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ABSTRACT OF THE DISSERTATION

Utilization of Inelastic Scattering Techniques in Phonon Measurements

by

Qingan Cai

Doctor of Philosophy, Graduate Program in Mechanical Engineering
University of California, Riverside, December 2022

Dr. Chen Li, Chairperson

The microscopic study of lattice vibrations is essential for regulating the thermal

properties and understanding the phase transition of materials. As for the newly proposed

and observed chiral phonons, they are significant in controlling the entanglement of quan-

tum dots and generating the thermal Hall effect in materials. In layered transition metal

chalcogenides and some other quantum materials, their lattice dynamics are mostly studied

by first-principles calculations, the phonon measurement is relatively rare, especially with

temperature and pressure dependence.

Phonon theory and experimental techniques, such as inelastic X-ray scattering,

inelastic neutron scattering, and Raman scattering, for phonon measurement are briefly

discussed. The phonon computational method is also reviewed. Phonon measurements

and theoretical calculations were performed on some layered materials and other quantum

materials.

Using millielectronvolt-resolution non-resonant inelastic X-ray scattering, we dis-

covered that it could be utilized to directly probe phonon chirality throughout the whole
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Brillouin zone in tungsten carbide. The results show that phonon chirality and X-ray polar-

ization play essential roles in the scattering process. The results also suggest that a revision

to the textbook X-ray scattering function of phonons is needed.

To study the temperature and pressure dependence of lattice dynamics in materi-

als, especially for layered transition metal chalcogenides, we performed the first temperature-

and pressure-dependent inelastic X-ray scattering measurements on bulk tungsten diselenide

and obtained the mode Grüneisen parameters. The results show monolayer-like lattice dy-

namics in the bulk tungsten diselenide. We also performed the pressure-dependent phonon

measurement on palladium diselenide. A panoramic diamond anvil cell was used to generate

the high hydrostatic pressure. We observed the pressure-dependent flexural phonons for the

first time and quantified the elastic properties and interlayer van der Waals interactions in

layered materials.

Using inelastic neutron scattering, temperature- and pressure-dependent phonon

lattice dynamics measurements on p-terphenyl were studied. The results indicate strong

anharmonic phonon dynamics and suggest a lack of phase transition in the region of 0∼1.51

kbar and 10∼30 K.

Using Raman scattering, the pressure- and temperature-dependent results on Fe3GeTe2

were performed, and a significant pressure-induced phonon energy shift was observed. The

phonon energy shift may be related to the strong spin-phonon interactions, which may play

important roles in its application for magnetic storage devices.
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Chapter 1

Introduction

Lattice dynamics is a fundamental property of materials. Understanding the mi-

croscopic lattice dynamics is essential for studying the phase stability, regulating the thermal

transport properties, explaining the superconductivity, and manipulating the valley spin in

materials. [44, 128, 90] The measurement of lattice dynamics is usually realized by using

inelastic X-ray scattering (IXS), inelastic neutron scattering (INS), and Raman scattering

techniques. With the rapid development of modern technologies, the fabrication of nano-

electronic and spintronic devices will involve applying 2D layered materials. It is of great

urgency to have an in-depth study on their phonon dynamics to enhance functionality and

thermal stability in these materials. However, the comprehensive phonon measurement in

two-dimensional (2D) layered materials is rare, especially with pressure and temperature

dependence.

More recently, the chirality concept was extended for phonons in 2D and 3D mate-

rials with broken inversion symmetry, leading to the observation of chiral phonons. [24, 25]
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Chiral phonons offer a new possibility for information processing and designing phononic

quantum devices. The current measurement of chiral phonons is indirect and could not

allow characterizing chirality throughout the whole Brillouin zone (BZ). Therefore, a new

method is needed to integrate the most advanced inelastic scattering techniques for chiral

phonon measurement.

In this work, phonon theory and experimental techniques, such as IXS, INS,

and Raman scattering, for phonon measurement are discussed. The phonon computa-

tional method is also reviewed. Phonon measurement on layered transition metal dichalco-

genides (TMDs), tungsten diselenide (WSe2) and palladium diselenide (PdSe2), topological

semimetal tungsten carbide (WC), polycyclic aromatic hydrocarbons para-terphenyl (PTP),

layered magnetic materials Fe3GeTe2 (FGT) were conducted by using the techniques as

mentioned above. Theoretical calculations were compared with the experimental results for

a well-rounded study on lattice dynamics in these materials.

Using millielectronvolt-resolution non-resonant IXS, we discovered that it could be

utilized to directly probe phonon chirality throughout the whole Brillouin zone in bulk WC.

The results show that phonon chirality and X-ray polarization play essential roles in the

scattering process. The results also suggest that a revision to the textbook X-ray scattering

function of phonons is needed. In WSe2, we performed the first temperature- and pressure-

dependent phonon dispersions measurements and obtained the mode Grüneisen parameters

and found a monolayer-like lattice dynamics in its bulk system. The pressure-dependent

phonon measurement on PdSe2 was performed by using the Diamond Anvil cell to generate

the high hydrostatic pressure. We observed the pressure-dependent flexural phonons for
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the first time and quantified the elastic properties and interlayer van der Waals interactions

in layered materials. These temperature- and pressure-dependent phonon measurements

are significant in studying the strain effects on the anisotropic thermal conductivity and

optimizing the materials’ thermal transport to enhance their functionality and thermal

stability.

Using inelastic neutron scattering, temperature- and pressure-dependent phonon

lattice dynamics measurements on PTP were studied. The results indicate strong anhar-

monic phonon dynamics and suggest a lack of phase transition in the region of 0∼1.51 kbar

and 10∼30 K.

Using Raman scattering, the pressure and temperature-dependent results on FGT

were performed, and the significant pressure-induced phonon energy shift was observed.

The phonon energy shift may be related to the strong spin-phonon interactions, which may

play important roles in its application for magnetic storage devices.
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Chapter 2

Theory and Methods

2.1 Phonon Theory

In condensed matter physics, a phonon is a collective excitation in a periodic

arrangement of atoms in solids. The concept of phonon was introduced by Soviet physicist

Igor Tamm in 1932 and referred to as “sound”, since sound is the long-wavelength acoustic

phonon. Analogous to the photon (quantum energy in the electromagnetic field), phonon

was suggested for the quantum lattice vibrational energy. Different from photons, phonons

are regarded as quasiparticles representing the collective vibrational modes in solids. [171]

A crystalline solid is formed by a periodic array of atoms. An atom or a group

of atoms that repeats infinitely is represented as a basis. If the atom or group of atoms is

replaced by a point in space, each point is called a lattice point, and the collection of these

points is named crystal lattice. Each lattice point can be moved to its identical one by a
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translation vector R, obtained by using three non-coplanar elementary lattice vectors a1,

a3, and a3. R is given by [99]:

R = u1a1 + u2a2 + u3a3, (2.1)

a1, a3, and a3 construct a parallelepiped, called a unit cell, containing the space between

adjacent lattice points as well as the atoms inside. u1, u2 and u3 are integers. The unit

cell can build up the whole crystal without overlaps or voids. When the unit cell has the

smallest volume and contains only one lattice point with minimum number of atoms in

a basis, it is called a primitive unit cell. A set of discrete translation operations on the

lattice vectors could generate a Bravais lattice. Due to the limited possible arrangement of

lattice vectors, there are 5 Bravais lattices in two-dimensional space and 14 Bravais lattices

in three-dimensional space. The crystal is invariant under translation, including any local

physical properties like electron charge concentration. It is more convenient to generate the

reciprocal lattice to study the interesting periodic crystal properties. Reciprocal lattice is

the Fourier transform of the spatial crystal lattice, and reciprocal lattice points are periodic

in k-space or momentum space. A Wigner-Seitz primitive cell in reciprocal space is called a

Brillouin zone. The central cell consists of the smallest volume enclosed by the perpendicular

bisectors of the elementary reciprocal lattice vectors; it is called the first Brillouin zone.

In real space, the equilibrium position of the unit cell origin is represented as Rj ;

the equilibrium position of the lth atom in unit cell Rj is represented by Rjl, which satisfy

the following equation:

Rjl = Rj + Rl, (2.2)
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where Rl represents the relative position of the lth atom with respect to the unit cell origin.

These equilibrium positions are achieved by balancing the attractive and repulsive forces

between atoms. However, the atoms are allowed to move and vibrate around their equi-

librium positions, more actively at higher temperatures. The lattice vibrations are treated

as elastic waves in crystals, and a simple mathematical model is developed to understand

their propagating properties. [99] Periodic lattices with n atoms in the unit cell have 3n

vibrational normal modes (phonon modes). If n is two or larger, the phonon modes are

divided into 3 acoustic phonon modes and 3n−3 optical phonons modes. Acoustic phonons

involve the in-phase atomic vibrations and can be longitudinal and transverse. Longitudinal

acoustic (LA) phonons mean that the atoms vibrate along the propagating direction while

transverse acoustic (TA) phonons correspond to the vibration perpendicular to the propa-

gating direction. Optical phonons are out-of-phase vibrations of atoms; similar to acoustic

phonons, they are abbreviated as LO and TO phonons. The subject pertaining to lattice

vibrations is called lattice dynamics. The electrons are much lighter and move much faster

than nuclei. For the atomic vibrations in lattices, only the motions of nuclei are considered.

Within the Born-Oppenheimer adiabatic approximation, the stationary states of the nuclei

can be expressed by the nuclear Hamiltonian as [48, 56, 141]:

Ĥn = −
∑
jl

∆2
jl

2Mjl
+ U, (2.3)

As an approximation, the quantum-mechanical momentum can be replaced by its corre-

sponding classical momentum:

−i∆jl = −i ∂

∂Rjl
→ Pjl. (2.4)
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We can get the classical nuclear Hamiltonian in the system:

Ĥclas
n =

∑
jl

P2
jl

2Mjl
+ U, (2.5)

where
∑

jl

P2
jl

2Mjl
is the kinetic energy, Mjl is the mass of lth nuclei in the jth unit cell. U

is the total potential energy of nuclei. The atoms only vibrate with small displacements

from their equilibrium positions and their time-dependent instantaneous positions can be

expressed as:

Rjl(t) = Rjl + ujl(t), (2.6)

where Rjl is the equilibrium position and ujl is the time-dependent displacement. Using

the classical Hamiltonian, Newton’s equations can be derived as:

Mjlüjl =
∂U

∂ujl
. (2.7)

We can perform the Taylor expansion of the total potential energy, U, up to the second

order in the atomic displacements ujl:

U = U0 +
∑
jlα

Φα
jlu

α
jl +

1

2

∑
jlα

Φαα′
jlj′l′u

αα′
jl uαjlu

α′
j′l′ + . . . , (2.8)

where α sum over the Cartesian coordinates (x, y, and z). U0 is related to the total energy

corresponding to the nuclei in their equilibrium positions. Φα
jl is the force on each nucleus

and is zero in the equilibrium configuration. Φαα′
jlj′l′ are the second-order derivative of U .

Therefore, we can have:

Φjlj′l′ = [Φαα′
jlj′l′ ], (2.9)

U = U0 +
1

2

∑
jl

∑
j′l′

Φjlj′l′ujluj′l′ , (2.10)

7



which defines the harmonic approximation. Φjlj′l′ is the second derivative of U and represent

the harmonic force constants. Newton’s equations within the harmonic approximation can

be written as:

Mjl ¨uj′l′ = −
∑
j′l′

Φjlj′l′uj′l′ . (2.11)

It needs to be noted that when the potential energy U is expanded to the third or higher

order, the anharmonicity terms are involved and correspond to the phonon-phonon inter-

actions. Descriptions about phonon-phonon interactions and phonon anharmonicity have

been reported comprehensively in other works. [88, 149]

Using the periodic boundary conditions and translational invariance of force con-

stants in crystals, the solution of the equation is in the form of a propagating wave with

wavevector q, angular frequency ωqs, and polarization els(q):

ujl(q, t) =

√
2h̄

NMlωqs
els(q)ei(q·Rjl−ωqst), (2.12)

where s is the mode index and there are 3n phonon modes if there are n atoms in the unit

cell. N is the total number of atoms. The real part of the solution is used as the physical

atom displacement.

Three-dimensional polarization vectors els(q) provide the relative displacement of

the atom l in unit cell j associated with phonon mode s in Cartesian coordinates. [37] Such

vectors and angular phonon frequency ωqs are eigenvectors and eigenvalues obtained by

diagonalizing the dynamical matrix D(q):

ω2
qsels(q) = D(q)els(q), (2.13)
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where D(q) is the Fourier transform of the force constants Φjlj′l′ :

D(q) =
1√

MlMl′

∑
l′

Φjlj′l′q)ei(q·(Rj′l′−Rjl). (2.14)

It can be seen that ωqs depends on wavevector q; this relation forms the phonon dispersion

in reciprocal space. The transmission speed of phonons can be represented by group velocity

vg = (∂ωqs)/∂q. In quantum mechanics, it is convenient to treat a phonon with wavevector

q as a quasiparticle with momentum p = h̄q and quantized energy E = h̄ωqs. Phonons are

bosons and obey the Bose-Einstein distribution:

n(q) =
1

e
h̄ωq
KBT − 1

, (2.15)

where KB is the Boltzmann constant and T is the absolute temperature. n(q) represents

the average number of phonons for a given temperature T . It is often useful to know how

many vibrational modes are around a given phonon frequency, called phonon density of

states (DOS). Such information is pivotal to studying the phase diagram, specific heat, and

thermal conductivity. Phonon density of states g(ω) is formally defined as:

g(ω) =
1

N

∑
s,q

δ(ω − ωqs), (2.16)

where N is the number of unit cells. However, g(ω) does not include the vibrational eigen-

vectors, which are considered in the weighted DOS [52]:

G(ω) =
∑
l

Gl(ω), (2.17)

where Gl(ω) can be defined as:

Gl(ω) =
1

3N

∑
s,q

|els(q)|2δ(ω − ωqs). (2.18)
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2.2 Computation methods

Modern computational methods from first principles have developed rapidly with

the breakthrough in theoretical approximations and computational techniques. In solid

state physics, the computational science is based upon Density Functional Theory (DFT),

which is effective in solving the Schrödinger equation. Such computation is very useful in

predicting physical and chemical properties of materials, even under extreme conditions,

and providing theoretical explanations to novel experimental observations. In this section,

we will briefly review computational methods for phonons. More details about the compu-

tational techniques are discussed in many books. [48, 85]

To understand the behavior of quantum particles, their wavefunction Ψ(r) at point

r can be determined by solving the Schrödinger equation. When we want to study many

electrons and nuclei together in solid materials, many-body wavefunctions Ψ needs to be de-

termined by including all electrons and nuclei. In fthis system, the many-body Schrödinger

equation in Hartree atomic units (EHa = e2

4πε0
) can be written as [48]:−∑

i

∆2
i

2
−
∑
I

∆2
i

2MI
+

1

2

∑
i 6=j

1

|ri − rj |
+

1

2

∑
I 6=J

ZIZJ
|RI −RJ |

− 1

2

∑
i,I

ZI
|ri −RI |

Ψ = EtotΨ,

(2.19)

where −
∑

i
∆2
i

2 −
∑

I
∆2
i

2MI
is the kinetic energy, 1

2

∑
i 6=j

1
|ri−rj | is the potential energy related

to Coulomb repulsion between electron pairs, and 1
2

∑
I 6=J

ZIZJ
|RI−RJ | is the potential energy

related to Coulomb repulsion between nuclei pairs, −1
2

∑
i,I

ZI
|ri−RI | is the potential energy

related to the Coulomb attraction between electrons and nuclei. i, j and I, J are the indices

of electrons and nuclei. me and MI are the masses of electron and nuclei respectively. ε0 is
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the permittivity of vacuum, and ZI represents the atomic number. Etot is the total energy

eigenvalue of the system.

In solid systems, we can assume that the nuclei are immobile in their known

positions (known as Clamped nuclei approximation), then the dependence on the nuclear

coordinates can be ignored. In order to solve equation (2.19), approximation methods have

been developed to simplify the problems, such as independent electrons approximation and

mean-field approximation. Within the independent electrons approximation, the Coulomb

repulsion between electrons pairs is ignored, and the many-electrons Schrödinger equation

can be written as:

∑
i

Ĥ(ri)φ1(r1) . . . φN (rN ) = Eφ1(r1) . . . φN (rN ), (2.20)

where N is the number of electrons in the system, wavefunction φi(ri) is the solution

of single-electron Schrödinger equation. The electron charge n(r) density represents the

possibilities of finding the electrons in state i at point r and is given as:

n(r) =
∑
i

|φi(r)|2. (2.21)

Within the mean-field approximation, adding the terms regarding the exchange interaction

between electrons and correlation between electrons in equation (2.20), we finally obtain

the famous single-particle Kohn-Sham equations:

[
−1

2
∆2
i + Vn(r) + VH(r) + Vxc(r)

]
φi(r) = εiφi(r), (2.22)

where Vxc(r) is the exchange and correlation functional. Vn(r) = −
∑

I
ZI
|r−RI | is the

Coulomb potential of nuclei. ∆2VH(r) = −4πn(r) is used to obtain Hartree potential

from electron charge. In density functional theory, it is observed that the total energy,
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ground state energy E, of a many-electrons system is a functional of the electron density

only, known as the Hohenberg-Kohn theorem:

E = F [n], (2.23)

F [n] =

∫
drn(r)Vn(r−

∑
i

∫
drφ2

i (r)
∆2
i

2
φi(r) +

1

2

∫∫
drdr′

n(r)n(r′)

|ri − rj |
+ Exc[n]. (2.24)

In equation (2.19), the first three terms comprise the total energy, based on the independent

electrons approximation, representing external potential, kinetic energy, and Hartree energy,

respectively. The relations between Exc[n] and Vxc(r) can be expressed as:

Vxc(r) =
δExc[n]

δn
|nr . (2.25)

If we know the Exc[n], the exchange and correlational energy, we could calculate F [n] using

the electron density of its ground state. Therefore, the question is then how to determine the

electron density to get the ground state energy. The contribution from Exc[n] in the total

energy is actively involved in, and crucial to the success and accuracy of DFT. The selection

of exchange and correlation functionals is the first step in first-principles calculations, and

several functionals are available today. The simplest functional is obtained within the local

density approximation (LDA). The LDA’s is calculated in the simplest model of interacting

electrons, the homogeneous electron gas (HEG). In real materials, the electron density in a

small region dr is treated homogeneous, the exchange and correlation energy in this region

can be expressed as:

dExc =
EHEGxc n(r)

V
dr. (2.26)

Adding up the contribution from each small region through the whole volume V, we obtain:

Exc =

∫
EHEGxc n(r)

V
dr. (2.27)
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We can see that this functional only depends on the local electron density and

works well for systems with small variance in electron density over distance. The calculated

lattice parameters using LDA are usually smaller than the measured lattice parameters.

Other widely used functionals are within the generalized gradient approximations (GGA),

which work better for systems having stronger electron density gradients. The commonly

used forms include PW91 (Perdew -Wang 91) and PBE (Perdew-Burke-Ernzerhof). GGA

usually overestimate the calculated lattice parameters. The selection principle about LDA

and GGA is empirical and depends on the material system.

In many cases, it is more convenient to use DFT by describing the valence electrons

only. The electrons in core state are tightly bound to the nucleus and only valence electrons

dominate in the chemical bonding. The potential is modified so that the solution of the

Kohn-Sham equation gives a smooth pseudo-wavefunction that eliminates the oscillating

structure in the all-electron wavefunction. Such potential is named “pseudopotential” and

the PAW (projector augmented wave) potential is used in our DFT calculations. More

information about can be found in books. [23]

After the introduction of DFT and the Kohn-Sham equation, we can use these

theoretical techniques to calculate the total energy, electron density in the ground state

by using self-consistent calculations, which is based on equations (2.22), (2.21), and (2.25).

The first guess for electron density is plugged into equation (2.22) to get a wave function

which, in turn, gives a new electron density of the system. The new electron density will be

used again for the calculation if it is not equal to the older one. Such optimized iterative
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procedure will yield the ground-state electron density and total energy, which is then used

for the atomic force and phonon calculations.

In order to perform the first-principles calculation within DFT, Vienna Ab initio

simulation package (VASP) [76] was used. Since VASP codes could not provide the infor-

mation about lattice dynamics, Phonopy package [137] was used by implementing supercell

with finite displacement or DFPT methods to get the harmonic force constants, phonon

dispersions and phonon DOS.

