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 ABSTRACT 
 
This report describes the enhancements to the video data collection of the Berkeley Highway 
Laboratory (BHL), a unique surveillance system on a section of I-80 freeway in the city of 
Emeryville.  We also present the development of advanced machine vision algorithms to 
process the video data to generate vehicle trajectories.   A pilot application of the BHL 
system produced trajectories of over 4700 vehicles.  This is the largest dataset of vehicle 
trajectories on extended freeway segments.  In addition, algorithms and software were 
developed for data analysis and visualization. 
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 EXECUTIVE SUMMARY 
 
Traffic simulation models are increasingly being used to analyze alternative operational 
improvements, and to develop and evaluate ITS systems and strategies.    However, there are 
still gaps in the functionality of traffic simulation tools that require new algorithm 
development.  Furthermore, most of the existing simulators have not been properly calibrated 
and validated with field data. 
 
Loop detectors provide macroscopic parameters (flow, density, speed), but they do not 
provide vehicle trajectories that are essential for detailed modeling of vehicle interactions.  A 
large number of real world vehicle trajectories can only be obtained from processing video 
data.  This in turn requires a video surveillance system with sufficient area of coverage and 
technologies to automatically and robustly obtain trajectories from the video data.  
 
We have developed a unique surveillance system on a section of I-80 freeway in the city of 
Emeryville. The system, called the Berkeley Highway Laboratory (BHL), consists of 
detector stations along the freeway section, and video cameras on top of the 30 story building 
adjacent to the freeway section.    
 
 In this study we upgraded and enhanced the BHL video data collection system, and 
developed improved machine vision algorithms to automatically generate vehicle 
trajectories. We also developed additional algorithms and software for data processing and 
visualization. We collected and processed a prototype data set as part of the FHWA Next 
Generation Simulation (NGSIM) program.  The dataset consists of trajectories of over 4700 
vehicles over 1 km at 1/15 of a second. This constitutes the largest and most comprehensive 
dataset on vehicle trajectories available to-date that can be used for developing, calibrating 
and validating microscopic simulation models.   
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1.  INTRODUCTION 

Traffic simulation models are increasingly being used to analyze alternative operational 
improvements, and to develop and evaluate ITS systems and strategies.    However, there are 
still gaps in the functionality of traffic simulation tools that require new algorithm 
development.  Furthermore, most of the existing simulators have not been properly calibrated 
and validated with field data. 
 
Conventionally, traffic flow parameters and traffic performance data have been generated 
from loop detectors or a small number of instrumented vehicles.  Loop detectors provide 
macroscopic traffic flow parameters (flow, density, speed).  They do not give vehicle 
trajectories that are essential for detailed modeling of vehicle interactions and for estimating 
the parameters of car-following and lane changing algorithms.  Instrumented vehicles 
generate long trajectories with detailed maneuvering parameters, but we only get a single 
trajectory for a single driver.  On the contrary, a large number of real world vehicle 
trajectories can be obtained from video data. The Berkeley Highway Laboratory (BHL) is a 
unique testbed for collection and processing of video data.  
 
This report describes our efforts to improve the existing BHL video surveillance system and 
develop improved machine vision algorithms to generate vehicle trajectories on extended 
freeway sections.  The proposed data collection and processing system was applied to 
produce a prototype dataset of vehicle trajectories. 
 
Section 2 provides background information on BHL and the machine vision algorithms for 
generating vehicle trajectories.  The improvements to the BHL video data collection system 
and the improved machine vision algorithms are presented in Sections 3 and 4.  Section 5 
describes the development of data visualization tools.  A pilot application of the algorithm is 
described in Section 6.  The final section summarizes the study findings and outlines ongoing 
and future work.  Appendix A includes two papers that provide details on 1) the improved 
machine vision algorithm, and 2) data analysis and visualization techniques for obtaining 
traffic parameters with low quality video. 

2.  BACKGROUND  

2.1  Overview of The Berkeley Highway Laboratory (BHL) 

BHL is a unique surveillance system on a section of I-80 freeway in the city of Emeryville. It 
consists of loop detector stations along the 4 mile freeway section, and video cameras on top 
of the 30 story Pacific Park Plaza apartment building.  The coverage of the video surveillance 
system overlaps with the locations of the loop detectors. The configurations of the cameras 
and the loop detectors for I-80 north- and south- bound are shown in Figures 1 and 2.   
 

Video Surveillance System: Twelve fixed mount video cameras  provide continuous 
coverage of the freeway, with one camera's surveillance region overlapping the next 
one. In addition, there are two pan-tilt-zoom (PTZ) cameras connected to Caltrans 
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District 4 and UC Berkeley.  The twelve fixed mount cameras are connected to 
studio-grade video tape recorders (VTRs), housed on top of the Pacific Park Plaza.  

 
Loop Detectors: There are eight loop detector stations at approximately 1/3 mile 
apart.  The system currently utilizes the I-880 Caltrans software that preserves the 60 
Hz event data (4).  The data are temporarily stored in a laptop computer inside the 
controller cabinet and continually transmitted to UC campus via a wireless modem 
where they stored and processed to provide values of flow, speed, occupancy. 

 
Data have been recorded each weekday during the commute periods.  Tapes are collected and 
replaced daily and then delivered to the PATH Headquarters at the Richmond Field Station 
on a weekly basis, where they are catalogued and used for off-line data processing and 
analysis.  We have collected video tapes of over 12,000 camera-hours.  For some of the video 
data, the loop detector data is also available (at the time it was collected).  We have digitized 
some of the video data for developing and testing machine vision algorithms to automatically 
generate vehicle trajectories.  
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Figure 1. Video Camera Coverage Zones, and the Locations of the Loop Detector 
Stations  

I-80 northbound 
 

 
 
 

Figure 2.  Video Camera Coverage Zones, and the Locations of the Detector Loop Stations  
I-80 Southbound 
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2.2  Extraction of Vehicle Trajectories from Video Data  
 
The generation of vehicle trajectories from raw video data requires accurate and reliable 
computer vision algorithms. We face several challenges in producing reliable vehicle 
trajectories: 
 
• The tracking targets (vehicles) vary in sizes, shapes, and colors. 

• Our video data includes various times and weather conditions. Thus, the illumination 
conditions, such as the brightness of image and the direction of the shadows, vary. 

• We need to deal with the occlusions among vehicles due to the  presence of overpasses. 

• Under heavy traffic conditions, where vehicles move slowly, and the distances between 
vehicles are small, it is hard to separate nearby vehicles, and there are more chances of 
occlusion. 

• The algorithm must work fast.  Although there is no real-time constraint, we still want a 
fast algorithm because we need to process a very large amount of video data. 

 
We have developed three algorithms for vehicle tracking. The first approach known as 
contour tracking (1), finds the boundaries (closed contours) between vehicles and the 
background, and dynamically tracks them. The second approach (2) uses the background 
subtraction algorithm. The background is dynamically estimated from each incoming image, 
and the difference between the current and the background images is thresholded to form 
``blobs'' corresponding to vehicles. However, the performance of the background subtraction 
algorithms significantly degrades in the presence of heavy shadows.  It is difficult to separate 
a shadow from the vehicle because the shadow moves along with the vehicle. Also, often, the 
shadow cast on nearby vehicles makes the separation between vehicles difficult.    
 
