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ARTICLE OPEN

Electrophysiological biomarkers of behavioral dimensions from
cross-species paradigms
James F. Cavanagh1, David Gregg2, Gregory A. Light 3,4, Sarah L. Olguin2, Richard F. Sharp3, Andrew W. Bismark4, Savita G. Bhakta3,
Neal R. Swerdlow 3, Jonathan L. Brigman 2 and Jared W. Young 3,4✉

© The Author(s) 2021

There has been a fundamental failure to translate preclinically supported research into clinically efficacious treatments for
psychiatric disorders. One of the greatest impediments toward improving this species gap has been the difficulty of identifying
translatable neurophysiological signals that are related to specific behavioral constructs. Here, we present evidence from three
paradigms that were completed by humans and mice using analogous procedures, with each task eliciting candidate a priori
defined electrophysiological signals underlying effortful motivation, reinforcement learning, and cognitive control. The effortful
motivation was assessed using a progressive ratio breakpoint task, yielding a similar decrease in alpha-band activity over time in
both species. Reinforcement learning was assessed via feedback in a probabilistic learning task with delta power significantly
modulated by reward surprise in both species. Additionally, cognitive control was assessed in the five-choice continuous performance task,
yielding response-locked theta power seen across species, and modulated by difficulty in humans. Together, these successes, and also the
teachings from these failures, provide a roadmap towards the use of electrophysiology as a method for translating findings from the
preclinical assays to the clinical settings.

Translational Psychiatry          (2021) 11:482 ; https://doi.org/10.1038/s41398-021-01562-w

INTRODUCTION
Many clinical treatment trials in psychiatry have failed at the cost of
time, effort, money, and the hope of the patients tested. These
translational failures are often attributed to either a lack of consistent
quantification of the same neural processes across species [1, 2] or
to the use of “fast and dirty” behavioral techniques that have little-
to-no relevance to human testing [3]. In response, the National
Institutes of Mental Health (NIMH) formed the Cognitive Neu-
roscience Treatment Research to Improve Cognition in Schizophre-
nia (CNTRICS) to identify cognitive systems and component
processes that could be tested across species [1]. Continuing this
theme, NIMH also initiated the Research Domain Criteria (RDoC)
initiative [4, 5], promoting a focus on specific behavioral dimensions
and related neurophysiological circuits instead of end phenotypes. A
common theme across these new paradigms is the need for brain-
based neural signals that are specifically linked to behavioral
dimensions, that must be sensitive to systemic alterations due to
mental health disorders, and that should ideally be translatable
between the species. Ultimately, the availability of specific, sensitive,
and translatable neural signals would increase the likelihood of
positive animal trial results being translated to positive clinical trial
results. Motivated by a specific UH2/3 funding mechanism from the
NIMH, we aimed to test three candidate behavioral assays and
assess the homology of concurrent neurophysiologic responses
across species (UH2 phase), with future studies confirming
pharmacologic sensitivity across species (UH3 phase).

Candidate domains that are deficient in psychiatric disorders
include effortful motivation, reinforcement learning, and cognitive
control. Effortful motivation is recognized as a core contributor to
psychosocial impairments in psychiatric conditions, ranging from
amotivation in people with schizophrenia and depression to
increased goal-directed activity in mania. There are various
methods for assessing effort-based decision making, each with
associated deficits observed across psychiatric conditions [6–9].
Motivational deficits can also be measured across species,
although techniques vary widely [10–12]. One method for
measuring effortful motivation is the progressive ratio breakpoint
task, linked to a single, well-defined action requirement. Motiva-
tion is measured by the point that the participant stops
responding to gain a reward, is reduced in people with
schizophrenia [13, 14], and accounts for 24% of the variance in
their global cognitive functioning [15]. A reduced breakpoint is
also observed in animal models relevant to schizophrenia [16],
while an increased breakpoint is observed in animal models of
mania [17]. Thus, effortful motivation can be measured in a
manner consistent across species.
Another promising experimental domain is reinforcement

learning, which requires an agent to learn stimulus-action pairings
based on rewarding or punishing outcomes. These outcomes are
often delivered probabilistically, requiring long-term integration of
action values [18, 19]. Probabilistic reinforcement learning
paradigms are naturally transferrable across vertebrates [20–23],

