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2 Y. Y. Kagan1 INTRODUCTIONA large number of traditional fault plane and moment ten-sor solutions is presently available. Thus, for individualevents we can study varying focal mechanisms to see whetherthey yield any information regarding the spatial orientationsof the earthquakes and microearthquakes that comprise afault system (Kagan 2006). Additionally a simple method isneeded to compare focal mechanism solutions obtained bydi�erent methods. For accessible discussion of earthquakefocal mechanisms see Jost & Herrmann (1989) and Pujol& Herrmann (1990). Methods for determining focal mecha-nism are discussed by Ekstr�om et al. (2005, and referencestherein) and by Snoke (2003).In this paper we consider three-dimensional (3-D) ro-tations by which one double-couple (DC) earthquake sourcecan be turned into another arbitrary DC. Presently di�erentorientations of earthquake focal mechanisms are studied byseparately displaying 2 or 3 DC axes on an equal-area plot(see, for example, Bressan et al. 2003). Kagan (1991) pub-lished an algorithm to determine the 3-D rotation param-eters of a DC earthquake source. That method was basedon transforming a focal mechanism solution to a normalizedquaternion, and the problem of the 3-D rotation was solvedby applying quaternion algebra (Altmann 1986). Kuipers(2002) and Hanson (2005) present a more accessible math-ematical treatment of 3-D rotations with many explicit for-mulae.Due to the symmetry of DC sources, there are fourpossible rotations with the angle less or equal to 180� be-tween two di�erent mechanisms. This symmetry also meansthat the standard methods for determining 3-D rotation (seethe citations above) need modi�cations to accommodate it.Thus, four di�erent rotation angles and four rotation polepositions (the intersection of the rotation axis with a refer-ence sphere) need to be found. Two spherical coordinates ona reference sphere can be used to describe each pole.The quaternion method (Kagan 1991) has been usedto evaluate these rotations in many investigations of earth-quake focal mechanisms (see, for example, Frohlich & Davis1999; Kagan & Jackson 2000; Kagan 2003; Bird & Kagan2004; Okal 2005; Pondrelli et al. 2006; Matsumoto et al.2006). Among these applications are �nding a di�erence infocal mechanism solutions obtained through diverse meth-ods; analysis of seismicity patterns; investigating connec-tions between tectonic stress �elds and earthquake sourcemechanisms, and so on. Kagan (1991, Section 4) mentionedother possible uses of the algorithms for calculating DC ro-tation.For most of these studies, only the minimum rota-tion angle between two focal mechanism solutions wasconsidered. This angle can be obtained by a simple for-mula. The relatively complex original quaternion pro-gramme (Kagan 1991) was created in fortran, a com-puter language not widely used now. (However, P. Bird re-cently reworked the programme in fortran90, it is avail-able from his Web site ftp://element.ess.ucla.edu/2003107-esupp/Quaternion.f90). In contrast, the equations in this pa-per can be easily programmed in any software by a few linesof code. Moreover, since the knowledge of quaternions isnot common among geophysicists, we largely avoid their usehere.