2.3 Inelastic scattering techniques

2.3.1 Raman scattering

Raman scattering is the inelastic scattering of photons where the frequency of the

scattered photon differs from the incident one. It is one of the most powerful tools for

studying the vibrational properties in solids and molecules. A custom-built open-bench

Raman spectrometer at 532 nm laser excitation was used as our Raman scattering system.

Before being focused on the sample, the laser beam is controlled by various components

such as mirrors, waveplate, polarizer, irises, and beam expander on the optical table. When

the laser light interacts with matter, the photons that make up the light may be absorbed,

scattered, or may not interact with the material and may pass through it. It is an inherently

weak process in that only one in every 106 - 108 photons is Raman scattered. A long-

working-distance microscope objective lens was used for focusing and light collection in the

reflective geometry, while a notch filter was employed to remove the Rayleigh scattering.

Usually, Raman Scattering is recorded only on the low–energy side to give Stokes scattering:
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a process in which the ground vibrational state of the molecule absorbs energy and is

promoted to an excited vibrational state with higher energy. Raman spectroscopy uses

a single frequency of radiation to irradiate the sample. The radiation scattered from the

molecule is detected. The energy unit is wavenumber: the number of waves in a unit

of distance. The CCD camera would capture these photon signals and convert them into

electronic signals so that the information would be received and processed by the LightFiled

software on the computer.

2.3.2 Inelastic neutron scattering (INS)

Neutrons are the essential part of the nuclei of atoms (except the hydrogen atom).

The mass of a neutron is 1.674927351×10−27 kg, and the energies and momenta of neutrons

are comparable with those of phonons in condensed solids. INS has been widely used in

measuring the lattice dynamics and spin dynamics in materials. In the scattering process,

momentum and energy conservation need to be satisfied, and the energy and momentum

transfer of a neutron can be calculated as: ∆E = Ei−Ef and ∆Q = Qi−Qf , where Ei and

Qi are the energy and momentum of the incident neutron, and Ef and Qf are the energy

and momentum of scattered neutron. We used the Vibrational Spectrometer (VISION)

at the Spallation Neutron Source (SNS) to collect data. VISION is an indirect geometry

inelastic neutron spectrometer that uses a white beam of incident neutrons with two banks

of seven analyzer modules, equipped with curved pyrolytic graphite analyzer arrays that

focus neutrons on two large detectors at near-90-degree scattering angles.
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2.3.3 Inelastic X-ray scattering (IXS)

IXS spectrometer in Sector 30ID in Advanced Photon source, Argonne National

Laboratory, is used to measure the dynamic structure factor at the points in energy and

momentum space. The optical layout of the high-energy resolution inelastic X-ray (HERIX)

spectrometer and the white beam components. Three stations are in sector 30 of Advanced

Photon Source [121]:

1. Section-A (FOE) contains white beam components and high-heat-load monochro-

mator.

Figure 2.1: Schematic for the 30-ID beamline layout. [121]

2. Section-B houses the high-resolution monochromator.

3. Section-C contains the actual spectrometer, including optics, sample environ-

ments, and analyzer systems.
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The APS ring accelerates the injected electrons to high energy states. The un-

dulators consisting of a periodic structure of dipole magnets and the electrons are forced

to oscillate in the magnetic field and emit synchrotron radiation in the form of ultrabright

X-ray. WBS and CRL are the abbreviation of while beam slits and compound refractive

lens. High-heat loaded (HHL) monochromator is designed to reduce the heat load on high-

resolution (HR) monochromator because the high-power X-ray from undulator would dam-

age spectrometer components. Meanwhile, the wide bandwidth of X-ray was narrowed from

kiloelectronvolt (keV) to electronvolt (eV). The HR monochromator further reduce the en-

ergy bandwidth to a millielectronvolt (meV) level. A 12-element bimorph Kirkpatrick–Baez

mirror system focus the X-ray beam to a few micrometers with a spot of 35×15m2 (H×V )

on the sample. The scatted photons are received by the analyzer and sent to the detector,

which gives us the counts information and scattering intensity. Since the detector could not

overlap with the sample, we can only work near back scattering geometry by arranging a

long scattering arm and small separation between sample and detector. Details about the

development of IXS could be found in the referred works. [121, 13]

Compared with INS, the most important characteristic of IXS is the ability to

probe small samples due to the high-efficient focusing system, high flux and high brilliance

of modern X-ray sources. Such characteristic allows the measurements on small crystals

(in micrometer size) and reduce the cost in discovering new materials. It also promotes

the growing field of high-pressure research. We have conducted polarization-, pressure-,

and temperature- dependent X-ray scattering phonon measurements on different systems.
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In the following part of this section, the methods and techniques for controlling X-ray

polarization and are briefly discussed.

2.3.4 Control of X-ray polarization

Figure 2.2: Schematic of X-ray Phase Retarder (XPR) setup. (a)Measurement of X-ray
polarization. The purple arrows represent the X-ray beam, IH and IV are measured by
detector 1 and 2 respectively. (b) Image of the diamond crystal phase retarder.

A general setup of a diffractive XPR and analyzing method is used, [133] also shown

in Figure 2.2. A high-quality diamond single-crystal substrate with a thickness of 950 m is

mounted on a rotation stage and aligned near Bragg condition with its diffraction plane 45

from the horizontal plane. Phase retardation between the two decomposed components of

X-ray beam occurs near the Bragg condition for (4 0 0) in the diamond substrate. Final

polarization states can be controlled by rotating the deflected angle, ∆θ. Here ∆θ = θ− θB

is the deflected angle from Bragg condition, θB is the Bragg angle. Degree of X-ray linear

polarization, PL, is defined as:

PL =
IH − IV
IH + IV

= cos δexp, (2.28)
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and the degree of circular polarization, PC , is defined as:

PC = sin δexp, (2.29)

where IH is the horizontal intensity, IV is the vertical intensity, and δexp is the experimental

phase retardation. IH and IV are measured by detectors installed on the top and side

of X-ray beam, respectively, using Thomson scattering from air. Detector background is

subtracted, and the intensity is normalized by the detector efficiency.
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Figure 2.3: Accurately controlled X-ray polarization by a diamond XPR. (a) The degree of
linear polarization with respect to the deflected angle. (b) The degree of circular polarization
with respect to the deflected angle.

The measured X-ray linear polarization PL and circular polarization PC with re-

spect to the deflected angle agree well with the expected result from simulation, as shown

in Figure 2.3 (a) and (b). Phase retardation δ, PL, and PC are calculated as following [133]:

δ = −π
2

[
r2
eRe(FhFh)λ3 sin(2θB)

π2V 2∆θ
]
t

cos θ
, (2.30)

PC = sin δ, (2.31)

19



PL = cos δ, (2.32)

where re is electron radius, Fh and Fh are the structure factor of hkl and hkl reflections, V is

the unit-cell volume, λ is the X-ray wavelength, t is the thickness of the phase plate. X-ray

is fully circular polarized at ±15.8 µrad (dashed black lines). Producing circularly polar-

ized X-ray with meV bandwidth is challenging due to the effects of high energy-resolution

monochromator, such as increased beam divergence, and was not previously done to our

knowledge. The broadening is observed in the measured polarization in Figure 2.3 due to

the beam divergence. Deflected angles of ±28.35 µrad and ±16.94 µrad (PC = ∓0.76 and

∓0.99) are used for chiral phonon measurement. The value of the degree polarization is

limited by the availability of beamtime and low counts.
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Chapter 3

Chiral Phonon Measurement

3.1 Direct observation of chiral phonons in WC by IXS

Chiral phonons break the traditional cognition of linear atomic vibrations and have

been extensively studied theoretically. Despite the experimental efforts, characterization of

the phonon chirality in full Brillouin zones is still not possible due to the lack of suitable

tools. Here, we report an investigation of phonon dispersion and chirality of tungsten carbide

by non-resonant millielectronvolt-energy-resolution IXS. For the first time, we observed

anomalous IXS by circularly polarized phonons at the corners of hexagonal Brillouin zone

and attributed the anomaly to phonon chirality. We also controlled the X-ray polarization

successfully and proved that X-ray polarization and phonon chirality play significant roles

in the scattering process. Our first-principles simulations, in excellent agreement with

phonon dispersion measurement, confirmed the phonon chirality at the zone corners and

failed in reproducing the scattering intensities of chiral phonons. The results suggest that a

revision to the textbook X-ray scattering function of phonons to consider chirality and X-ray

21



polarization is needed. Our work paves a new avenue of characterizing chiral phonons and

investigating the effects of phonon chirality in phonon-phonon interactions and phonon-spin

interactions for applications in novel phononic quantum devices.

3.1.1 Introduction

Circularly polarized phonons, also called chiral phonons, exhibit eigenmodes with

circular atomic vibrations and have been theoretically predicted and experimentally ob-

served in some 2D materials. [168, 166] Phonon chirality plays a significant role in con-

trolling the entanglement of quantum dots, generating thermal hall effect, and assisting

intervalley or intravalley electron-phonon scatterings.[28, 53, 163] It is also reported that

chiral phonons may be exploited for valleyspin manipulation [90] or as a messenger to trans-

port information on chirality and angular momentum. [24] Great efforts have been made to

identify and quantify chiral phonons and related physical phenomena by infrared circular

dichroism and Raman scattering. [26, 38, 157] However, these methods remain indirect and

do not allow characterizing chirality throughout the full Brillouin zone (BZ). To date and

in this study, non-resonant meV-energy-resolution IXS techniques have usually utilized lin-

early polarized phonons. The dynamical structure factor of linear phonons is well predicted

by the scattering function based on the Born approximation.[12, 138, 2] Recently, the effect

of symmetry breaking on the phononic dispersion in chiral magnets has been studied by

IXS and is attributed to the phonon chirality. [108] However, the role of phonon chirality

and X-ray polarization in the scattering process have not been discussed or studied using

IXS.
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To produce phonon eigenstates with angular momentum, inversion symmetry

needs to be broken. [166, 33] Tungsten carbide (WC), with a space group of P6m2 (No.187),

has three-fold rotational and broken inversion symmetry, as shown in Figure 3.1 (a). The K

point in BZ (Figure 3.1 (b)) is not equivalent to its reversed K’ (-K) point without inversion

symmetry, as shown in Figure 3.2. Consequently, WC is an ideal candidate for investigating

Figure 3.1: Lattice structure of WC and scattering schematic. (a) WC has a hexagonal
lattice structure. Red and blue spheres represent tungsten atoms and carbon atoms, re-
spectively. (b) K and K’ are distinguished in the Brillouin zone, indicating the broken
inversion symmetry. (c)-(d) In-plane scattering geometry and out-of-plane scattering geom-
etry are designed and plotted in the reciprocal space. Red balls in (c) and (d) represent the
reciprocal lattice points; kin,kout,and kph represent the wavevector of incident electric field,
scattered electric filed and phonon in the inelastic scattering process. Direction of phonon
angular momentum along c-axis, lc, is represented by purple arrows in (c) and (d). The
black arrows indicate the polarization of incident X-ray.

phonon chirality in the bulk lattice. [33] Additionally, even though the phonon transport

properties of WC have been studied by first-principles calculations using the phonon Boltz-

mann transport equation, [98, 54, 81] no phonon dispersion measurement on the material

has been performed to the best of our knowledge. Lattice dynamics measurements of WC

would provide valuable information on its thermodynamic properties and phonon chirality.
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In this work, phonon measurement was performed on WC by using IXS along sev-

eral high symmetry directions in the BZ. The density of state (DOS) of acoustic phonons

was also measured by inelastic neutron scattering (INS). Anomalous IXS by in-plane longi-

tudinal (LA) and transverse acoustic (TA) phonons was observed at K and K’ points. The

anomaly was attributed to the chirality of these phonon modes. In addition, we observed

that X-ray polarization could affect the scattering intensities by chiral phonons apparently.

The discovery educes that phonon and X-ray polarizations play significant roles in the X-ray

scattering process. The results also provide insights on the utilization of IXS in probing

phonon chirality and suggest that a revision of the scattering function to consider chirality

is needed. This work paves a new avenue of characterizing chiral phonons and investigating

the effects of phonon chirality in phonon-phonon interactions and phonon-spin interactions

for applications in novel phononic quantum devices.

3.1.2 Experiment and Calculation

Inelastic X-ray scattering measurements. Phonon measurement was con-

ducted at the HERIX spectrometer at APS. Single crystals (typical size of 200 × 300 µm2)

were purchased commercially (KENNAMETAL [1]). The high quality is revealed by the

rocking curve in Figure 3.2 (c). The sample was attached to a copper post by GE varnish

and the copper post was mounted on a 4-axis rotation and 3-dimension translation stage.

A photon energy of 23.7 keV (wavelength at 0.5226 Å) was used. The instrument has an

energy resolution of 1.5 meV (full width at half maximum). [120] The momentum reso-

lution (Q-resolution) of the instrument is 0.65 nm−1 and ensures the alignment accuracy

for measuring the selected wavevector points. When choosing the Q point at (2 0 0), the
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relative accuracy can be represented as (2 ± 0.03 0 0) in r.l.u. The beam is focused on a

spot of 35×15 µm2 (H × V ) on the sample. The thickness of the sample was optimized

Figure 3.2: In-plane reciprocal space map and the measured K/K’ points. The blue rhom-
buses represent K/K’ points measured in the in-plane scattering geometry, while the blue
stars represent the K’ points measured in the out-of-plane scattering geometry. The red
arrows indicate the same |Q| of these three K/K’ points. (b) Measured Q points away from
K/K’ points. (c) The rocking curve of WC singe crystal measured by HERIX shows the
high crystalline quality.

for transmission measurements. The X-ray energy loss spectrum was collected by scanning

the energy of the high-resolution monochromator. [135] CdTe Pilatus3 area detectors were

used for data collection. [121] All measurements were conducted at room temperature. The

X-ray polarization was controlled by a diffractive diamond XPR (Discussed in Chapter 2)

.[133] The XPR further decreased the beam flux, so counting time at each polarization

was increased significantly due to the low statistics. Because of the scarcity of the beam-
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time, the experiment was designed to maximize the information obtained within the limit

of beamtime. The data presented was collected through three beamtime experiments.

Super-resolution method is applied to extract the intrinsic phonon linewidth by

removing the instrumental resolution in energy and momentum from IXS results. Phonon

peaks in IXS spectra are fitted by Voigt function. The measured phonon peak is regarded

as a convolution of phonon spectra and resolution functions, as shown in equation (3.1):

fPhonon
⊗

fResolution = fExperiment. (3.1)

We can deconvolve the phonon peak in raw IXS spectra by resolution function to get the

phonon spectrum. The deconvolution process is based on a single mode approximation. [91]

Usually, the resolution function is obtained from the energy resolution and momentum

resolution functions as shown in equation (3.2):

fEnergy
⊗

fMomentum = fResolution, (3.2)

where fEnergy is measured experimentally and fMomentum is the momentum resolution and

calculated and regarded as a Gaussian function. FWHM of fMomentum is obtained as:

FWHMMomentum =
|dE|
|dQ|

, (3.3)

where Qres=0.65nm−1, |dE||dQ| is the dispersion slope. Equation (3.3) is used to have the

FWHMMomentum in meV unit, which is consistent with the unit of the energy resolution

function. The fMomentum can be defined using the obtained FWHMMomentum. ΓExperiment,

ΓResolution, and ΓPhonon represent the FWHM of fExperiment, fResolution, and fPhonon. The

linewidth of each function is obtained and listed in Table 3.1.
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Inelastic neutron scattering measurements. Powder INS measurement was

performed on the time-of-flight direct geometry neutron spectrometer, Hybrid Spectrome-

ters (HYSPEC) [162], at the SNS at Oak Ridge National Laboratory. The measurement

was performed at 300 K with an incident energy Ei of 35 meV. The data were reduced using

Mantid. [8]

First-principles calculations. First-principles calculations were performed with

the density-functional theory (DFT) as implemented in the Vienna Ab initio simulation

package (VASP). [76] The exchange correlation function with the generalized gradient ap-

proximation in the Perdew-Burke-Ernzerhof flavor (GGA-PBE) [112] and the projector-

augmented-wave (PAW) potentials were used. The kinetic cutoff energy with 800 eV was

used for plane wave expansion in reciprocal space with a k-point mesh of 12 × 12 × 12.

The threshold for the total energy convergence was 10−8 eV. The lattice constants obtained

from relaxation (a = b = 2.911 Å, c = 2.859 Å) are slightly larger in c-axis compared to our

experimental value (c = 2.844 Å, obtained from the Bragg peaks in IXS measurement). The

phonon dispersion within the harmonic approximation was calculated using Phonopy. [137]

Second-order force constants were calculated by the finite displacement method in supercells

(3 × 3 × 3) containing 54 atoms.

Multiple scattering analysis. The ZA mode in the IXS spectra is a fully linear

phonon mode with a polarization not allowed in one-phonon coherent scattering at K’ (2.66

-2.33 0). This is because its eigenvector is polarized along the c-axis and its intensity is

expected to be zero according to equation (3.8). The measured ZA intensity at (2.66 -

2.33 0) may come from a multiple scattering process, in which a Bragg reflection (h k l) is
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also allowed at a particular momentum transfer (m n o). In this case, elastically scattered

photons are inelastically scattered for a second time by phonons at (m-h n-k o-l), giving

scattering intensity from a forbidden phonon mode. [4]

Figure 3.3: Schematic of a multiple scattering process. Triangle formed by BD, |kin|, and
|khkl| is plotted in green color.

Figure 3.3 shows a simplified inelastic scattering schematic for multiple scattering

in reciprocal space. Incident photons with a wave vector kin were scattered to kout with a

wave vector transfer of kph. Some incident photons were also scattered elastically with a

wave vector transfer of khkl. Furthermore, kin, kout, kph, and khkl are known in reciprocal

space and are represented in the same Cartesian coordinates. They satisfy:

cosα =
|khkl|2 + |kin|2 − |BD|2

2|khkl||kin|
, (3.4)

2θhkl = 2× (α− π

2
), (3.5)
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here α is the angle opposite to the side BD in Figure 3.3. The Bragg condition is satisfied

when the calculated α from equation (3.4) could meet the requirement in equation (3.5).

At (2.66 -2.33 0) in the out-of-plane scattering geometry, another Bragg reflection

at (-3 -2 5) happens to be at Bragg condition. The elastically scattered photons are then

inelastically scattered again by ZA phonons at (5.66 -0.33 -5). As a result, the secondary

inelastic scattering from (5.66 -0.33 -5) contributes to the measured ZA mode in Figure 3.8

(a). We also performed intensity simulation at (5.66 -0.33 -5) and found that intensity of

ZA is much larger than that of TA and LA. In this simulation, TA and LA also have the

same intensity and their intensity relation is consistent with the simulation at other K or

K’ points. These calculations suggest that the second order scattering does not influence

the observations using linearly and nonlinearly polarized X-ray.

3.1.3 Results and Discussion

Phonon dispersion, DOS, and linewidth

Phonon dispersion measured by IXS (details in “Methods”) was along Γ–M–K–Γ–A

directions in reciprocal space, as shown in Figure 3.4 (a). The first-principles calculations

(details in “Methods”) agree well with our IXS measurement of acoustic phonons, with

some minor underestimation of the phonon energy along M–K–Γ directions. This underes-

timation may result from the slightly larger relaxed lattice parameters. Additionally, the

current calculation agrees better with the experimental measurement along Γ–M direction

than the prior calculation from Ref. [54]. The phonon linewidths at most measured Q

points are limited by instrument resolution for extraction using super-resolution method.
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IXS measurement at most Q points are resolution limited except for the listed Q points

in Table 3.1. These extracted phonon linewidths are not reliable because of the narrow

phonon linewidths.

Table 3.1: Phonon linewidth obtained by super-resolution method.