Received: 19 January 2021 Revised: 20 July 2021 Accepted: 11 August 2021

1Psychology Department, University of New Mexico, Albuquerque, NM, USA. 2Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM
87131, USA. 3Department of Psychiatry, University of California San Diego, 9500 Gilman Drive MC 0804, La Jolla, CA 92093-0804, USA. 4VISN-22 Mental Illness Research Education
and Clinical Center, VA San Diego Healthcare System, San Diego, CA, USA. ✉email: jaredyoung@ucsd.edu

www.nature.com/tpTranslational Psychiatry

http://crossmark.crossref.org/dialog/?doi=10.1038/s41398-021-01562-w&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41398-021-01562-w&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41398-021-01562-w&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41398-021-01562-w&domain=pdf
http://orcid.org/0000-0003-4730-8646
http://orcid.org/0000-0003-4730-8646
http://orcid.org/0000-0003-4730-8646
http://orcid.org/0000-0003-4730-8646
http://orcid.org/0000-0003-4730-8646
http://orcid.org/0000-0001-9711-5020
http://orcid.org/0000-0001-9711-5020
http://orcid.org/0000-0001-9711-5020
http://orcid.org/0000-0001-9711-5020
http://orcid.org/0000-0001-9711-5020
http://orcid.org/0000-0001-6786-3263
http://orcid.org/0000-0001-6786-3263
http://orcid.org/0000-0001-6786-3263
http://orcid.org/0000-0001-6786-3263
http://orcid.org/0000-0001-6786-3263
http://orcid.org/0000-0003-3732-5776
http://orcid.org/0000-0003-3732-5776
http://orcid.org/0000-0003-3732-5776
http://orcid.org/0000-0003-3732-5776
http://orcid.org/0000-0003-3732-5776
https://doi.org/10.1038/s41398-021-01562-w
mailto:jaredyoung@ucsd.edu
www.nature.com/tp


and are thus an ideal candidate for domain consistency.
Probabilistic learning deficits are observed in people with
psychiatric conditions, such as schizophrenia [24, 25], bipolar
disorder [26], and depression [27–29], bolstering the translational
utility of findings. Reinforcement learning theory provides a
quantification of abstract processes [30], facilitating an interpreta-
tion of neural signals by their confirmation to theorized
parameters and computations.
Finally, cognitive control is a domain that is reliably associated

with psychiatric distress. Cognitive control requires goal-driven
action selection over prepotent tendencies [31, 32], and it can be
elicited using several paradigms including various continuous
performance tests (CPTs). Prior to the development of the five-
choice (5 C)-CPT [33], cognitive control and attention were not
typically measurable in the same task in rodents. The 5C-CPT has
since been reverse-translated for use in humans and used to
provide evidence that cognitive control is deficient in schizo-
phrenia [34] and bipolar disorder [35]. Cross-species pharmacolo-
gical predictive validity has been demonstrated by the effects of
amphetamine, which improves 5C-CPT performance in humans,
rats, and mice [35, 36]. Importantly, for cognitive control, a
measure of response inhibition (false alarm rate) is functionally
separable from the more traditional impulsivity measure of
premature responses, as evidenced by dopamine D4 receptor
and 5-HT2C mechanism sensitivity, respectively [37].
Across these three task domains of effortful motivation,

reinforcement learning, and cognitive control it is possible to
assess behaviors with preserved consistency across species with
outcomes that are sensitive to deficits in clinical populations.
However, behavioral consistency has proven insufficient, and

shared neural substrates of task engagement are necessary to
increase confidence in any treatment translated across species.
While there are numerous studies advancing candidate biomar-
kers of specific domains, many techniques are inherently ill-
suited for translating behavioral or neurophysiology between
species. Fixed-head techniques like fMRI in humans or calcium
imaging in animals have limited translatability. Invasive record-
ings like depth electrophysiology are compelling but such
studies are rare in humans. Electrophysiological recordings
naturally encompass multiple scales of measurement in a
hierarchical, integrated manner. For example, local fields couple
to scalp‐recorded EEG: regardless of scale (depth, dura, scalp,
etc.), field activity is always measured [38]. Thus, electrophysiol-
ogy is uniquely well-suited for addressing questions about
translatable neural signal biomarkers.
Even with the methodologic promise of comparative electro-