We �rst describe how to calculate the minimum 3-D ro-tation angle between two focal mechanism solutions, start-ing with the simplest methods. Then we obtain expressionsfor all four angles and rotation pole positions. Initially, wedescribe algorithms that can be used with the original fo-cal mechanisms presented in earthquake catalogues. There-after, we consider those transformations necessary to obtaina more complete and accurate description of the 3-D rota-tions. These rotation variables may be used in more exten-sive investigations of earthquake occurrence geometry andmechanics.2 DOUBLE COUPLE REPRESENTATIONA seismic moment tensor is a symmetric 3 � 3 matrixm = �����m11 m12 m13m21 m22 m32m31 m32 m33 ����� ; (1)and it has six degrees of freedom. The moment tensor isassumed to be traceless or deviatoric (Aki & Richards 2002),i.e., its �rst invariant is equal to zero, I1(m) = 0; hence thetensor number of degrees of freedom is �ve.Moreover, there is signi�cant statistical evidence(Frohlich & Davis 1999; Kagan 2003; Frohlich 2006, pp. 228-235) that for most tectonic earthquakes, the moment tensorcan be approximated by a DC source. This means that thethird invariant of the moment tensor is also zero, I3(m) = 0.Thus, the parameter number is four. If we consider a nor-malized solution, this reduces the total number of degreesof freedom to three.The normalized eigenvectors of matrix (1) are vectorst = [ 1; 0; 0 ];p = [ 0; 1; 0 ];b = [ 0; 0; 1 ] : (2)Three orthogonal axes t, p, and b describe the radiationof P -waves from a point DC source (Frohlich 1996; Aki &Richards 2002). Since the tensor is symmetric, the directionof vectors can be selected arbitrarily; traditionally the axesare directed downwards. Each axis is parameterized by twoangles: plunge � and azimuth �. The normalized DC sourceis de�ned by three degrees of freedom, therefore three ofthese angles can be calculated if the other three are known.The orientation matrix of a focal mechanism solution isthe direction cosine matrix (DCM)D = ����� t1 p1 b1t2 p2 b2t3 p3 b3 ����� ; (3)where each vector coordinate is calculated as, for example,t1 = cos(�t) cos(�t);t2 = cos(�t) sin(�t);t3 = sin(�t) ; (4)where �t and �t are the plunge and the azimuth of the t-axis.All columns and rows of the orthogonal matrix (3) arenormalized orthogonal vectors; hence, for examplet23 + p23 + b23 = 1 ; (5)



Double-couple rotation 3orsin2 �t + sin2 �p + sin2 �b = 1 ; (6)where �t is t-axis plunge angle, etc. (Frohlich 1992).The determinant of the matrix D (Eq. 3) isDet (D) = I3 = t1p2b3 + t2p3b1 + t3p1b2 �t1p3b2 � t2p1b3 � t3p2b1 ; (7)where I3 is the third invariant of the matrix and is equiva-lent to the determinant. For the proper rotation matrix, thedeterminant is 1.0. If it is equal �1:0, the transformation isa rotation plus a reection or an improper rotation.As mentioned above, to make the focal mechanism rep-resentation unique, the eigenvectors are pointed down. How-ever, the handedness of the coordinate system formed by thevectors can change as the result of such an assignment. Inmost of our considerations, we use the right-handed coor-dinate system (cf., Kuipers 2002, pp. 47-48, 143; Altmann1986, pp. 29, 52), centered on each earthquake centroid. Weuse the t-, p-, and b-axes of the earthquake focal mechanismas coordinate axes.In Fig. 1 we display an example of the right-handedcoordinate system for a DC source. The system can be ar-bitrarily rotated, and the handedness of the system is pre-served. The left-handed system can be obtained in this pic-ture if one inverts the direction of any individual axis.If no vector has a 90� plunge, we can look at their sur-face projection; the clockwise tpb arrangement correspondsto the right-hand system and the tbp corresponds to theleft-hand. Otherwise, the handedness can be found by cal-culating the matrix determinant (7); if it is equal to �1,the system is left-handed. In principle, rigid rotation can bede�ned for the left-handed systems. However, in that casethe handedness should be kept uniform over the whole focalmechanism set.The system shown in Fig. 1 corresponds to the identitymatrixI = ����� 1 0 00 1 00 0 1 ����� ; (8)where all the axes have coordinates as in (2).To insure the `right-handedness' of the system, we pre-serve the downward direction of the t- and p-axes, as givenin the catalogues of the fault-plane solutions. However, thedirection of the b-axis is chosen according to the right-handrule. This can be accomplished either by inspecting the con-�guration of the axes, or by calculating the b-axis coordi-nates as a vector product of the t- and p-axes. We will callthis system the tpb-system of coordinates.3 ROTATION REPRESENTATIONThe orientation DCM matrix (3) can be considered a rota-tion matrix which transforms the identity matrix (8) intoone corresponding to a particular DC solution. For any vec-tor v0, the rotated vector v isv = Dv0 ; (9)orv0 = DT v ; (10)