The third approach is based on corner feature tracking (3,4). In this system, vehicle 
trajectories are generated by grouping individually tracked corner features.  Figure 3 shows 
the flow diagram and some of the intermediate results of the algorithm.  This tracking 
algorithm has performed quite well in a variety of lighting and traffic conditions. The 
comparisons of the tracker output with human-generated ground truth show that in favorable 
conditions (light traffic and low shadow), one-to-one detection accuracy (one vehicle 
hypothesis matches to exactly one ground truth vehicle) exceeds 95%. Under less favorable 
conditions (heavy traffic, heavy shadow) this one-to-one accuracy is still better than 90% in 
most cases. 
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Figure 3. Flow Diagram of the Current System—Feature Tracker 
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3. ENHANCEMENTS TO THE BHL VIDEO DATA COLLECTION SYSTEM  
 
Experience with the existing BHL video data collection and processing showed several 
limitations of existing system: 
 
Collection and replacement of video tapes is a labor intensive and expensive process, the 
quality of video images was not satisfactory for extracting data using machine vision 
algorithms, the coverage was incomplete.  Finally, because the video cameras were mounted 
on the window washing equipment structure the data collection had to be interrupted 
periodically. 
 
A new data collection system was designed and implemented (Figure 4).  The upgraded data 
collection system consists of eight digital progressive scan cameras permanently mounted on 
the roof of the building.  Data are continually recorded and stored at computer servers at the 
roof of PPP.  The data are transmitted via wireless 20 Mbps to the CCIT (California Center 
for Innovative Transportation) in Berkeley were they stored in a database.  The raw data are 
then processed to generate vehicle trajectories.  Both raw and processed data are made 
available. 
 
 
 

 
 
Figure 4.  Architecture of the Upgraded BHL Video Data Collection System  
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4.  IMPROVED  MACHINE VISION ALGORITHM 
 
The current “corner feature” algorithm provides satisfactory vehicle trajectories reliable 
enough for the statistical analysis of overall traffic flows. However, more accurate 
trajectories and precise measurements of the actual sizes of vehicles, are required for 
calibration and validation of car-following or lane-changing models.  Problems we need to 
address are: 
 

1. A vehicle’s position and dimension may not be accurate because they are estimated 
from the corner features which do not cover the whole vehicle (moreover, some of 
them may belong to the shadow). 

 
2. The position error caused by missing features (tracking failures) may introduce a 

significant error in the velocity estimation. 
 

3. Feature grouping is based on only the location and the motion of corner features. 
Consequently, features of nearby vehicles moving at the same speed may be grouped, 
and the features of a large vehicle (trailers) may not be grouped. 

 
A new algorithm has been developed based on a three-dimensional vehicle model, i.e., 
introduce more elaborate features such as edges and lines. Then, the position of a vehicle, as 
well as its boundary, can be estimated more robustly by the spatial relationships among these 
features. We first detect vehicles at the entrance area (location where the viewing angle is 
favorable), and track the detected vehicles based on their intensity profiles.  Detailed 
description of the algorithm can be found in the paper by Kim and Malik (5) included in 
Appendix A.   
 
5.  DEVELOPMENT OF DATA VISUALIZATION TOOLS  
 
The output from the machine vision algorithm, consists essentially of a long list of vehicle 
trajectories corresponding to a large quantity of video data.  It is of very little value to simply 
watch the tapes or plot the trajectories. To gain some real intuition for the data we have to 
develop tools that can summarize and visualize it.   
 
We have data processing and visualization software to assist both in the verification of the 
processed data and perform data analysis. Figure 5 shows trajectories of individual cars 
overlaid on the density field they create. The plot captures both microscopic and macroscopic 
behavior and is meant to illustrate the shockwave phenomenon. Figure 6 shows the 
distribution of spacings between vehicles versus their speed. Such plots can be used in the 
development and calibration of microscopic car following models.  Earlier plots of spacing 
versus speed, found in the literature, are generally based on a mere handful of specially 
instrumented probe vehicles. 
 
We also developed an algorithm to estimate velocity fields from low resolution video 
recordings. This algorithm does not attempt to track individual vehicles, nor does it attempt 
to estimate derivatives of the field of pixel intensities. Rather, we compress a frame by 
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obtaining an intensity profile in each lane along the direction of traffic flow. The speed 
estimate is then computed by searching for a best matching profile in a frame at a later time. 
Because the algorithm does not need high quality images, it is directly applicable to a 
compressed format digital video stream, such as mpeg, from conventional traffic video 
cameras.  The proposed algorithm was illustrated using BHL video recordings. Detailed 
description of the algorithm can be found in the paper by Cho and Rice (6) included in 
Appendix A.   

 
Figure 5. Car Trajectories overlaid on the Density Field 
 
 
 

 
 
Figure 6.  Distribution of Speed-Spacing 
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6.  PILOT APPLICATION  
 
The BHL and the improved machine vision algorithms were used to produce a prototype 
dataset with vehicle trajectories as part of the Next Generation Simulation (NGSIM) program 
sponsored by the Federal Highway Administration (FHWA) (7) .    The objective of NGSIM 
is to develop a core of open behavioral algorithms in support of microscopic traffic 
simulation, with supporting documentation and validation data sets.   

The goal of the prototype data collection effort was to assess the viability of emerging 
vehicle trajectory data collection systems and provide data for the prototype validation 
process.   For the prototype study, both vehicle trajectory video and detector data were 
collected for two half-hour, peak-period time segments on December 3, 2004. 
 
The machine vision system was used to produce the trajectories of all vehicles traveling in 
the northbound direction. The system automatically detected and tracked approximately 
75 percent of the vehicles.  Supplementary analysis tools were developed and used to correct 
false-negatives (vehicles that were not detected) and false-positives (vehicles that were 
erroneously detected). Also, the system allows to manually detect vehicles (that are not 
automatically detected) and then they are automatically tracked.  Figure 7 shows a screenshot 
of vehicles tracked by the algorithm.  Figure 8 shows lane changes of tracked vehicles.     
 
The prototype dataset consists of trajectories of 4,733 vehicles over 2,952 ft (approximately 
1 km) at 1/15 of a second, for a total of 2.8M data points.  This is the largest and most 
comprehensive dataset on vehicle trajectories ever produced. 
 

7.  CONCLUSIONS 

BHL is a unique testbed for collecting data to study traffic dynamics.  In this study we 
upgraded and enhanced the BHL video data collection system, and developed improved 
machine vision algorithms to automatically generate vehicle trajectories.  We also developed 
algorithms and software for data processing and visualization. 
 
We collected and processed a prototype data set as part of the NGSIM program.  The dataset 
consists of trajectories of over 4700 vehicles over 1 km at 1/15 of a second. This constitutes 
the largest and most comprehensive dataset on vehicle trajectories and can be used for  
calibration and validation of microscopic simulation models.  The dataset and processing 
algorithms are distributed free to the transportation research community. 
 
Currently, as part of an effort sponsored by the FHWA we improve the vehicle detection and 
tracking technology and we will collect and process data on other freeway sites.  
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Figure 7.  Automated Tracking of Vehicle Trajectories 

 

 
 
Figure 8.  Lane-Changing Vehicle Trajectories 
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Abstract

Vehicle trajectories contain rich information on micro-
scopic phenomena such as car following and lane changing.
Despite many efforts to retrieve reliable trajectories from
video images, previous approaches do not give high enough
quality of trajectories that can be used in microscopic anal-
ysis. We introduce a new vehicle tracking approach based
on a model-based 3-D vehicle detection and description al-
gorithm. The proposed algorithm uses a probabilistic line
feature grouping method to detect vehicles with little com-
putation. A dynamic programming algorithm is proposed
for fast reasoning. We present the system implementation
and the vehicle detection and tracking results.