physiology, a major impediment toward improving this species
gap has been the difficulty of developing paradigms that 1) can
quantify EEG responses related to specific behaviors, 2) are
impacted by mental health disorders, and 3) are suitable for both
human and animal studies. Fortunately, the advent of touchscreen
technology for rodents has greatly increased the sophistication of
behavioral testing. Here, we detail RDoC-relevant behavioral
domains impacted by mental health (effortful motivation,
reinforcement learning, and cognitive control) that can be
quantified in similar tasks across humans and mice and that are
associated with an a priori defined candidate spectral EEG
biomarker (Fig. 1). Only some of these behavioral and neural
signatures were successfully translated here—yet even failures
yielded critical lessons for advancing this field.

Fig. 1 Schematic electroencephalograph (EEG) recording in humans and mice. The present studies utilized EEG recordings in humans and
mice while they performed tasks that probed RDoC-relevant domains of functioning, including effortful motivation, reward learning, and
cognitive control. Humans used a joystick to respond to on-screen stimuli, while mice responded using a touchscreen. Scalp (human) and
dura (mice) EEG recordings were recorded during the execution of these tasks. Time-frequency regions-of-interest were contrasted between
task conditions to compare neural signatures of these RDoC domains.
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METHODS AND MATERIALS
Human participants
The human portion of this study was conducted at the UCSD Medical
Center, with approval from the UCSD Human Subject Institutional Review
Board. Healthy men and women (18–35 years; n = 57) were recruited from
the community and monetarily compensated for participation. First,
subjects underwent phone screening to assess current and past medical
and psychiatric history, medication and recreational drug use, and family
history of psychosis. Following informed consent, participants completed
an in-depth screening visit, including a physical examination, urine
toxicology screen, and urine pregnancy test. All exclusion criteria and
data for cohort characterization are presented in the Supplemental
Materials. EEG equipment problems with two participants resulted in
n = 55 participants with available behavioral and EEG recordings across
the three tasks.

Progressive ratio breakpoint task (PRBT)
This version of the PRBT has been detailed elsewhere [15] (Fig. 2A).
Participants were required to rotate the same arcade joystick handle in the
indicated direction to be “rewarded” (50 points/level), with the number of
rotations needed set to a progressive ratio schedule (5, 15, 35, 70, 120,
etc.). Participants were asked to earn as many points as possible but were
told that they could quit any time, ending the entire testing session. A
white dot was used as feedback to indicate four successful rotations. The
collected “points” held neither value nor were subjects verbally
encouraged during task performance. After a short practice session to
acclimate to the joystick rotations and task feedback, the test session was
initiated. After rotating the joystick a sufficient number of times to attain
each reward level, a screen appeared indicating they had earned 50 points
and the required direction of rotations alternated (i.e., clockwise to
counter-clockwise) to minimize perseverative motor effects. The task
ended when patients either completed all possible reward levels, verbally
indicated they no longer wanted to continue the task, or failed to make a
response for five consecutive minutes. The breakpoint was quantified as
the largest number of levels completed before the end of the task.

Probabilistic learning task (PLT)
This version of the PLT has also been detailed elsewhere [15] (Fig. 3A).
Participants were presented a stimulus pair (e.g., bicycle/phone, chair/clip,
plug/flashlight) on a computer monitor and instructed to select the
“target” stimulus using a digital four-switch USB arcade-style joystick.
Participants were given feedback after each trial about whether their
response was “correct” or “incorrect.” Reward probabilities for the target/
nontarget stimulus were set within a block of 80 trials (80/20, 70/30, and
60/40), but stimuli differed between trial blocks (first block was bicycle/
phone at 80/20, then the next block was chair/clip at 60/40, etc.). Overall

performance was calculated as the total number of correct target
selections aggregated across the three blocks of 80 trials.