where DT is a transposed matrix.Thus, for two vectors or two rotated systems of coordi-nates like (3) we can obtainv0 = D1DT2 v00 = Rv00 ; (11)where R is an orthonormal rotation matrix: a matrix prod-uct of two orientation (DCM) matrices. The elements of Rare calculated asR11 = t01 t001 + p01 p001 + b01 b001 ;R12 = t01 t002 + p01 p002 + b01 b002 ;R21 = t02 t001 + p02 p001 + b02 b001 ; (12)and so on.For the rotation matrix R, the rotation angle � is(Kuipers 2002, pp. 57, 163)� = arccos f[ Tr (R)� 1] =2g= arccos h R11 +R22 + R33 � 12 i ; (13)where Tr (R) is the trace of the matrix R and180� � � � 0�. Using (12) we obtainR11 + R22 +R33 = t01 t001 + p01 p001 + b01 b001 +t02 t002 + p02 p002 + b02 b002 +t03 t003 + p03 p003 + b03 b003 ; (14)orR11 + R22 +R33 = t0 � t00 + p0 � p00 + b0 � b00 ; (15)where t0 � t00 is a dot product of two vectorst0 � t00 = t01 t001 + t02 t002 + t03 t003 : (16)Coordinates of the rotation axis e, i.e., axis which is in-variant during the rotation, are computed as (Kuipers 2002,p. 66)e1 = (R23 �R32)= sin(�) ;e2 = (R13 �R31)= sin(�) ;e3 = (R12 �R21)= sin(�) : (17)Thus, for example, (see Eq. 12)e3 = �(t01 t002 � t02 t001 ) + (p01 p002 � p02 p001 )+ (b01 b002 � b02 b001 ) �= sin(�) : (18)4 DOUBLE COUPLE ROTATION4.1 Minimum rotation angle evaluation4.1.1 Rotation angle � � 90�As a rule, the handedness of the coordinate system is in-variant if we change the direction of any two axes. In 3-Dthere are four possibilities: the original coordinate con�g-uration and three pair inversions. In the eigenvector ma-trix (3) all axes can be inverted pairwise; as we will seelater (Section 4.2), this explains why a DC source canbe rotated by four di�erent rotations into another source(180� � � � 0�).Practical applications often use the minimum angle ofthe four rotation angles. Thereafter, unless speci�ed other-wise, we use the notation



4 Y. Y. Kagan� = �min : (19)The minimum value for � is zero, when both solutions areidentical. The maximum �-value depends on the directionof a rotation axis.Fig. 2 displays the maximum values of the minimumrotation angle�max = max (� ) ; (20)in one octant in a coordinate system formed by eigenvectorsof the moment matrix (1). The angles are shown in the sys-tem coordinates formed by the axes of the �rst DC source(see also below Eqs. 34 and 35). Since the angle pattern hasa C3 symmetry (Altmann 1986), the axis order is irrelevant,so instead of the tpb axes, we indicate 1-2-3 axes in theplot. Therefore, the �max-value for a DC source is at least90� and cannot exceed 120�120� � �max � 90� ; (21)(Kagan 1991; Frohlich & Davis 1999).As Eqs. 13-16 suggest, to determine angle � we need toknow the dot products of the focal mechanism axes. Each ofthe dot products t0 � t00, p0 �p00, and b0 �b00 (see Eq. 16), arecosines of angles i between two orientations of the coordi-nate axes, e.g.,t = arccos ( t0 � t00 ) ; (22)etc. The angles i, arbitrarily permuted, should satisfy thetriangle rule1 � 2 + 3 : (23)For relatively small angles,cos � � 1 ��2=2 ; (24)and (see Eqs. 13-15)�sm � r2t + 2p + 2b2 : (25)Angle � satis�es inequalitiesmax � � � maxp3=2 ; (26)where max is the maximum of the coordinate axis angles.If the 3-D rotation is around any of the eigenvector axes,one of the -angles is zero, and the other two are equal. Inthis case (25) is exact. The maximum error " in using (25) isreached when all -angles are equal, and the rotation axis isinclined to all the axes at the angle arccos ( 1=p3 ) � 54:74�(Kagan 2005)" � arccos [ (3 cos  � 1 )=2 ] � p3=2 : (27)See Eqs. 13, 25, and Eq. 29 below.Since angles i are between the axes, they should not ex-ceed 90�. Hence the dot products (16) may be made greateror equal to zero. Thus, the simplest formula for the minimumrotation angle � calculation is an adaptation of (13)� = arccos h12 � j t0 � t00 j + jp0 � p00 j + jb0 � b00 j � 1 � i :(28)This formula yields the correct value of the rotation an-gle for � < 90�. The coordinate system handedness ofboth solutions can be arbitrary. However, if � > 90� (28),