1. Introduction

Vehicle trajectories contain rich information about traf-
fic flow. We can study microscopic behaviors, such as car-
following and lane-changing, with vehicle trajectories. For
example we can evaluate or tune the parameters of the car-
following models for the simulation tools, or study the rela-
tionship between lane changing and traffic congestion. We
cannot obtain such information from traditional loop detec-
tors because they cannot detect lane changes or continu-
ously measure the car following distances over time.

One way of obtaining vehicle trajectories is to use in-
strumented vehicles. Instrumented vehicles generate long
trajectories with detailed maneuvering parameters includ-
ing the lane changes and the car following distances. How-
ever, given a travel, we only get a single trajectory of a sin-
gle driver (and some additional information on leading or
near-by vehicles). Therefore, only trajectories from a small
number of drivers (who are aware of the experiments) are
available, which may bring in a bias to the result. Moreover,
in-vehicle sensors have limited coverage, and we cannot ob-
serve, for example, shockwave created by a lane change.

Video data is a good complementary data source. We

(a) (b) (c)

Figure 1. Example images from three cameras
taken at the same time.

can get a large number of trajectories (much less biased, but
short) from video data. Example images from our video
data are shown in Figure 1. The images were obtained
from 3 cameras installed on the roof of a 30-story building
alongside a freeway. There are small overlapping regions
between the cameras covering nearby regions. The nearest
image, Figure 1c, is close to a nadir (top) view while the
farthest one, Figure 1a, is very oblique.

It is difficult to generate reliable vehicle trajectories from
such video data because:

• The tracking targets (vehicles) vary in sizes, shapes,
and colors.

• The video data includes various times and weather
conditions. Thus, the illumination conditions, such as
the direction of the shadows, vary.

• We need to deal with the occlusions among vehicles or
by other structures.

• Traffic conditions vary, and many of the tracking al-
gorithms degrade with heavy traffic congestion, where
vehicle moves slowly, and the distances between vehi-
cles are small. In this case, motion-based vehicle de-
tection and background extraction are difficult and it is
also hard to separate nearby vehicles.

To model drivers behaviors well it is important to have
accurate information about inter-vehicle spacing and vehi-
cle trajectory. Previous video-based approaches, [6], [2],



were suitable enough for counting the number of vehicles
or finding general traffic flows. However, they were either
restricted to being used under favorable lighting and traffic
conditions [6] or did not give accurate location and dimen-
sion of vehicles [2].

We present an approach which works well under various
lighting conditions and provides high quality trajectories.
Our approach is based on a 3D model-based vehicle detec-
tion and description algorithm. In Section 2, we present
related work and overview our approach. The vehicle de-
tection and description algorithm is shown in Section 3,
and other implementation issues including the tracking al-
gorithm is presented in Section 4. In Section 5, we show
detection and tracking results. Finally, we present the con-
clusion and future work in Section 6.

2. Related Work and Our Approach

There are two well-known vehicle tracking approaches.
The first one, [6], [4], is the background subtraction al-
gorithm. In this approach, the background is dynamically
estimated from incoming images, and the difference be-
tween the current and the background images is thresholded
to form “blobs” corresponding to vehicles. This algorithm
gives reliable vehicle detection given a favorable illumina-
tion condition and a camera angle.

However, the performance of the background subtraction
algorithms significantly degrades in the presence of heavy
shadows. It is difficult to separate a shadow from the vehicle
because the shadow moves along with the vehicle. Also, of-
ten, an occlusion or a shadow cast on nearby vehicles makes
the separation between vehicles difficult. In addition, the
background estimation performance is degraded when the
traffic is heavy because the movements of the vehicles are
small and a significant part of the background is not observ-
able.

The other approach, [2], uses corner features. In this ap-
proach, individually extracted and tracked corner features
are grouped based on the proximity of their positions and
the similarity of the motion. This approach gives good
detection even with less favorable illumination conditions.
However, it still has several limitations:

• The location and the dimension of a detected vehi-
cle may not be accurate because they are estimated
from the corner features which do not cover the whole
vehicle (moreover, some of them may belong to the
shadow).

• The position error caused by missing features (track-
ing failures) may introduce a significant error in the
velocity estimation.

• The feature grouping is based on only the locations and
the motions of corner features. Thus, there are times

that features of nearby vehicles (of the same speed) are
grouped together, or the features of a large vehicle (for
example, trailer trucks) are not grouped together.

Therefore, the quality of the trajectories are not fine enough
to be used for microscopic analysis.

We introduce a new approach based on a 3D vehicle de-
tection and description algorithm. We first detect vehicles
at the entrance area (where the viewing angle is favorable),
and track the detected vehicles based on their intensity pro-
files. Although our application does not require realtime
processing, fast computation is still important because we
need to process a huge volume of video data. Most of
the previous vehicle detection algorithms (whether they are
based on template matching or not) work on the intensity
image pixels directly, and requires significant processing
time. In the next section, we present a fast algorithm which
uses the line features. For robust detection, we apply proba-
bilistic reasoning. We also present a dynamic programming
algorithm for fast reasoning.

3. 3D Vehicle Detection and Description with
Probabilistic Feature Grouping

In this section, we introduce a model-based car detec-
tion and description algorithm. Vehicle detection, descrip-
tion, and/or recognition have been an active research area
[11], [8], [9], [1], [5], [12]. Early model-based approaches,
[11], have been focused on generic pose estimation with
pre-defined shape. Other approaches have been focused on
high resolution ground views, [1], or uses the background
subtraction algorithm, [5]. Most of these approaches re-
quire a large amount of computation, except the background
subtraction algorithms which suffer from shadow and traffic
congestion.

In [8], Rajagopalan et al. presented vehicle detection
algorithm based on higher order image statistics. How-
ever, it requires too much computation while the detection
rate (73% with 14% false alarm) was not satisfactory (al-
though the experiment was performed on relatively com-
plex scenes). In addition, they have focused on the detec-
tion algorithm and the localization performance may not
be as good. In [12], Zhao and Nevatia presented an al-
gorithm of detecting cars from aerial images by examin-
ing their rectangular shape, front and rear windshields, and
shadow. It showed good detection rate (about 90% with 5%
false alarm) with less computation (about 30 secs plus pre-
processing for 1000 × 870 image on a PII 400 MHZ), but
it still requires image-based comparison and the amount of
the computation is still large for our application. In addi-
tion, the detection is based on the rectangular boundaries,
which is only applied for aerial images.

In this section, we present a faster and more flexible al-



Figure 2. The horizontal and vertical line fea-
tures used in the algorithm.
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Figure 3. The car model. The distances are esti-
mated in the world coordinates. HL and HR are
the left and right lines, V0, . . . , V1 are the vertical
lines, B is the base line, and S is the shadow
line.

gorithm, which gives 3D structures (descriptions) of the de-
tected cars at the same time. Our algorithm uses line fea-
tures. Example line features (horizontal and vertical) are
shown in Figure 2. Given the orientation of the cars (which
is known) the line feature extraction algorithm is as fol-
lows: 1) apply a 2-D oriented edge detectors (horizontal
and vertical, separately), 2) apply the non-maxima suppres-
sion algorithm [3] on the given orientation, and 3) perform
the connected-component analysis for line grouping.