Q points Phonon mode ΓExperiment (meV ) ΓResolution (meV) ΓPhonon (meV )

(2 0.2 0) TA 3.3± 0.8 2.3 2.2± 0.5

LA 4.0± 0.4 3.9 2.5± 0.3

(1.8 0.6 0) TA 2.0± 0.9 1.6 1.1± 0.5

LA 2.7± 1.1 1.5 2.1± 0.8

(1.8 0.4 0) TA 3.1± 1.1 2.3 1.8± 0.6

(1.66 -2.33 0) TA 1.8± 0.5 1.5 1.0± 0.3

LA 1.8± 0.3 1.5 1.0± 0.2

(2.66 -2.33 0)

LA 1.8± 0.8 1.5 1.0± 0.4

Acoustic part of the phonon DOS measured by INS also shows decent agreement

with the calculation (Figure 3.4). The peak near 25 meV is dominated by the TA branch and

the peak about 30 meV corresponds to the LA branch. The small observed difference with

the calculation comes from the instrument resolution and neutron weighting. In general,
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the IXS and INS measurements confirm the accuracy of the first-principles calculation for

acoustic phonons.

Figure 3.4: Phonon dispersion, DOS, and phonon angular momentum of WC. (a) Phonon
dispersion of WC from DFT calculation agrees well with experimental measurement. There
are three acoustic and three optical phonon branches. Calculated phonon dispersion rela-
tions are plotted in lines and IXS measurement is represented by black symbols. The error
bars indicate the fitting error of phonon energy in IXS spectra. The red dashed dispersion
lines are from Ref. [54]. (b) Measured acoustic phonon DOS of WC agrees well with DFT
calculation. The solid red line represents the calculated total DOS of WC; the black line
represents the (neutron-weighted) DOS below 30.9 meV measured by INS. (c) Phonons
near K/K’ points are circularly polarized. Phonon angular momentum is plotted by purple
and red lines along in-plane high symmetry directions. The purple and red colors represent
positive and negative value of angular momentum respectively.

Phonon polarization

According to first-principles calculations, phonons at K and K’ points have the

largest angular momenta and are fully circularly polarized, as shown in Figure 3.4 (c).

Circular atomic vibrations of chiral phonons can be visualized (Figure 3.4) by calculating the
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time-dependent atomic displacement from equation (2.12). As a result, three-dimensional

eigenvectors of chiral phonons are complex. In-plane LA and TA modes are associated with

the atomic motions in the basal plane (a-b plane in real space shown in Figure 3.1 (a)),

indicating that direction of angular momentum is along c-axis. Phonon angular momentum

along c-axis of sth mode with reduced momentum at q, lc(q, s), can be calculated from

equation (3.6) [165, 55]:

lc(q, s) = h̄(e†qsMceqs), (3.6)

here Mc =


0 −i 0

i 0 0

0 0 0

 ⊗ In×n and n is the number of atoms in one unit cell. eqs is the

eigenvector of sth phonon mode with reduced momentum at q, ωqs is the corresponding

eigenvalue.

Near the K points (nonlinear region), TA and LO modes are dominantly clockwise

circularly polarized, showing positive angular momentum along the c-axis; LA and TO

modes are anticlockwise circularly polarized, showing negative angular momentum along

c-axis. On the other hand, near the K’ points, the equivalent phonon modes show opposite

polarizations. The total angular momentum of these phonon modes throughout the full

Brillouin zone is zero. TA and LA modes have opposite polarization at any given q point,

so do LO and TO modes. Figure 3.5 shows the animations of TA and LA modes at K

and K’ points. TA mode shows clockwise circular vibrations at K point; LA mode shows

anticlockwise circular vibrations. TA and LA modes have opposite circular polarization at

K’.

32



Figure 3.5: Animations of TA and LA modes at K and K’. (a) and (b) Animations of
TA and LA at K points. (c) and (d) Animations of TA and LA at K’ points. Red and
blue spheres represent tungsten atoms and carbon atoms, respectively. The animations are
generated by ascii-phonons. [63]

Anomalous inelastic scattering of X-ray

In IXS experiments, X-ray from high-resolution monochromator was horizontally

linearly polarized. [121] In-plane and out-of-plane scattering geometries were used to mea-

sure the scattering geometry-dependent dynamical structure factor. IXS spectra at some K

points ((0.33 2.33 0), (0.33 1.33 0) and (2.33 0.33 0)) and K’ point ((0.66 1.66 0)) (plotted

in reciprocal space in Figure 3.2 (a)), were obtained in the in-plane scattering geometry

(Figure 3.1 (c)). Additionally, an out-of-plane scattering geometry in Figure 3.1 (d) was

used to measure the spectra at another two K’ points ((2.66 -2.33 0) and (1.66 -2.33 0),

shown in Figure 3.2 (a)). Measurements of the same K’ or K points in both in-plane and
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out-of-plane scattering geometries are not possible due to the instrument constrain so the

points with equivalent |Q| are used. For the in-plane scattering geometry, the basal plane

of the crystal was oriented parallel to the plane of electric field vectors of the incident X-ray

beam. For the out-of-plane scattering geometry, the basal plane of the crystal was oriented

perpendicular to the plane of electric field vectors of the incident X-ray beam.

Anomalous IXS by chiral phonons is observed at Brillouin zone boundary (K and

K’ points). Such anomaly depends on the scattering geometry. The results show that the

scattering function based on the Born approximation [12] reliably reproduces the scattering

intensity of linearly polarized phonons and the circularly polarized phonons measured in the

in-plane scattering geometry (Figure 3.6 and Figure 3.7) but fails in predicting the intensity

of circularly polarized phonons measured in the out-of-plane scattering geometry (Figure

3.8). To qualify such anomaly, phonon peaks in IXS spectra are fitted by Voigt functions

and the area ratios between the LA and TA modes, SLASTA
, are calculated. The ratios are then

compared with the ones from the simulated dynamical structure factor, S(Q, ω), which is

obtained from the partial differential cross section, as shown in equation (3.7) [12, 129]:

(
∂2σ

∂Ω∂E

)
kεα→k′εβ

=
k′

k
re

2 × |εα∗ · εβ|2 S (Q, ω) , (3.7)

where Q is the total wave vector transfer, ω is the phonon angular frequency.

Photons are scattered from the initial state with wavevector k and polarization ε∗α to a

final state k’ and εβ, and re is the electron radius. No change of photon polarization is

involved, and the partial differential cross section is directly proportional to the dynamical

structure factor, S(Q, ω). If considering one-phonon coherent scattering with photon energy
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loss (phonon creation) process, IXS intensities of LA and TA phonons were calculated

by [12, 129]:

S (Q, ω)1p = N
∑
q

∑
s

∑
d

×

{∣∣∣∣fd (Q)√
2Md

e−Wd(Q)eiQ·xd (Q · eqsd)
∣∣∣∣2
} 〈

nωqs + 1
〉

ωqs
, (3.8)

where N is the number of unit cells, q is the reduced momentum transfer deter-

mined by q = Q − τ (τ is the momentum transfer for Bragg reflections), d is the index of

atoms in the primitive cell locate at Xd, s is the index of phonon modes, Md is the atomic

mass, fd(Q) is the X-ray atomic form factor, [19] ωqs is the phonon angular frequency, eqsd

is the phonon polarization vector, nωqs is the Bose occupation, and e−Wd(Q) is the Debye

Waller Factor. The spectra calculated by the equations above are checked again with the

results from Phonopy and found to be consistent. It should be noted that this formalism

does not take the angular momentum of circularly polarized phonons into account. For com-

parison, the simulated spectra are rescaled so that its TA mode shows the same intensity

as the experimental ones.

At Q points away from K and K’, simulation matches well with the measurement

(Figure 3.6). At K and K’ points in the in-plane scattering geometry, as shown in Figure

3.7, the simulation is consistent with the measurement as well. The similar intensities of

TA and LA modes are generally expected, within measurement statistics. However, for K’

points in the out-of-plane scattering geometry, as shown in Figure 3.8, the measurement is

significantly different from the simulation: the intensity of LA mode at (2.66 -2.33 0) and

(1.66 -2.33 0) is much stronger than that of TA mode.
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For the same phonon mode, its scattering intensity is expected to be the same at

(2.33 0.33 0), (0.33 2.33 0), and (2.66 -2.33 0) based on equation (3.8) because they have

equivalent |Q| transfer and the phonon eigenvectors are in the same norm. Consequently,

the intensity relation between LA and TA should be the same for the three points. It

should be noticed that the two phonon modes are fully circularly polarized at these K

and K’ (Figure 3.4 (c)). The obvious discrepancy between simulation and experiment is

likely due to the phonon chirality. The discrepancy also reveals that equation (3.8) fails in

reproducing the IXS scattering intensities of chiral phonons in the out-of-plane scattering

geometry.

The failure of the scattering simulation possibly originates from two sources.

Firstly, the calculated cross section, equation (3.7), assumes that photon polarizations εα

and εβ are conserved before and after the scattering by phonons, which works well for linear

phonons. However, when phonons carry angular momentum, the creation or annihilation

process may involve the transfer of angular momentum between photons and phonons. In

this case, the photon polarizations εα and εβ might not be the same. Secondly, in equation

(3.8), S(Q, ω) is proportional to |Q · eqsd|2, in which the eigenvector of the phonon mode

with angular momentum is complex, containing phase information. Such information is lost

in the calculation. Therefore, the eigenvectors of the similar norm lead to similar LA and

TA intensities at K and K’ points indifferent of the scattering geometry.

Because this IXS anomaly depends on the scattering geometry, it is likely that the

phonon angular momentum is involved in scattering the photons. In the in-plane scattering

geometry, the eigenvectors of LA and TA phonons are parallel to the electric field vectors
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Figure 3.6: The simulation based on equation (3.8) agrees well with the measurement at
Q points away from K and K’ points. (a)-(f) IXS spectra with linearly polarized X-ray at
(2 0.2 0), (2.2 0.2 0), (2.1 0.1 0), (2 0.5 0), (1.8 0.6 0) and (1.8 0.4 0) in the reciprocal
space, respectively. Solid red lines are the Voigt fittings of IXS spectra and dotted black
lines represent the spectra simulated from the scattering function. Error bars are from the
counting statistics.
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Figure 3.7: The simulation based on equation (3.8) agrees well with the measurement at
K and K’ points in the in-plane scattering geometry. (a)-(d) IXS spectra with linearly
polarized X-ray at (0.33 1.33 0), (0.33 2.33 0), (0.66 1.66 0), and (2.33 0.33 0) in the
reciprocal space, respectively. Solid red lines are the Voigt fittings of IXS spectra and
dotted black lines represent the spectra simulated from the scattering function. Error bars
are from the counting statistics

of incident photons. In this geometry, the phonon angular momentum lc is perpendicular

to the electric field vector of the photon, as shown in Figure 3.1 (c). This geometry may

forbid the direct angular momentum transfer between phonons and photons. In the out-of-

plane scattering geometry, the two directions are not perpendicular, as shown in Figure 3.1

(d), and angular momentum transfer between phonons and photons may be allowed. The
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result hints that the IXS anomaly could arise from the chiral phonon and polarization of

phonon/X-ray may play an essential role in the scattering process.
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Figure 3.8: The simulation based on equation (3.8) disagrees with the measurement at K
and K’ points in the out-of-plane scattering geometry. (a)-(b) IXS spectra at K’ points (2.66
-2.33 0) and (1.66 -2.33 0); ZA is an out-of-plane acoustic phonon mode; its appearance is
explained by multiple scattering. Solid red lines are the Voigt fittings of IXS spectra and
dotted black lines represent the spectra simulated from the scattering function. Error bars
are from the counting statistics.

It is also reported that the phonon angular momentum along c-axis is distributed

on the entire paths K – H and K’ – H’, [24] only K and K’ are used to satisfy the requirements

on in-plane and out-of-plane scattering geometries. During phonon creation or annihilation

process, phonons at other points along K – H and K’ – H’ are not involved when conducting

measurements at K and K’, their angular momentum would not affect the scattering results

at K and K’ either.

Based on the suggestions from the observation by using linearly polarized X-ray

(Figures 3.6 - 3.8), we generated nonlinearly polarized X-ray to measure the two chiral

modes at K’ (2.66 -2.33 0) in the out-of-plane scattering geometry, with PC = -0.99, -0.76,

0, 0.76 and 0.99 (PC is the degree of X-ray circular polarization), as shown in Figure 3.9 (a).
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There are two main observations: |PC | could change the scattering intensities of TA and

LA modes oppositely, as shown in Figure 3.9 (b) and (c); scattering intensities of LA and

TA modes (SLA and STA) show a symmetric behavior between negative and positive X-ray

polarizations. ZA is a linearly polarized mode from multiple scattering process, showing

different dependence on X-ray polarization when compared with that of circularly polarized

modes. The effect of X-ray polarization suggests that polarizations of phonon and photon

play essential roles in the scattering process. The angular momentum exchange between

phonons and photons is different for LA and TA modes. The anomalous scattering intensity

by using linearly polarized X-ray (Figure 3.8) could be attributed to phonon chirality.

The symmetric behavior of SLA and STA between opposite X-ray polarizations

may be attributed to the twining structure of WC crystal. [130] Twining by merohedry in

WC makes the crystal consisting of layers stacking in opposite orientations. At any given

Q point, chiral phonons are polarized oppositely in adjacent oppositely oriented layers.

Together, the contribution from phonons of both chirality lead to the symmetric dependence

on X-ray polarizations.

Linearly and nonlinearly polarized X-ray beam may carry angular momentum as

spin angular momentum (SAM) and orbital angular momentum (OAM), it may be specu-

lated that there are exchanges of SAM and/or OAM between phonons and photons. In IXS

process, left- and right-hand polarized components of X-ray may be scattered differently

by oppositely polarized TA and LA phonons, leading to their intensity difference. In ad-

dition, such interaction may be attributed to the current-current correlation function from
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the atomic motion of related phonons. We tested and excluded several models based on the

current-current correlation function.

Figure 3.9: X-ray polarization could affect the scattering intensities of circularly polarized
phonons. (a) Polarization dependent IXS spectra at K’ (2.66 -2.33 0) point. The spectrum
at each polarization is integrated from 3-4 scans. The measured intensity is normalized by
the flux of incident X-ray after XPR. All the peaks are fitted by Voigt functions. The purple
numbers represent the value of PC . (b) Polarization dependent intensity change of TA and
LA modes; (c) Intensity relation of TA and LA modes; Blues line represents the simulated
result from existing theory. PC is the degree of X-ray circular polarization. Shading areas
in (b)-(c) are the error sections.

It is the first time that X-ray phase retarder (XPR) is used for IXS on phonon

measurements, especially for the experiment on chiral phonons. Based on the results from

linearly and nonlinearly polarized X-ray, some major questions remain unanswered. The

scattering function, equation (3.8), needs to be revised to include the phonon chirality and
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X-ray polarization to address the anomalous IXS. The transfer of angular momentum be-

tween lattice and photons, if possible, should be considered. The answers to these questions

will enable the IXS as a tool for quantifying chiral phonons and their interactions with other

phonons and other degrees of freedom in the materials, such as spin wave, for applications

in valleytronics and quantum devices.

3.1.4 Conclusion

In summary, the acoustic phonons of WC along high symmetry directions have

been measured by IXS and acoustic phonon DOS has been measured by INS. DFT cal-

culations are compared these measurements with good agreement. The phonon angular

momentum calculation shows that phonons are fully circularly polarized at zone bound-

ary (K and K’). While the atomistic simulation works well for most LA and TA phonons

elsewhere, it fails dramatically for chiral phonons in the out-of-plane geometry. The X-ray

polarization was controlled accurately and affected the scattering process of chiral phonons

obviously. The observed IXS anomaly from chiral phonons suggests that the revision of

scattering function for phonons is needed. This work lays a foundation of future use of

IXS as a tool for investigations of chiral phonons and the effects of phonon chirality in

phonon-phonon interactions and phonon-spin interactions for applications in novel phononic

quantum devices.
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Chapter 4

Temperature- and Pressure-

Dependent Phonon Measurements

4.1 Temperature- and pressure-dependent phonon measure-

ments on layered WSe2

Understanding the microscopic lattice dynamics is essential for regulating the ther-

mal properties in two-dimensional layered materials. In transition metal dichalcogenides,

the layered structures result in different but closely related phonon dispersions between

monolayer and bulk. Here, by combining inelastic X-ray scattering and first-principles cal-

culations, the lattice dynamics of tungsten diselenide (WSe2) was investigated comprehen-

sively, and a monolayer-like lattice dynamics in the bulk WSe2 was revealed. We performed

the first measurements of the temperature-dependent phonon dispersions and obatined the

mode Grüneisen parameters of bulk WSe2, which are found to be in better agreement with
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the calculations on the monolayer system than those of the bulk. This observation indi-

cates that lattice dynamics in bulk WSe2 hold the characterization of monolayers. We also

performed the high-pressure IXS measurements on acoustic phonon in bulk WSe2 and ob-

served the significant pressure-induced phonon stiffening. The pressure-dependent lattice

dynamics are very useful to study the strain effects on the van der Waals interactions and

anisotropic thermal conductivity in layered materials.

4.1.1 Introduction

Transition metal dichalcogenides (TMDs) have attracted intensive attentions and

emerged as promising candidates for advanced applications including electronics, [115, 46]

optoelectronics, [145, 60] spintronics, [169] and thermoelectrics. [84, 79] Recently, tungsten

diselenide (WSe2), one valuable member of TMDs, has been extensively studied for the

component of field-effect transistors [31] and light-emitting diodes. [119] All the versatile

WSe2-based devices require optimized thermal properties of WSe2 to enhance their func-

tionality and stability and a comprehensive understanding of the thermal transport in WSe2

is needed. In many TMDs, phonons are the main heat carriers and play essential roles in

their thermal transport performance. So far, the temperature-dependent thermal conduc-

tivity of WSe2 has been reported by experiments and computation. [79, 65, 30, 92] However,

a discrepancy between experiment and calculation still exists due to the lack of in-depth

understanding of lattice dynamics in the material, especially for the out-of-plane thermal

conductivity. Thus, there is a great motivation to investigate the lattice dynamics in WSe2.

Bulk WSe2 has a 2H-polytype structure with space group P63/mmc (No.194), as

shown in Figure 4.1 (a). The unit cell consists of two Se-W-Se layers, which are weakly
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bonded by the interlayer van der Waals (vdW) interactions with a lateral offset. Each

monolayer comprises three atomic planes, with a plane of W atoms covalently bonded to

and sandwiched between two planes of Se atoms. The layered structure results in different

but closely related electronic and phonon band structures between monolayer and bulk

systems. [79, 29] For phonon band structures, the first-principles phonon calculations and

the Raman spectroscopy have reported the phonons of a monolayer, multilayers, and bulk

WSe2. [79, 62, 82] However, owing to the lack of the experimental measurement of full

phonon dispersions throughout the entire Brillouin zone (BZ), the microscopic mechanism

of thermal transport of WSe2 remains unclear, and further work is needed.

Figure 4.1: (a) Top view and side view of atomic structure of 2H-WSe2; (b) First Brillouin
zone in the reciprocal space.

Inelastic X-ray scattering (IXS) technique is a powerful tool to measure phonon

dispersions in a wide range of materials especially including small single crystals of two-
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dimensional (2D) layered materials. [148] Generally, the scattering is extremely weak from

monolayer samples. Instead, the bulk samples were successfully used to obtain the phonon

dispersions by IXS to study various thermal properties, such as phonon anharmonicity,

anisotropic thermal transport, and thermal conductivity, in layered-2D materials. [148, 138,

149, 104] This inspired us to conduct comprehensive temperature- and pressure- dependent

IXS measurements on bulk WSe2 and quantify the phonon dispersions in this material.

In this work, we found that the phonon dispersion and mode Grüneisen parameters

from first-principles calculation on monolayer WSe2 agree with the temperature-dependent

IXS measurements of the bulk samples reported in this work. The fitted power law of the

measured out-of-plane vibrational acoustic (ZA) branch along Γ−M and Γ−K (directions in

reciprocal space shown in Figure 4.1 (b)) significantly deviate from the corresponding cal-

culated values in bulk material but close to the calculated values in monolayer, showing the

monolayer-like vibrational behavior of ZA in the bulk crystals. In addition, significant soft-

ening of ZA phonons around the BZ center was observed with decreasing temperature. The

acoustic phonons along Γ−A also show a similar temperature dependence. The reported

results in this work highlight the importance of first-principles calculation on monolayer for

investigating the phonon dynamics in bulk transition metal dichalcogenides. We also ob-

served the pressure induced stiffening of in-plane acoustic phonons in bulk WSe2. Our work

also provides the theoretical and experimental reference for studying the thermodynamics

and thermal transport properties in related two-dimensional layered materials.
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4.1.2 Materials and Methods

High quality WSe2 single crystals (Figure 4.2, typical size of 300×400 m2) were

purchased commercially. The sample was attached to a copper post by epoxy and the copper

post was mounted on a 4-axis rotation and 3-dimention translation statge for alignement.

