specifically, we observed a 

significant increase in both the frequency of visually evoked calcium transients in PV cells of Fmr1 

KO, hM3Dq mice (Fig. 15c; 0.2 ± 0.02 before CNO vs. 0.32 ± 0.05 after CNO; p= 0.02, t-test), and 

in the frequency of those events (Fig. 15d; 0.3 ± 0.04 before CNO vs. 0.6 ± 0.1 after CNO; p= 

0.03, t-test). The fraction of stimulus responsive PV cells in Fmr1 KO, hM3Dq mice was also 

significantly increased by CNO, restoring it to WT levels (Fig. 15e; 0.4 ± 0.06 before CNO vs. 0.7 

± 0.04 after CNO; p= 0.001, t-test).  Importantly, the fact that we could increase the activity of PV 

cells with DREADDs supports the notion that PV cells were not silent in Fmr1 KO mice due to 

poor health. Also, the proportion of PV cells that was active did not change after CNO 
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administration (not shown), suggesting that the DREADD effect on the fraction of visually 

responsive PV neurons was not due to simply making previously silent cells more active. Note that 

the data from Fmr1 KO mice (before CNO group) in Fig. 15 c, d and e is similar to the data from 

Fmr1 KO mice in Fig. 14 d, e and g indicative of robust replication of our findings.  

 

Having restored visually evoked PV cell activity in Fmr1 KO/, hM3Dq mice to near normal WT 

levels, we hypothesized that we might be able to reverse the delay in learning the visual 

discrimination task.  A subset of the DREADD-expressing Fmr1 KO mice were therefore trained 

on the standard visual discrimination task (90o angle) and injected with CNO, ~30 min prior to 

each training session. This chemogenetic manipulation resulted in a leftward shift in the learning 

curve (i.e., faster learning) of CNO-treated Fmr1 KO, hM3Dq mice (Fig. 15f), indicating that we 

were able to rescue the learning impairment by acutely elevating the PV cell output.  CNO led to 

a significant reduction in the number of days required to reach expert level (d’ > 2) on the visual 

discrimination task compared to Fmr1 KO mice (Fig. 15g; WT: 3.5 ± 0.2 d, Fmr1 KO: 6.0 ± 0.4 

d; Fmr1 KO, hM3Dq with CNO: 3.7 ± 0.3 d; Fmr1 KO with CNO: 6.4 ± 0.8 d;   χ23,55, p= 5.2 X 10-5, 

Kruskal-Wallis test; Mann-Whitney test between Fmr1 KO and Fmr1 KO, hM3Dq with CNO 

p=0.004;). Importantly injection of CNO alone in the absence of DREADDs in Fmr1 KO, did not 

rescue behavior (Fig 15g, Mann–Whitney test, p= 0.8)  To come full circle back to OS cells in V1, 

we also tested whether the DREADD manipulation on PV cells would be sufficient to affect the 

properties of pyramidal neurons in the circuit.  Calcium imaging with rAAV-GCaMP6s in a group 

of Fmr1 KO, hM3Dq mice revealed that CNO administration significantly raised the proportion of 

orientation selective pyramidal cells and showed a trend towards sharper tuning (Fig. 15h, i; p= 
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0.02 and 0.07, respectively; t-test).  Notably, the relationship between PV cell output and behavior 

was apparent from the negative correlation between the fraction of stimulus responsive PV cells 

and the number of days needed to reach a d’ > 2 (Fig. 15j; r -0.753, p= 0.0007). This relationship 

showed clearly how Fmr1 KO, hM3Dq mice treated with CNO were not distinguishable from WT 

mice. Additionally, the delayed learning observed in Fmr1 KO mice that did not receive CNO 

replicates our finding in Fig. 1 and 2 and this further corroborates our primary result of impaired 

visual discrimination in Fmr1 KO mice. 
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Figure 15 
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Figure 15: A DREADD strategy that restores normal PV cell activity in V1 rescues delayed 

learning in Fmr1 KO mice. 

a. Cartoon of strategy for selective rAAV-EF1a-DIO-hM3D(Gq)-mCherry expression in PV 

interneurons of Fmr1 KO mice.  

b. Example of GCaMP6s traces for 4 representative PV neurons in V1 from 4 different Fmr1 KO, 

hM3Dq mice before and after ~30min after i.p. injection of clozapine N-oxide (CNO).  

c, d. The activity of PV cells, as measured by both median fluorescence Z-score (c) or the 

frequency of calcium transients (d), in Fmr1 KO, HM3Dq mice increases significantly after CNO 

administration.  Symbols in panels J-L represent different mice.  A one-tailed, unpaired Student t-

test was used for panels I-K.  

e. The fraction of stimulus-responsive PV cells also increases significantly after CNO. Note that 

the fraction of visually responsive PV cells was comparable between Fmr1 KO mice expressing 

DREADDs (before CNO) and Fmr1 KO mice in Fig. 4g.  

f. Fmr1 KO, HM3Dq mice (n= 6; treated with CNO 30 min prior to each session) learned the basic 

90o task in ~3 d on average. The rate of learning for Fmr1 KO mice (from Fig. 1e) is shown for 

comparison. The solid line indicates the mean, and the shaded area shows the standard error.  The 

dashed line at d’= 2 indicates expert performance threshold.  

g. Fmr1 KO, HM3Dq mice treated with CNO learned the basic 90o task significantly faster than Fmr1 

KO mice and as fast as WT mice. Repeated measures ANOVA. 
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h. The percentage of OS pyramidal neurons in Fmr1 KO, HM3Dq mice was significantly higher after 

CNO administration.  Student t-test. 

i.  There was a non-significant trend toward reduced tuning width of pyramidal neurons in Fmr1 

KO, HM3Dq mice after CNO administration.  

j. There is a strong inverse correlation between task performance (days to reach d’>2) and the 

fraction of stimulus-responsive PV cells in V1. 
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Fragile X patients exhibit similar defects in visual discrimination as Fmr1 KO mice  

It was recently argued that the absence of directly comparable behavior paradigms between human 

and animal studies is a real impediment to progress in translational research for autism (Robertson 

and Baron-Cohen, 2017).   It might even explain, in part, the failure of clinical trials in FXS 

(Mullard, 2015).  In order to assess the translational potential of our findings of impaired visual 

discrimination (and, by extension, the associated circuit dysfunction) in a mouse model of FXS, 

we next asked whether the same perceptual learning task could be applied to humans with FXS.  