can produce an angle value which exceeds 90�, but is incor-rect by being too small. It occurs because the rigid rotation� > 90� may result in one of the axis dot products (16)being negative. Thus, if Eq. 28 is used, the direction of theaxis has been reversed, producing the system con�gurationof the opposite handedness. In this case the rotation angleis not properly de�ned.In Fig. 3 we display the error curve (27) as well as thevalues of the rotation angle � for magnitude M � 6:0 shal-low (depth 0-70 km) earthquakes in the CMT catalogue (Ek-str�om et al. 2005). These angles are calculated by Eq. 28 andby the approximate formula (25). The di�erence is plottedagainst �. The small di�erence is not surprising, because(24) is accurate within 1% for angles up to 38�. The maxi-mum error is less than 0:5� for � < 45�, and since the bestaccuracy of the � determination is above 10� (Kagan 2000;2003), Eq. 25 can be used for most calculations.4.1.2 Rotation angle � � 90�In Table 1 we show the number of negative dot productsthat can be obtained for two arbitrary DC solutions. If theorientation of these solutions is opposite (shown in Table 1by their determinants I3 to be of di�erent signs), we canchange the vector's sign. This change reduces or increasesthe number of negative dot products by one. Two negativedot products can be inverted without changing the system'shandedness.Thus, if the rotation angle derived by using (28) exceeds90�, we need to check the handedness of both solutions andthe number of negative dot products to obtain the correct� value. If these numbers are the same as in the second orthird column of Table 1, the � estimate is correct. If thesenumbers are like those in the last column of the Table, theangle is incorrect (see below Eq. 30 and the explanation).Thus, we must use a more general equation to obtain theminimum angle�i = arccos h12 � t0 � t00 + p0 � p00 + b0 � b00 � 1 � i : (29)For � > 90� to obtain the minimum rotation angle �in the above formula, the smallest absolute value dot prod-uct should be negative, and the other products should bepositive. Since the direction of any vector pair can be al-tered without changing the handedness of the rotation ma-trix (Section 2), there are ordinarily four di�erent angles�i � 180� for rotating one DC solution into another.To understand why the solutions behaviour changeswhen � � 90�, note the expression of the rotation ma-trix diagonal terms (Kuipers 2002, Eq. 7.16) through therotation angle and the rotation axis coordinates (17)t0 � t00 = cos t = e21 + (e22 + e23) cos � ;p0 � p00 = cos p = e22 + (e23 + e21) cos � ;b0 � b00 = cos b = e23 + (e21 + e22) cos � : (30)If � � 90�, cos � � 0, and thus all the axes dot prod-ucts are positive, and i � 90�. However, if � > 90�,depending on the values of the rotation axis coordinates,some dot products may become negative. For � = 120�all the dot products are zero, because the DC eigenvectorsexchange their directions and the -angles between all axesare 90� (see Frohlich & Davis 1999, Fig. 3).