Five-choice continuous performance task (5C-CPT)
Participants were instructed to move the joystick in the direction that a
circle appeared (target stimuli) but inhibit from responding if five circles
simultaneously appeared (nontarget stimuli) (Fig. 4A). This new 5C-CPT
variant had two different difficulty conditions. In easy conditions, stimuli
were presented for 100ms. In hard conditions, stimuli were presented for
10ms but then a solid white mask was presented over the stimulus array
for 90ms. All target and nontarget stimuli were presented in a
pseudorandom order (to ensure no more than three of the same trial
types in a row), with a 1 sec response window available for all trials and a
variable intertrial interval (ITI; 500, 1000, or 1500ms). The full task consisted
of 216 trials: 90 target and 18 nontarget stimuli for each of the difficult
conditions. Composite metrics of task performance were used in the
analysis of performance, including hit rate, false alarm rate (FAR), d prime,
and bias.

Human electrophysiological recording and preprocessing
Continuous electrophysiological (EEG) data were recorded using a BioSemi
Active Two system. Data were recorded in DC mode from 64 scalp leads,
four electrooculogram (EOG) leads recorded at the superior and inferior
orbit of the left eye and outer canthi of each eye, and one nose and two
mastoid electrodes for offline re-referencing. The electrode offsets were
kept below 25mV and all channels were referenced to the system’s
internal loop (CMS/DRL electrodes). All data were collected using a 512 Hz
sampling rate utilizing a first-order antialiasing filter. Custom Matlab scripts
and EEGLab [39] functions were used for all data processing. Data were
first epoched around the imperative stimuli and then average referenced.
Bad channels and bad epochs were identified using a conjunction of the
FASTER algorithm [40] and pop_rejchan from EEGLab and were subse-
quently interpolated and rejected, respectively. Eye blinks were removed
following independent component analysis in EEGLab.

Animal subjects
Male and female C57BL/6 J mice were obtained from The Jackson
Laboratory (Bar Harbor, ME), housed in same-sex groupings of two per
cage in a temperature- and humidity-controlled vivarium under a reverse
12 h light/dark cycle (lights off:0800 h) and tested during the dark phase. A
total of 12 male and 12 female mice were used. All experimental
procedures were performed in accordance with the National Institutes of
Health Guide for Care and Use of Laboratory Animals and were approved
by the University of New Mexico Health Sciences Center Institutional
Animal Care and Use Committee. See Supplemental Materials for
information on touchscreen pretraining. All rewarding outcomes included

Fig. 2 The progressive ratio breakpoint task (PRBT) required the subject to continuously engage in behavior with a diminishing
probability of reward. A In humans, participants had to rotate a joystick an increasing number of times (e.g. 5, 15, 35…) to accumulate
rewards. B Mice touched the screen an increasing number of times for the magazine to dispense liquid reward. C–D Breakpoints for each
species including means split by sex. E–F Time-frequency plots of the earliest vs. the last trials at POz in humans or the posterior lead in mice.
For the sake of effective visual comparison, the time dimension is −500 to 1000 locked to markers placed every second (for humans) or every
trial (for mice). The magenta box shows the alpha-band tf-ROI. Since the baseline for both species was spread across all trials, all power values
are relative (thus “negative” in early trials). G–H EEG tf-ROI quantification of the early vs. last difference in posterior alpha. Bars indicate the
group means (± SEM), green asterisks indicate statistically significant (p < 0.05) within-subject differences.
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the delivery of an auditory tone signaling the subsequent availability of
strawberry milkshake.

Mouse progressive ratio breakpoint task (PRBT)
During the PRBT, mice were presented with a single illuminated square in
the center of the touchscreen, which produced a strawberry milkshake
reward (40 µL) when pressed. The stimulus remained on the screen until
the required response number was made. Each session lasted 60min. The
number of touches required for a reward increased by a step every three
trials (e.g.: 1,1,1,2,2,2,4,4,4,7,7,7, etc.). The breakpoint was the last ratio
completed at the end of the 1-h session. Mice completed one session
of PRBT.