We implemented the same paradigm as in mice with relatively minor modifications, to make it 

suitable for individuals with FXS (Fig. 16a, b; Materials and methods). Healthy control human 

participants and FXS participants (n= 8 each) were administered the task. Healthy controls learned 

the basic 90o task with high discriminability very quickly (within the first ten trials) in a single 

training session (Fig. 16c).  Performance declined slightly in some healthy control participants at 

reduced angles, but on average, this was not significant. FXS participants showed a trend towards 

a lower d’ at the 15o task compared with 90 o or 45 o tasks however this did not reach significance  

(p= 0.06; kruskal-wallis test). However there was a robust decrease in d’ at all the angles measured. 

(90 o, p=0.001; 45o, p=0.01; 15o, p=0.001; Mann –Whitney test). Thus, FXS participants and Fmr1 

KO mice exhibit strikingly similar visual perception deficits for ambiguous stimuli with similar 

orientations. This suggests that a discrimination task like the one we used could eventually be used 

as biologically-based measure of sensory processing in human clinical trials.  
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Figure 16 
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Figure 16: Fragile X patients exhibit similar defects in visual discrimination as Fmr1 KO 

mice 

a. Photograph of a FXS subject performing the visual discrimination task. 

b. Timeline of an individual trial for the visual discrimination task in human subjects. NR: no 

response. 

c. Task performance at different angles between orientation #1 and orientation #2 for FXS 

subjects and age-matched control participants.  Individuals with FXS are able to perform the 90o 

visual discrimination task with d’> 2 but they exhibit a significantly lower d’ than controls with 

the reduced angle task. 
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MATERIALS AND METHODS 

Materials: Unless otherwise noted, materials were purchased from Sigma-Aldrich. 

 

Experimental animals  

 

All experiments followed the U.S. National Institutes of Health guidelines for animal research, 

under an animal use protocol (ARC #2007-035) approved by the Chancellor's Animal Research 

Committee and Office for Animal Research Oversight at the University of California, Los Angeles. 

Most experiments used male and female FVB.129P2 WT mice (JAX line 004828) and Fmr1 

KO mice (JAX line 004624) (Bakker et al., 1994), with the exception of the experiments in Fig. 

3, which used male and female PV-Cre mice (JAX line 008069) that were crossed to the Ai9 (Td-

Tom) reporter line (JAX line 007909) and the resulting PV-Cre x Ai9 mice were back crossed to 

FVB WT and Fmr1 KO mice for 8 generations. All mice were housed in a vivarium with a 12-h 

light-dark cycle. Experiments were performed during the light cycle. Animals were weaned at P21-

22 and afterward housed with up to five mice per cage. Before P21, pups were housed with their 

dam. The FVB background was chosen because of its robust breeding, and because the FVB Fmr1 

KO phenotype includes a predisposition to audiogenic seizures (Bernardet and Crusio, 2006). Due 

to the potentially stressful effects of surgeries on pups of early prenatal ages and their dams, 

homozygous litters were used to maximize survival by eliminating the possibility of littermates 

with different genotypes receiving unequal attention from the dam. 

 

P1 injection of AAV vector for GCaMP6s expression in primary somatosensory cortex (S1) 
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rAAV (AAV1.Syn.GCaMP6s.WPRE.SV40) (Chen et al., 2013) was purchased from the 

University of Pennsylvania Vector Core and diluted to a working titer of 2E13 with 1% filtered 

Fast Green FCF dye. Pups were anesthetized with isoflurane (5% induction, 1.5-2% maintenance 

via a nose cone, volume-to-volume) and placed in a stereotaxic frame. A subcutaneous injection 

of Carprofen (Rimadyl, Pfizer; 5 mg/kg) was administered. The scalp was sterilized with 

alternating swabs of betadine and 70% alcohol. A small skin flap (2-3 mm in length) was made 

over the somatosensory cortex. The periosteum was gently cleared under the skin flap using brief, 

gentle touches of a dental drill. At the injection site, the bone was drilled lightly to create a small 

crack, permitting injection via pulled-glass capillary without exposing the dura. Glass 

micropipettes (Sutter Instrument, 1.5 mm outer diameter, 0.86 mm inner diameter) were used to 

inject approximately 0.2 µL of rAAV into the superficial cortex at a depth of 0.2 mm below the 

dura, using a Picospritzer (General Valve) (Fig. 9a left). After removing the pipette, the injection 

site was sealed with a small drop of VetBond (3M). The skin flap was replaced and the skin edges 

were sealed with VetBond. The entire surgery was completed in 15-20 min per animal.  The pup 

was allowed to recover on a warm water circulation blanket before being returned to the dam. 

 

Cranial window surgery for P14-16 imaging in S1 

 

Pups (P10-12) were anesthetized with isoflurane (5% induction, 1.5-2% maintenance via a nose 

cone, vol/vol) and placed in a stereotaxic frame. A 2.5-3.5 mm diameter craniotomy was performed 

over the right barrel cortex and covered with a 3 or 5 mm glass coverslip, as previously described 
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(Golshani and Portera-Cailliau, 2008, Mostany and Portera-Cailliau, 2008). A headbar was also 

attached to the skull with dental cement to secure the animal to the microscope stage.  The cranial 

window surgery itself can be done in under 60 min, and our protocol and custom headbars were 

designed to facilitate postoperative reintegration into the litter.  Within 2 hours after surgery the 

pups appeared fully recovered from the effects of anesthesia and were able to nurse normally. 