Double-couple rotation 5Using (30), we calculate the angle �neg. For rotationangle�max � � � �neg ; (31)(see Eq. 20) at least one of the dot products becomes neg-ative. In Fig. 4 we display the di�erence of two angles�max � �neg (the distribution of the �max angle is shownin Fig. 2). The maximum di�erence (more than 18�) is fora rotation vector between any two axes. For a rotation polein this part of the reference sphere, if � > 90�, all or al-most all appropriate dot products are the same as in the lastcolumn of Table 1.Fig. 5 shows the distribution of solutions with negativedot products in the CMT catalogue (Ekstr�om et al. 2005).The rotation poles are concentrated according to the isolinesin Fig. 4. In Fig. 6 we display the position of the rotationpoles when the rotation angle is restricted to � � 105�. Herethe pattern is inuenced by both angle distributions, shownin Figs. 2 and 4.4.2 Rotation vector determinationTo obtain the rotation vector coordinates (17), we proceedsimilarly to calculation �i by Eq. 29. For example, in Eq. 18we change the sign of any pair of vectors. This leads to thesign change of the dot products in Eq. 29. Such a changewould reverse the sign for two arbitrary terms in ordinarybrackets of (18). Thus, we obtain simultaneously a set offour angles �i and their rotation axes e(i).The spherical coordinates (colatitude � and azimuth  )of the rotation pole on a reference sphere can also be com-puted as� = arccos(e3) : (32)and = arctan(e2=e1) ; (33)� = 0� correspond to the vector pointing down. Signs ofe1 and e2 must be noted to properly calculate the azimuth:360� >  � 0�.The above calculations provide the pole position at thelocal geographic system. If we want to investigate the DCrotation as seen, for instance, from the �rst DC source, weneed to rotate the reference sphere accordinglye0 = DT1 e : (34)Rotation angles �i are not inuenced by this transforma-tion.We illustrate the computations in Tables 2 and 3. Ta-ble 2 shows four pairs of earthquakes from the CMT cat-alogue (Ekstr�om et al. 2005). We display their focal mech-anisms in Fig. 7. In the last column of Table 2 we showthe determinant of the DCM matrix (3) for the DC focalmechanism of each event.Table 3 shows axis dot products, the rotation angles,and coordinates of rotation poles for all the earthquake pairsfrom Table 2. In the �rst line for each event pair, the min-imum angle � is evaluated using a simple formula (28) or(29).For the �rst earthquake pair in Table 3, inspecting thenumbers of negative dot products and comparing them to

Table 1 values, we see that Eq. 28 would yield an incorrectanswer, so (29) should be used to calculate � (row 1). In thesubsequent rows (2-5) we show the parameters of four rota-tions for each pair determined as discussed above. Beforecarrying out this evaluation, the handedness of both solu-tions was adjusted to be consistent. For other earthquakecouples, Eq. 28 is su�cient to calculate � (rows 6, 11, and16). As Eq. 17 shows, the rotation vector e coordinates de-termination is impossible when sin � = 0. This correspondseither to � = 0� or � = 180�. The latter case is thebinary rotation (Altmann 1986). The algorithm failure todetermine the rotation axis coordinates is connected withunavoidable singularities in working with the rotation ma-trices and the Euler angles (Kuipers 2002, pp. 74, 152). Forthese rotations, o�-diagonal terms in the rotation matrix Rare either zero or have the same value, so the e coordinatevalues in (17) are zero.Only the quaternion application enables us to consis-tently avoid this di�culty. The parameters determined byusing the quaternion technique (Kagan 1991) in Table 3 areusually the same as those obtained from rotation matrixanalysis. However, as explained above, the coordinates ofthe rotation axis for � = 180� are not de�ned in the lattercase. In Table 3 we illustrate this in rows 9 and 10, where therotation axis coordinates are obtained from the quaternionrepresentation.As we indicate in (34), if the rotation pole coordinatesare preferred in the system connected with the �rst DC, weshould recalculate the rotation vector e. As an example, weperform such a computation for the �rst solution pair inTable 3 (row 2)DT1 = 0:1187 0:7439 0:65770:2813 �0:6604 0:69620:9522 0:1024 �0:2877 ;e1 = 0:9026; �0:3227; 0:2850 ;e01 = 0:0545; 0:6655; 0:7444 : (35)The new colatitude �0 and azimuth  0 of the rotation poleare:�0 = 41:9�; �0 = 85:3�; and � = 99:1� : (36)Using Eqs. 26-29 by Kagan (2005) we can convert the ro-tation vector coordinates into equal-area octant projectionX = 0:451 and Y = 0:327. This point is shown in Fig. 5.As another example, the rotation axis from row 7 of Table 3would coincide with the b-axis (its coordinates are X = 0:0and Y = 0:919, not shown in Fig. 5).In general, Eqs. 13-26 are valid if the i angles are mea-sured between two di�erent DC solutions, i.e., we can calcu-late a 3-D rotation angle � from these measurements. How-ever, although all the i have three degrees of freedom (thesame number required to characterize the 3-D rotation), thelatter angles do not fully specify the 3-D rotation. It is pos-sible to obtain the rotation angle (�) from the angle di�er-ences (i) for three axes, but we cannot obtain a unique setof the rotation axis components.Since the cosines of the angles are expressed throughsquares of the quaternion components, 24 = 16 di�erentquaternions (and eight rotations, since quaternions of oppo-site signs characterize the same rotation) correspond to a