Mouse probabilistic learning task (PLT)
Throughout each session of the PLT, mice were presented with three pairs
of unique stimuli (fan/marble, honey/cave, spider/fan) in three separate 20-
trial blocks. For the first block, one stimulus was rewarded 90% of the time
and the other was rewarded 10% of the time. The next blocks included 80/
20 and then 70/30 reinforcement rates. The mice were given two hours to
complete the task. Mice were tested for 1–10 consecutive sessions.

Mouse five-choice continuous performance task (5C-CPT)
Mice were trained in the 5C-CPT as previously described [36] (see
Supplemental Materials and Supplemental Figure S1). Target trials were
indicated by illumination of a single stimulus window; nontarget trials
consisted of illumination of all five windows. Hits and correct rejections
were rewarded. False alarms resulted in a 10 s timeout period. Mice were
first trained on a 2:1 ratio (2 target trials to 1 nontarget) for five sessions.
They were then tethered to the recording apparatus for two sessions of 2:1
to acclimate to the head stage, and then moved to a 5:1 ratio. Similar to
the human 5C-CPT, two different difficulty conditions were included, with
easy (3 s response window) and hard (1.5 s response window) trials across
ten recording sessions.

Human and mouse EEG processing
For the sake of descriptive simplicity, both the scalp-recorded signal in
humans and the dura-recorded signal in mice are referred to as “EEG.”
Time-frequency measures were computed by multiplying the fast Fourier

transformed (FFT) power spectrum of single-trial EEG data with the FFT
power spectrum of a set of complex Morlet wavelets defined as a
Gaussian-windowed complex sine wave: ei2πtfe-t^2/(2xσ^2), where t is time, f
is frequency (which increased from 1–50 Hz in 50 logarithmically spaced
steps), and the width (or “cycles”) of each frequency band was set to
increase from 3/(2πf) to 10/(2πf) as frequency increased. Then, the time
series was recovered by computing the inverse FFT. The end result of this
process is identical to time-domain signal convolution, and resulted in
estimates of instantaneous power taken from the magnitude of the
analytic signal. Each epoch was then cut in length (cues: −500 to
+1000ms; responses: -1000 to +500ms).
Averaged power was normalized by conversion to a decibel (dB) scale

(10*log10[power(t)/power(baseline)]), allowing a direct comparison of
effects across frequency bands. The baseline consisted of averaged power
-300 to -200 ms before all task-specific stimuli, except the response-locked
mouse 5C-CPT trials, which benefitted from greater trial-specific clarity by
using a preresponse −800 to −700 ms window. A 100ms duration is often
used as an effective baseline, since pixel-wise time-frequency data points
have already been resolved over smoothed temporal and frequency
dimensions with the wavelets. For the PRBT, the entire duration of all
epochs was used as the baseline.

Statistical analysis
Species were analyzed with separate mixed-effects models. For mice,
individual sessions were concatenated and each mouse was treated as a
random effect, similar to humans. The contrast conditions within each task
were treated as fixed effects. For mouse data, only trials with at least 30
epochs were used in the 5C-CPT or PLT (PRBT always used five trials at the
beginning and five trials at the end). In the human dataset, there were
clear a priori hypotheses and there was more level-2 data (more subjects),
so a smaller threshold was used for level-1 rejection (trials). For the 5C-CPT,
this minimum was ten trials and for the PLT, the minimum was 20 trials. For
the PRBT, 1-s epochs were averaged for the first 50 s and the last 50 s of
the task.
Analysis of Variance (ANOVAs) and t tests were used to test hypotheses

about condition-specific differences within each task, separately for each
species. All tests were two-tailed. We also determined whether sex
moderated these effects, although there were no specific hypotheses
about the role of sex. Test statistics are shown in Tables 1 & 2. Simple
effects contrasts are shown in Table 3 along with the time and frequency

Fig. 3 The probabilistic learning task (PLT) required the subject to select the stimulus that probabilistically led to reward most often.
A–B In humans and mice, each trial required a choice between two stimulus icons. C–D Total accuracies for each species, including means split
by sex. E–F Time-frequency plots of high vs. low probability rewards at FCz in humans or the anterior lead in mice. The magenta box shows
the delta-band tf-ROI. G–H EEG tf-ROI quantification of the difference in reward expectation conditions in frontal delta power. I–K Replication
with a second cohort of mice on a simpler discrimination task. Bars are means (± SEM), green asterisks indicate statistically significant (p < 0.05)
within-subject differences.
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ranges for each tf-ROI. All effect sizes are presented as partial eta-squared
(pη

2) or Cohen’s d (mean difference divided by the pooled standard
deviation).