 

Cranial window surgery with AAV vector injection for adult GCaMP6s in S1 

 

For 8 of the 10 WT adult animals and 5 of the 8 Fmr1 KO adult animals imaged, the 

AAV1.Syn.GCaMP6s.WPRE.SV40 vector was injected into the barrel cortex during the cranial 

window surgery, 2+ weeks before imaging, following existing protocols (Chen et al., 2013). After 

drilling a 4 mm craniotomy over the right barrel cortex, approximately 30 nL of rAAV vector, 

diluted to a working titer of 2E13 with 1% filtered Fast Green, was injected into 4-7 sites in the 

barrel cortex. The craniotomy was covered with a 5 mm glass coverslip, and a headbar was also 

attached to the skull with dental cement.  

 

The remaining 2 WT adult animals and 1 of the remaining KO animals had been injected with 

rAAV vector at P1 and received cranial window implantation at P10-12, following the previously 

described protocol, but were not used for the P14-16 imaging experiments. The remaining 2 of 8 

KO adult animals had been injected with rAAV vector at P1, had received cranial window 

implantation at P10-12, and had also been used for the P14-16 imaging experiments. 
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Cranial window surgery for primary visual cortex (V1) 

 

Experiments were started with craniotomies performed at 6-8 weeks on the four different mouse 

lines mentioned above. Mice were anesthetized with isoflurane (5% induction, 1.5-2% 

maintenance via a nose cone) and placed in a stereotaxic frame.  A 4.5 mm diameter craniotomy 

was performed over the right primary visual cortex (V1) and covered with a 5 mm glass coverslip, 

as previously described (Golshani and Portera-Cailliau, 2008, Mostany and Portera-Cailliau, 

2008). Before securing the cranial window with a coverslip, we injected ~50 nl of 

AAV1.Syn.GCaMP6s.WPRE.SV40 (Fig. 13a, in vivo calcium imaging of L2/3 pyramidal 

neurons), or a cocktail of AAV1.Syn.GCaMP6s.WPRE.SV40 and 

AAV1.Syn.Flex.GCaMP6s.WPRE.SV40 (Fig. 14, in vivo calcium imaging in PV cells), or a 

cocktail of AAV1.Syn.Flex.GCaMP6s.WPRE.SV40 and pAAV.hSyn.DIO.hM3D(Gq).mCherry 

(Fig. 15, to activate PV cells with DREADDs). A custom U-shaped aluminum bar was attached to 

the skull with dental cement to head restrain the animal during behavior and calcium imaging. 

 

Optical Intrinsic Signal (OIS) imaging in S1 

 

Following cranial window surgery, OIS imaging was used to map the barrel cortex at P12-14 (for 

P14-16 imaging) or at least 1 day before imaging (for adults). As previously described (Johnston 

et al., 2012), the contralateral whisker bundle was gently attached using bone wax to a glass needle 

coupled to a piezo-actuator (Physik Instrumente). Each stimulation trial consisted of a 100 Hz 

sawtooth stimulation lasting 1.5 s. The response signal divided by the averaged baseline signal, 
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summed for all trials, was thresholded at a fraction (65%) of maximum response to delineate the 

cortical representation of stimulated whiskers (Fig. 9b). OIS signal intensities were not quantified, 

nor were they compared between animals. 

 

Optical Intrinsic Signal (OIS) imaging in V1 

 

Two weeks after cranial window surgery, OIS imaging was used to map the location of V1.  Visual 

stimulation was provided by a piezo-actuator (Physik Instrumente) that deflected light from a red 

light emitting diode in front of the contralateral eye. The response for 30 stimulation trials was 

averaged, each consisting of 100 Hz deflections for 1.5 s. The response signal divided by the 

averaged baseline signal, summed for all trials, was used to generate the visual cortical map.  

 

In vivo two-photon calcium imaging in head-restrained mouse S1 

 

Calcium imaging was performed on a custom-built two-photon microscope, with a Chameleon 

Ultra II Ti:sapphire laser (Coherent), a 20X objective (0.95 NA, Olympus) and ScanImage 

software (Pologruto et al., 2003). Mice were lightly sedated with chlorprothixene (2 mg/kg, i.p.) 

and isoflurane (0-0.5%), and kept at 37°C using a temperature control device and heating blanket 

(Harvard Apparatus). The isoflurane was manually adjusted to maintain a breathing rate ranging 

from 100-150 breaths/min for P14-16 mice and 140-150 breaths/min for adult mice. Both 

spontaneous activity and whisker-evoked barrel cortex activity were recorded. Whisker 

stimulation was delivered by bundling the contralateral whiskers (typically all macrovibrissae of 
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at least ~1 cm in length), via soft bone wax, to a glass needle coupled to a piezo-actuator (Fig. 9a 

right). The stimulation protocol was the same as that used during behavioral experiments (Fig. 

9d). Whole-field images were acquired at 7.8 Hz (1024 x 128 pixels downsampled to 256 x 128 

pixels) (Fig. 9c).  

 

In vivo two-photon calcium imaging in head-restrained mouse V1 

 

Following rig habituation, mice were introduced to the visual stimuli on the screen. This stimulus 

habituation phase lasted 3-4 sessions. Visual stimuli were generated using custom-written 

MATLAB (Mathworks) routines using Psychtoolbox that consisted of full-field square wave 

drifting gratings (2 cycles/s, 0.005 spatial frequency, 32 random repeats of 8 orientations) 

presented for 3 s and separated by a 3 s-long grey screen.  Both spontaneous and visually evoked 

responses of L2/3 pyramidal cells from V1 were recorded at 15 Hz in 2-4 fields of view.  Each 

FOV consisted of a median of 63 pyramidal cells (range: WT=54-81; Fmr1 KO = 57-79) or 8 PV 

cells (range: WT=3-10; Fmr1 KO = 3-8). In each animal, imaging was performed at 2-3 depths 

(150-250 μm), and data was averaged from movies collected across all FOVs.  