Temperature dependent phonon dispsersion measurements were performed by the HERIX
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Figure 4.2: The rocking curve of WSe2 singe crystal measured by HERIX shows the high
crystalline quality. The X-ray wavelength is 0.5226 Å. The narrow full width at half maxi-
mum (FWHM) indicates high crystalline quality of the sample.

spectrometer at 30-ID of the Advanced Photon Source, Argonne National Laboratory. A

photon energy of 23.7 keV (wavelength at 0.5226 Å) is used. The instrument has an energy

resolution of 1.5 meV (full width at half maximum, FWHM) and a momentum resolution

of 0.65 nm−1 in the configuration. [120] The X-ray energy loss spectrum was collected

by scaning the incident X-ray (from a high efficiency six-reflection cryogenically stabilized

meV-monochromator) energy at 0.5 meV steps. [135] CdTe Pilatus3 area detectors were

used for data collection. [121] A closed-cycle cryostat sample environment was used. Phonon

dispersion measurements were conducted at 300, 150, and 25 K along some high symmetry
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directions in the reciprocal space. The raw IXS spectra were fitted by Gaussin function

to identify the phonon peak location and FWHM (full width at half maximum). For each

phonon peak, it can be fitted by the Gaussian function written as:

f(x) = y0 +Ae(− x−x0
width

)
2

, (4.1)

where y0 is the baseline of the peak, A is the height of the peak, x0 is the position of the

center of the peak, FWHM = 2
√

ln 2 × width. The fitting result is used to obtain the

phonon linewidth.

First-principles calculations on bulk and monolayer WSe2 were performed with

the density-functional theory (DFT) implemented in Vienna Ab initio simulation package

(VASP). [76] We used the exchange correlation function with the Local Density Approx-

imation (LDA) and the projector-augmented-wave (PAW) potentials. The relaxed lattice

constants (a = b = 3.250 Å, c = 12.83 Å) were used for the calculation on bulk WSe2. In the

monolayer system, the relaxed lattice constants (a = b = 3.247 Å, c = 23.84 Å) were used,

including 20 Å vacant space between each layer to avoid interlayer interactions. The kinetic

energy cutoff was 900 eV, the threshold for the total energy convergence was 10−8 eV. The

vdW interaction was taken into consideration by using vdW-DF-cx functionals. [15] Second

order force constants were calculated by the finite displacement method in supercells (4 ×

4 × 1). Gamma centered q-point meshes of 3 × 3 × 3 was used. The phonon dispersion in

harmonic approximation was calculated using Phonopy. [137] Grüneisen parameter provides

quantitative connections between phonon frequency and volume change. Phonon disper-

sion relations at three volumes (original, 1.2% larger, and 1.2% smaller) were calculated and
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mode Grüneisen parameters γ(q, s) based on quasi-harmonic approximation (QHA) were

obtained by [137]:

γ(qs) ∼= −
V

(2[ω(qs)]2

〈
e(qs)

∣∣∣∣4D(q)

4V

∣∣∣∣ e(qs)〉 , (4.2)

where q is the phonon wave vector, s is the band index, ω(qs) is the phonon

frequency, e(qs) is the phonon eigenvector, D(q) is the dynamical matrix, V is the original

unit cell volume, and δV is the volume variance. In bulk system, the volume change

was made by modifying the lattice constants based on the anisotropic thermal expansion

coefficients of lattice constants a and c. [106] To evaluate the Grüneisen parameter for

monolayer, the volume change was made by modifying in-plane lattice constants while

keeping the large vacuum space between layers. At each volume, the atom coordinates and

cell shape were relaxed. When in-plane lattice constants increase (decrease), the relaxed

layer thickness (defined as the vertical distance between the two Se planes in the unit cell)

decreases (increases). The unit cell volume change of monolayer was calculated using the

in-plane lattice constants and layer thickness. Implementing the phonon frequency change

and volume change with QHA, we obtained the mode Grüneisen parameters in monolayer,

which were consistent with the reported results. [61]

To evaluate the Grüneisen parameter from temperature-dependent IXS measure-

ments, experimental thermal expansion [106] was used to obtain the temperature-induced

volume change. The isobaric mode Grüneisen parameter γ(qs) were calculated based on

measured temperature-dependent phonon frequency:
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γP (qs) = −
(

d lnωqs

d lnV

)
P

= − 1

αωqs

(
dωqs

dT

)
P

, (4.3)

where α is the volumetric thermal expansion coefficient. [106]

4.1.3 Results
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Figure 4.3: Phonon dispersion of bulk and monolayer WSe2 along high symmetry directions
at 300 K. (a) Comparison between calculated and experimental dispersion of bulk WSe2;
(b) Comparison between calculated monolayer dispersion and experimental bulk dispersion.
Orange lines and dots represent the calculated and measured longitudinal modes, red color
represents the in-plane transverse modes, blue color represents the out-of-plane transverse
modes, and the dark red triangles are Raman active modes. All IXS spectra are fitted by
Gaussian function, error bar represents the fitting error of phonon peak.

Figure 4.3 shows the IXS measured phonon dispersion of bulk WSe2 along some

high symmetry directions in the BZ at 300 K. Bulk 2H-WSe2 has 6 atoms per unit cell and

18 phonon branches: three acoustic and fifteen optical. Due to the relatively weak interlayer

vdW bondings, some phonon branches called Davydov pairs [138] are almost degenerate,

as shown in Figure 4.3 (a). Each pair consists of two phonon modes with slightly different

frequencies and similar eigenvectors. The eigenvectors of the atoms in one of the layers
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have a phase shift of π between the two modes [138]. We observed three acoustic branches

and six optical branches in IXS measurement. Figure 4.4 shows the scattering intensity

simulation in the measured BZ by using first-principles phonon calculation and the two

modes in each pair have a noticable intensity difference. Thus, only one in each pair will

Figure 4.4: Intensity simulation of bulk and monolayer WSe2. (a) and (b) represent the
dynamical structure factor of phonon branches along Γ−M in Brillouin zone (1 1 0) and (0 0
12) in bulk WSe2; (c) and (d) represent the dynamical structure factor of phonon branches
along Γ−M in Brillouin zone (1 1 0) and (0 0 12) in monolayer WSe2. The white dashed
lines represent the phonon dispersion, the color bar is in log scale. A resolution of 1.5 meV
is used in the simulation.

be observed in each Brillouin zone. On the other hand, the calculated phonon dispersion

of the monolayer has 9 branches with similar energy to the IXS measurement, as shown

in Figure 4.4 (b). Phonon calculation on monolayer used the large vacant space between

each layer, which results in much smaller reciprocal lattice constants along a cross-plane

direction. Simulation in BZ (0 0 12) of the monolayer is different from that of the bulk

WSe2 (shown in Figure 4.4 (b) and (d)) due to the large difference in their reciprocal lattice
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constant c∗. However, simulation in BZ (1 1 0) is similar in monolayer and bulk owing to

the similar reciprocal lattice constants a∗ and b∗, as shown Figures 4.4-a and 4.4-c.

It can be seen that phonon dispersions calculated from first-principles calculation

on bulk and monolayer agree well with the IXS measurement on bulk, including all optical

and acoustic branches. In bulk calculation, there is a slight overestimation of the ZA energy

near Γ along both Γ−M and Γ−K directions. On the contrary, monolayer calculation has

better agreement along these directions. [61, 93] The ZA mode is known as the flexual

mode with parabolic dispersion in two-dimensional systems. To better understand this

flexual mode, the dispersion relation is fitted by the power-law relation: ω = αkβ, where

k is the wave vector in reciprocal space, α and β are fit parameters. Table 4.1 shows the

fitting parameters of ZA branch along Γ−M (q <0.2) and Γ−K (q <0.1) directions. For

ideal parabolic dispersion, β is 2. Our phonon calculation predicts that the parameters are

similar along Γ−M and Γ−K, but they differ significantly in the IXS results. The measured

β is larger than that in the bulk calculation in both directions. It is also larger than the

value in the monolayer along Γ−M. The larger β indicates the ZA branch is closer to a

parabolic dispersion, indicating that ZA branch in the bulk WSe2 retains the charateristic

flexural dispersion reported in its 2D system. The flexual mode was also observed by the IXS

measurements on bulk MoS2 and the overestimation of ZA energy in bulk DFT calculation

was reported. [138] These results suggest that the used vdW functional likely overestimates

the interlayer interactions and underestimates the flexual mode.

Analyzing the temperature dependence of acoustic phonons along Γ−M and Γ−K

directions, as shown in Figure 4.5 (a), there are mainly two observations. Firstly, LA and
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Table 4.1: β parameter of ZA dispersion within Γ−M (q <0.2) and Γ−K (q <0.1).

Γ−M (q <0.2) Γ−K (q <0.1)

Experiment 1.70± 0.01 1.34± 0.01

DFT-Bulk 1.18± 0.01 1.20± 0.01

DFT-Monolayer 1.53± 0.01 1.51± 0.01
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Figure 4.5: Temperature dependent phonon measurement on acoustic phonons (a) Phonon
measurement along in-plane high symmetry directions; The insets are the IXS spectra at
(0 0.1 12) and (-0.05 0.1 12) at 300 K and 150 K respectively. (b) Phonon measurement
along out-of-plane direction. The error bar represents the fitting uncertainty. The orange,
red and blue colors represent the LA, TA, and ZA modes respectively. The filled, hollow,
and crossing markers represent 300, 150, and 25 K.

TA modes stiffen with decreasing temperature. Secondly, ZA mode softens with decreasing

temperature near the zone center and stiffens near the zone boundary. Such softening is

shown by the IXS spectra at (-0.05 0.1 12) and (0 0.1 12) (Figure 4.5). Phonon energy

of ZA mode decreases from 2.0 ± 0.1 to 1.8 ± 0.1 meV at (-0.05 0.1 12) when temper-
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ature decreases from 300 to 150 K. With similar temperature dependence, energy of ZA

softens from 2.0 ± 0.1 to 1.8 ± 0.04 meV at (0 0.1 12). LA and TA modes along these

two directions correspond to the in-plane atomic vibrations and are tightly related to the

intralayer interactions of covalent bondings. ZA phonons correspond to the out-of-plane

atomic vibrations and are related to the interlayer vdW interactions. The thermal expan-

sion induced by increasing temperature causes longer in-plane covalent bonding length and

weaker intralayer interactions, which might result in a smaller vibrational frequency of TA

and LA modes. However, the increaced in-plane lattices parameters make the stacked layer

stiffer to a flexural vibration and may lead to larger vibrational frequency of the flexural

mode (just like string effect [44] or membrane effect [105] in 2D system). The results indi-

cate that each stacked layer in bulk material keeps the majority characteristic of acoustic

phonons in monolayer WSe2 and suggest that interlayer vdW interactions do not signifi-

cantly influence the acoustic and optical phonons. In addition to the phonon energy shift,

temperature-dependent linewidth is obtained in Figure 4.7 based on the super-resolution

method (Mentioned in Chapter 3). Due to the instrument resolution in energy and momen-

tum, we could not extract the phonon linewidth from all measured Q point. Therefore, it is

difficult to quantify the temperature dependence of acoustic phonons’ linewidth. Linewidth

of most acoustic phonons at 300 K could be extracted, while most of the phonon linewidths

are resolution limited at 150 and 25 K. It suggests that linewidths of the measured acoustic

modes broaden with increasing temperature. Broader phonon linewidth indicates larger

phonons scattering rates and could lead to the decreasing thermal conductivity from 150 to

300 K. [119, 36]
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Figure 4.6: IXS spectra with Gaussian fitting. (a) IXS spectra measured along Γ−M
direction in BZ (1 1 0) under 300 K; The black points represent raw data, and the red lines
represent the Gaussian fitting. (b) IXS spectra measured at (0 0 12.5) along Γ−A direction
under 300 K (black), 150 K (green) and 25 K (blue). (c) IXS spectra measured at (1.2 1 0)
along Γ−M direction under 300 K (black), and 25 K (blue). (d) IXS spectra measured at
(0 0.1 12) along Γ−M direction under 300 K (black), and 150 K (green). (e) IXS spectra
measured at (0.9 1.2 0) along Γ−K direction under 300 K (black), and 25 K (blue). (f) IXS
spectra measured at (-0.05 0.1 12) along Γ−K direction under 300 K (black), and 150 K
(green). The intensity is rescaled to arbitrary unit (a. u.).
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Along out-of-plane Γ−A direction in bulk crystals, TA and LA modes soften

slightly from 300 to 25 K, as shown in Figure 4.5 (b). As for their extracted phonon

linewidth, phonon linewidth of LA mode decreases slightly from 300 to 25 K. The results

imply that the acoustic phonons along Γ−A direction have larger group velocity and LA

phonons have higher scattering rates at 300 K. It needs to be noted that acoustic phonons

along Γ−A direction have smaller energy and larger linewidth than those along Γ−M and

Γ−K directions, suggesting the lower phonon group velocity and stronger phonon-phonon

scatterings along Γ−A direction. Due to the instrument resolution in energy and momen-
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Figure 4.7: Temperature dependent phonon measurement on acoustic phonons (a) Phonon
measurement along in-plane high symmetry directions; (b) Phonon measurement along out-
of-plane direction. The phonon linewidths are shown as error bars. The points without error
bar means the phonon linewidths are resolution limited. The orange, red and blue colors
represent the LA, TA, and ZA modes respectively. The filled, hollow, and crossing markers
represent 300, 150, and 25 K.

tum, we could not extract the phonon linewidth from all measured Q point with super-
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resolution method. Therefore, it is difficult to quantify the temperature dependence of

acoustic phonons’ linewidth. Linewidth of most acoustic phonons at 300K could be ex-

tracted, while most of the phonon linewidths are resolution limited at 150 and 25 K. It

suggests that linewidths of the measured acoustic modes broaden with increasing temper-

ature. Broader phonon linewidth indicates larger phonons scattering rates and could lead

to the decreasing thermal conductivity from 150 to 300 K. [119, 36]

Using temperature-dependent IXS results on acoustic phonons along Γ−M and

Γ−K directions, experimental isobaric mode Grüneisen parameters were obtained by equa-

tion (4.3). based on QHA (estimation of phonon frequency shift associated with the volume

change), mode Grüneisen parametres of acoustic branches were calculated by DFT. Fig-

ure 4.8 shows the IXS measured isobaric mode Grüneisen parameters of bulk WSe2 and

DFT calculated the mode Grüneisen parameters of bulk (Figure 4.8 (a)) and monolayer

WSe2 (Figure 4.8 (b)). The better agreement found in monolayer calculation also indicates

that acoustic phonons in the bulk system keep their 2D nature in monolayer. In Figure

4.8, QHA greatly underestimates the γ of TA and LA modes, especially near Γ point, in

bulk calculation. The values of γ in QHA are about 1
3 of our experimental values. As for

ZA modes, QHA shows the positive γ along in-plane directions and predicts the softening

behavior with thermal expansion. This prediction is contrary to our observation that ZA

mode stiffens from 150 to 300 K. Such discrepancy reveals that QHA fails in predicting the

temperature-induced frequency change of acoustic phonons in bulk WSe2.

In monolayer calculation, as shown in Figure 4.8 (b), QHA has a decent agree-

ment with the IXS measured γ values of the bulk system. The calculation in our work is
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slightly different from the reported results in Ref. [61], showing smaller γ values through-

out the in-plane directions. QHA works well in using thermal expansion to describe the

temperature dependence of LA phonons along Γ−M and Γ−K directions, while it still has

some discrepancy at the zone boundary. As for TA phonons, QHA underestimates their γ

significantly along Γ−K and shows better agreement along Γ−M. For the featured flexural

mode, QHA predicts a divergent γ near Γ point. In bulk IXS measurement, the negative γ

of ZA modes at (-0.05 0.1 12) and (0 0.1 12) are -15.4 pm 1.7 and -15.4 pm 1.4 respectively,

which quantitively agree with the calculated values in monolayer. This result suggests that

QHA in monolayer provides better prediction in the temperature dependence of flexural

modes in bulk WSe2.
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Figure 4.8: (a) Acoustic phonon isobaric modes Grüneisen parameters compared with bulk
calculation; (b) Acoustic phonon isobaric modes Grüneisen parameters compared with
monolayer calculation. Blue lines and points represent the Grüneisen parameters of ZA
mode obtained from calculation and experiment, respectively. Orange and red represent
LA and TA, respectively. Solid lines represent the calculation based on QHA, the dashed
lines represent the γ dispersion relation from literature. [61]

58



As for the pressure-dependent results, the Figure 4.9 (a) and (b) shows that the

incerasing pressure stiffens the in-plane acoustic phonons. The isothermal mode Grüneisen

parameters can be calculated [21] and are shown in Figure 4.9 (c) and (d). The results

indicate that calculation based on QHA in bulk system is close to the experimental isother-

mal Grüneisen parameters and has good prediction on the pressure dependence of in-plane

acoustic phonons. On the other hand, the discrepancy between isothermal and isobaric

Grüneisen parameters reveals the giant phonon anharmonicity in WSe2.

4.1.4 Discussion

The temperature dependent IXS on bulk WSe2 and first-principles calculations

suggest monolayer-like lattice dynamics in bulk system. The flexural phonons were ob-

served in the bulk WSe2 and found to have the similar temperature dependence to those

in monolayer. The temperature dependence of flexural phonons has only been reported by

first-principles calculation on graphene. [143] This is the first observation of the softening of

flexural phonons with decreasing temperature. Such observation is of great significance be-

cause flexural phonons play essential roles in the thermal conductivity and electron mobility.

Flexural phonons have dominant contributions to the thermal conductivity in graphene and

graphite. [94] In bulk and monolayer WSe2, acoustic phonons contribute dominantly to the

in-plane thermal conductivity. [36, 103]. The flexural phonons have a similar contribution

to the total thermal conductivity when compared with other acoustic branches. [36, 159]

However, the reported thermal conductivity calculation did not consider the flexural dis-

persion of ZA mode. Our results help validate the phonon calculation and improve the
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Figure 4.9: (a) Pressure dependence of TA modes along Γ−M; (b) Pressure dependence of
LA modes along Γ−M. (c) Acoustic phonon isothermal modes Grüneisen parameters com-
pared with bulk calculation; (d) Acoustic phonon isothermal modes Grüneisen parameters
compared with monolayer calculation. Orange, red and blue lines represent the Grüneisen
parameters of LA, TA and ZA modes obtained from calculation based on QHA, respectively.
Orange and red points represent the experimental isothermal Grüneisen parameters.

accuracy in studying the role of flexural phonons in thermal transport in TMDs. On the

other hand, electron mobility is dramatically affected by the scattering by flexural phonons

in 2D hexagonal semiconducting TMDs. [67] The measured mobility of atomically thin
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MoS2 is almost two orders of magnitude lower than that of its bulk counterpart. [115, 152]

The obvious discrepancy may be related to the much weaker scattering by flexural phonons

in bulk system. What’s more, the QHA predicts that flexural mode shifts significantly

with temperature, which could promote the investigation of its pressure dependence and

quantifying the interlayer vdW interactions.

In addition to the ZA mode, LA and TA modes also contribute significantly to

the total in-plane thermal conductivity. QHA on TA mode apparently underestimates

the temperature-induced energy shift along Γ−K. This result reveals that QHA can not

sufficiently account for the temperature dependence of TA modes, which may have large

anharmonicity. The anharmonic renormalization of phonon dispersion is very important in

calculating the in-plane thermal conductivity contribution from TA phonons. Along the

cross-plane direction, our results suggest the lower group velocity and stronger phonon-

phonon scatterings in acoustic phonons. This is related to the giant anisotropic thermal

conductivity between in-plane and cross-plane directions in TMDs. [65, 30] It is reported

that cross-plane thermal conductivity of WSe2 is ultralow and varies with the sample thick-

ness. [30, 109] Our temperature-dependent phonons along Γ−A could provide valuable val-

idation for thermal calculation and help to explain the giant anisotropic thermal transport

in WSe2 and other TMDs. [69, 27]

The monolayer-like lattice dynamics in bulk WSe2 further indicates that vdW

interactions have little effect on the acoustic phonons in layered materials. The flexural

phonons hint that interlayer vdW interactions are much weaker than expected in terms

of lattice dynamics. We hope the result can be useful in improving the accuracy of vdW
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functionals for DFT calculations on layered materials. The measured acoustic phonons in

the bulk system could also be used as reference to study the lattice dynamics in monolayer

system. The first-principles calculation predicts that temperature dependence of acoustic

phonons in monolayer WSe2 is weak and neglectable, especially for phonons near the zone

center. [103] Our observation is distinct from the prediction and provides significant insights

into the temperature-dependent lattice dynamics of monolayer TMDs.