6 Y. Y. Kaganset of coordinate axis components (Kagan 1991; 2005). Sim-ilar conclusions can be derived from Eq. 25. The rotationpoles for a set of three dot products are situated in all eightoctants of the reference sphere. Hence, there are eight rota-tions having the same angle � and the same dot productsof coordinate axes. These eight should not be confused withfour rotations transforming one DC source into another. Thenumber of these rotations is due to the symmetry of the DC.4.3 Computational considerationsThe plunge (�) and the azimuth (�) angles (as in Eq. 4)are usually rounded o� to integer values in earthquake cat-alogues. This may cause two problems: (a) the accuracy ofangles ( in Eq. 22 or �i in Eq. 29) determination cannotexceed 1� and (b) axes are not exactly orthogonal. The sec-ond condition may cause di�culties in further analysis ofthe rotation. Correction methods for orthogonality and lowprecision are not unique. Therefore, di�erent techniques maylead to di�erences in the �nal results (sometimes as large as1� to 2�).Kagan (1991) avoided these di�culties by orthogonal-izing axes and calculating the b-axis to form the right-handcoordinate system (see Section 2). Another solution wouldbe to calculate eigenvectors of the matrix (1) with su�cientprecision and carry out the computations with those values.Finally, for user convenience we would present equationsto obtain eigenvectors from geologic/tectonic representationof earthquake focal mechanisms (Kagan 2005). Such rep-resentation is common in catalogues based on �rst-motionfocal mechanism determination. The standard parameteri-zation of a fault rupture plane involves de�ning its strike(azimuth) �, dip �, and rake � (Aki & Richards 2002). Theplane orthogonal to the fault plane and slip vector is anauxiliary nodal plane.Coordinates of the eigenvectors can be obtained fromboth sets of �, �, and � anglest1 = (� sin � sin � + cos � cos � + sin � cos � sin �)=p2 ;t2 = (cos� sin � + sin � cos � � cos � cos � sin �)=p2 ;t3 = (� cos � � sin � sin �)=p2 ;p1 = (� sin � sin � � cos � cos � � sin � cos � sin �)=p2 ;p2 = (cos� sin � � sin � cos � + cos � cos � sin �)=p2 ;p3 = (� cos � + sin � sin �)=p2 ;b1 = cos � sin � � sin � cos � cos � ;b2 = sin � sin � + cos � cos � cos � ;b3 = sin � cos � : (37)The vectors' direction can be inverted downwards if needed.5 DISCUSSIONDouble-couple earthquake mechanisms can be describedfully by specifying three mutually perpendicular axes. Whencomparing two DCs, it is often useful to know what rotationangles about what axis would transform one solution intothe other. Kagan (1991) showed how to do this with quater-nions. In this paper we explain how `ordinary' matrices andvectors can be used to obtain 3-D rotation parameters.