 

Data analysis for calcium imaging in S1 

 

Calcium-imaging data were analyzed using EZcalcium (see Chapter I). In 4 out of 20 movies of 

P14-16 spontaneous activity (1,600 frames acquired), between 8 and 34 frames with significant Z-

motion were manually removed before motion correction. In 1 out of 20 movies of P14-16 evoked 
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activity (800 frames), 24 frames with Z-motion occurred during the initial 10 seconds of baseline 

acquisition before whisker stimulation began, allowing replacement of these frames with an 

averaged Z-projection of the remainder of the video. In 11 out of 20 movies of P34-74 spontaneous 

activity (1,600 frames acquired), some frames (up to 420) exhibiting Z-axis motion were manually 

removed before motion correction. Subsequent data quantifications used only the first 800 frames 

of spontaneous activity, i.e., an equivalent duration as the evoked activity. 

 

X-Y drift in the movies was then corrected using either a frame-by-frame, Hidden-Markov-Model-

based registration routine (Dombeck et al., 2007) or a cross-correlation-based, non-rigid alignment 

algorithm (Mineault et al., 2016). The choice of registration algorithm did not affect the data 

analysis, since the fluorescence data for each neuron was always normalized to its own baseline. 

A semi-automated algorithm (Chen et al., 2013) was used to select regions of interest, each 

representing a single cell body, and extract the fluorescence signal (ΔF/F) for each neuron. A 

“modified Z-score” Z_F vector for each neuron was calculated as 

 

𝑍𝑍_𝐹𝐹 =  
𝐹𝐹(𝑡𝑡) −  𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝)

𝑠𝑠𝑠𝑠𝑠𝑠(𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝)
 

 

where the quietest period is the 10 s period with the lowest variation (standard deviation) in ΔF/F. 

All subsequent analyses were performed using the Z_F vectors. 

 

To define whether an individual cell showed time-locked responses to whisker stimulations (Fig. 

9g-h and 11b), a probabilistic bootstrapping method was implemented. First, we calculated the 
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correlation between the stimulus time-course and the Z_F vector, followed by correlation 

calculations between the stimulus time-course and 10,000 scrambles of all calcium activity epochs 

in Z_F (epoch = consecutive frames wherein Z_F ≥ 3). The 10,000 comparisons generated a 

distribution of correlations (R values), within which the correlation of the unscrambled data and 

the stimulus fell at a certain percentile. If the calculated percentile for a cell was less than 0.01, 

then we described that cell as being time-locked. 

 

For analysis of aggregate activity within a particular time range, as in Figs. 9f, 10d-f, 11a, or 11c-

e, the mean of Z_F within that time range was calculated for each ROI, and for each animal imaged, 

a median Z_F was then calculated across all ROIs or a subset of ROIs (e.g. only time-locked or 

non-time-locked ROIs). The initial and end baseline periods of Evoked activity were included in 

the analyses for Figs. 9f, 9h, and 11a-b. 

 

For curve fitting of WT neuronal activity across stimulations (Fig. 10c), we calculated the median 

Z_F across ROIs for each animal imaged, within each of the 20 stimulations (from 0.2 s before 

stimulation onset to 2.8 s after stimulation end), and then applied iterative nonlinear, least-squares 

curve fitting with the Levenberg-Marquardt algorithm. The best-fit exponential curve to all data 

points for each stimulation had the equation 𝑦𝑦 = 𝐴𝐴𝑒𝑒−𝑥𝑥/𝜏𝜏 + off, where A = 1.94±0.25, τ = 

4.10±1.26, and off = 1.42±0.14. 

To analyze the correlation between the WT and Fmr1 KO animals’ proportions of time-locked 

neurons and their respective Adaptation Index of activity (Fig. 10g), we calculated an Adaptation 

Index as: 
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(𝑍𝑍 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 5 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) − (𝑍𝑍 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 5 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)
(𝑍𝑍 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 5 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) + (𝑍𝑍 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 5 𝑠𝑠𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡)

 

 

Statistical analyses 

 

Central tendencies are reported in the main text as group median ± median absolute deviation. 

Graphs show all data points as well as group medians and, where error bars are shown, interquartile 

ranges. Based on our group sizes of n=8-10 for imaging data comparisons and n=13-21 for 

behavioral data comparisons, normality cannot be ensured, and tests of normality and variance are 

also unreliable. As such, we implemented a conservative statistical approach of all rank-based 

comparisons with bootstrapping (10,000 resamples), without assumptions regarding normality or 

variance. These comparisons were implemented using custom-written R code. Paired rank-based 

comparisons were used when comparing measurements within the same animals (e.g. median 

fluorescence Z-scores during the first five vs. last five stimulations in WT mice). Unpaired rank-

based comparisons were used when comparing measurements in different animals (e.g. % time-

locked neurons in WT vs. Fmr1 KO mice). Two-sided p-values were calculated for each 

comparison, and Bonferroni corrections for multiple comparisons were applied where appropriate. 

The threshold for significance was set at p<0.05. 

 

No statistical test was used to prospectively calculate sample sizes. Target sample sizes were based 

on previous work from our group (Golshani et al., 2009, Goncalves et al., 2013), and equal or 

exceed sample sizes for other recent studies using in vivo calcium imaging and head-fixed 
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behavior. Experimenters were aware of the genotype of the animals in each experiment, as 

homozygous litters were used. Both male and female animals were used. 

 

Data analysis for calcium imaging in V1 

Orientation selective cells were defined by an orientation selectivity index (OSI) calculated as 

OSI=(Zpref−Zorth)(Zpref+Zorth)OSI=(Zpref−Zorth)(Zpref+Zorth) 

where Zorth is the mean response to the orientation orthogonal to the preferred one (Zpref). A 

cell was considered orientation-selective if it had OSI ≥ 0.5. 

