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ABSTRACT
The Arabidopsis PEN3 ABC transporter accumulates at sites of pathogen detection, where it is involved in
defense against a number of pathogens. Perception of PAMPs by pattern recognition receptors initiates
recruitment of PEN3 and also leads to PEN3 phosphorylation at multiple amino acid residues. Whether
PAMP-induced phosphorylation of PEN3 is important for its defense function or focal recruitment has not
been addressed. In this study, we evaluated the role of PEN3 phosphorylation in modulating the
localization and defense function of the transporter. We report that PEN3 phosphorylation is critical for its
function in defense, but dispensable for recruitment to powdery mildew penetration sites. These results
indicate that PAMP-induced phosphorylation is likely to regulate the transport activity of PEN3.
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The plant antimicrobial immune system is activated upon
detection of potentially pathogenic microorganisms medi-
ated primarily by two major classes of immune receptors,
pattern recognition receptors (PRRs) that perceive con-
served elicitor molecules characteristic of microorganisms,
termed pathogen- or microbe-associated molecular patterns
(PAMPs/MAMPs), or nucleotide-binding leucine-rich repeat
(NB-LRR) type resistance (R) proteins that detect pathogen
virulence factors or their activities.7,11,13,14 Stimulation of
PRRs by PAMP perception results in the activation of a
number of characteristic defense outputs, including local
reinforcement of the cell wall through construction of papil-
lae, a process that involves deposition of callose, accumula-
tion of antimicrobial metabolites, and recruitment of
defense-associated proteins.21-23 The Arabidopsis PENE-
TRATION3 (PEN3; synonyms ABCG36 and PDR8)
ATP-binding cassette (ABC) transporter is required for full
resistance to cell wall penetration and subsequent hausto-
rium formation by the non-host barley powdery mildew
pathogen Blumeria graminis f. sp. hordei (Bgh) and contrib-
utes to resistance to numerous other fungal and oomycete
pathogens.8,9,11,12,18 PEN3 is recruited to sites of papilla
deposition upon perception of PAMPs and is required for
full pattern-triggered immunity against the bacterial patho-
gen Pseudomonas syringae pv. tomato DC3000, indicating
that the pathway involving the PEN3 transporter partici-
pates in the pattern-triggered immune response.22,24 In
accordance with these findings, phosphoproteomics studies
identified amino acid residues of the PEN3 transporter that
were differentially phosphorylated in response to perception
of the PAMPs flg22, an elicitor active peptide derived from

bacterial flagellin, oligo-galacturonide (OG) fragments
derived from the cell wall polymer pectin, or fungal xyla-
nase.4,10,15 However, whether PAMP-induced phosphoryla-
tion of PEN3 is required for the defense function of the
transporter has not been addressed. In this study, we gener-
ated mutant PEN3 variants at proteomically supported
phosphorylation sites and evaluated their ability to restore
penetration defense in the pen3 mutant and to be recruited
to powdery mildew penetration sites.

Several phosphoproteomic studies of Arabidopsis PM pro-
teins have identified phosphorylation sites in the PEN3 trans-
porter.4,10,15,16 An evaluation of PM phosphoproteins enriched
from a mixture of control- and flg22-treated suspension culture
cells unambiguously identified phosphorylation events at
serine residues S37, S40, S45, S841, and S844 as well as threonine res-
idue T43.14 Additionally, serine residue S38 was identified as a
putative phosphorylated residue that could not be unambigu-
ously identified. Subsequent quantitative studies revealed that
serine residues S40 and S45 are differentially phosphorylated in
response to perception of flg22 or fungal xylanase and identified
an additional serine residue, S825, that is marginally differentially
phosphorylated (significant at PD 0.1)in response to flg22 treat-
ment.4,15 Additionally, serines S37 and S38 could not be unambig-
uously ruled out as potential sites of differential phosphorylation
in response to flg22.15 Similarly, quantitative analysis of phos-
phorylation events in response to perception of OGs by Arabi-
dopsis seedlings identified differential PEN3 phosphorylation at
a single ambiguous residue, either serine S37 or S40.10

We hypothesized that PAMP-induced phosphorylation of
PEN3 may contribute to the activation of the PEN3 defense
function or to its recruitment to sites of interaction with
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invading pathogens. To evaluate the potential roles of specific
PEN3 phosphorylated residues, we used site-directed mutagen-
esis to generate a series of alanine substitution mutants of an
existing PEN3 promoter-PEN3-GFP construct,18 replacing
each definitively or putatively phosphorylated residue with ala-
nine to mimic the de-phosphorylated state. Additionally, we
created three polymutants. PEN3 phosphorylation sites are not
evenly distributed throughout the protein, but fall into two dis-
tinct clusters; an N-terminal cluster consisting of serine resi-
dues S37, S38, S40, and S45 as well as threonine T43, and a central
cluster consisting of serine residues S825, S841, and S844