The orthogonal matrix D or any other orthonormal ma-trices discussed above can be converted to the quaternionrepresentation (Kagan 1991; Hanson 2005, pp. 148-150). Al-though both approaches can be viewed as equivalent, Han-son (2005, Ch. 16) argues that for many applications vectoroperations are more e�cient computationally. However, thequaternion technique has many advantages.Representing a 3-D rotation as a quaternion (4 num-bers) is more compact than representing it as an orthogonalmatrix (9 values). Furthermore, for a given axis and angle,one can easily construct the corresponding quaternion, andconversely, for a given quaternion one can easily read o� theaxis and the angle. This is harder to do with matrices or Eu-ler angles (see Altmann 1986; Kuipers 2002; Hanson 2005;a more compact and accessible description can be obtainedfrom the Wikipedia by `Googling', for instance, Rotationrepresentation, etc.).When composing several rotations on a computer,rounding errors necessarily accumulate. A quaternion that isslightly o� still represents a rotation after being normalized.However, a matrix that is slightly o� need not be orthogonaland is therefore harder to convert back to its proper form.The quaternion treatment, generally, is superior in itselegance and simplicity, especially for handling a sequence ofrotations (Kuipers 2002; Hanson 2005). For example, Kagan(1982) used the quaternion formalism to simulate propaga-tion of an earthquake fault with stochastic 3-D rotations ofmicro-dislocations. Moreover, as we have seen above, otherrepresentations of 3-D rotations experience singularities. Inthe quaternion representation of 3-D rotations, that problemis avoided (Kuipers 2002, pp. 74, 152).An additional obstacle to determine the rotation pa-rameters of earthquake sources is the symmetry of the DCfocal mechanism. As we have seen in Sections 4.1 and 4.2,when using orthonormal matrices and eigenvector dot prod-ucts, signi�cant complications must be overcome if the ro-tation angle exceeds 90�. Again, quaternion algebra allowsfor taking the DC symmetry into account (Kagan 1991) andprocessing all the input information automatically. There-fore, the advantage of simplicity for the orthonormal ma-trices method may decrease or even disappear, if we try tocalculate all the DC rotation parameters.6 CONCLUSIONSBelow we summarise the proposed algorithms for evaluatingthe rotation between two DC focal mechanism solutions. Westart with the simpler methods:� 1. In the beginning, the equality of two DC sources shouldbe checked. This is needed because of angle values roundingo� (see Section 4.3). For example, in the 1977-2004 CMTcatalogue, 35 pairs of shallow earthquakes separated by lessthan 100 km have the same mechanism. If the mechanismsare equal, no further action is needed and more sophisti-cated algorithms may fail.� 2. If only the minimum rotation angle � is needed and isrelatively small, Eq. 25 is su�cient.� 3. Again, if only the minimum rotation angle � is needed,and � < 90�, Eq. 28 is su�cient.� 4. If � � 90�, the handedness of the solutions and thenumber of negative dot products should be checked. Then
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8 Y. Y. Kagan
Figure 1. Schematic diagram of earthquake focal mechanism.The right-hand coordinate system is used.
Figure 2. Isolines for maximum rotation angles (�max, Eq. 20,shown in degrees) for various directions of a rotation axis fora DC source. The axis angles are shown at octant equal-areaprojection (Kagan 2005). Dashed lines are boundaries betweendi�erent focal mechanisms. Plunge angles 30� and 60� for all axesare shown by thin solid lines. The smallest maximum rotationangle (�max = 90�) is for rotation pole at any of eigenvectors,the largest angle (120�) is for the pole maximally remote fromall the three vectors { in the middle of the diagram. The isogonal(Kagan 2005) maximum rotation angle (109:5�) corresponds tothe pole position between any two eigenvectors { at remote endsof dashed lines.

T-axisP-axis

B-axis

Fig. 1

−0.5 0 0.5
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
Fig. 2

X

Y

95

95

95

100

100

100
105

105 105

10
5

110

110

110
115

1−axis

2−axis3−axis



Double-couple rotation 9
Figure 3. Dependence of error in Eq. 25 on the rotation angle�. Dots are errors for pairs of shallow earthquake solutions in the1977-2004 CMT catalogue, separated by less than 100 km, N isthe total number of pairs. Solid curve is the theoretical estimate(27) of the maximum error.
Figure 4. Isolines for rotation angles di�erence (�max � �neg ,in degrees). Octant projection and auxiliary lines are the sameas in Fig. 2. Angles �max are displayed in Fig. 2. The angles areshown in the system of coordinates formed by the axes of the �rstDC source (see Eqs. 34 and 35).
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10 Y. Y. Kagan
Figure 5. The distribution of rotation poles in solutions withnegative dot products forM � 5:0 shallow (depth 0-70 km) earth-quakes in the 1977-2004 CMT catalogue, separated by less than100 km. The rotation angle is � � 90�. The total number of pairsis 16,253. The position of the poles is shown in the system coor-dinates formed by the axes of the �rst DC source (34, 35). Therotation pole for row 2 in Table 3 is shown by a white circle (seeEq. 36 and below it). We show the positions of the tpb-axes inthe plot.
Figure 6. The distribution of rotation poles in solutions withnegative dot products for M � 5:0 shallow earthquakes in the1977-2004 CMT catalogue, separated by less than 100 km. Therotation angle is � � 105�. The total number of pairs is 2,335. Theposition of the poles is shown in the system coordinates formedby the axes of the �rst DC source (see Eqs. 34 and 35).
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Double-couple rotation 11
Figure 7. Focal mechanisms of earthquakes from Table 2. Lowerhemisphere diagrams of focal spheres are shown, compressionalquadrants (around the t-axis) are shaded. The numbers near di-agrams correspond to the row numbers in Table 2.