RESULTS
Statistical differentiation followed an a priori approach, where
each task had a predicted spatial, temporal, and frequency range
for the contrast of interest. These time-frequency regions-of-
Interest (tf-ROIs) were broadly defined based on well-replicated
findings from the human EEG literature (detailed for each task
below). In the discussion, we note how the exact tf-ROIs
discovered here will be used in future pharmacologic studies,
providing a chance for direct replication and theoretical extension
of the candidate biomarkers. Each figure shows the tf-ROI in
magenta, as well as topographic plots highlighting the target
electrode.

Predictions: PRBT
This task required subjects to engage in active behavior to gain a
reward at each level. In humans, levels increased after rotating the
joystick, while in mice, levels increased after sufficient touches to

the screen. In both cases, the number of actions required for the
next reward progressively increased. The point at which the
subject stopped responding was identified as their breakpoint and
was used as an index of effortful motivation. Previous EEG studies
have implicated alpha power as a concomitant of effortful
behavior in humans [41–43], including changes due to physical
and mental fatigue [44, 45]. Here, we examined if this relationship
was present during the PRBT and if it was common between
species. The alpha-band was defined as 8–12 Hz, and electrode
POz was selected to be within the mass of broad posterior alpha.
Epochs were locked to the first 50 and last 50 s at electrode POz in
humans, and to the first five and last five rewarded responses in
the posterior lead in rodents. Since this alpha-band effect was
expected to be relatively consistent across events, the time
window was arbitrarily set from 0–200 ms postevent. It was
hypothesized that alpha power at this posterior lead would be
larger at the end of the task, as indicated for physical vs. cognitive
effort [46].

Outcomes: PRBT
In humans, the breakpoint was around 7 (Fig. 2C). In mice, the
breakpoint was around 4 (Fig. 2D). There were no sex differences

Fig. 4 The five-choice continuous performance task (5C-CPT) had two levels of dbifficulty. A–B In humans, difficulty was manipulated with
easy (unmasked) vs. hard (masked) visual contrast conditions. Difficulty altered d prime but not bias. C–D In mice, difficulty was modulated
with easy (3 s delay) vs. hard (1.5 s delay) conditions. Task demand did not change d prime or bias in mice. E–F Time-frequency plots of
response-locked data at FCz in humans or the anterior lead in mice. Since a correct nontarget (nogo) condition does not require a response,
these epochs were time-locked to the end of the delay period. The magenta boxes show the theta-band tf-ROI. G–H) EEG tf-ROI quantification
of the go easy vs. go hard difference in preresponse theta power. Green asterisks indicate statistically significant (p < 0.05) within-subject
differences.
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in either the number of trials completed or the breakpoint (human
t’s < 1, mouse t’s < 1.52). Following minimum epoch count
requirements, and due to two technical problems in human
EEG, there were n = 52 humans (M = 24, F = 28) and n = 20 mice
(M = 11, F = 9). Both the humans and mice had a significant late
> early alpha power contrast (Table 1). There were no main or
interactive effects with sex for either species.
Unlike the other experiments in this report, and to the best of

our knowledge, the hypothesis of an alpha-band marker of
breakpoint-related effort had not been tested. This alpha
difference (last minus first) was proposed to scale with greater
motivation loss, and it was indeed negatively correlated with the
breakpoint in humans (ρ (52) = −0.28, p = 0.046; Supplemental
Figure S2). Notably, time-on-task, as measured by the number of
seconds on the PRBT did not correlate with breakpoint (rho(52) =
−0.15, p = 0.30). This outcome highlights the fact that participants
achieved a higher breakpoint through effort, which correlated
with alpha-band difference, not time. A stepwise regression
verified this specific relationship, where seconds did not correlate
with the alpha difference (F < 1), yet the addition of the breakpoint
in the next level led to a significant F change (F(2,49) = 4.03, p =Ta
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Table 2. Test statistics for 2 (sex) * 2 (condition) ANOVAs for
behavioral performance on the PLT and 5 CCPT.