(Fig. 1A). We created polymutants containing alanine substitu-
tions at each residue in the two distinct clusters. We refer to
these polymutants as “Cluster 1” (5 N-terminal residues) and
“Cluster 2” (3 central serines). We also created a double mutant
containing alanine substitutions at the PAMP-responsive dif-
ferentially phosphorylated residues, S40 and S45. We trans-
formed each mutant construct into the pen3-3 mutant
(SALK_110926;1,18) and assessed the ability of each mutant
PEN3 variant to restore penetration resistance in response to
Bgh at 48 hours post-inoculation (hpi) by creating transgenic
plants and evaluating fungal penetration success as previously
described.22 The PEN3 variants S37A, S38A, T43A, S825A, and
S844A all were able to restore full penetration resistance against
Bgh to the pen3-3 mutant (Fig. 1B), indicating that phosphory-
lation at these residues is not required for the defense function
of PEN3. The PEN3 S40A and S45A variants failed to restore
penetration resistance (Fig. 1B), suggesting that

phosphorylation at these residues is important for the defense
activity of the transporter. Consistent with a requirement for
phosphorylation at serines S40 and S45, the S40A/S45A double
mutant and Cluster 1 polymutant also failed to restore penetra-
tion resistance (Fig. 1B). We were unable to recover any S841A
or Cluster 2 polymutant transformants exhibiting detectable
levels of GFP fluorescence, suggesting that phosphorylation at
serine S841 may contribute to protein stability. All other alanine
substitution PEN3 variants exhibited GFP fluorescence and
localization to the PM that was indistinguishable from wild-
type PEN3-GFP (Fig. 2A).

PAMP-induced phosphorylation of PEN3 at serine residues
S40 and S45 could potentially modulate the defense function of
the transporter by activating or altering the transport activity of
PEN3 or, alternatively, by affecting recruitment of PEN3 to
sites of attempted Bgh penetration. To determine if disruption
of PAMP-induced phosphorylation in our alanine substitution
variants altered the ability of PEN3 to accumulate at sites of
fungal penetration, we monitored the localization of each GFP-
tagged PEN3 variant 24 h after inoculation with Bgh using con-
focal microscopy as previously described.22 We found that all
of the detectable PEN3 alanine substitution variants retained
the ability to accumulate at sites of attempted Bgh penetration
(Fig. 2B). These results suggest that PAMP-induced phosphor-
ylation likely contributes to the activation or alteration of
PEN3 transport activity and is not required for recruitment of
PEN3 to sites of attempted fungal penetration.

Phosphorylation of ABC transporters by protein kinases is
well known to play a role in regulation of both transport activ-
ity and protein stability and turnover.2,19 Here, we identified
two PEN3 phosphorylation sites, serines S40 and S45, required
for the defense function of the transporter that are likely
involved in regulating transport activity. In many instances
where phosphorylation has been observed to regulate ABC
transporter activity, relevant phosphorylation sites have been
located within a regulatory (R) or R-like domain present in the
cytosolic loop between the first nucleotide binding domain and
the second transmembrane domain of the protein.19 Thus, our
finding of relevant regulatory phosphorylation sites N-terminal
to the first nucleotide binding domain within PEN3 contrasts
with other previous observations that are primarily from
humans or yeast. Nonetheless, the PAMP-responsive PEN3
phosphorylation sites are near the first nucleotide binding
domain, which is consistent with numerous reports of regula-
tory phosphorylation events at sites within or adjacent to nucle-
otide binding domains of other ABC transporters.19

Additionally, a third PEN3 phosphorylation site, serine S841,
appears to affect protein stability. A synthetic peptide encom-
passing serines S37, S38, S40, S45, and threonine T43 was identi-
fied as an in vitro substrate of the Arabidopsis calcium-
dependent protein kinase CPK10.6 Further work will be
required to determine if CPK10 plays a role in the regulation of
PEN3 activity upon PAMP perception.

PEN3 is thought to contribute to antimicrobial defense by
potentially transporting one or more molecules derived from
metabolism of indole glucosinolates,3,5 however, the specific
defense-relevant molecule(s) transported by PEN3 remain
unknown. Additionally, PEN3 affects sensitivity of Arabidopsis
to the auxin analog 2,4-DB and has been proposed to act

Figure 1. Complementation of pen3-3 by PEN3 phosphorylation site mutants. (A)
PEN3 amino acid sequences in the regions encompassing phosphorylation sites at
Cluster 1 (upper panel) and Cluster 2 (lower panel). Proteomically supported phos-
phorylation sites are colored red. Putative sites that lack unambiguous support are
colored blue. (B) Bgh penetration frequencies on the wild-type PEN3-GFP line,
pen3-3, and plants expressing phosphorylation site alanine substitution PEN3-GFP
variants are expressed as means of the percentages of haustoria observed relative
to total penetration attempts. Penetration frequencies were determined by scoring
for presence or absence of haustoria at 100 infection sites per leaf for 3 leaves per
plant line 48 hpi with Bgh. Error bars represent SD (n D 3). Means indicated by the
same letter are not significantly different according to Tukey’s post-hoc test
(P < 0.01). The experiment was repeated 3 times with similar results.
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redundantly with ABCG37 to transport the auxin precursor
indole-3-butyric acid.17,20 It will be interesting to determine
whether phosphorylation at S40 and S45 also regulates transport
of auxin-related molecules by PEN3 or if other phosphorylation
events modulate PEN3 function in growth and development.
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