12 Y. Y. KaganTable 1. Number of negative dot products� < 90� � > 90�Invariantrelation correct incorr.I 03 = I 003 0, 2 0, 2 1, 3I 03 = �I 003 1, 3 1, 3 0, 2I3 is the third invariant (7) of the orientation DCM (3) matrix;it is determined for original catalogue data, therefore it can bepositive for the right-handed con�guration and vice versa. Thesecond row corresponds to a di�erent system orientation for bothsolutions.Table 2. Earthquake pairs# Date Time t p b I3�; � �;� �;�1 1977/08/31 0:42:12.30 41,81 44,293 16,186 �12 1992/10/18 15:12:9.80 38,241 23,132 43,18 �13 1978/06/11 14:55:25.50 0,90 0,0 90,225 �14 1980/12/17 16:21:58.80 0,101 0,11 90,225 �15 1977/01/02 9:55:28.40 72,357 18,179 1,89 �16 1977/08/26 8:26:37.50 15,168 42,272 44,63 +17 1987/11/17 3:40:8.90 57,49 31,205 11,302 +18 1996/03/03 16:37:31.50 72,23 18,212 3,121 �1I3 is the third invariant (7) of an orientation DCM matrix; thepositive invariant corresponds to the right-handed con�gurationand vice versa. The �rst number in the axis columns is the plunge�, the second number is the azimuth �, both in degrees.

Table 3. Rotation angles, �i, and coordinates of rotation polesfor several earthquake pairs from Table 2# E# t0 � t00 p0 � p00 b0 � b00 �i �  1 1,2 �0:155 �0:355 �0:484 99.1 { {2 1,2 �0:155 0:355 0:484 99.1 73.4 340.33 1,2 0:155 �0:355 0:484 111.0 98.2 215.24 1,2 0:155 0:355 �0:484 119.2 94.5 100.45 1,2 �0:155 �0:355 �0:484 175.2 165.4 347.06 3,4 0.982 0.982 1.0 11.0 { {7 3,4 0.982 0.982 1.0 11.0 0.0 0.08 3,4 �0:982 �0:982 1.0 169.0 180.0 0.09 3,4 0.982 �0:982 �1:0 180.0 90.0 185.510 3,4 �0:982 0.982 �1:0 180.0 90.0 275.511 5,6 �0:049 0:170 0:653 93.7 { {12 5,6 0:049 0:170 0:653 93.7 80.0 55.113 5,6 �0:049 �0:170 0:653 106.4 120.5 278.814 5,6 �0:049 0:170 �0:653 140.0 34.1 206.615 5,6 0:049 �0:170 �0:653 152.5 118.4 154.816 7,8 0:948 �0:969 �0:971 19.2 { {17 7,8 0:948 0:969 0:971 19.2 88.6 346.318 7,8 �0:948 �0:969 0:971 166.6 94.2 120.619 7,8 �0:948 0:969 �0:971 167.4 65.2 209.520 7,8 0:948 �0:969 �0:971 174.8 155.1 220.4E# are the numbers of earthquake pairs from Table 2 (the �rstcolumn). Bold-faced minimum rotation angles are evaluated byusing (28) and (29). In these rows (1, 6, 11, and 16) the dot prod-uct signs are not adjusted, i.e., is calculated with the originalcatalogue data. Italic numbers in rows 9 and 10 are evaluated byusing the quaternion representation.