Figure 3 shows our car model. Once line features are
extracted, we fit the car model to them. We assume that
the front line (V0), the rear line (V5), the left line (HL), and
the right line (HR) of a car are always detected. Our al-
gorithm is applied for each vertical line feature, v0, which
we assume to be V0. We then gather near-by horizontal line
features assuming maximum car width and length. For each
pair of horizontal line features, l, and r (which we assume to
be HL and HR), we gather vertical line features, v1, . . . , vn

(ordered from front to rear), and apply a dynamic program-
ming algorithm to find the configuration among them.

In the following equations, we will use wi,j as a short-
hand for Vi = vj , w06=0 for V0 6= v0, and P (l, r) for
P (l = HL, r = HR). Our goals are:

Detection: for each v0, estimate P (w0,0|E), where E is all
the evidence we gather, and

Description: find l, r, m0, . . ., m5 which maximize
P (l, r, w1,m1

, . . . , w5,m5
|w0,0,E).

We estimate P (w0,0|E) by summing up all the possi-
ble configurations of HL, HR, and Vi because our model
requires evidence derived from an unknown assignment of
these variables, such as the width of the vehicle and the dis-
tances between the vertical lines.

P (w0,0|E) =
∑

P (w0,0, l, r, w1,m1
, . . . , w5,m5

|E)

where

P (w0,0, l, r,w1,m1
, . . . , w5,m5

|E)

=
P (w1,m1

, . . . , w5,m5
|w0,0, l, r,E)P (E|l, r,w0,0)P (l, r|w0,0)P (w0,0)

P (E)

We assume that P (w0,0) is uniform (over all the possi-
ble v0) as well as P (l, r|w0,0) (which is 1/|HL × HR|).
Unfortunately, P (E) is difficult to estimate (unless we
know P (w06=0|E)). With limited choices, we assum
that P (E) is uniform over v0. In the following subsec-
tions, we describe how we estimate P (E|l, r, w0,0) and
P (w1,m1

, . . . , w5,m5
|w0,0, l, r,E).

3.1 P (E|l, r, w0,0)

We use the distance (in the world coordinates) between l
and r and the existence of the shadow and the base lines (S
and B of Figure 3) to estimate P (E|l, r, w0,0). In addition,
we use a gradient sign of l or r according to the shadow
location. For example, when the shadow is cast on the left
side of the vehicle, the left side of l will be darker than its
right side.

In principle, the sun angle can be estimated from the ap-
proximate position of the vehicle (on the earth) and the time
and the date. When such information is not available, we
can estimate the angle of the Sun from the direction and the
length of shadow cast. We have implemented the second ap-
proach which is good enough to analyze a video sequence
of 10 minutes or shorter.

3.2
∑

P (w1,m1
, . . . , w5,m5

|w0,0, l, r,E)

For simplicity, we define Φ ≡ {w0,0, l, r}∪E. It is much
harder to estimate

∑

P (w1,m1
, . . . , w5,m5

|Φ) because of
its complexity. Although there are only 5 lines that we need
to configure, we still have P5,n different assignments (in
addition, multiplied by |HL| × |HR| × |V0|) when n is the
number of the vertical line features. In addition, we need to
deal with at least six dimensional joint probabilities which
is huge enough to result serious overfitting. In this section,
we present a dynamic programming algorithm to estimate
this value efficiently.

The evidence features we use are 1) the distances be-
tween lines, 2) the gradient changes at the lines, 3) the sam-
pled intensity levels between lines, and 4) the length (cov-
erage) of the lines, The distances are estimated in the world



coordinate. For this, we assume that the height of the car is
fixed (1.4 meter for the passenger cars) and the heights of
the front hood and the trunk of the car are 1 meters each.
Then we back-project the (center) positions of the line fea-
tures to 3-D coordinate.

The gradient changes on the edge of the windshields are
useful cues to detect cars [12]. As in [12], we assume
that, for most of the bright cars, the windshields are usu-
ally darker than the car frame, and for most of the dark cars,
the windshields are brighter than the car. In other words,
with a high probability p, the gradient directions of V1 and
V2 (or V3 and V4) are opposite to each other while those of
V1 and V3 (or V2 and V4) are the same.

To reduce the computational complexity of the problem,
we apply a dynamic programming algorithm based on fol-
lowing Markov-style assumptions:

P (wi,j |wi−1,k, vi−2, . . . , v1, Φ) = P (wi,j |wi−1,k , Φ),

P (wi,j |wi−1,φ, wi−2,k , vi−3, . . . , v1, Φ)

= P (wi,j |wi−1,φ, wi−2,k, Φ), and

P (wi,j |Φ) =
∑

P (wi,j , vi−1, . . . , v1|Φ),

(1)

where wi,φ is the probability of Vi being missing. The first
and the third assumptions are typical Markov assumptions,
and the second one extends them to a case of missing fea-
tures.

Then,
∑

P (wi,j , wi−1,mi−1
, . . . , w1,m1

|Φ)

=
∑

k<j

P (wi,j |wi−1,k, Φ)P (wi−1,k|Φ)

+
∑

k<j

P (wi,j |wi−1,φ, wi−2,k, Φ)P (wi−1,φ|wi−2,k, Φ)P (wi−2,k|Φ)

+ . . . ,

(2)

where the parameters can be obtained as follows:

P (wi,j |wi−1,k,Φ) = P (wi,j |wi−1,k, l, r,E) =

P (E|wi,j , wi−1,k, l, r)(1 − P (wi,φ|wi−1,k, l, r,E))
∑

j′>k P (E|wi,j′ , wi−1,k, l, r)

P (wi,j |wi−1,φ, wi−2,k, l, r,E)

=
P (E|wi,j , wi−1,φ, wi−2,k, l, r)(1 − P (wi,φ|wi−1,φ, wi−2,k,E, l, r))

∑

j′>k P (E|wi,j′ , wi−1,φ, wi−2,k, l, r)

. . .

(3)

Our implementation allows at most two consecutive miss-
ing features (i.e. P (wi,j |wi−1,φ, wi−2,φ, wi−3,φ) = 0).

Assuming that the evidence features are independent to
each other given two vertical lines,

P (E|wi,j , wi−1,k , l, r)

= D(dj,k |i, i− 1)G(gj,k|i, i − 1)I(ij,k|i, i − 1)C(cj |i),

where D(dj,k|i, i − 1) is a PDF of distance between Vi

and Vi−1 being dj,k (the distance between vj and vk),
G(gj,k|i, i − 1) is a probability of the gradient differ-
ence between Vi and Vi−1 being that of vj and vk (gj,k),
I(ij,k|i, i − 1) is a probability of the intensity samples be-
tween Vi and Vi−1 being similar to that of vehicle frame in-
tensity, and C(cj |i) is a PDF of the length (coverage) of the
extracted line feature. The vehicle frame intensity is sam-
pled near the front line. We assume that D(dj,k|i, i − 1) is
Gaussian, and G(gj,k|i, i − 1) is binary (whether the signs
of the gradients are the same or the opposite). For exam-
ple, the sign of the gradient of V1 is opposite to that of the
V2 with the probability G(opposite|2, 1). The parameters of
D(d|i, i−1) and G(g|i, i−1) can be obtained by observing
learning examples.