 

To quantify visually evoked activity, we averaged the responses of neurons during the 3 s of 

drifting gratings stimulation and the 3 s of gray screen that followed the visual stimulus. To 

quantify spontaneous activity, we conducted separate recordings during which the animals were 

presented a static gray screen. To determine whether an individual cell showed a time-locked or 

stimulus-selective response to a visual stimulus in Fig. 13 (which examines the correlation 

between the stimulus and the fluorescence signal in PV cells), we used a probabilistic 

bootstrapping method as described previously. First, we calculated the correlation between the 

stimulus time-course and the Zf vector, followed by correlation calculations between the stimulus 

time-course and 1,000 scrambles of all calcium activity epochs in Zf (epoch = consecutive frames 

wherein Zf ≥ 3). The 1,000 comparisons generated a distribution of correlations (r values), within 

which the correlation of the unscrambled data and the stimulus fell at any given percentile. If the 
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calculated percentile for a cell was less than 1%, then we described that cell as being stimulus 

selective. Correlations in Figs. 13 and 15j were calculated using a Pearson’s correlation. 

Our tuning width calculation procedures are similar to what has been described before. First, we 

generate a tuning curve of the mean z-score values of the responses for each orientation 

presented. The orientation with the largest mean response is considered the preferred orientation. 

A Gaussian is then fitted to the tuning curve, and the tuning width is determined to be the width 

at half the maximum value of the fitted Gaussian. The equation of the Gaussian we use is the 

one used in Akerboom et al. 

σ⋅2⋅ln2−−−−−√σ⋅2⋅ln⁡2 

We included only neurons that elicited at least one calcium transient during the duration of the 

recording; neurons were excluded if they were deemed inactive on the basis of calcium imaging 

data (pyramidal neurons excluded: WT = 0.1%; Fmr1–/– = 0.1%; PV neurons excluded: 

WT = 0.1%; Fmr1–/– = 0.1%). 

Transcardial perfusion and DiI histology 

Mice were deeply anesthetized with isoflurane and underwent transcardial perfusion with 4% 

paraformaldehyde solution in sodium phosphate buffer (composition: 30 mM NaH2PO4, 120 mM 

Na2HPO4, pH 7.4). Brains were kept overnight at 4 °C first in 4% paraformaldehyde solution 

(pH 7.4) and then stored in 30% sucrose (in phosphate buffered saline) at 4 °C until sectioned. 



96 
 

Human subjects 

Eight male with FXS and eight male healthy controls, matched in chronological age, completed 

the visual discrimination experiment. Testing was conducted at a regional academic pediatric 

medical center where the participants with FXS were originally recruited as part of our Center 

for Collaborative Research in Fragile X (U54). Approval of this study was granted through the 

Institutional Review Board at Cincinnati Children’s Hospital Medical Center. All 

participants > 18 years of age provided written consent, and minors provided assent plus written 

consent from their legal guardians. Additional consent was obtained to use the de-identified 

photograph of an FXS participant performing the task. All FXS participants had full FMR1 

mutations ( > 200 CGG repeats) confirmed by genetic testing. No participants had a history of 

nonfebrile seizures or treatment with an anticonvulsant medication. FXS participants completed 

the Abbreviated Battery of the Stanford-Binet Intelligence Scales-Fifth Edition (SB-5). Control 

participants were recruited through hospital-wide and community advertisements and were 

excluded for a history of developmental or learning disorders or significant psychiatric disorder 

(for example, schizophrenia) in themselves or in first degree-relatives, or for a family history of 

ASD in first- or second-degree relatives based on a brief screening interview. All study 

procedures were approved by the local Institutional Review Board. 

Human FXS and control participants completed a visual discrimination task that was analogous 

to the one used with mice, with relatively minor modifications. Due to the additional cognitive 

demands of a go/no-go experiment, including inhibitory control, which is known to be impaired 

in FXS, we designed a forced two-choice visual discrimination task, so that all FXS participants 



97 
 

could learn and perform the task in a single session. It is conceivable, however, that FXS subjects 

could have learned the go/no-go task with subsequent training sessions, just as the mice required 

consecutive sessions to learn; however, time constraints and burden on the patient population 

limited our ability to do so. Visual gratings were displayed on a 13-inch (33.02-cm) Hewlett 

Packard laptop computer with a 15-inch (38.1-cm) liquid crystal display and made responses by 

pressing designated keys on the laptop keyboard. During the task, when the visual grating 

appeared to move from right side to left side, subjects were instructed to press the corresponding 

left-side key (‘Z’ or ‘A’), and when the visual grating appeared to move from left to right, 

subjects were instructed to press the corresponding right-side key (‘L’ or ‘M’). If participants 

correctly responded to the direction of the stimulus, they received positive visual feedback (for 

example, images of popular video game cartoon characters were displayed on the computer 

screen). If participants incorrectly responded to the direction of the stimulus, they received 

negative visual feedback (for example, a large red ‘X’ was displayed). Visual gratings appeared 

on screen for 4 s, during which participants could respond. Once the participant responded or at 

the end of 4 s, feedback was presented for 1 s. The following trial would begin 3 s later. All 

participants completed the first-order visual task, followed immediately by the second-order 

visual task. For each of the tasks, visual gratings appeared in four blocks of 30 trials, each block 

consisted of one condition: 180°/0°, 45°/90°, 67.5°/45°, or 82.5°/15°. The order of the blocks 

was presented randomly, but participants always received first-order blocks before second-order. 

Prior to administration of the task, participants completed two practice blocks. During the first 

practice block, a smiley face emoji moved from left to right on the screen (or right to left), and 

participants were instructed to press the corresponding key based on the direction the smiley 
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faced moved. In the second block, visual gratings at 50°/80° angles were presented, and 

participants pressed the key corresponding to direction of movement. Twelve trials of each 

practice block were administered. If participants did not reach ≥50% correct trials, the block was 

repeated one time for a total of 24 trials per block. All participants met practice criterion. 