4.1.5 Conclusion

We have conducted the temperature-dependent IXS experiment on bulk WSe2 to

measure the phonon dispersion along some high symmetry directions in BZ. We observed

the flexural dispersive ZA branch along Γ−M and Γ−K directions in the bulk system. In

addition, we observed the significant ZA mode softening when decreasing temperature from

300 K to 150 K. We also found that the acoustic phonons along Γ−A soften moderately

with decreasing temperature. The first-principles calculation on monolayer WSe2 has bet-

ter agreement with our IXS measured phonon dispersion and mode Grüneisen parameters.

The results reveal the microscopic mechanism of phonon dynamics in WSe2 and suggest

a monolayer-like lattice dynamics in bulk WSe2. The additional pressure-pependent re-

sults are very useful to study the strain effects on the van der Waals interactions. This

work provides the theoretical and experimental reference for studying thermodynamics and

anisotropic thermal conductivity in other related two-dimensional layered materials.
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4.2 Phonon anharmonicity in para-terphenyl

INS has been performed on para-terphenyl at temperatures from 10 to 200 K and

under pressures from the ambient pressure to 1.51 kbar. The temperature dependence of

phonons, especially low-frequency librational bands, indicates strong anharmonic phonon

dynamics. The pressure- and temperature-dependence of the phonon modes suggest a lack

of phase transition in the region of 0 - 1.51 kbar and 10 - 30 K. Additionally, the overall

lattice dynamics remains similar up to 200 K under the ambient pressure. The results

suggest that the boundary between the ordered triclinic phase and the third solid phase,

reported at lower temperatures and higher pressures, is out of the pressure and temperature

range of this study.

4.2.1 Introduction

Para-terphenyl (p-terphenyl) has attracted much attention due to its unique electro-

optical properties. These properties have allowed p-terphenyl to be utilized in many applica-

tions including host crystals for single molecule studies, [110, 80] a wavelength shifter, [3] and

a radiation detector. [6] Moerner and Lounis have reported the application of p-terphenyl as

a host crystal in the generation of triggered single photons at room temperature. [96] Oxbor-

row et al. have reported the experimental demonstration of a solid-state maser operating

in pulsed mode at room temperature. The gain medium of the maser was pentacene crystal

doped in a p-terphenyl matrix. [111] Super-conductivity with Tc in the range of 43-123 K

has been reported for potassium doped p-terphenyl, [160, 146, 147] and superconducting

pairing with a 12 meV gap opening at 60 K was reported. [89] The unknown superconduc-
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tivity mechanism is thought to arise from bipolarons or Cooper pair formation. In either

case, phonons (electron-lattice interaction) are critical to understanding this phenomenon

and deserve investigation.

Linear polyphenyls such as p-terphenyl have unique temperature- and pressure-

induced solid-solid phase transitions due to the strong coupling between molecular confor-

mational changes and intermolecular rearrangements. [124, 123] At high temperature, these

molecules are flat on average but have unusual large thermal intramolecular rotational mo-

tion about their long axis that involves rotation of central phenyl rings through the mean

molecular plane. Solid-solid phase transitions are associated with the locking of this ro-

tational motion at low temperature. At high pressure, however, the central phenyl rings

become locked in a static planar molecular configuration.

The high temperature phase of p-terphenyl is monoclinic, with the space group

P21/a with a = 8.106 Å, b = 5.613 Å, c = 13.613 Å, β = 91◦, and Z = 2 (two molecules per

unit cell). [118] At temperatures below 193 K, every other molecule becomes constrained to

one side of the double well potential for rotation of the central phenyl ring. This leads to

an ordered structure, which can be described by a pseudomonoclinic supercell with lattice

parameters a′ = 2a, b′ = 2b, c′ = c, β′ = β, with 4 times the volume of the high temperature

monoclinic cell (e.g., V′ = a′b′c′sinβ′ ) and 8 molecules per supercell (Z = 8). [14] If the

diffraction pattern is indexed with respect to the original high temperature monoclinic cell,

then the extra peaks appear at (½ ½ 0), [22] although a triclinic cell of half this volume

(with Z = 4) is sufficient for generating the crystal. [117] Temperature dependent x-ray

diffraction has been utilized to characterize the phase transition of p-terphenyl from the
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room temperature disordered monoclinic phase (P21/a) to an ordered triclinic phase (C-

1) below 193 K. [117] Recently, diffuse neutron scattering has been used to model the

connection between intermolecular interactions and short-range order in p-terphenyl. [51]

The pair distribution function (PDF) can be extracted from neutron powder diffraction data

to yield information about the molecular structure of a compound [114]. This method was

applied to p-terphenyl to successfully determine the short-range order. The phase diagram

of p-terphenyl and deuterated p-terphenyl have been determined by a collection of Raman,

neutron, and optical studies, the results of which are summarized in Figure 21. It needs

to be noted that Figure 4.10 does not include any molecular nor pair distribution function

data.

Inelastic neutron scattering measurements [139] have revealed evidence for a third

solid phase of p-terphenyl (phase III) at low-temperature and high-pressure (with a triple

point at T ∼ 71 K, P ∼ 3.5 kbar). This phase is characterized by the appearance of a

(½, ½, ½) reflection (referred to the high temperature monoclinic unit cell) described by a

large monoclinic supercell with a” = 2a, b” = 2b, c” = 2c, with Z = 16. [139] However,

the smallest repeating unit for this new phase III crystal lattice is still triclinic with Z =

4, but with a different (uncharacterized) arrangement of the molecules compared to the

low-pressure low-temperature triclinic. To our knowledge, the only other published neutron

spectrum was taken at 130 K. [116] Phase transition from the ordered triclinic phase to the

third solid phase in the low-temperature high-pressure region has not been investigated. In

the current work, low-temperature high-pressure inelastic neutron scattering is performed

to characterize the lattice dynamics and its relation to potential phase transformations.
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Figure 4.10: Phase diagram of p-terphenyl. The open markers represent data collected
on deuterated p-terphenyl [139][Toudic] through inelastic neutron scattering (open circles)
and Raman scattering (open triangles). The filled markers represent Raman scattering
data [87] [Leme] (blue filled circles) on p-terphenyl and molecular dynamic simulations [18]
(green filled circles). The filled orange squares represent optical spectroscopy results on
pentacene-doped p-terphenyl [49] [Baer]. The green filled triangles show the temperature
dependence at ambient pressure. The red symbols indicate the temperature and pressure
regime of the current study on crystalline p-terphenyl. No solid-solid phase transition is
observed in the measured regime. The black dotted lines represent a guide to denote the
different solid-solid phase boundaries. A boundary gap exists between the deuterated and
nondeuterated p-terphenyl.

4.2.2 Experiment

Inelastic Neutron Scattering (INS) experiments were conducted at Lujan Center

at Los Alamos Neutron Science Center (LANSCE) and Spallation Neutron Source (SNS) at

Oak Ridge National Laboratory. At Lujan Center, the data were collected on the Filter Dif-
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ference Spectrometer (FDS) beamline. FDS is an indirect geometry neutron spectrometer

that uses a combination of beryllium and beryllium oxide filters to screen neutrons for final

energies. [49, 102] The difference spectra were used to improve the resolution and reduce the

background. It has an energy resolution about 2∼5 percent of the energy transfer. [134] At

SNS, the data were collected on the Vibrational Spectrometer (VISION). (See Chapter 2)

An aluminum high-pressure gas cell and an aluminum clamp cell were used at FDS and VI-

SION respectively with closed-cycle refrigerators to investigate the vibrational dynamics of

p-terphenyl under various temperatures and pressures. Data were collected for p-terphenyl

from 10 to 30 K over different pressures up to 1.51 kbar (on the VISION spectrometer)

and from 10 to 200 K under the ambient pressure (on the FDS spectrometer). The raw

data were background-subtracted, and the temperature-dependent results were corrected

for phonon thermal occupation. Slight differences in phonon energies measured by the two

instruments are a result of their different reciprocal space coverages.

4.2.3 Results and discussion

The inelastic neutron scattering data on p-terphenyl provide a comprehensive mea-

surement on lattice dynamics and highlight interesting dynamical features of the p-terphenyl

crystal system under various pressure and temperature conditions. The FDS experiment

was limited to pressures below 680 bar and has lower counting statistics than the VISION

experiment so the data from the latter is presented for the pressure-dependent results. Be-

cause hydrogen has a neutron scattering cross section 14.8 times that of carbon, the INS

vibrational spectra are strongly weighted to modes that involve hydrogen motions. Based

on prior Raman spectroscopy work, [164] Infrared (IR) spectroscopy study [122, 151] and
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vibrational analysis of PTP, [125] types of motion for most phonon modes can be assigned

using the calculation of low-pressure high-temperature monoclinic solid phase. The modes

below 20 meV are mainly librational motions that correspond to low-energy long-wavelength

phonons; the modes between 20 and 100 meV are primarily the ring deformation modes

with the ring breath mode near 76 and 130 meV; Out-of-plane and in-plane C-H bending

modes are between 100 and 150 meV; finally, C-C and C-H stretching modes are near 200

and 382 meV respectively. The measured INS spectra are in good agreement with prior

Raman and IR measurements, as shown in Table 4.2. Small energy differences are expected

because inelastic neutron scattering cover different parts of the reciprocal space for periodic

lattices, in which phonons are not localized.

Effect of pressure on phonon energy

The pressure-dependent results at 10, 20, and 30 K are quite similar. The data

show pressure-induced changes in both the low-energy and some high-energy modes as

illustrated by Figure 4.11. However, these changes are generally small, suggesting no phase

transition in this pressure and temperature region. The phonon features are fitted with

Gaussian functions to examine the phonon energy shifts. Most of the phonons modes

are pressure independent showing small energy shifts. In low-energy librational modes,

such as the one at 4.9 meV in Figure 4.11 (d), show slight shifts with increasing pressure.

While the high-energy modes have more noticeable shifts. For example, The mode at 24.2

meV in Figure 4.11 (d) stiffens by∼0.3 meV monotanically from 0 to 1.51 kbar at 10 K.

In conrtast, the phonon mode at 23.7 meV softens by ∼0.3 meV, shown in Figure 4.11

(a). This mode is related to the deformation of the rings and is susceptible to changes
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in intermolecular distances under pressure. The phonon mode softens inhomogeneously

with enhanced intermolecular interactions induced by increased pressure. It indicates that

phonon frequencies do not depend on volume alone as in the quasiharmonic model, revealing

significant phonon anharmonicity. The anharmonicity is also suggested by their negative

Grüneisen parameters, which are defined as the ratio between relative change in phonon

energy as a response to the relative volume change: [42]

γi = −V
νi

(
dνi
dV

) = −d ln(νi)

d ln(Vi)
, (4.4)

where i is the index of phonon mode, ν and V are the phonon frequency and

volume of the unit cell, respectively. This definition is equivalent as the slope in the log-

log plot of energy ratio vs volume ratio, as shown in Figure 23. [42] In materials with

harmonic or quasi-harmonic phonons, these values are usually small (< 1 ∼ 2) and positive.

To evaluate the Grüneisen parameters from pressure-dependent measurements, isothermal

mode Grüneisen parameter can be expressed as: γiT = −( d ln(νi)
d ln(Vi)

)T = B
νi

(dνidP )T . The bulk

modules from literature, B = 60.15 kbar, [140, 10] is used to calculate the volume change

as a function of pressure in triclinic crystal.

The results from the pressure-dependent measurements are quite surprising. Five

phonon modes below 15.5 meV have been studied at low temperature with pressure de-

pendence and they have similar energy as the pressure dependent Raman results at 300

K. [125, 71] The calculated phonon energy increases from 0 kbar to 33 kbar at low tem-

perature, calculated Grüneisen parameters of these modes are relatively large (1∼3) when

compared with our pressure dependent results. Such difference might be attributed to the
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difference in pressure range and phases (monoclinic and triclinic, respectively) between cal-

culation and our measurement. Our results indicate that the low energy librational modes,

related to the intermolecular interactions, are surprisingly harmonic below 1.5 kbar and

have more moderate pressure dependence when compared with previous study. [125, 71]

The pressure-dependent results suggest that higher pressure is required to drive the solid-

solid phase transition to the proposed phase III near these temperatures.

Figure 4.11: Pressure-dependent phonon spectra of para-terphenyl acquired on VISION.
(a)(b)(c) Pressure-dependent spectra show only minor changes from 0 to 1.51 kbar at 10
K; (d)The pressure-dependent phonon energy shifts from 0 to 1.51 kbar at 10 K. Peaks
in spectra are fitted with Gaussian functions. Error bars indicate the fitting tolerance of
phonon energy in spectra. Phonon energies at ambient pressure are labelled and the energy
shifts with respect to the energy at 0 kbar are fitted by linear functions. Three representative
types of phonon modes are plotted based on the pressure dependence. Phonon mode at
14.9 meV does not show much change with pressure; phonon mode at 75.9 meV softens
with increasing pressure; and phonon mode at 24.2 meV stiffens with increasing pressure.
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Table 4.2: Phonon modes measured by inelastic neutron scattering compared with the re-
sults from Raman and IR spectroscopy. [LMA-long molecular axis, SMA1-short molecular
axis (perpendicular to molecular plane), SMA2-shrot molecular axis (parallel to molecu-
lar plane), OP-out-of-plane, IP-in plane, Trans-translation, Lib-libration]. Zig-Zag motion
looks like a six C alkane which turns into its mirror image.

Method INS (meV) INS (cm−1) Raman (cm−1) [164] IR (cm−1)[122] IR (cm−1) [151, 47] Type of Motion [125]

Temperature/K 10 10 5 25 1.3

4.9 40 36.3 Lib SMA1

5.4 43 45.5 45.5 Trans LMA

49

6.6 53 52.2 54

6.9 55 57.4 56.5

8.6 70 69.8 63 Lib SMA1

9.0 73 72 OP-LMA bend

74

81.7 81

85.5

11.0 88.3 90.3 91.5 Symmetric ring twist

12.0 97.0 95.9 Zig-Zag motion

12.4 99.6 101.4 102 Trans SMA1 w/ sym outer ring torsion

13.5 109 108.9 110 Lib SMA2

114

14.9 120 118.6 121 Outer ring twists w/ center ring staying put

16.5 133 135.7 135 IP-LMA bend

17.8 144 146.2 135 Lib LMA w/ central ring twist

22.5 181

23.7 191 191.65

24.2 195

27.4 221 218 Low frequency snake wiggle

228

41.0 330 327 OP-ring torsion

45.5 367 OP-ring torsion

49.5 399 394 IP-ring rock

57.1 460 Ring breathing of outer rings

64.6 521 OP-ring bend

69.8 563 OP-ring bend

75.9 612 610 Ring breathing

86.0 693 693.1 OP-H-bend

95.1 767 771 756.3 OP-H-bend

104.2 840.2 821 846.67 OP-H-bend

114.1 920.3 921.15 OP-H-bend

120.9 974.8 991 970.2

1005 1016.45 Ring breathing

145.6 1175 1167 IP-H-bend

1222

1273

162.1 1308 1278 IP-H-bend
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Effect of temperature on phonon energy

The ambient-pressure temperature-dependent phonon spectra from FDS covers a

temperature range from 10 to 200 K for the librational and ring deformation modes, as

shown Figure 4.13. Most of these phonon peaks broaden with the increase of temperature

because of the reduction in phonon lifetime. It is reported that p-terphenyl by potassium

can bring about superconductivity at 123 K. [147, 89] Significant phonon broadening from

Figure 4.12: The log-log plot of the energy ratio vs. the volume ratio for four vibra-
tional modes at ν1=4.9 meV, ν2=6.6 meV, ν3=14.9 meV, and ν4=49.5 meV. (a) Pres-
sure dependent data yield the Grüneisen parameters of γ1T=0.09±0.07, γ2T=0.12±0.07,
γ3T=0.10±0.01, and γ4T=-0.02±0.01. (b) Temperature dependent data yield the Grüneisen
parameters of γ1P=-5.5±0.9, γ2P=4.4±1.2, γ3P=0.3±0.2, and γ4P=0.5±0.1. The data
points are calculated from the peaks fitting of spectra in Figure 4.11 and Figure 4.14.
The lines are linear fits, and their slopes are the mode Grüneisen parameters, γ, with error
bars shown in Figure 4.15 (b). The magnitude of γ is larger in the temperature dependent
data, especially for the low-frequency librational modes. Linear fitting quality depends on
the phonon energy from Gaussian fitting, related to the peak statistics in spectra.

100 K to 200 K suggests the enhanced phonon interactions, including the electron-phonon

interactions, which likely influence the superconductivity performance. In general, the result
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indicates that overall lattice dynamics remains similar at up to 200 K under the ambient

pressure.

Figure 4.13: Temperature-dependent phonons below 74.4 meV (600 cm−1) acquired on
FDS. Temperature-dependent neutron spectra of the low-frequency librational region for
p-terphenyl from 10 to 200 K. The spectra were corrected for thermal neutron occupation.
There are strong temperature-induced changes in intensity, energy, and linewidth for various
phonon modes but no signs of phase transition.

The temperature-dependent phonon spectra below 30 meV near 0.5 kbar show

little changes from 10 to 30 K (from VISION spectrometer, Figure 4.14 (a)), even for

librational bands below 8 meV. This is expected because below 30 K these phonon modes

are barely excited. The results also indicate that the boundary of solid-solid phase transition

needs to be at lower temperature and/or higher pressure. Phonons in materials usually

soften (decrease in energy) at elevated temperature due to the thermal expansion, resulting
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Figure 4.14: Temperature-dependent phonon spectra of p-terphenyl acquired on VISION.
(a) Temperature-dependent phonon spectra of the low energy modes at 0.5 kbar; (b) The
pressure-dependent phonon energy shifts from 10 K to 30 K at 0.5 kbar. Error bars indicate
the fitting tolerance of phonon energy in spectra. Phonon energy at 10 K is labelled at the
first points and the lines are linear fits.

in positive Grüneisen parameters. In p-terphenyl, the results are quite complicated, as

shown in Figure 4.14 (b). While some modes, such as the ones near 49.5 and 64.7 meV

(399 and 522 cm−1), behave normally; some other modes, such as the ones at 4.9 and

75.8 meV (40 and 611 cm−1), move to higher energy with the increase of temperature.

The temperature dependence of mode at 4.9 meV looks different from that of Raman

results. [164] We have much broader access to the modes beyond zone center, so the different

trends are not in conflict. Most other phonon modes are nearly temperature independent,

such as the modes at 45.5 and 69.8 meV (367 and 563 cm−1).

Taking into account the thermal expansion, the effective mode Grüneisen param-

eters in equation (4.4) are calculated based on temperature-dependent phonon spectra.

Isobaric mode Grüneisen parameter can be expressed as: γiP = −( d ln(νi)
d ln(Vi)

)P = − 1
ανi

(dνidT )P

where α is the thermal expansion coefficient (Mentioned in equation (4.3)). Triclinic lattice

structure is used to calculate the temperature dependent volume. The volumetric ther-
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mal expansion is calculated from the anisotropic linear thermal expansion coefficients. [11]

It should be noted that the thermal expansion is anisotropic in this material. The mode

Grüneisen parameters calculated from temperature- and pressure-dependent data, γiP and

γiT , differ significantly, as shown in Figure 4.12, and Figure 4.15. The mismatch between

the two sets of Grüneisen parameters is a strong indication that their associated phonon

modes are very anharmonic and such anharmonicity might be related to the phase instability

near the solid-solid phase transition. In particular, while the pressure data show moder-

ate Grüneisen parameters between ± 1, the temperature data show much larger effective

Grüneisen parameters between ± 6.