Similarly, P (E|wi,j , wi−1,φ, wi−2,k, l, r) =
D(dj,k|i, i − 2)G(gj,k|i, i − 2)I(ij,k|i, i − 2)C(cj |i).
In fact, D(d|i, i − 2) can be obtained from D(d|i, i − 1)
and D(d|i − 1, i − 2) when we assume that they are all
Gaussian:

E[D(d|i, i − 2)] = E[D(d|i, i − 1)] + E[D(d|i − 1, i − 2)]

V [D(d|i, i − 2)] =
√

V [D(d|i, i − 1)]2 + V [D(d|i − 1, i − 2)]2.

We assume that P (wi,φ|wi−1,k, Φ) = P (wi,φ), where
P (wi,φ) can also be obtained from learning examples.

In summary, our dynamic programming algorithm fol-
lows the steps below:

1. Given v0, l, and r, gather n vertical line candidates (on
the right side of v0) for V1, . . . , V5.

2. Make a 6 × n table of P (wi,j |Φ).

3. P (w0,0|Φ) = 1 and P (w0,i|Φ) = 0 for all i 6= 0.

4. Fill in the table using Eq. 2 and Eq. 3.

5. Sum up the last row of the table:
∑

P (w5,m5
|Φ) =

∑

P (w5,m5
, . . . , w1,m1

|Φ) (Eq. 1).

3.3. Description Algorithm

Finding P (w5,m5
|Φ) is sufficient for the detection pur-

pose but the description can also be given. The description
of the car can be obtained by applying our backtracking
algorithm: given that Vi = vj , find vk which maximizes
P (wi−1,k|wi,j , Φ). We find

P (wi−1,k|wi,j , Φ) =
P (wi,j |wi−1,k , Φ)P (wi−1,k |Φ)

P (wi,j |Φ)
.

Note that P (wi,j |wi−1,k, Φ) is calculated when we calcu-
late P (wi,j |Φ) (see the previous section). Therefore, when
we fill in the table of P (wi,j |Φ), we make another table,
argmaxk P (wi−1,k|wi,j , Φ), for the backtracking.
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Figure 4. Flow diagram of the system

Where we regard the missing features, the algorithm is
slightly modified: given that Vi = lj , find lk and r which
maximize P (wi−1,φ, wi−2,φ, . . . , wi−r,k|wi,j , Φ). There-
fore, we calculate P (wi−1,φ, wi−2,φ, . . . , wi−r,k |wi,j , Φ)
for all the possible values of r (r ∈ {1, 2, 3}, in our im-
plementation). For example, when r = 2,

P (wi−1,φ, wi−2,k|wi,j , Φ)

=
P (wi,j |wi−1,φ, wi−2,k, Φ)P (wi−1,φ, wi−2,k|Φ)

P (wi,j |Φ)

=
P (wi,j |wi−1,φ, wi−2,k, Φ)P (wi−1,φ|wi−2,k, Φ)P (wi−2,k|Φ)

constant
.

3.4. Learning Data Collection

Parameters, such as D(d|i, i−1), G(g|i, i−1), I(i|i, i−
1), and P (wi,φ), can be learned from examples. We im-
plemented a user-interface to collect such learning exam-
ples. A learning example is made by clicking 8 points for
V0, . . . , V5, H0, and H1 (one point for each). We can in-
fer a car structure from given points. Once we have a car
model, we match models to the image line features, and es-
timate the parameters from those line features. Note that
we only need a relatively small number of learning exam-
ples because all of the above parameters are independent to
each other.

4. Tracking and System Implementation

The flow diagram of our system is shown in Figure 4.
The cameras are installed on the roof of a tall building
and, because of the wind, we sometimes get unstable video
streams. Therefore, we first apply a stabilization algorithm
to all images. For each image, we manually assign sev-
eral “static” (background) areas for the stabilization. Then,
for each frame, we find corners from these areas, find their
matches in the previous frame, estimate camera transforma-
tion (affine), and generate new images using the transfor-
mation matrix.

Figure 5. The mosaic image of Figure 1.

Then, we apply the vehicle detection and description al-
gorithm on a small entrance area of the first image. Since
the algorithm is applied to each and every line feature, we
may have many overlapping hypotheses for a single car. We
choose the best hypothesis by comparing P (w0,0,E). The
overlap analysis also includes the vehicle hypotheses de-
tected in the past frames. It results redundant detection in
all the frames where the vehicle is visible, which increases
the detection rate.

The tracking is performed on the mosaic of all three im-
ages. We manually calibrated all three cameras. We rectify
images using the calibration parameters and attach them to
generate the mosaic image. Note that the brightness and
contrast levels of all three cameras are different from each
other (see Figure 1). Therefore, we adjust the brightness and
contrast levels by examining those of overlapping areas: we
estimate mean and standard deviation of the intensity pix-
els, and (linear) transform all the intensity levels of the im-
ages so that the brightness and contrast levels of all three
images be the same. We only allow small changes (w.r.t.
frames) on the parameters for modifying the brightness and
contrast levels because a radical change on such parame-
ters degrades the tracking performance. Figure 5 shows the
resulting mosaic image.

The tracking is performed based on the zero-mean cross-
correlation matching [10]. To reduce computation, we per-
form the search on a two-level image pyramid. For this, we
make two mosaic images of different resolution, where the
resolution is automatically determined with respect to the
resolution of the original images. The search is performed
with 9 × 9 RGB image patches (15 × 15 for the fine-level
image) on 11× 11 search windows (5× 5 for the fine-level
image).

The track may be lost for several consecutive frames due
to occlusions or other accidental alignments. For example,
in Figure 1c, a part of the first (lower, in the picture) two
lanes are occluded by the shadow of a traffic sign struc-
ture. To deal with such a case, when a search is failed in
one frame, the system continues to search in the following
frames based on the previously estimated vehicle speed. A
trajectory is discarded when it loses the track for more than
a certain number of frames (3 in our implementation). We
do not try to refine the tracking result, such as by applying
the Kalman filter, because it is better not introduce any bias
on the resulting trajectories than produce smooth ones.



Figure 6. An example detection result.

5. Experimental Results

The system works close to realtime (about 2 frame/sec
on Pentium 4). The detection algorithm spend less than
100ms for the 200×200, but the image retrieval (from hard
disk, 3 MB of uncompressed images per frame) and track-
ing require more computation.

Figure 6 shows an example detection result in a single
frame. We see that the detection and description quality
is very good. The quality of the image is poor (smoothed
interlaced video) and one car was not detected because im-
portant lines were not detected including the front line. Cur-
rently, we are in a process of changing the data collection
procedure into digital, and we expect the detection rate be
significantly increased.

An example tracking result is shown in Figure 7. We find
that most of the vehicles are correctly localized and tracked.
We observe slight location errors for the vehicles on the left
side. This is not the detection error but due to the image-
based tracking algorithm which does not handle perspective
changes. Our future work includes model-based tracking
(Section 6). Our detection algorithm does not handle large
trucks but a different algorithm will be applied for the truck
detection (also see Section 6).

A comparison with a manual count is shown in Table 1.
The detection rate was 85% (116 out of 137) and the false
alarm rate was less than 1% (only one). The localization
performance was very satisfactory, and only two vehicles
were detected with a significant position error (an error big-
ger than 1/3 of the size of the vehicle). The false alarm
was generated from a carpool lane mark combined by the
shadow of a dark vehicle (which was counted as misdetec-
tion). However, no valid trajectories were generated from
it.