Depending on the stimulus presented, the subject’s behavioral response was characterized as 

‘Right’ (similar to Hit), ‘NR’ (no response) or ‘Wrong’ (similar to FA). Since this was a two-

choice forced visual discrimination task, a modified d′ (discriminability index) was calculated 

as follows: 

d′=norminv(fractionofRight)−norminv(fractionofWrong)d′=norminv(fractionofRight)−norminv(f

ractionofWrong) 

Statistical analysis 

Statistical analysis of normality (Lilliefors and Shapiro–Wilk tests) were performed on each 

dataset and, depending on whether the data significantly deviated from normality (P < 0.05) or 

did not deviate from normality (P > 0.05), appropriate nonparametric or parametric tests were 

performed. The statistical tests performed are mentioned in the text and the legends. For 

parametric two-group analyses, a Student’s t test (paired or unpaired) was used. For 

nonparametric tests, we used the following: Mann–Whitney test (two groups), Kruskal–Wallis 

test (three or more groups), and Friedman test (repeated measures). In the figures, significance 

levels are represented with the following convention: *P < 0.05; **P < 0.01, ***P < 0.005. In all 

figures, we plot the s.e.m. Graphs show either individual data points from each animal or group 

means (averaged over different mice) superimposed on individual data points. 
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Sample size 

We did not use statistical methods to predetermine sample sizes. For all main results shown in 

Figs. 2-3, we used sample sizes of ≥ 10 mice, and subsequent statistics were performed using the 

number of mice as the sample size. Working with Fmr1–/– mice can be technically challenging 

for several reasons: (i) Fmr1–/– mothers have a higher incidence of cannibalization, (ii) Fmr1–/– 

mice can require extra handling to habituate them to any behavioral task, and extra care is 

required during water deprivation because a fraction of them can show adverse effects such as 

excessive weight loss, which could lead to seizures. Hence, to maintain the feasibility of 

experiments and ethical use of numbers of animals for most of our experiments, we used at least 

10 mice per group. 

In Figs. 14 and 15 we used triple transgenic mice: PV-Cre mice were crossed with Ai9 mice and 

these were then back crossed to FVB WT and Fmr1 –/– mice for eight generations. Generation 

of a triple transgenic line was time-consuming and resource-intensive, and we faced the same 

technical challenges associated with using Fmr1–/– mice; hence, we used n ≥ 6 mice. Again, 

statistics were performed using the number of mice as the sample size. 

The sample size we used is consistent with those in previously published studies. For the 

inactivation of visual cortex experiments (Fig. 11c), the sample size was in agreement with 

previous studies. For Fig. 16 we used n = 8 humans for each group. Recruiting age- and gender-

matched patients with Fragile X syndrome is challenging, but a sample of 8 per group is 

comparable to the number of human subjects used in previously published studies. 
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Randomization 

We ensured that during a behavior training cycle, both WT and Fmr1–/– were included to exclude 

any biases introduced by experimenters or the training rig. Similarly, on a particular testing day, 

subjects with Fragile X syndrome were randomized with control subjects. 
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Discussion 
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Creating an accessible and adaptable toolbox for analysis of calcium imaging data 

 

The main goal of my thesis was to develop a complete toolbox for analysis of calcium imaging 

data that could be freely disseminated across the scientific community. Our main priority was that 

the toolbox be easy to use and compatible with different types of calcium imaginf. We 

accomplished this by implementing simple and intuitive GUIs that provide a ‘push-button’ feel for 

the user.  Next, we wanted it to be comprehensive, meaning that it would accomplish the main 

steps that most users would require, namely registration (achieved by the Motion Correction 

module), segmentation  and signal extraction(achieved by the ROI Selection and ROI Refinement 

modules). For these steps, we incorporated the latest MATLAB resources for analysis of calcium 

imaging data (Vogelstein et al., 2010, Mineault et al., 2016, Pnevmatikakis et al., 2016). Finally, 

we intended for EZcalcium to be flexible, so that different users could eventually add new 

capabilities to it.  In order for investigators in various fields to get a sense of its full capabilities, 

we presented examples of different types of imaging (axon boutons, somatic signals with two-

photon and miniscope imaging, and drosophila projections). 

All three major components of EZcalcium (Motion Correction, ROI Detection, and ROI 

Refinement) are fundamental steps in the processing of dynamic fluorescence signals in biology. 

Although we designed EZcalcium primarily with calcium imaging in mind, the toolbox should in 

principle be compatible with other types of dynamic fluorescence data, such as voltage indicators 

(Antic and Zecevic, 1995) and neurotransmitter sensors (Marvin et al., 2013). The underlying 

process involving localized changes in fluorescence intensity indicative of biological activity is 

conserved across these different indicators and imaging parameters. The GUIs are also flexible 
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enough to be adapted for to these various tasks. Thus, EZcalcium is adaptable to novel fluorescent 

indicators other than calcium imaging.  

By being open source and modular, our toolbox could readily be adapted and upgraded to specific 

needs and yet-to-be-conceived methods of detecting calcium signals by the scientific community.  

An example of a potential modification would be the ability to deconvolve a dF/F signal obtained 

from a fluorescent voltage indicator into a voltage signal after conducting experiments with 

simultaneous electrophysiology with fluorescent voltage imaging.  Similarly, additional filters 

could be incorporated in the Motion Correction module for low-fidelity imaging, such as with 

head-mounted miniscopes or in order to remove artifacts that appear during certain forms of 

imaging that may results in a specific noise pattern, such as the presence of an LED or other light 

sources interfering with imaging. 

 

Additional forms of data analysis can be easily incorporated for labs looking for a simple interface 

with which to perform all their analyses, such as population coupling (Okun et al., 2015) or 

correlation with a sensory stimulus (He et al., 2017, Goel et al., 2018). Furthermore, by making 

use of ROI centers that are currently exported as part of ROI Refinement, spatial relationships 

between ROIs that correlate with activity can also be examined, taking into account this distinct 

advantage that fluorescent imaging has over other methods of activity detection, such as silicon 

probe recordings. 
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The latest major calcium analysis toolbox is CaImAn (Giovannucci et al., 2019).  Many of the 

algorithms available in EZcalcium were borrowed from CaImAn, and the modifications that we 

have made to algorithms written by the CaImAn team have now been submitted for incorporation 

into their open source software. Unfortunately, for the average inexperienced scientist, CaImAn 

would be considerably more difficult to use, with the majority of the development being targeted 

to Python programmers. While this may increase processing speed to a degree, it will greatly 

diminish its accessibility. Furthermore, it lacks an ROI refinement step to eliminate false-positives. 