PLT df Main:
probability

Main: sex Prob* sex

Human: accuracy 1.51 F= 54.40,
p < 0.001,
pη

2= 0.52

F= 0.87,
p= 0.36,
pη2= 0.02

F= 0.60,
p= 0.44,
pη2= 0.01

Mouse: a
ccuracy

1.18 F= 0.02,
p= 0.90,
pη2= 0.00

F= 2.24,
p= 0.15,
pη2= 0.11

F= 0.34,
p= 0.55,
pη2= 0.02

5C-CPT df Main:
difficulty

Main:
sex

Diff* sex

Human: hit rate 1.53 F= 23.07
p < 0.001
pη

2= 0.31

F= 1.41
p= 0.24
pη2= 0.03

F= 0.28
p= 0.60
pη2= 0.00

Mouse:h
it rate

1.13 F= 0.58
p= 0.46
pη

2= 0.04

F= 0.02
p= 0.89
pη

2= 0.00

F= 3.08
p= 0.10
pη

2= 0.17

Human: FA 1.53 F= 2.01
p= 0.16
pη

2= 0.04

F= 0.97
p= 0.33
pη2= 0.02

F= 0.46
p= 0.50
pη

2= 0.01

Mouse:
FA

1.13 F= 4.33
p= 0.06
pη

2= 0.24

F= 2.32
p= 0.15
pη

2= 0.14

F= 0.11
p= 0.75
pη2= 0.01\

Human: d prime 1.53 F= 28.78
p < 0.001
pη

2= 0.36

F= 3.27
p= 0.08
pη2= 0.06

F= 0.52
p= 0.47
pη

2= 0.01

Mouse:
d prime

1.13 F= 0.91
p= 0.34
pη

2= 0.07

F= 0.53
p= 0.48
pη

2= 0.04

F= 0.13
p= 0.72
pη

2= 0.01

Human: bias 1.53 F= 1.33
p= 0.25
pη

2= 0.03

F= 1.72
p= 0.20
pη

2= 0.03

F= 0.0
p= 0.99
pη

2= 0.00

Mouse:b
ias

1.13 F= 3.48
p= 0.09
pη

2= 0.21

F= 3.52
p= 0.08
pη

2= 0.21

F= 1.98
p= 0.18
pη

2= 0.13

Human: hit RT 1.53 F= 146.59
p < 0.001
pη

2= 0.73

F= 1.76,
p= 0.19,
pη

2= 0.03

F= 2.80, p
= 0.10, pη

2

= 0.05

Mouse:
hit RT

1.13 F= 9.29
p= 0.008
pη

2 0.38

F= 1.18,
p= 0.30,
pη

2= 0.07

F= 1.45, p
= 0.25, pη

2

= 0.09

Bold values represent p values and effect sizes.
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0.02, R2 change = 0.10). The analysis of mouse performance
required some different operational definitions and statistical
approaches, since they always had one hour to complete the task
and most mice stopped at a breakpoint of “four” while a few
stopped at “seven.” In mice, there was no relationship between
alpha power and the number of epochs completed (rho(22) =
−0.09, p= 0.70), although this may be due to a reduced sample
size. When analyzed as two groups, the mice with a breakpoint of
“four” had a nonsignificantly higher alpha power than those with a
breakpoint of “seven” (t(18) = 1.21, p= 0.24), supporting the
premise that a higher sample size may have yielded the same
correlation seen in humans.