The total energy change with temperature dependence can be expressed as [16]:

(
dνi
dT

)P = (
dνi
dT

)implict + (
dνi
dT

)explict. (4.5)

In equation (4.5), (dνidT )P represents the temperature dependent isobaric energy shift, con-

sisting of implicit and explicit contributions. Here, the implicit part arises from the en-

ergy change induced by volume change with temperature (quasiharmonic contributions),

the explicit part is attributed to the anharmonic contributions due to phonon interac-

tions. Equation (4.5) can be used to build a relation between γiP (T ) and γiT (T ) as:

γiP (T ) = γiT (T ) + γiV (T ), in which temperature dependent Grüneisen parameter under

constant volume, γiV (T ), represents anharmonic contributions to the phonon energy shift.

In quasi-harmonic approximation, γiV (T ) = 0, so γiP (T ) = γiT (T ), Only volume change

contributes to the total phonon energy shift. Thus, the contradiction between γiP (T ) and

γiT (T ) in our results suggests that quasi-harmonic approximation cannot describe the tem-

perature dependence of phonon modes in p-terphenyl
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Figure 4.15: The comparison between the Grüneisen parameters calculated from
temperature- and pressure-dependent data. Large differences are found with no simple
correlations between them. The temperature dependent Grüneisen parameters show large
variations. Light blue symbols in (a) and (b) represent the modes with little pressure
dependence.

Significant contributions from anharmonic phonon potentials could be attributed

to the low-symmetry lattice structure and the phonon eigenmodes but could also be related

to the strong electron–phonon interactions. In the potassium-doped p-terphenyl crystals,

the vibrational properties could play an important role in in the formation of Cooper pairs

induced by electron-phonon couplings with high energy phonons. [113] Electronic properties

and superconductivities of alkaline-earth metal-dopes phenanthrene, also one of the poly-

cyclic aromatic hydrocarbons, have also been studied. [45] From prior electron-phonon inter-

action simulations, phonons induced by C-H vibrations and the coupling among molecules,

with energy at 20 meV ∼ 200 meV, were showed to have strong electron-phonon coupling.

From our data, phonons below 200 meV in crystalline p-terphenyl are also related to the

molecular coupling and C-H vibrations, similar to the potassium-doped p-terphenyl case.
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Such phonons may participate in electron-phonon interactions and enhance the supercon-

ductivity. Therefore, the measured phonon anharmonicity in our work could be valuable to

the study of electron-phonon interactions in p-terphenyl and the related high-temperature

superconductivity.

Phase transition estimation

Together, the pressure- and temperature-dependent phonon spectra provide some

insights on the lower end of the boundary separating phase II and III (Figure 4.10). The

measurements suggest that this phase boundary may have an intercept at T = 0 K above 2

kbar. The boundary of phase II and III has only been reported for deuterated p-terphenyl

in Figure 4.10. Thus, it is possible that such phases transition may not even exist in p-

terphenyl. It is also likely that the phase boundary is shifted to higher temperature (e.g.,

+ 10 to + 20 K) and higher pressure (e.g., + 0.5 kbar), analogous to the shift in the phase

I/II boundary between deuterated and nondeuterated samples. However, it is also possible

that the phase boundary terminates at a critical point beyond measured region.

4.2.4 Conclusion

The temperature- and pressure-dependent phonon lattice dynamics measurements

on p-terphenyl were conducted by inelastic neutron scattering. The low-temperature high-

pressure results indicate the absence of a solid-solid phase transition between 0 and 1.51

kbar at 10 ∼ 30 K and the lattice dynamics remains similar at up to 200 K under ambient

pressure. The results suggest a likely positive intercept or critical point above 2 kbar for the

solid-solid phase boundary. It is also possible that this phase II/III boundary is shifted to
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higher temperature and higher pressure, analogous to the shift in the phase I/II boundary.

The inelastic neutron scattering results also show a variety of energy dependence of different

phonon modes with respect to temperature and pressure. The large discrepancy between

the Grüneisen parameters calculated from temperature- and pressure-dependent spectra

indicates strong anharmonicity in the liberational phonon modes.
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4.3 Quantify the Van der Waals interactions in layered PdSe2

Van der Waals (vdW) force, weakly holding the layers together in two-dimensional

(2D) materials, plays a key role in many physical properties, such as superconductivity and

quantum Hall effect. Quantifying the vdW force, therefore, is essential for understanding

the fundamental mechanisms of these novel properties. However, due to the difficulty of

probing the interlayer forces directly, it is still a challenge to quantify the vdW interactions

effectively. Here, by using IXS technique with diamond anvil cell, we quantified the vdW

interactions through the investigation of pressure-dependent acoustic phonons, especially

the classical flexure mode (ZA), in 2D-layered palladium diselenide (PdSe2). To our best

knowledge, the evolution of ZA with pressure was characterized for the first time. The

interlayer binding changes from the weak vdW force to the covalent bond while the or-

thorhombic structure of PdSe2 evolves into a cubic one (from ambient pressure to 6 GPa).

The interlayer-related elastic constants and the compression and shear force constants all

show linear relations with pressure. These results indicate that the interlayer vdW interac-

tions increased dramatically with increasing pressure and the covalent bond takes over after

phase transition. Our work not only quantifies the pressure-dependent ZA mode, but also,

more significantly, paves a new path to measure the vdW interactions in 2D materials.

4.3.1 Introduction

In 2D-layered materials, vdW force holds together the neighboring atomic layers,

while stronger covalent or ionic bond holds the atoms together in the layers, leading to the

anisotropy of crystal structures. Many unique physical properties and applications, such
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as high temperature superconductivity, [158] ferromagnetism, [70] and anomalous lattice

vibrations, [132, 83] have been reported to relate closely to the interlayer vdW interactions

of 2D-layered materials. Therefore, measuring and tuning the vdW interactions are essential

in exploring the extraordinary properties in 2D-layered materials. To date, various methods

have been attempted to quantify the vdW interactions: atomic force microscopy (AFM)

measurement, [66] Raman, [66, 7] and pressure enhanced band splitting. [32] However, due to

the limited capability in measuring the force and potential between the neighboring atomic

layers, more efficient and accurate quantification of vdW interactions is still in urgent need.

Due to the weak interlayer vdW interactions, the phonon dispersions of 2D-layered

materials are extremely sensitive to pressure. As is known, the elastic constants, which de-

scribe relationship between stress and strain in solids, can be extracted from the acoustic

phonons by using the semi-continuum model. [107, 74] In the acoustic phonons in 2D-

layered materials, the flexural ZA mode is tightly related to the interlayer weak vdW inter-

actions. [149] Thus, probing the pressure-dependence of ZA mode is expected to obtain the

pressure-dependence of elastic constants related to vdW forces. Generally, phonon disper-

sion of materials with small flake sample can be obtained successfully by IXS at ambient

pressure. [148] However, it is difficult to obtain the pressure dependence of phonon modes

on layered materials, especially the ZA mode, because the sample and beam scattering ge-

ometries are both significantly limited by the diamond anvil cell (DAC). [40] Therefore, it is

still a challenge to investigate the pressure-dependence of ZA mode in 2D-layered materials.

Palladium diselenide (PdSe2), one of the 2D-layered transition metal dichalco-

genides family, has attracted ever-increasing interests recently. It shows various promising
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applications due to its anisotropic thermal conductivity, [148] multiple phase transition, [40]

negative Poisson’s ratio, [95] and photovoltaic properties. [86] PdSe2 undergoes a phase tran-

sition from an orthorhombic structure (Pbca) with a square-planar of Pd atoms to a cubic

structure (Pa3) with an octahedral of Pd atoms when hydrostatic pressure reaching 6 GPa

(Figure 4.16). [131] The vdW force between layers increases and the layer spacing decreases

gradually when increasing pressure before phase transition; the vdW force disappears and

the neighboring layers are connected by the covalent bond after phase transition. Thus,

such structural evolution of PdSe2 provides a natural advantage to probe the evolution of

vdW interactions.

Here, we report a new method to study the vdW interactions through the acoustic

phonons measured by pressure-dependent IXS in layered PdSe2. The pressure-dependent

dispersion of acoustic phonons, especially of the ZA mode, were measured at 0.36, 1.85,

3.7, and 6 GPa. Phase transition is observed when the hydrostatic pressure is increased

to 6 GPa. With increasing pressure, the interlayer interactions become stronger and are

taken over by the covalent bond after phase transition, and were confirmed by the significant

increasing of interlayer-related mechanical parameters extracted from the measured acoustic

phonons. The elastic constants, C33 and C44, are respectively increased by 6 and 8 times,

and the interlayer compression and shear force constants, fdirect and fshear, are respectively

increased by 3.5 and 6 times through the phase transition. These results provide insight on

the detailed evolution of vdW interactions in 2D-layered PdSe2.
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4.3.2 Experiment and calculation

High-pressure inelastic X-ray experiment

High quality 2D-layered PdSe2 single crystal in this work was purchased commer-

cially and grown by the chemical vapor transport method. The quality of the crystal was

checked by X-ray diffraction shown in Figure 4.17 (a). The full width at half maximum

(FWHM) of Bragg peak at (002) plane is about 0.24 ± 0.01°, showing high crystalline

quality of the sample (inset in Figure 4.17 (a)).

Figure 4.16: Crystal structures of layered PdSe2. a and b are the front and side views
of the orthorhombic structure with space group Pbca before phase transition, respectively,
while c and d are the front and side views of the cubic structure with space groupPa3 after
phase transition, respectively. The arrow with color from yellow to purple represents the
increasing of pressure.
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Figure 4.17: Sample preparation for pressure-dependent IXS measurement of 2D-layered
PdSe2 single crystal. a, Rocking curve for (002) Bragg peak of PdSe2 crystal. The narrow
peak width indicates by the arrow shows high crystalline quality. Inset is the sample
attached on a copper post for the ambient pressure measurement. b, Sample loading for
high-pressure measurement with panoramic DAC. Left and right panels are the object and
schematics of DAC, respectively. c, Schematic of the beam scattering geometry for the
high-pressure experiment. Solid red frame in the right panel shows the DAC mounted on
HERIX. Middle panel shows the sample and beam scattering geometries. Left panel shows
the scattering vectors in zone (211). d, Sample geometry for ZA mode measurement under
high pressure. The first and second methods are commonly used for high-pressure IXS
measurement, while the third one is the method used in this work.
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High energy resolution IXS experiment was performed to measure the acoustic

phonons of PdSe2 under ambient pressure (≈0), 0.36, 1.85, 3.7, and 6 GPa at room tem-

perature. The measurements were conducted at 30-ID-C (HERIX) at Advanced Photon

Source, Argonne National Laboratory. [121, 135] The detailed measurement under ambient

pressure can be found from our previous work. [148]

For high pressure measurements, a small crystal (80 µm × 50 µm × 40 µm) was

loaded in a panoramic diamond anvil cell (DAC) (Figure 4.17 (b)), and the DAC was aligned

parallel to the electric field vectors of incident X-ray (right panel in Figure 4.17 (c)). Culet

size of DAC was 800 µm, and rhenium with thickness at 250 µm was used as the gasket.

The gasket was pre-indented to 120 µm and a 400 µm hole was drilled. Helium was used

as the medium to minimize the background and ensure the hydrostatic pressure inside the

chamber. Ruby fluorescence excited by 532 nm laser was used to measure the hydrostatic

pressure. After gas loading, the initial pressure was 0.36 GPa, which was increased to 1.85,

3.7, and 6 GPa by step. Sample quality and the orientation matrix were checked before the

measurements at each pressure. At specific wave vector transfer (Q point), the counting

time at each energy step is set as 60 ∼120 s. Due to the relative low statistics under

high pressure, 3 or 5 scans were performed at each Q point and the data are combined for

analysis.

Sample geometry was designed specially for the ZA mode measurement. As shown

in the right and middle panels in Figure 4.17 (c), when the DAC was mounted on the

roational stage, the incident beam angle is limited by the opening angle of DAC, the Phi

angle of the roational stage is fixed, the Psi angle has a certain degree of rotational freedom,
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and thus the beam scattering geometry is extremely limited. In order to measure the ZA

mode, a Brillouin zone (BZ) with out-of-plane value and the q points along in-plane direction

should be reached. Thus, if the single crystal sample is cut regularly as the first and second

methods shown in Figure 4.17 (d) and loaded lying on the diamond, there are two problems

should be concerned: a) the obtained BZ only along one of the high-symmetry directions,

which limits the rotation along the other direction; b) although the crystal is loaded along

the right direction, it is difficult to keep the direction after He gas loading. In these cases,

Figure 4.18: Calculated dynamic structure factors of PdSe2 along Γ−Y direction by IXS
at zone (2 1+q 1) under 0 GPa (a) and 6 GPa (b). Arrows indicate the longitudinal,
transverse, and flexural acoustic modes (LA, TA, and ZA). Color bar indicates the phonon
intensity plotted on a logarithmic scale.

the scattering geometry and the rotation matrix can not satisfy the requirement for ZA

measurement. Here, we use the third method in Figure 28 (d), where the sample is cut with

a certain angle along an arbitrary direction between the c-axis. In this case, a cross-plane
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BZ can be easier obtained, and the sample is more stable during gas loading, maintaining

the scattering geometry. The (2 1+q 1) zone was obtained for ZA mode measurement after

He gas loading (left panel in Figure 4.17 (c)), and other phonons were also measured except

for ZA according to dynamic structure factor S(Q, E) simulation (Figure 4.18).

Phonon calculation

First-principles calculations were performed based on the density functional the-

ory (DFT) as implemented in the Vienna Ab Initio Simulation Package (VASP). [76] The

generalized gradient approximation (GGA) Perdew-Burke-Ernzerhof (PBE) functional was

used for structural relaxations with plane-wave cut-off energy of 600 eV. The optPBE func-

tional [73] was used to estimate the vdW force due to layered structure of PdSe2. [136]

The BZ of the reciprocal space was sampled by a Γ-centered grid of 5 × 5 × 4. The force

components of each atom were smaller than 0.001 eV/Å and the difference of total energy

was less than 10-6 eV during the structure relaxation. The Phonopy code [137] was used to

calculate the phonon dispersion of PdSe2. In this approach, the second-order interatomic

force constants were computed by the finite difference method in a 2 × 2 × 2 supercell. The

lattice constants at each hydrostatic pressure were used from the measurements by HERIX.

4.3.3 Results and discussion

Phase transition under high pressure

Phase transition under pressure is determined by tracking the variance of lattice

constants. Before measuring the phonon dispersions, it is necessary to check the sample

quality and confirm that the sample is intact under high pressure. Due to the limited 2-theta
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angle by the opening angle of DAC, only several crystal planes on lower-order BZ can be

observed (Figure 4.19). As shown in Figure 4.21 (a), each (211) plane holds a relatively sharp

peak under pressure, which is partially reflected by the bright Bragg points in Figures 4.19

(a) and (b), indicating high quality of the sample and good agreement with the predictions.

The 2-theta increases with increasing pressure below 6 GPa due to the reduction of lattice

constants and then drops to the minimum value at 6 GPa. Figure 4.21(c) shows that the in-

plane lattice constants, a and b, and unit cell volume V declines moderately with increasing

pressure, while the drop of out-of-plane lattice constant c is more significant with pressure.

The sharp drop of c and V indicates the structure transition from 3.7 (orthorhombic) to

6 GPa (cubic), which is also revealed by the increased systematic free energy from our

calculation (Figure 4.20) and in agreement with previous work. [97] The detailed diffraction

and lattice information versus pressure can be found in Table 4. The ratios of a/c and

b/c increase with the increasing pressure, implying the compression along c-axis and the

structure evolution of PdSe2. By fitting the trend of the lattice constants versus pressure

from equation y = A + Bx + Cx2, it is found that the reduction of c (B=0.041, C=0.005)

is larger than that of a (B=0.023, C=0.003) and b (B=0.026, C=0.003). This behavior

reveals the negative Poisson’s ratio in the orthorhombic structure of PdSe2, which confirms

the prediction in monolayer PdSe2 to some extent.

Further exploring this phase transition, the bond length, energy integrated crystal

orbital Hamiltonian population (ICOHP), and force constants were calculated to evaluate
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Table 4.3: Pressure-dependent lattice information of PdSe2.

Space group Pressure (GPa) 2-Theta (Deg.) FWHM (Deg.) a (Å) b (Å) c (Å) V (Å3) a/c b/c

Pbca

Ambient 12.26 0.08 5.741 5.868 7.705 259.6 0.745 0.762

0.36 12.27 0.09 5.74 5.866 7.691 258.9 0.746 0.763

1.85±0.2 12.33 0.09 5.71 5.835 7.649 254.8 0.747 0.763

3.7±0.3 12.36 0.09 5.7 5.826 7.639 253.4 0.748 0.764

6±0.4 12.08 0.09 6.08 6.08 6.08 224.7 1 1

Table 4.4: Fitted data from LA mode along Γ−Y of PdSe2.

Pressure (GPa) vL (m/s) ρ (g/cm3) C22 (GPa)

Ambient 5874 6.764 233

0.36 5914 6.78 237

1.85±0.2 6124 6.89 258

3.7±0.3 6704 6.92 311

6±0.4 5292 7.811 219

Table 4.5: Fitted data from TA mode along Γ−Y of PdSe2.

Pressure (GPa) vT (m/s) ρ (g/cm3) C66 (GPa)

Ambient 2653 6.764 48

0.36 2703 6.78 50

1.85±0.2 2963 6.89 60

3.7±0.3 3286 6.92 75

6±0.4 2105 7.811 35
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Figure 4.19: Diffraction patterns of (211) plane of PdSe2. Patterns at 0.36 GPa (a) and
6 GPa (b) show the phase transition and indicate the high quality of the single crystal
sample. The yellow circles are the reference line for sample alignment. (c) Simulation of
the reciprocal space of PdSe2 along the experimental view axis. The red arrows indicate
the (211) plane group.

the evolution of bonds versus pressure, shown in Figures 4.21 (d)-(f). For Pd-Se1 and Pd-Se2

bonds, the bond lengths increase, and the bond strengths (ICHOP) decrease gradually with

the increasing pressure. While for Pd-Se3, the bond length decreases, and the bond strength

increase significantly with the increasing pressure. The force constant of heavier Pd-Pd

(Pd: 106.4 > Se: 78.97), which dominates the phonon energy around BZ center, increases

gradually along a- and b-axis below 6 GPa and drop down at 6 GPa, while they keep

increasing along c-axis with the increasing pressure. As reported, the octahedral [PdSe6]

evolutes a Jahn-Teller distortion during the phase transition: in orthorhombic structure,

the low spin configuration (z2)2(x2 − y2)0 induces the square-planar [PdSe4] (composed by

Pd-Se1 and Pd-Se2), while in cubic structure, the high spin configuration (z2)1(x2 − y2)1

induces the octahedral [PdSe6] (composed by Pd-Se1, Pd-Se2, and Pd-Se3 in orthorhombic

structure) (Figure 4.21 (b)). Such distortion will lead to weaker in-plane and stronger

out-of-plane binding of Pd and Se atom at 6 GPa than below that. [78, 150]
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Table 4.6: Fitted data from ZA mode along Γ−Y of PdSe2.

Pressure (GPa) ρ (g/cm3) C44 (GPa) by (mm2/s)

Ambient 6.76 4.59 1.43

0.36 6.78 6.14 1.42

1.85±0.2 6.89 9.10 1.28

3.7±0.3 6.92 20.33 1.02

6±0.4 7.81 36.60 —

Figure 4.20: Calculated systematic free energy of PdSe2 with pressure. Yellow and pur-
ple shadows represent before and after phase transition, and the position of interface is
estimated from ref. [131]
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Figure 4.21: Pressure-dependent crystal change of PdSe2. a, Bragg peak of (211) plane
by HERIX. The vertical green solid lines are the predictions by Single Crystal software.
b, Schematic formation of octahedral [PdSe6] from the orthorhombic to cubic structure,
including the orbital correlation, reproduced from ref. [97]. c, Pressure-dependent lattice
constants and the volume. Dashed lines are the fitting curves from y = A + Bx + Cx2.
Green curve is guide for eyes. d and e are the bond length and ICOHP of Pd-Se1, Pd-Se2,
and Pd-Se3, respectively. f, Force constant of Pd-Pd. Yellow and purple shadows represent
before and after phase transition, and the position of interface is estimated from ref. [97].
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Pressure dependence of ZA mode

Figure 4.22: Pressure-dependent acoustic phonon dispersions along Γ−Y of PdSe2. a-
c, Measured phonon modes of LA, TA, and ZA branches (symbols), overlaid with the
corresponding first-principles calculations (lines). d, Exponential fittings of the ZA branches
with ω = αqβ function (arrow). e, Pressure-dependent fitting parameters α and β. Error
bars are the fitting uncertainty. Shadows represent the different structures as described in
previous figures.