Table 1. A detection result on 137 vehicles.
Large trucks were not included.

total # of vehicles 137
# of correctly detected (passenger cars) 97
# of correctly detected (other vehicles) 19

detected with wrong position 2
# of missed detection 19

# of false alarms 1

Tracking failures occurred on several vehicles because
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Figure 8. Resulting trajectories.
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Figure 9. Resulting trajectories plotted lane by
lane.

of 1) occlusion by a large truck (or their shadow casts) for
more than 10 frames, and 2) specular highlights. For exam-
ple, the specular highlight of vehicle on the top of Figure 6
(in the lower right corner) gradually disappeared after sev-
eral frames.

The resulting trajectories are shown in Figure 8 and Fig-
ure 9. We find that the quality of trajectories is superior
(less noisy) than that of other vision-based data. We ob-
serve a good quality of shockwaves (delayed deceleration)
on the second and the third lane, which will serve as useful
data to generate the parameters of car-following models.

6. Conclusion and Future Work

We presented a vehicle detection and tracking system
based on a model-based 3-D vehicle description algorithm.
It provides high quality vehicle trajectories with accurate
localization, which will bring a significant improvement in
traffic flow analysis. We also introduced a new 3-D vehicle
detection and description algorithm based on line features.



Figure 7. An example tracking result.

Our feature-based algorithm has significant advantages over
image-based algorithms (such as [12]). It is fast enough that
it can be applied to many other applications which require
fast (or even realtime) processing. It is also flexible. It is
much more free from the scale problem, and allows detec-
tion from more oblique views. The performance does not
depend on the small change of the view points.

There are still many challenges and future work left:

• It is difficult to generate a large number of trajectories
(trajectory database) due to the current analog data col-
lection system. The digitization process requires sig-
nificant efforts because we need 1) minimal loss of
image quality and 2) perfect synchronization. In ad-
dition, the quality and/or the resolution of the images
is not satisfactory due to the interlaced format of ana-
log video. We are currently in a process of converting
the data collection system into digital (with progres-
sive scan cameras).

• We need to develop a separate algorithm for trailer
truck detection. In fact, it is to find a long rectangu-
lar structure, and techniques from building detection
(for example, [7]) can easily be applied.

• The tracking performance is not satisfactory due to oc-
clusions and specular highlights. One possible solution
is to apply a model-based tracking algorithm which
uses line features. It can bring better tracking perfor-
mance because the line features more invariant than
image profiles.

• Improving the description performance can enable
fine-level vehicle classification. Current transporta-
tion research on vehicle classification only discrimi-
nate small cars (such as passenger cars and SUV’s)
from large trucks. Our vehicle detection algorithm
gives 3-D model which can be used for discriminating
SUV’s and pickup trucks from passenger cars. With
such information, we can estimate, for example, rel-
ative effects on highway capacities among different
class of vehicles, which is unprecedented in traffic
analysis.
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Abstract— We present an algorithm to estimate velocity fields
from low resolution video recordings. The algorithm does not
attempt to identify and track individual vehicles, nor does it
attempt to estimate derivatives of the field of pixel intensities.
Rather, we compress a frame by obtaining an intensity profile in
each lane along the direction of traffic flow. The speed estimate
is then computed by searching for a best matching profile in
a frame at a later time. Because the algorithm does not need
high quality images, it is directly applicable to a compressed
format digital video stream, such as mpeg, from conventional
traffic video cameras. We illustrate the procedure using a 15
minute long VHS recording to obtain speed estimates on a one
mile stretch of highway I-80 in Berkeley, California.

I. I NTRODUCTION

Traffic cameras offer the potential to complement or substi-
tute for loop detectors. Because they can provide finer spatial
and temporal resolution, they have many advantages over loop
detectors. In principle, video from cameras can also be used
to detect lane-changing, accidents, and queuing patterns and
to extract macroscopic traffic parameters, such as flow, speed,
and density. Also, cameras are becoming less expensive to
purchase and maintain.

However, in order to use images from cameras to study
traffic, a large amount of video must be processed and an
efficient and practical system to extract traffic parameters is
thus essential. After being digitized, an hour video can be up
to a several gigabytes.

The objective of this paper is to present a simple algorithm
to estimate a velocity field, localized in space and time, from
video data covering a wide area with limited spatial resolution.
The localization is fine enough to reveal the temporal and spa-
tial formation and dissipation of shockwaves. To demonstrate
practicality of the algorithm, we present results from a 15
minute long video filmed by a Berkeley Highway Laboratory
camera. Figure 1(a) shows the layout of the Berkeley Highway
Laboratory. Figure 1(b) shows a single frame covering about
one mile of freeway.

Kastrinaki et al. [1] provide an extensive survey of state
of the art traffic applications of video processing, including
road traffic monitoring. Our methodology falls into the general
category of optical flow, techniques of which are reviewed in
Beauchemin and Barron [2]. Applications of optical flow to
traffic monitoring have been based on detecting and tracking

individual vehicles to estimate speed, density, and flow. The
following are representative examples. Autoscope [3] detects
and tracks vehicles within a detection zone (roughly a rect-
angle the size of a vehicle) and integrates their spatial and
temporal signatures to measure their speeds. The ACTIONS
system [4], detects and tracks moving objects by estimating
optical flow vectors which are then clustered to create candi-
date moving objects. The MORIO system [5] infers polyhedral
models for objects moving relative to a stationary camera. The
TITAN system [6] uses mathematical morphology to extract
individual vehicle features, aggregates them into individual
vehicles, and tracks them. It is capable of monitoring stretches
of the motorway of up to about 1000 feet, depending on the
height of the camera. The images of individual cars need to
be separated. In Fathy and Siyal [7], a morphological edge
detector and background differencing are used to identify and
track vehicles and calculate traffic parameters. Coifmanet al.
[8] developed a feature-tracking algorithm to extract individual
vehicle trajectories from video data by detecting predefined
features from images, grouping them, and tracking the groups
of features to produce trajectories. Daileyet al. [9] developed a
method to estimate mean traffic speed, using an edge-detecting
algorithm to find centroids and estimating mean speed from
centroid movement in successive images.

However, algorithms that rely on identifying and tracking
individual vehicles are not feasible for use with images of
poor quality and over a wide area. If the spatial resolution
is poor, vehicles in the frame do not show distinctive lines
or features throughout the whole span of view and thus can
be neither clearly identified nor tracked. If a vehicle only
occupies a small number of pixels, its features may be hard
to identify and furthermore can change as the precise position
of the vehicle within the pixel grid changes. Vibration due to
wind causes further difficulties, as do shadows and occlusions
in congested traffic. Grantet al. [10] report on an extensive
test of Autoscope on freeways in Atlanta, Georgia, showing
that counts degraded in accuracy as the distance of the count
location to the camera increased out to a maximum of about
400 ft. Although they did not directly measure the quality of
speed estimation as a function of distance, they conjecture that
it is similar to that of the volume counts.

In contrast, the method set forth in this paper does not



depend on explicitly identifying and tracking individual ve-
hicles. We demonstrate that it is robust to occlusion and
shadows, which can be seen in Figure 1(b), and to the camera
motion that is evident in the videos. We compare the estimates
obtained from the video to those from high frequency loop
detectors.