We consider this to be a critical step because the ROI detection algorithms in CaImAn are prone 

to false-positives, especially when relying on fully-automated ROI selection. 

 

Neural circuitry abnormalities underlying tactile defensiveness in Fmr1 KO mice 

A common symptom in FXS that is also seen in other ASDs is sensory hypersensitivity, frequently 

manifesting as tactile defensiveness (Sinclair et al., 2017). Sensory overreactivity is significant 

because it can contribute to other symptoms, such as anxiety, sleep disturbances, seizures, and 

inattention, and disrupt activities of daily living. Clinical interventions to improve sensory 

modulation in ASDs rely on behavioral or pharmacological treatments that are not specific for the 

underlying disorder (van Karnebeek et al., 2016). Coinciding with the disappointments of recent 

clinical trials aimed at molecular targets (Mullard, 2015), neuroscientists are increasingly turning 

to in vivo recordings of network activity in rodent models of ASDs (Goncalves et al., 2013, Arnett 

et al., 2014, Zhang et al., 2014, Lu et al., 2016) to discover new therapeutic targets. 
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We followed such a symptom-to-circuit approach and designed our experiments to characterize 

circuit-level defects underlying sensory abnormalities in the Fmr1 KO mouse model of FXS. We 

used in vivo calcium imaging with GCaMP6s to record ensemble activity of L2/3 neurons in the 

barrel cortex and the primary visual cortex during stimulation. Our main results are as follows: 1) 

Adult KO mice show an avoidance response to repetitive whisker stimulation, resembling tactile 

defensiveness in FXS patients; 2) Unexpectedly, we found no evidence of exaggerated sensory-

evoked neuronal activity in L2/3 of young or adult KO mice; 3) The proportion of L2/3 neurons 

in barrel cortex that responds in a time-locked manner to whisker stimulation is 45% lower in KO 

mice compared to WT mice at P14-16; 4) Neuronal activity in both young and adult KO mice 

shows a lack of adaptation to repetitive whisker stimulation; 5)  Our results indicate that the 

absence of adaptation within local neuronal networks is a likely contributor to sensory 

overreactivity in FXS, and perhaps in other ASDs; 6) KO mice display impaired visual 

discrimination ability correlating with reduced orientation tuning; 7) PV interneurons play a key 

role in learning and performance of a visual discrimination task and may be a strong candidate for 

therapeutics; 8) Clinical applicability is supported as humans with FXS display similar defects on 

a visual discrimination task as shown in KO mice. 

 

For our somatosensory experiments we chose to stimulate groups of whiskers to better mimic the 

passive whole-snout inputs due to contact with littermates and grooming by the dam, which 

dominate the animals’ early somatosensory experience. Our stimulation characteristics were also 

physiologically relevant, as exploratory whisking in mice is typically 5-15 Hz in 1-4 s bouts 

(Kleinfeld et al., 2006). Whereas each of our 20 stimulations (10 Hz for 1 s) was physiological in 
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intensity and duration, the repetitive nature of the entire 80 s stimulation series was chosen to be 

more akin to a environmental stimulation that might be persistently irritating (e.g., wearing certain 

clothes), without being shocking (e.g., a brief but extremely loud sound). Our results on neuronal 

adaptation to repetitive whisker stimulation in early postnatal WT mice are consistent with those 

of a recent study using multi-electrode array recordings (van der Bourg et al., 2017), in which 

barrel cortex activity in young mice was recorded during 10 consecutive 10 ms-long whisker 

deflections (200 ms ISI). It is important to note that the time course of stimulation and adaptation 

we chose is particularly relevant to studying the problem of tactile defensiveness in autism. 

 

In adult mice, brief (200 ms) deflections of 2-3 whiskers cause inter-whisker inhibition between 

barrel cortex neurons within <500 ms (Simons, 1985); conversely, during 10 Hz multi-whisker 

stimulations lasting 1 s, adaptation of barrel cortex neurons enables “surround facilitation” instead 

of suppression (Ramirez et al., 2014). As we examined adaptation over much longer time scales, 

it is unlikely that single-whisker stimulation would reveal different results (we find that single-

whisker stimulation also leads to neuronal adaptation in WT mice; not shown). One caveat 

regarding the interpretation of our results is that we imaged L2/3 activity in barrel cortex of lightly 

sedated mice, in order to maintain a consistent behavioral state, as well as to minimize active 

whisking events that might contribute to feedback-enhanced cortical activity and contaminate our 

recordings (Petersen, 2007). While deep anesthesia (>1% isoflurane) is known to produce a 

markedly different neuronal activity pattern from the awake state, light (<0.5%) isoflurane allows 

a sparse, desynchronized pattern of neuronal population activity that is similar to the awake state 

(Lissek et al., 2016). 
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We unexpectedly found that the proportion of L2/3 neurons showing time-locked responses to 

whisker stimulation was much lower in Fmr1 KO than in WT animals at P14-16 (though not 

evident in adult mice), and that sensory stimulation did not trigger abnormally high activity in 

neurons from KO mice at either age. This seems to contradict predictions of the theory of neuronal 

and network hyperexcitability in FXS (Contractor et al., 2015). However, the L2/3 activity from 

single whisker stimulation is distributed across several cortical columns, with only 25% of 

excitatory neurons in a single imaging field showing responses tuned to the anatomically 

associated whisker (Clancy et al., 2015). It is possible that in KO mice the functional circuits for 

whisker touch processing are dispersed over an even larger spatial area, resulting in an apparently 

reduced proportion of time-locked neurons within any given local network (about 200 µm in 

diameter), as we observed. Indeed, recent studies using OIS and in vivo electrophysiology found 

that single whisker stimulation resulted in a larger spatial area of activation across the Fmr1 KO 

barrel cortex, compared with WT (Arnett et al., 2014, Juczewski et al., 2016). 