The lattice constants of PdSe2 are sensitive to the pressure, so phonon dispersions

will change with pressure as well, especially for the ZA mode. Figures 4.22 (a)-(c) show

the pressure-dependent acoustic phonon dispersions along Γ−Y direction obtained by IXS

(the calculated low-energy phonon dispersions of PdSe2 under pressure are shown in Figure
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4.23). It is found that our first-principles calculation shows excellent agreement with the

measurements for LA and TA phonons under pressure (Figure 4.22 (b) and Figure 4.22

(c)), but it is unable to predict the pressure dependence of ZA phonons (Figure 4.22 (a)).

This discrepancy may result from the pressure dependent vdW interactions which may

not be accurately described by the optPBE functional, though it shows good accuracy to

estimate the lattice constant at ambient condition. Furthermore, unlike the trend of TA and

LA with pressure, the ZA mode keeps stiffening as the pressure increases. This behavior

mainly results from the evolution of the lattice constants with pressure: In-plane lattice

constants a and b decrease continuously before phase transition and increase significantly

after that, while c keeps decreasing with the increasing pressure up to 6 GPa. Thus, the

slope of featured flexural ZA mode in 2D-layered PdSe2 around the BZ center steepens

with increasing pressure, as reflected by the increasing Pd-Pd force constant along c-axis in

Figure 4.21 (f).

To our knowledge, it is the first experiment to measure the ZA dispersion curves

with pressure dependence in 2D-layered materials. Due to the failure of first-principles cal-

culations in estimating the pressure-dependent phonon energy in ZA mode, the exponential

function, ω = αqβ, is applied to fit the measured phonon energy of ZA, [64] showing the

excellent agreement. As shown in Figures 4.22 (d) and (e), with increasing pressure, the

ZA dispersion curve evolves toward linear gradually and the exponential coefficient β de-

creases from 1.35 to 1. As is known, the dispersion curve exhibits a parabolic behavior in

monolayer materials, and β is usually smaller than 2 in the bulk 2D-layered materials due

to the existing interlayer vdW force. After phase transition, the dispersion curve is linear
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(β = 1). The change of β indicates that the interlayer vdW force increases gradually with

the increasing pressure in the orthorhombic structure and is taken over by the covalent

bond after phase transition in the cubic structure. These results present the evolution of

the pressure-dependence of ZA mode in PdSe2, and provide significant reference for other

related 2D-layered materials to investigate the ZA mode.

Figure 4.23: Calculated low-energy phonon dispersions of PdSe2 under each pressure.

Quantification of the vdW interactions

The elastic constant, representing the stress-strain relationship in materials, is

highly sensitive to the pressure. The vdW interactions can be quantified through their
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corresponding elastic constants. The pressure-dependent elastic constants can be extracted

from the acoustic phonons by using the semi-continuum model [107]:

vLA(Γ−Y ) =
ω

q
=

√
C22

ρ
, vLA(Γ−Z) =

ω

q
=

√
C33

ρ
, vTA(Γ−Y ) =

ω

q
=

√
C66

ρ
, (4.6)

where v is the phonon group velocity near BZ center, ω the phonon energy, ρ the mass

density and q the wavevector. For the ZA mode, we can obtain both C44 and the bending

elastic parameter by fitting the ZA dispersion from the following equation [74] (Figure 4.24):

ω2 =
C44

ρ
q2 + b2yq

2, (4.7)

by represents the resistance of a layer to bend. The detailed fitted group velocities from

Figure 4.24: Fitted ZA mode of layered PdSe2 by equation (4.7) at each pressure.

the IXS data and the elastic constants are shown in Tables 4.4-4.6 and plotted in Figure

4.25. C22 is associated with the compression vibration along b-axis, corresponding to LA

mode along Γ−Y and the change of the lattice parameter b, while C66 is associated with
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the shear vibration along the in-plane direction, corresponding to the change of in-plane

lattice parameters a and b. Below 6 GPa, C22 and C66 both show linear relation with

pressure and increase by 50% near the phase transition; at 6 GPa, C22 and C66 both drop

down to a lower value than that at ambient pressure. Such behavior is mainly attributed

to the much larger in-plane lattice parameters in cubic structure. C33 is associated with

the compression vibration along c-axis, corresponding to the LA mode along Γ−Z and the

change of the lattice parameter c. It is a direct evaluation of the change of vdW interactions

between layers. Due to the beam scattering limitation and the ambiguous resolution to

distinguish the extremely low energy of the LA mode along Γ−Z, we only obtain C33 under

the ambient pressure and 6 GPa. As shown in Figure 4.25 (c), C33 is much smaller than

C22 under ambient pressure due to the weak vdW force between layers. With increasing

pressure, C33 increases dramatically and the value in cubic structure (equivalent to C22) is

6 times higher than that in orthorhombic structure, indicating the continuous increase of

the interlayer force.

C44 represents the shear vibration where the atoms vibrate along c direction and

vibrational wave propagates along Γ−Y, corresponding to the ZA mode along Γ−Y and

the change of the lattice parameters b and c. C44 shows the lowest value among the elastic

constants because of the interlayer shear vibration affected by the weak vdW force, as shown

in Figure 4.25 (c).With the decreasing layer distance and the increasing ratio of b/c, the

shear stress will increase significantly and lead to a linear relationship with pressure (Figure

4.25(d)). At 6 GPa, C44 (equivalent to C66) shows seven times higher than that at ambient

pressure. Due to the bulk single crystal of PdSe2 used in this work where the vdW force is
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Figure 4.25: Pressure-dependent elastic constants of PdSe2. a-d are the results of C22, C66,
C33, and C44 and by, respectively. e and f are the interlayer compression (fdirect) and shear
(fshear) force constants, respectively. Dashed lines in (c) and (e) indicate the trend with
pressure. Error bars are the fitting uncertainty. Shadows represent the different structures
as described in previous figures.
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Table 4.7: Pressure-dependent layer spacing of PdSe2.

Ambient Pressure 0.36 GPa 1.85 GPa 3.7 GPa 6 GPa

Layer spacing 2.265 Å 2.248 Å 2.217 Å 2.202 Å 1.614 Å

stronger than that in monolayer materials, by is 1.43 mm2/s at ambient pressure and is five

times higher than that of single layer graphene (0.313 mm2/s). [107] With the pressure in-

creased, during the bending on PdSe2, the intralayer tension or compression and interlayer

shear behaviors will both emerge and compete with each other. by decreases slightly with

increasing pressure, resulting from the increasing shear effect between layers. [142] Com-

pared with C22 and C66, the interlayer related C33 and C44 increases significantly faster

with pressure (C22 and C66 increase by about 50% near the phase transition, while C33 and

C44 increase by 6 and 8 times, respectively.).

The interlayer compression (fdirect) and shear (fshear) force constants are utilized

to evaluate the interlayer interactions with the layer spacing (c), expressed as: fdirect =

c·C33 and fshear = c·C44 [144]. In Figures 4.25 (e)and (f), our first-principles calculations

show good agreement with the experiments. The layer spacing decreases gradually with

increasing pressure, shown in Table 4.7. fdirect changes from around 10 N/m to around 35

N/m before and after phase transition, increased by 3.5 times, while fshear shows a linear

relation with pressure, which changes from 1 N/m to 6 N/m, increased by 6 times. These

behaviors are mainly due to the enhancement of vdW force between layers, and provide an

effective reflection on the evolution of vdW interactions with the layer distance.
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4.3.4 Conclusion

In this work, the vdW interactions of 2D-layered PdSe2 were studied by the com-

bination of high-pressure IXS and first-principles calculations. The pressure-induced phase

transition was confirmed and the pressure-dependent acoustic phonon dispersions, espe-

cially the ZA mode, along Γ−Y direction were measured. The TA and LA modes stiffen

with the increasing pressure below 6 GPa and drop down at 6 GPa, and the ZA mode

keeps stiffening as the pressure increases up to 6 GPa. The lattice structure transfers from

the orthorhombic to cubic and the interlayer vdW force may disappear from 3.7 to 6 GPa.

Below 6 GPa, C22, C33, C44 and C66 increase linearly with increasing pressure. by de-

creases with increasing pressure due to the enhancement of the interlayer shear effect when

the competition between the intralayer tension or compression with the interlayer shear

effect. The interlayer compression and shear force constants, fdirect and fshear, increase

with increasing pressure, indicating the enhancement of the interlayer vdW interactions.

Our experimental results show that with the change of pressure, fdirect and fshear

reflect the evolution of interlayer vdW interactions with pressure. Our work confirmed

that the high-pressure IXS measurement is effective to characterize the interlayer vdW

interaction. It should be noted that the sample need to be loaded in a special orientation

to satisfy the required scattering geometry of high-pressure IXS measurement to directly

measure the interlayer vdW interactions. In addition, due to the weak interaction between

layers, the acoustic phonons along Γ−Z are localized in the low energy region, a spectrometer

with higher resolution is thus needed to distinguish these phonon modes. However, although

the sample loading and the instrument setup are still challenging, with the development of
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experimental technology, high-pressure IXS will be more effective to characterize the vdW

interaction. Our work is not only expected to measure other 2D-materials, but also paves

a new path to characterize the vdW interactions.
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4.4 Anomalous phonon softening in Fe3GeTe2

Raman scattering was performed on Fe3GeTe2 at temperatures from 8 to 300 K

and under pressures from the ambient pressure to 9.43 GPa. Temperature-dependent and

pressure-dependent Raman spectra were reported. Pressure-dependent density functional

theory and phonon calculations were conducted and used to assign the observed vibrational

modes. The calculations suggest a synergistic interplay of FM/AFM competition, pressure

dependence of spin exchange interactions, and spin-orbit coupling effect, resulting in strong

spin-phonon coupling and anharmonic phonon dynamics.

4.4.1 Introduction

The intensive research on magnetic thin films has been driven by the rapid de-

velopment of nanoelectronic and spintronic devices. [43, 155, 57] In two-dimensional (2D)

materials, according to the conventional Mermin–Wagner theorem, [171] thermal fluctua-

tions could strongly suppress the magnetic order of materials. However, the discovery of

long-range ferromagnetic order in Cr2Ge2Te6 [50] and CrI3 [59] monolayers breaks the con-

ventional theorem. [100] This breakthrough promotes tremendous effort in exploring the

potential applications of 2D magnetic materials in magnetoelectrics, electrical control of

magnetism, and magnetic tunnel junction. [20, 72, 58] Fe3GeTe2 (FGT), a valuable mem-

ber of 2D layered magnetic materials, has attracted special interests recently due to its

rare metallic itinerant ferromagnetism with high Curie temperature (∼230 K) [41, 5] and

novel physical properties, including anomalous hall effect, Kondo effect, and giant tunneling

magnetoresistance. [68, 167, 34]
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FGT crystallizes in a hexagonal structure with space group P63/mmc (No.194),

as shown in Figure 4.26. The unit cell has two layers that are bonded by interlayer van der

Waals (vdW) interactions. Each layer comprises five covalently bonded atomic planes. The

planar FeIIGe is sandwiched by two planes of FeI atoms, and the triple planes are then

sandwiched by two layers of Te atoms. The FeI and FeII atoms in each layer contribute to

both the itinerant electrons and local ferromagnetic moments, which play significant roles

in the magnetic spin order transition with pressure and temperature dependence. [144, 170]

The reported first-principles calculation has predicted that spin ordering could affect lattice

dynamics and reveals notable spin-phonon interactions in FGT. [75] However, pressure-

and temperature-dependent lattice vibrations and spin-phonon interactions have not been

reported experimentally.

Figure 4.26: a) Side and (b) top view of hexagonal lattice crystal structure of Fe3GeTe2.
The red, green, and tan spheres represent the Fe, Ge, and Te atoms, respectively.
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Raman spectroscopy is a powerful technique for probing the lattice vibrations in

a crystal. Previous studies have reported an anomalous pressure-induced phonon softening

behavior [154] and a temperature-driven strong spin-phonon coupling in FGT [38] through

Raman studies. However, they did not obtain information about the temperature and

pressure dependence simultaneously. The combined effects of temperature and pressure on

lattice dynamics may provide information that is not available through only one of them.

In this work, we conducted the pressure-dependent (PD) Raman measurement

on FGT at room temperature. In addition, we also performed the combined pressure-

and temperature- dependent (PTD) measurements. Two Raman active modes (E2
2g and

A1
1g) were observed. The two types of measurements show that increasing pressure softens

the E2
2g mode anomalously and the decreasing temperature suppresses softening moder-

ately. Temperature-dependent (TD) results were extracted from the two. The extracted

TD phonon frequency is much higher than the reported direct measurement. Our first-

principles calculations predict the two Raman active modes, but fail in explaining their

pressure dependence with a simple magnetic model. These results suggest strong phonon

anharmonicity of these two modes, especially E2
2g. This might be attributed to the strong

spin-phonon interactions. Our work provides insightful information for studying the strain

effect and thermal properties of FGT for its applications in nanoelectronic and spintronic

devices.

4.4.2 Methods

Experimental method: The FGT samples were prepared by solid-state reaction

of elements at 800 °C for 5 days. After mixing the elements Fe, Ge, and Te in their
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stoichiometric molar ratio, the mixture was pressed into a pellet, sealed in a quartz glass

ampule under vacuum, and loaded into the furnace for reaction. [153] The phase purity

and crystallinity of the sample were determined by powder X-ray diffraction using a Rigaku

Miniflex diffractometer. The excitation source for the Raman spectrometer was 532 nm.

The laser power was set at 30 mW to minimize sample damage. An ultrasteep long-pass

edge filter (ODabs > 6) was used to block the laser line, and a spectrometer (PI Acton Series

500 mm) was used for spectral imaging on a thermoelectrically cooled 2D CCD camera (PI

PIXIS 400B). An Almax plate diamond anvil cell (DAC) with tungsten carbide seats was

used for high-pressure environments inside a closed-cycle cryostat. The culet size of the

diamonds is 250 µm. A stainless steel gasket with a 100 µm hole was used. Silicone oil

was used as the pressure medium in the PD experiment and sodium chloride was used

for the PTD experiment. At lower temperatures, thermal contraction of the DAC and

gasket shrinks the gasket hole and increases pressure. Therefore, temperature and pressure

changes are correlated in the PTD experiments. The PD measurement was conducted at

room temperature.

Computational method: To investigate the phonon dynamics of Fe3GeTe2,

non-spin and spin-polarized density functional theory (DFT) calculations and phonon cal-

culations were performed. Electronic structure calculations were performed using the pro-

jector augmented wave method of Blöchl [17, 77] coded in the Vienna ab initio simulation

package (VASP). [76] All VASP calculations employed the generalized gradient approxima-

tion (GGA) with exchange and correlation treated by the Perdew-Burke-Enzerhoff func-

tional. [112] The cutoff energy for the plane wave calculations was set to 500 eV and the
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Brillouin zone integrations were carried out using Γ-centered 11 × 11 × 3 and 4 × 4 × 2

k-point mesh for a unit cell and 2 × 2 × 1 supercell, respectively. To study the pressure

dependence of the phonon vibrations, structure optimization was performed under external

pressures of 1, 3, 5, and 7 GPa and followed by phonon calculations using the Phonopy

software. [137] The convergence threshold for structural relaxation was set to be 0.01 eV/Å

in force. GGA+SOC calculations were employed to examine the spin-orbit coupling (SOC)

effect. VASP total energies of spin in the ab-plane (ESOC(‖a)) and parallel to the c-axis

(ESOC=ESOC(‖c)) for each compound were calculated. The magnetocrystalline anisotropy

energy was then obtained using the relation ∆ESOC = ESOC(‖a) − ESOC(‖c). For the

experimental structure and four fully relaxed structures under external pressure, phonon

calculations were carried out using the finite difference method implemented in the Phonopy

software [137] to obtain the Raman peak energies at the Γ point. Phonon calculations were

applied to non-spin polarized state, the ferromagnetic state (FM interlayer interaction), the

antiferromagnetic state (AFM interlayer interaction), and the antiferromagnetic state with

spin-orbit coupling for each structure using 2 × 2 × 1 supercell. To study the effect of

pressure on spin interactions in Fe3GeTe2, the effective Fe-Fe exchange parameters in the

experimentally observed structure and the relaxed structure under 7 GPa external pressure

were evaluated using the spin polarized, relativistic Korringa-Kohn-Rostoker (SPRKKR)

package [39] with GGA-PBE as the exchange and correlation corrections and 500 k-points

in the Brillouin zone.
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4.4.3 Results

Pressure-dependent (PD) Raman spectra

Figure 4.27 (a) shows the Raman spectra of FGT in the frequency range of 80 200

cm−1 from ambient pressure to 9.52 GPa at 300 K. Bulk FGT has 12 atoms per unit cell

and 36 phonon modes. [75] The two observed Raman active modes E2
2g and A1

1g are at

122.7 and 139.8 cm−1 at room temperature under ambient pressure, similar to the reported

results. [154, 38, 101] Our spin-polarized DFT calculation for the antiferromagnetic state

predicts the phonon frequencies of E2
2g and A1

1g modes, respectively, at 115.7 and 126.6 cm−1,

showing decent agreement with the measurement. As shown in Figure 4.27 (b), A1
1g mode

stiffens slightly with increasing pressure, but E2
2g mode softens by 21 cm−1 monotonically

from ambient pressure to 9.52 GPa at room temperature. As for the pressure dependence

of the phonon linewidth of these two modes, Figure 4.27 (c) shows an obvious broadening

with increasing pressure.
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Figure 4.27: Pressure-dependent (PD) Raman spectra at 300 K. (a) Raman spectra from
ambient pressure to 9.52 GPa, (b) Pressure dependence of phonon frequency, and (c) pres-
sure dependence of phonon linewidth. The phonon peaks are fitted by Lorentzian function.
FWHM stands for the Full Width at Half Maximum. The lines in (b) and (c) are linear
fits.

Figure 4.28 shows that E2
2g mode involves the in-plane atomic vibrations and A1

1g

mode is related to the out-of-plane vibrations of Te, Fe, and/or Ge atoms. Increasing

pressure usually decreases the bond lengths and unit cell volume, [35] leading to larger
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interatomic force constants and higher vibrational frequency. However, our results reveal

a pressure-induced softening of E2
2g mode. To better understand the abnormal softening,

quasi-harmonic approximation (QHA) and density functional theory calculations were em-

ployed and the results are analyzed in Discussion.

Figure 4.28: Schematic animation of E2
2g and A1

1g modes from (a) spin-polarized and (b)
non-spin polarized calculations. The red, green, and tan spheres represent the Fe, Ge, and
Te atoms, respectively. The arrows represent phonon eigenvectors.

Pressure- and temperature- dependent (PTD) Raman spectra

The PTD phonon frequencies and linewidths of E2
2g and A1

1g modes are shown in

Figure 4.29 and Figure 4.30. Figure 4.29 (a) shows Raman spectra of FGT at temperatures

from 8 to 300 K and pressures from 9.43 GPa to ambient pressure. Our PTD data points

cross the phase transition boundary near 6.3 GPa (Figure 4.30 (a)). The PTD phonon
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frequencies of the two modes are higher than those of the PD data, as shown in Figure

4.29 (b), suggesting that the decrease in temperature suppresses the E2
2g softening and

enhances the A1
1g stiffening. The PTD phonon linewidths are shown in Figure 4.30 (b).

The phonon linewidth of A1
1g mode increases monotonically, but for E2

2g mode, its phonon

linewidth decreases cross the phase transition (near 160 K and 6.3 GPa). To quantify the

temperature effects on the phonon frequencies, we assume that the PTD phonon shifts are

a linear combination of the temperature contribution and the pressure contribution. In

this way, the temperature induced shift ∆ωAP,T could be calculated based on the following

equations:

ωP,T = ωAP,300K + ∆ωP,T + ∆ωAP,T , (4.8)

ωAP,T = ωAP,300K + ∆ωAP,T , (4.9)

ωP,300K = ωAP,300K + ∆ωP,300K , (4.10)

where ωP,T represents the PTD phonon frequency. ωAP,300K is our measured phonon fre-

quency at 300 K and ambient pressure. ωAP,T represents the TD phonon frequency. ∆ωAP,T

represents the temperature induced frequency shift under ambient pressure. ωP,300K rep-

resents our measured PD phonon frequency. ∆ωP,300K represents the pressure-induced

frequency shift.