II. DATA

The data used in this study were generated from a 15-
minute video of about a one mile stretch of highway I-80 in
Berkeley, California. A video test bed, the Berkeley Highway
Laboratory, consists of 12 cameras on the roof of Pacific Park
Plaza, a 30-story building beside the highway. The analog
cameras have S-VHS video recorders attached. Figure 1(a)
illustrates the setup and the coverage of each camera.

Among six cameras looking north, the field of view of
camera N6 is furthest down I-80E. It covers the longest stretch
(about one mile long), from the Ashby Avenue on-ramp to
University Avenue off-ramp. But it produces relatively poor
quality images due to the poor angle and resolution. Figure
1(b) is a still frame from camera N6. The spatial resolution is
such that a pixel in the near field of view is about 5 feet,
whereas those furthest from the camera are about 15 feet.
The images also suffer from occlusions by vehicles and their
shadows and from camera motion.

Despite the poor quality of the images, the data from camera
N6 is potentially informative, for example for studying the
effect of on-ramp flow on highway performance. Also, it
covers the longest stretch, about one mile, and in principle,
information extracted from this camera can be combined with
that from the higher resolution cameras, which have smaller
fields of view. Algorithms developed to analyze images from
camera N6 should be applicable to other conventional traffic
cameras.

For the analysis, a 15 minute long tape was digitized at the
rate of 10 frames per second and the results saved in ppm file
format. Each frame, like Figure 1(b), has 800x640 pixels and
each pixel has intensities for red, green, and blue channels.

III. M ETHODOLOGY

Because of the camera resolution, it would be at best
extremely difficult to apply a feature detecting and tracking
algorithm. Hence, it is necessary to develop a new way
to extract information from the images. We developed an
algorithm for this purpose. The algorithm proceeds as follows:
First, an “intensity profile” of each lane in the direction of
traffic flow is extracted from each frame. Arranging the profiles
in time order gives intensity flow in the time-space domain, in
which vehicles appear as stripes, or moving peaks. Second, the
speed estimate at(t, x) in the time-space domain is computed
via searching a pair of best matching patterns at timet + τ
andt− τ in terms of theL1 norm (sum of absolute values of
differences) and estimated as the slope of the line connecting
the two centers of the pair. For discussion and references
to such correlation-based matching methods, see Beauchemin
and Barron [2].

The algorithm has a number of advantages. First, it does not
involve vehicle tracking, which can be computationally very
expensive, and hence makes it more efficient to process a large
amount of data. Secondly, in estimating local speed it does not
compute a gradient, or a weighted average of speeds of moving
features around the location of interest. It uses theL1 norm in
finding the best matching pattern and hence is robust to noise.
Later in this section, we show that under certain conditions
the algorithm is equivalent to finding a weighted median of
the speeds of moving peaks.

A. Intensity Profiles

To generate the intensity profile for a lane, a mask (M )
is created on a particular frame, a so-called reference frame.
The mask passes intensities of pixels in a region of interest.
A masked image is presented at the top of Figure 2. Once
masked, a frame contains intensities of pixels in the region.
The pixels have three integers between 0 and 255 for red,
green, and blue channels. Because these three intensities are
strongly correlated at the pixel level, we take the average of
red, green, and blue intensities. Then, we scan across the lane
(orthogonal to the direction of traffic) and calculate the max-
imum average intensity along the direction of traffic, which
we refer to as a maximum intensity profile. The maximum
intensity profile corresponding to the top image of Figure 2 is
presented in the bottom of Figure 2.

The mask should be created for each frame, because the
camera may be constantly shaking due to strong wind. To
create masks automatically, we find mappings (Ψt) from the
reference frame to every frame during the time period and
use the new transformed masks (Ψt(M)). First, we choose
four fixed objects (reference objects) on the reference frame
and place square windows centered at them. Then, in each
frame we search for the best matching patterns corresponding
to the squared areas centered at the reference objects. Once the
patterns are found, we use the coordinates of the center pixels
of the square windows to compute the projection matrix. For
more information, refer to chapter 5 of Hartley and Zisserman
[11].

We repeat this process for each frame and stack the maxi-
mum intensity profiles in time order to obtain an intensity flow
on the time-space domain. The intensity fades as the vehicle
moves away from camera, and the road surface intensity
varies depending on the location. To correct for this, at
each location of the highway we determine the maximum
and minimum intensity during the 15 minutes and form the
ratio of the difference between the intensity and minimum to
the difference between maximum and minimum. After this
background correction, the intensity is standardized between
0 and 1. To change units from pixels to feet, we computed the
projection matrix from image to the real world, using the real
dimension of I-80 (For a detailed computation, also refer to
chapter 5 of Hartley and Zisserman [11]). As a final step, we
interpolate the intensities on a finer grid, which are equally
spaced by about 5 feet. Two examples are presented in Figure
3.



(a) Berkeley Highway Laboratory Layout (b) A frame from Camera N6

Fig. 1. Camera Setup

The resulting intensity flow is similar to a trajectory plot in
the time-space domain in that the stripes, or moving peaks,
contain information about the traffic flow on the highway. But
it differs in that one curve does not necessarily correspond
to one vehicle. Rather one vehicle can be shown as two
lines, or two vehicles traveling closely together can appear
as one moving peak. Small or dark vehicles may be barely
perceptible. Fine discrimination is not needed for subsequent
speed estimation.

Fig. 2. A filtered image and the corresponding intensity profile

B. Speed Estimation

The idea behind the estimate is that a locally constant
intensity pattern represents travel at a locally constant speed.
Hence, after a short period of time, the same pattern will show
up again at the travel distance above the previous location in
the time-space domain.

To estimate the local speed at(t, x) in the time space
domain, we choose two rectangular windows of sizewt by

wx and center one at(t + τ, x) and the other at(t − τ, x).
We then move the window centered att + τ up (increase
x) and the other one att − τ down (decreasex), computing
the L1 norms for the pair. The norm will be minimized at
the travel distance. By the nature of the image, the shifts are
integer-valued. To deal with this discretization, we fit theL1

norms near the minimizer to a quadratic function to find the
interpolated distance which minimizes the norm. The speed is
estimated as the ratio of the distance to the shifting parameter,
τ , which is equivalent to the slope between the two centers of
the pair of the best matching patterns.

In the examples presented here, we use theL1 norm criteria
and set the window size to 30 seconds by 90 feet,τ as 3
second, and the searching area as 0 to 80 MPH. The step by
step outline of the algorithm is as follows.

Let I(t, x) denote the intensity at location(t, x) in the time-
space domain.

1) Fix the local window size,wt × wx, and the shift
parameterτ ,

2) For d = 0, . . . ,m, compute

D(d) =
t0+wt∑

t=t0−wt

x0+wx∑
x=x0−wx

|I(t+τ, x+d)−I(t−τ, x−d)|.

3) Fit D(d) near the minimum to a quadratic function of
d.

4) Find d0, which minimizesD.
5) The speed is estimated asd0/τ .

Note that the algorithm does not involve gradient computa-
tion or slopes for individual lines on the intensity flow. After
running the algorithm, we run a 2-dimensional median filter
to remove noise, of size 40 second by 370 feet.

Also note that it simultaneously shifts two square windows
(centered shifting), instead of fixing one window centered at
(t, x) and shifting the other window at eithert + τ (forward
shifting) or t− τ (backward shifting) in time. As can be seen



from a Taylor series expansion, derivatives are estimated more
accurately by central differences than by un-centered ones.
The derivative of a quadratic function is estimated exactly by
central differencing, but not by one-sided differencing.