 

Adaptation of cortical neurons to repeated or ongoing sensory stimulation is a robust phenomenon 

across sensory modalities, enabling increased detection and discriminability (Castro-Alamancos, 

2004, Ollerenshaw et al., 2014). Given our results, Fmr1 KO mice would be expected to show 

impairments in behavioral tasks that assess tactile perception and perceptual decision-making. 

Indeed, these mice have demonstrated impaired texture discrimination during novel object 

recognition (Orefice et al., 2016), as well as reduced whisker sampling (Juczewski et al., 2016) 

and impaired learning (Arnett et al., 2014) in the gap-crossing assay. 
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We speculate that altered sensory processing in the cortex might lead to anxiety and hyperarousal 

and ultimately contribute to the observed defensiveness behavior in Fmr1 KO mice. Our data fit 

well with not just the known behavioral phenotypes of KO mice and FXS patients, but also with 

existing EEG studies on sensory adaptation defects in KO mice and humans (Castren et al., 2003, 

Van der Molen et al., 2012, Ethridge et al., 2016, Sinclair et al., 2017, Lovelace et al., 2018). A 

recent fMRI study also found a defect in adaptation to repeated tactile stimulus in the 

somatosensory cortex of patients (age 9-17) with both ASD and documented sensory 

overreactivity (Green et al., 2015). Our work encourages additional investigations using animal 

models of ASD at developmental stages to elucidate neuronal defects underlying aberrant 

behaviors that are relevant to human symptoms and function. 

 

Neural circuitry defects underlying impaired visual discrimination in Fmr1 KO mice 

Progress in FXS research is limited by the lack of clearly identified circuit-level alterations that 

can explain the neuropsychiatric phenotype that characterizes the disorder. Though circuit activity 

in monogenetic murine models of autism can be readily interrogated and manipulated, there is 

increasing interest to demonstrate both face validity and predictive validity for these translational 

approaches to be used in clinical trials (Robertson and Baron-Cohen, 2017).  To bridge this gap, 

we implemented a fully translatable behavioral assay of perceptual learning and discrimination in 

both Fmr1 KO mice and FXS patients and followed a symptom-to-circuit approach to delineate 

specific circuit-level defects using calcium imaging in V1.  Our discovery that Fmr1 KO mice 

have a reduced proportion of orientation selective neurons with abnormally broad tuning in V1, as 
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well as extremely hypoactive PV cells, provides a mechanistic understanding of their visual 

discrimination deficits. The fact that we could rescue the perceptual deficits in mice by restoring 

activity in PV cells with DREADDs and that humans with FXS exhibit analogous deficits in visual 

discrimination, provides a realistic path for novel translational clinical trials.  

 

Our data implicates a role for PV cells in circuit dysfunction in FXS through converging evidence 

of their hypoactivity from experiments in two different groups of mice (Fmr1 KO and Fmr1 KO, 

hM3Dq), and from the DREADD approach, which not only restored PV cell activity, but also raised 

the percentage of orientation selective pyramidal cells in V1.  But additional studies will be 

necessary to fully elucidate the role of PV cells in network dysfunction in FXS, at least in part 

because their influence on the circuit is rather complex and likely depends on the level and duration 

of their engagement in a given computation (Atallah et al., 2012). Moreover, it is also possible that 

suppressed activity of PV neurons might paradoxically lead to an increase in inhibitory synaptic 

input to L2/3 (“network suppression) as recently described in auditory cortex (Kato et al., 2017).   

 

It is exciting to consider that PV cell dysfunction could be involved in other aspects of FXS, such 

as impaired neuronal adaptation in tactile defensiveness (He et al., 2017).  Additionally, by rapidly 

translating this paradigm into a clinical population, we have substantially reduced potential barriers 

to further study whether PV cell dysfunction represents an important aspect (or even the principal 

one) of a canonical micro-circuitry in autism (Robertson and Baron-Cohen, 2017).  In the future, 

the pilot human FXS data will need to be bolstered by further studies with additional subjects that 
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1) incorporate a visual evoked potential study to clarify the contribution, if any, of visual 

processing abnormalities to the task results and 2) evaluate more extensively the degree of visual 

learning deficits prior to the reduction in discriminability. 

 

Running is known to have an impact on visually evoked activity of both excitatory and inhibitory 

neurons in V1 (Niell and Stryker, 2010, Pakan et al., 2016). Nevertheless, because we did not 

observe any differences in the magnitude of running between genotypes, we cannot attribute the 

deficits of Fmr1 KO mice in visual discrimination or their altered network activity to locomotion. 

The lack of changes in spontaneous neuronal activity in V1 of Fmr1 KO mice, together with the 

fact that we could manipulate the gain of PV cell output to restore circuit function and rescue 

behavior, highlights the important notion that perhaps the basal circuit connectivity remains 

‘intact’ in adult Fmr1 KO mice.  However, depending on the computational demands imposed by 

sensory environment, Fmr1 KO mice are unable to efficiently process sensory information, which 

impairs their ability to properly utilize this information to perform a task. Thus, simple therapeutic 

strategies that target relatively subtle circuit level alterations that are specific to different 

behavioral impairments may be of value in autism. 

 

In summary, for my Ph.D. thesis I first developed new tools for analyzing neural activity data 

and made these not only freely available, but also accessible and applicable for current and future 

scientists without the need for a dedicated programmer or computational neuroscientist. 

Secondly, I contributed to the field of FXS research by investigating the circuit mechanisms of 

atypical sensory processing. I hope that my research serves an example of how to incorporate the 
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investigation and probing of neural circuits in a symptoms-to-circuit approach that makes use of 

powerful emerging imaging technologies to improve research.  
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