After subtracting the ∆ωP,300K from equation (4.8), ωAP,T of the two modes are

obtained and shown in Figure 4.29 (c). Like the behavior of pressure dependence, the effect

of temperature on A1
1g mode is much weaker than that on E2

2g . A1
1g mode stiffens moderately

by 4.4 cm−1 from 300 to 8 K, while E2
2g mode stiffens by 10.6 cm−1 in the same temperature

range. For A1
1g mode, both the increasing pressure and the descending temperature could
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lead to the phonon stiffening. Therefore, the PTD phonon frequency is higher than the PD

one. For E2
2g mode, the increasing pressure softens the phonon frequency, but decreasing

temperature results in stiffening. The reported TD results under ambient pressure show

a slight stiffening from 300 to 8 K, [28] which is much weaker than our extracted results.

This discrepancy indicates that the effect of decreasing temperature will be enhanced and

could compensate for pressure-induced phonon softening. The discrepancy also suggests

that the linear subtraction in equation (4.8) could not quantify the effect of temperature

and pressure on the phonon frequency of E2
2g mode. Considering higher-order effects by

simultaneous pressure and temperature is needed to explain the PTD phonon frequency.

4.4.4 Discussion

Quasi-harmonic approximation (QHA) assumes that the phonon frequency is volume-

dependent and that the phonon mode remains harmonic at each volume. The Grüneisen

parameter provides the connections between phonon frequency and volume change. The

isothermal mode Grüneisen parameter can be expressed as: γiT = −(d ln(ωi)
d ln(Vi)

)T = B
ωi

(dωidP )T . [21]

ωi is the phonon frequency of ith phonon mode, B is the bulk modulus, which is calculated

according to the PD XRD measurement. [38] Based on our PD data, the γT of E2
2g and A1

1g

are -0.88 and 0.11 respectively. The negative value of E2
2g mode suggests significant phonon

anharmonicity. Furthermore, with increasing pressure, the broadening phonon linewidth in

Figure 4.27 (c) reveals a shorter phonon lifetime and higher phonon scattering rates, which

also suggest the anharmonicity of this mode. On the other hand, our PTD results indicate

that the decreasing temperature could suppress the E2
2g softening with increasing pressure.
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Figure 4.29: Pressure and temperature-dependent (PTD) Raman spectra. (a) Raman spec-
tra of FGT at temperatures from 8 to 300 K and under pressures from 9.43 GPa to ambient
pressure. (b) Comparison between PD data and PTD data. The solid red squares and
blue circles represent the PTD E2

2g and A1
1g, respectively. The hollow red squares and blue

circles represent the PD E2
2g and A1

1g, calculated from the fitted pressure dependence. (c)
Extracted temperature-dependent (TD) phonon frequency. The solid red squares and blue
circles represent the PTD E2

2g and A1
1g, respectively. The hollow red squares and blue circles

represent the extracted TD E2
2g and A1

1g, respectively. The green triangles represent the

TD E2
2g obtained from the literature. [38]

The deep of phonon linewidth near phase transition in Figure 4.30 (b) also suggests that

the phonon scattering rates are suppressed with increasing pressure and decreasing tem-

perature. In Figure 4.27 (c), we find that increasing pressure only slightly broadens the
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Figure 4.30: Magnetic phase transition and spin-phonon interactions. (a) Pressure-
dependent phase diagram. PM and FM represent paramagnetic and ferromagnetic, re-
spectively. The blue square dashed line represents the phase boundary from Heshen et
al. [144]. The red circle dashed line represents the phase boundary from Jie-Min et al.[154].
The black triangle solid line represents our measured data points. (b) Phonon linewidth of
the two measured modes.

phonon linewidth of the E2
2g mode. Therefore, we can infer that the temperature effect is

opposite and plays a more important role in suppressing the phonon scattering rates below

the phase transition.

To understand pressure-induced abnormal softening and anharmonic lattice dy-

namics in FGT, density functional theory and phonon calculations were applied to study

the magnetic properties and Raman frequencies of the experimental structure at ambient

pressure and the relaxed structures at external pressure of 1, 3, 5, and 7 GPa.

Although most studies proposed that Fe3GeTe2 has an interlayer ferromagnetic

spin order, [75] it was reported that the ferromagnetic layers of Fe3GeTe2 order antiferro-

magnetically along the c axis below 152 K. [156] To resolve this inconsistency, we examined

the interlayer magnetic interactions in FGT by comparing the total energy of two magnetic
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states, the ferromagnetic (FM) and antiferromagnetic (AFM) states. Both states contain

ferromagnetic intralayer interactions, but ferromagnetic and antiferromagnetic interlayer

interactions for the FM and AFM states, respectively. Based on our results in Figure 4.31

(b), the AFM state is lower in energy for all pressures used, indicating that the AFM

state is the ground state. However, the FM states are only slightly higher in energy (6-10

meV/Fe) than the AFM states. Therefore, there might be a competition between the FM

and AFM ordering between the FGT layers. Additionally, as pressure increases, the lat-

tice parameters (Figure 4.31 (a)) and Fe-Fe distances (Table 4.8) decrease, leading to more

Fe-Fe orbital overlaps, and less localized magnetic moments on Fe atoms. As a result, spin

exchange interactions become weaker in FGT as the pressure increases. This is supported

by the spin exchange parameters calculated from the SPRKKR calculations. Table 4.8 lists

the values of eight spin exchange parameters in FGT at ambient pressure and at 7 GPa.

The spin exchange interaction between adjacent FeI atoms, J1, decreases from 86.9 to 45.2

meV. J2−J6 and J8 also decrease dramatically from ambient pressure to 7 GPa. Therefore,

external pressure can reduce spin exchange interactions in FGT, which is consistent with

the lower Curie temperature at higher pressure demonstrated in Figure 4.30 (a). Moreover,

magnetic anisotropy was investigated using spin-orbit coupling calculations. We evaluated

the magnetocrystalline anisotropy energy for FGT at external pressure of 0, 1, 3, 5, 7 GPa

by comparing the energy of each FGT with spins in the ab-plane (ESOC(‖a)) and parallel to

the c-axis (ESOC(‖C)), i.e., ∆ESOC = ESOC(‖a)−ESOC(‖c). The results, listed in Figure

4.31 (c), demonstrate that spin parallel to the c-axis is lower in energy at all pressures,

indicating easy axis anisotropy. As pressure increases, the magnetocrystalline anisotropy
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energy becomes smaller, suggesting that the magnetic anisotropy in FGT becomes weaker

under pressure.

Figure 4.31: (a) Calculated pressure-dependent lattice parameters of Fe3GeTe2. (b) Calcu-
lated energy difference between the FM and AFM magnetic states at different pressures. (c)
Pressure-dependence of magnetocrystalline anisotropy energy for the FM and AFM states.

In our phonon calculation, we examined the Raman active modes, E2
2g and A1

1g, for

nonmagnetic, FM state, AFM state without and with spin-orbit coupling. Results are shown

in Table 10. For the E2
2g mode, under external pressures, the calculated frequency increases

dramatically from the nonmagnetic state to the FM state. In addition, the AFM state is

∼10 cm−1 higher in frequency than the FM state. Therefore, magnetic ordering has a high
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Table 4.8: Spin exchange parameters for experimental and 7 GPa structures obtained from
SPRKKR calculations.

Interactions Spin exchange # of pairs
Distance (Å) J (meV)

Ambient Pressure 7 GPa Ambient Pressure 7 GPa

FeI - FeI

J1 2 2.558 2.463 86.9 45.2

J3 12 4.005 3.872 -9.33 -6.34

J5 12 4.752 4.588 -4.50 -1.40

J7 2 5.630 5.208 1.03 -2.63

J8 12 6.909 6.489 -2.21 -1.18

FeI - FeII
J2 12 2.642 2.552 22.3 16.4

J6 12 4.798 4.639 3.73 3.66

FeII - FeII J4 6 4.005 3.872 -4.00 -2.06

impact on Raman frequency, suggesting strong spin-phonon coupling in the system. [75]

AFM state with spin-orbit coupling has a slightly lower Raman frequency than the AFM

state, so spin-orbit coupling also has some impact on the frequency of the E2
2g mode. As

discussed in the previous paragraph, increased pressure could reduce the spin exchange

interactions and spin-orbit coupling effect in FGT, hence reducing the spin-phonon coupling

in the system, resulting in an overall phonon softening. In other words, our calculations

examined ideal FM and AFM states, and our results demonstrated E2
2g mode stiffens as

pressure increases. However, the real spin arrangement in FGT can be paramagnetic above

critical temperature and pressure (Figure 4.30 (a)), or in general FM or AFM ordering

with different magnetic domains depending on the strength of spin exchange interactions

and magnetic anisotropy controlled by temperature and pressure. For example, as pressure

increases, spin exchange interactions and spin-orbit coupling effect decrease, while interlayer

FM/AFM competition increases. Consequently, the compound will be more magnetically
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Table 4.9: Calculated frequencies (cm−1) of Raman active modes under various pressure.

Pressure

(GPa)

E2
2g A1

1g

Non-magnetic FM AFM AFM+SOC Non-magnetic FM AFM AFM+SOC

Ambient Pressure 57.7 114.0 115.7 112.9 109.4 125.2 126.6 127.0

1 68.7 108.7 126.2 122.1 139.8 140.0 141.4 146.7

3 87.3 119.3 128.3 128.1 149.1 144.0 159.7 146.0

5 61.9 123.6 133.4 132.0 152.0 156.0 162.2 126.8

7 75.1 128.8 137.8 136.3 156.6 162.5 156.4 155.6

disordered with weaker spin-phonon coupling and exhibit lower frequency of the E2
2g Raman

mode. Therefore, the interplay of FM/AFM competition, pressure-induced decline of spin

exchange interactions and spin-orbit coupling effect, leads to an overall softening of the E2
2g

Raman mode as the pressure increases. For the A1
1g mode, the frequency change from the

non-magnetic state to magnetic states and AFM+SOC state is small, so the impact of spin

exchange and spin-orbit coupling is smaller compared to the E2
2g mode. Consequently, the

A1
1g mode has smaller frequency shift under pressure.

4.4.5 Conclusion

We conducted the pressure-dependent (PD) and pressure- and temperature- de-

pendent (PTD) Raman scattering measurements and performed first-principles pressure-

dependent phonon calculations on FGT. We observed the anomalous E2
2g softening in PD

data, but the DFT predicts stiffening for simple FM or AFM states with increasing pres-

sure, indicating a strong phonon anharmonicity and spin-phonon coupling. Using the linear

pressure dependence of E2
2g and A1

1g modes, we extracted the temperature-induced phonon
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frequency shift from PTD data. The obtained temperature effect was stronger than the

reported direct results, indicating that the higher-order contribution from simultaneous

pressure and temperature effect is non-negligible. Our results suggest that the anomalous

phonon softening may be related to spin-phonon interactions and an interplay of FM/AFM

competition, spin-orbit coupling and spin exchange interaction weakening under pressure.
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Chapter 5

Conclusion

Inelastic scattering techniques have been used to measure chiral phonons in topo-

logical semimetal WC, investigate the lattice dynamics in monolayer and bulk WSe2, quan-

tify the vdW forces in layered PdSe2, study the anharmonic lattice dynamics in para-

terphenyl and observe the anomalous phonon softening in Fe3GeTe2. Most of the exper-

iments were performed under extreme conditions, and first-principles phonon calculations

were interpreted to provide supportive explanation for our observations.

The work about chiral phonons by IXS was the first attempt in probing phonon

chirality directly throughout the full Brillouin zone in materials with broken inversion sym-

metry. It paves a new avenue in measuring chiral phonons and study the effects of phonon

chirality in phonon-phonon/spin interactions for designing phononic devices. It also points

out that the present inelastic scattering theory of phonons needs to be revised to consider the

role of phonon/photon polarizations. In order to improve the scattering theory, we tested

and excluded several models based on the current-current correlation function according to
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the atomic motions. More efforts should be paid in developing and verifying the scattering

theory by chiral phonons in various systems. In addition to the scattering intensity, it is

also worthwhile to study the relation between phonon linewidth and phonon chirality. Such

relation is important in finding the selection rules in three-phonon and four-phonon scat-

tering processes, and provide discerning insights in studying the thermal conductivity and

thermal hall effect in chiral materials.

By combining temperature-dependent IXS and first-principles calculations, we

found a monolayer-like lattice dynamics in bulk WSe2. This observation indicates that lat-

tice dynamics in bulk WSe2 hold the characterization of monolayers. Since it is extremely

difficult to conduct the full phonon dispersion measurement on monolayer system due to its

low X-ray absorption and scattering intensities. The measured acoustic phonons in the bulk

system could be used as reference to study the lattice dynamics in monolayer system. With

the rapid development in the research and industrial applications of low-dimensional mate-

rials, it is of great importance to extend the comprehensive lattice dynamics measurement

from bulk system to 2D system or thin films. Even though electron energy loss spectroscopy

has been reported to determine phonon dispersion of free-standing graphene, the scattering

intensity and resolution still need to be improved. [172] IXS can be the possible solution

to this challenge on superlattice and thin films by using longer data acquisition time when

the X-ray source become more brilliant in the future. Such breakthrough will open a new

window to investigate the physical and chemical properties of low-dimensional materials.

High-pressure lattice dynamics in para-terphenyl, layered PdSe2 and Fe3GeTe2

were obtained by using INS, IXS, and Raman scattering respectively. The selection on
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inelastic scattering techniques and DAC for high-pressure studies is purposeful. In para-

terphenyl, we aimed at using the lattice dynamics to study the phase transition. It is not

required to increase pressure to GPa level at low temperature, the sample is not a single

crystal, Raman spectrometer could only observe limited number of phonon modes, thus we

use VISION for the measurement. In layered PdSe2, we aimed at quantifying the vdW

interactions by measuring the pressure-dependent acoustic phonon dispersion. It is difficult

to have a large PdSe2 single crystal and find suitable DAC to increase pressure over 5 GPa

for INS, so IXS comes to the best solution. In Fe3GeTe2, we changed the temperature and

pressure simultaneously, the DAC was mounted inside the cryostat, it could only be realized

in Raman scattering measurement. High-pressure research on lattice dynamics in monolayer

and layered materials, such as graphene and graphite, is becoming increasingly intensive

recently. While the quantification of vdW interactions was not reported previously, high-

pressure IXS on layered material make it possible and provide a new pathway in probing

vdW interactions experimentally. However, this method is rarely reported because it is

extremely difficult to prepare the high-quality tiny bulk sample, which also needs to be

loaded in specific orientation in the DAC to measure all the phonon branches. It is also

interesting to extend the high-pressure IXS for chiral phonon measurements in layered

materials, like Tellurium (Te). The various scattering intensity of chiral phonons at each

pressure can reveal the evolution of phonon chirality, which help us realize the manipulation

on chiral phonons by pressure.
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Koo, and M-H Whangbo. Experimental and theoretical investigation on the rela-
tive stability of the pds2-and pyrite-type structures of PdSe2. Inorganic chemistry,
43(6):1943–1949, 2004.

[132] Andrea Splendiani, Liang Sun, Yuanbo Zhang, Tianshu Li, Jonghwan Kim, Chi-Yung
Chim, Giulia Galli, and Feng Wang. Emerging photoluminescence in monolayer MoS2.
Nano letters, 10(4):1271–1275, 2010.

[133] Motohiro Suzuki, Yuichi Inubushi, Makina Yabashi, and Tetsuya Ishikawa. Polariza-
tion control of an X-ray free-electron laser with a diamond phase retarder. Journal of
synchrotron radiation, 21(3):466–472, 2014.

131



[134] AD Taylor, EJ Wood, JA Goldstone, and J Eckert. Lineshape analysis and filter
difference method for a high intensity time-of-flight inelastic neutron scattering spec-
trometer. Nuclear Instruments and Methods in Physics Research, 221(2):408–418,
1984.

[135] TS Toellner, A Alatas, and AH Said. Six-reflection mev-monochromator for syn-
chrotron radiation. Journal of synchrotron radiation, 18(4):605–611, 2011.

[136] Atsushi Togo, Fumiyasu Oba, and Isao Tanaka. First-principles calculations of the
ferroelastic transition between rutile-type and CaCl2-type SiO2 at high pressures.
Physical Review B, 78(13):134106, 2008.

[137] Atsushi Togo and Isao Tanaka. First principles phonon calculations in materials
science. Scripta Materialia, 108:1–5, 2015.

[138] Hans Tornatzky, Roland Gillen, Hiroshi Uchiyama, and Janina Maultzsch. Phonon
dispersion in mos2. Physical Review B, 99(14):144309, 2019.

[139] B Toudic, P Launois, F Moussa, A Girard, and H Cailleau. Pressure dependence of
conformational instabilities in crystalline p-terphenyl. Ferroelectrics, 80(1):241–244,
1988.

[140] SN Vaidya and GC Kennedy. Compressibility of 18 molecular organic solids to 45
kbar. The Journal of Chemical Physics, 55(3):987–992, 1971.

[141] Ganesan Venkataraman, Lee A Feldkamp, and Vinod C Sahni. Dynamics of perfect
crystals [by] G. Venkataraman, LA Feldkamp [and] VC Sahni. 1975.

[142] Guorui Wang, Zhaohe Dai, Junkai Xiao, ShiZhe Feng, Chuanxin Weng, Luqi Liu,
Zhiping Xu, Rui Huang, and Zhong Zhang. Bending of multilayer van der Waals
materials. Physical Review Letters, 123(11):116101, 2019.

[143] Hengjia Wang and Murray S Daw. Anharmonic renormalization of the dispersion
of flexural modes in graphene using atomistic calculations. Physical Review B,
94(15):155434, 2016.

[144] Heshen Wang, Runzhang Xu, Cai Liu, Le Wang, Zhan Zhang, Huimin Su, Shanmin
Wang, Yusheng Zhao, Zhaojun Liu, Dapeng Yu, et al. Pressure-dependent interme-
diate magnetic phase in thin Fe3GeTe2 flakes. The Journal of Physical Chemistry
Letters, 11(17):7313–7319, 2020.

[145] Qing Hua Wang, Kourosh Kalantar-Zadeh, Andras Kis, Jonathan N Coleman, and
Michael S Strano. Electronics and optoelectronics of two-dimensional transition metal
dichalcogenides. Nature nanotechnology, 7(11):699–712, 2012.

[146] R Wang, Y Gao, Z Huang, and X Chen. Superconductivity at 43 K in a single CC
bond linked terphenyl. arxiv 2017. arXiv preprint arXiv:1703.05804.

[147] Ren-Shu Wang, Yun Gao, Zhong-Bing Huang, and Xiao-Jia Chen. Superconductivity
above 120 kelvin in a chain link molecule. arXiv preprint arXiv:1703.06641, 2017.

132



[148] Bin Wei, Junyan Liu, Qingan Cai, Ahmet Alatas, Meihua Hu, Chen Li, Jiawang Hong,
et al. Giant anisotropic in-plane thermal conduction induced by anomalous phonons
in pentagonal PdSe2. Materials Today Physics, 22:100599, 2022.

[149] Bin Wei, Qiyang Sun, Chen Li, and Jiawang Hong. Phonon anharmonicity: a perti-
nent review of recent progress and perspective. Science China Physics, Mechanics &
Astronomy, 64(11):1–34, 2021.

[150] M-H Whangbo and H-J Koo. Orbital interaction analysis of cooperative Jahn–Teller
distortion, orbital ordering, spin ordering, and spin exchange interactions in magnetic
solids. Solid state sciences, 4(3):335–346, 2002.

[151] B Wyncke, F Brehat, and A Hadni. Variation du spectre infrarouge lointain du
p-terphényle entre 300 k et 1, 3 k. Journal de Physique, 38(9):1171–1176, 1977.

[152] Xiaoxiang Xi, Zefang Wang, Weiwei Zhao, Ju-Hyun Park, Kam Tuen Law, Helmuth
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