Because the algorithm involves computing the sums of
absolute difference over 2 square windows, it can be quite
slow. To speed up, we use a subgrid within the square window
instead of using all the intensities. Based on the empirical
comparisons, we find even a coarse grid of resolution one
second by about 10 feet (using5% of data points) is sufficient
to produce an estimate equally good as using all the data. Also,
we need not evaluate the estimate at every location. Instead,
we estimate the speed on a sparse grid and then interpolate.

To gain some insight into the nature of the estimate
produced by the algorithm we now consider an idealized
continuous version. Suppose features,Aj(t, x), have disjoint
supports Ij , are parabolic onIj (3rd and higher order
derivatives are zeros), and travel at the speed ofvj . The
features correspond to the contributions of individual vehicles
to the intensity profile, which we write as

f(t, x) =
∑

j Aj(t, x) =
∑

j Aj(x− vjt).

Now consider the minimizer of
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where Sj =
∫ t0+wt

t0−wt

∫ x0+wx

x0−wx
|A′j(x − vjt)|dxdt and S =∑

j Sj . The minimizer of the final expression above is a
weighted median of the individual velocitiesvj in which the
weights areSj/S. That is, it is the median of a discrete
probability distribution which has massesSj/S on the values
vj . Vehicles with large derivatives of their individual intensity
profiles thus contribute most heavily to the estimate. The
median, however, is insensitive to extreme velocities. By
contrast, if we were to use the sum of squared deviations rather
than the sum of absolute deviations, the argument above shows
that the estimate would be a weighted mean, and less robust
to extremevj . This argument formalizes the notion that the

shifting and matching algorithm estimates a weighted median
velocity over a region of space and time.

IV. RESULTS

Two intensity flows during 15 minutes from 3:00pm on 17th
of December 2001 to 3:15pm on the same day are presented
in Figure 3. We picked two lanes; the right-most (5th) lane of
I-80E and the 3rd lane of I-80W. We chose the two lanes for
the following reasons. The 5th lane merges with the Ashby on-
ramp at the near field of the frame (at around 500 feet) and the
inflow creates congestion. The 3rd lane of I-80W experienced
the worst stop-and-go traffic and had more trucks than any
other lanes during the 15 minutes.

During the 15 minutes, the east bound traffic experienced
moderate congestion, shown in the intensity flow as changes
in slopes of lines. Examining the figure carefully, one can
see some lines disappear and appear, caused by lane-changing
and occlusions from the shadows of vehicles traveling in
the next lane. The west bound lanes experienced very heavy
traffic. Also recall that in the 3rd lane there were the most
trucks. In the intensity flow, trucks appear as broad stripes. In
the intensity flow, we observe flat patterns lining up, which
shows shockwaves propagating against the traffic. The lane
also experienced the most frequent occlusion from vehicles
and their shadows, due to the stop and go traffic in the next
lane. In this lane, there are marks on the road to signify the
off-ramp and they create horizontal stripes around 30, 60, 460
pixels even after background correction. However, the speed
estimate is robust to these artifacts.

From the speed estimate of I-80E, we observe congestion
due to the inflow from the Ashby on-ramp and corresponding
shockwaves. We suspect that a traffic signal on Ashby Avenue
caused periodic fluctuations in inflow and hence the pulsating
series of shockwaves. Also note a pronounced shockwave
originating at around 360 second and 0.5 mile from the
University exit and travelling against the traffic at about 10
MPH.

The I-80W speed estimate shows even stronger oscillations
shockwave evolution, and some variation in their velocities of
propagation. The figure shows that the shockwaves typically
travel at about 10 MPH. Because we do not observe where
they originated and dissipated, we cannot verify how long
the shockwaves traveled before dissipating, based solely on
camera # 6. For now, we conjecture that the shockwaves were
created further downstream on I-80W, about 1.3 miles south
of the Ashby off-ramp, at the notorious split of I-80W into
I-580S, I-880, and I-80W. Further investigation using tapes
from cameras # 1-5 would reveal more information.

To check our estimates, we compared them to loop detector
data. Loop detectors are located at stations 3, 4, and 5 in
the order of distance from the University exit; refer to Figure
1(a). Unfortunately, the stretch had been paved recently and
we could not locate precisely where the loops were. So, we
approximated the loop locations by those of the cabinets and
pull-boxes of the loop counter stations, which are located at
the side of the wall of I-80E. In Figure 5, the dots are the point



estimates(vehicle by vehicle) from the loop data. The speed
estimates corresponding to the cabinet(pull-box) locations are
shown as the solid lines.

TABLE I

MEANS AND STANDARD DEVIATIONS (MPH)

East bound West bound
Station 3 -3.7 (2.1) -2.0 (3.8)
Station 4 0.3 (1.6) 0.0 (1.8)
Station 5 4.3 (1.8) 1.6 (3.1)

The figures show that the estimates are very close to the
loop data during the 15 minutes and pick up most of the
oscillations. There are some systematic differences, which may
be attributable to the imprecision of loop detector locations.
Note that the speed ranges and traffic conditions for the west
and east bound lanes are very different, yet the estimates
are very consistent in both cases. The means and standard
deviations of the errors between the estimates and the loop
data are reported in Table I.

V. CONCLUSIONS ANDDISCUSSION

The results above demonstrate the potential of our algorithm
for processing a video recording from a traffic camera, provid-
ing a useful tool to study numerous traffic issues, such as the
effect of an on-ramp, the evolution and dissipation of queuing
and congestion, and for monitoring highway performance.
Despite its poor quality image, camera N6 provides very
useful information in these regards. For some purposes, simple
functionals of the estimated velocity field may be sufficient.
For example, travel times can be estimated by tracing through
the field, or the average velocity over space at a given time
can be computed.

Although the results we have shown are quite reasonable,
we will study several issues in more detail in the future. One
is the choice of the region on which to base shifting and
matching. In principle, the rectangle could be as small as
one pixel in time and several pixels in space, or vice-versa.
The computing time is faster for smaller rectangles, but the
results are noisier (a defect which can be ameliorated, however,
by smoothing the estimates). Smaller rectangles yield a finer
resolution in space and time, but again at the cost of noise.
Larger rectangles localize less and are computationally more
expensive, but produce less noisy estimates. In principle, the
regions need not be rectangular and weight functions, such as
Gaussian kernels, can be used instead of uniform weighting.
Initial experimentation indicates that the final results are quite
insensitive to these choices, but further study is necessary to
optimize the algorithm for speed and accuracy.

In addition to further improving speed estimation, we are
developing algorithms to extract the other macroscopic param-
eters, flow and density, from the intensity profiles. This is more
difficult than velocity estimation. Counting is more feasible
in the near field of view, and the results can be propagated
through the estimated velocity field to obtain estimates of

density and flow in the far field of view. We will also
investigate the still more challenging problem of detecting lane
changing.

Finally we mention that we have used our method on MPEG
and AVI compressed video, with little degradation of the
results. This may be useful if data are to be transmitted prior
to analysis.
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(a) I-80 East Bound (b) I-80 West Bound

Fig. 3. Intensity flows

(a) I-80 East Bound (b) I-80 West Bound

Fig. 4. Estimated velocity fields



(a) I-80 East Bound (b) I-80 West Bound

Fig. 5. Comparsion between the estimate and the loop data