Predictions: PLT
Trials that resulted in correct feedbacks were used for all analyses. In
mice, rewarded responses were immediately indicated by a 1 s, pure
noise tone concomitant with the illumination of the magazine light
and delivery of the reward. Comparisons were split based on the
probabilistic aspect of the reward feedback, creating high prob-
ability (i.e., target response followed by reward) vs. low probability
(i.e., nontarget response followed by reward) contrasts. While this
contrast is ideal for comparing the same process without
interference from different sensory or imperative events, it
unfortunately conflicted with our strong epoch count requirements
(see Methods and Materials). These criteria led to the necessity of
limiting these analyses to only the humans and mice who
experienced the minimum amount of both trial types. Epochs were
locked to rewarding feedbacks at electrode FCz in humans—where
the reward positivity ERP component is maximal [47–49]—and at
the frontal lead in rodents. We hypothesized that low vs. high
probability rewards would elicit a frontal midline delta-band power
burst [47, 50]. While this reward-locked delta burst is reliably
observed in humans, the timing and frequency varies between the
published studies [47, 49–51]. Here, the temporal window was
defined from 250 to 550ms post-feedback; however, the frequency
window was 1.3–2 Hz for humans and 1–1.4 Hz for mice.

Outcomes: PLT
For humans, overall PLT accuracy was greater than chance, with no
difference between the sexes (Table 2). For mice, overall accuracy
did not differ from chance. However, many mice were excluded
from subsequent analysis due to a low number of epochs; the
accuracy of the cohort used in EEG analysis was significantly higher
than chance (t(13) = 2.26, p= 0.04, d= 0.60), with no difference
between sexes (t < 1). Following these minimum epoch require-
ments for high and low probability events, the sample sizes of EEG
analyses were reduced (human:M= 7, F= 11; mouse:M= 5, F= 8).
Both the humans and mice had a significant low > high probability
delta-band contrast, with a significant main effect of sex in humans
(males > female), (Table 1).
While this carefully contrasted delta-band effect in mice is

compelling, it was disappointing that the mice performed so
indiscriminately during EEG assessment. To test the reliability of

this delta-band contrast, a separate cohort (N = 12: M = 6, F = 6)
was tested over g days on a single pair of stimuli that had 100 vs.
50% probabilities of reward. All mice performed at around 80%
accuracy (i.e., they selected the 100% rewarding option 80% of the
time: t(11) = 20.90, p < 0.001, d= 6.03), suggesting a high level of
intrinsic exploration (Fig. 3I). Critically, time-frequency contrasts
revealed a surprise-evoked delta-band burst in the same tf-ROI
(Fig. 3J-K). Although this cohort did not reveal a significant
statistical differentiation between conditions (t(11) = 0.89, p=
0.39, d= 0.18), this may still be expected from a true effect. The
p-value alone is a poor metric for assessing replicability; effect
sizes and confidence intervals are more useful for assessing the
utility of an experimental outcome [52, 53]. Here, we observed
that the mean difference between conditions were in fact the
exact same number (first cohort: mean difference = 0.65 dB, CI =
0.14, 1.15; second cohort mean difference = 0.65 dB, CI = −0.97,
2.27). Although not included in the a priori hypotheses, analyses
for EEG time-frequency region of interests for punishment-related
theta with statistical analyses (Supplemental Tables S1 & S2), with
corresponding theta power representation (Supplemental
Figure S3), are described, in addition to correlations to mouse
accuracy related to reward- and punishment-associated delta
power differences (Supplemental Figure S4).

Predictions: 5C-CPT
Only hits on target trials and correct rejections on nontarget trials
were used for EEG analysis. This novel 5C-CPT also introduced two
varying difficulty levels using backward masks. In humans, these
were easy (standard, unmasked) and hard (masked) visual contrast
conditions. In rodents, we utilized supposedly easy (3 s delay) and
hard (1.5 s delay) conditions. In mice, rewards were immediately
indicated by a 1 s, pure noise tone concomitant with the
illumination of the magazine light and delivery of reward. These
rewards were locked to the response on hits and the end of the
delay period on correct rejections. The nontarget vs. target
contrasts were expected to elicit frontal midline theta power,
which is a reliable indicator of cognitive conflict [54, 55]. However,
it was not possible to verify that cues were visually attended to by
the mice, so response-locked epochs were used for both species.
Epochs were locked to responses at electrode FCz in humans and
the frontal lead in rodents. Since there were no responses for
correct rejections, nontarget trials were time-locked to the end of
the temporal epoch. The theta-band was defined as 4–8 Hz. Since
conflict-specific theta power peaks at FCz before response
execution [56, 57], the temporal window was defined as −500
to 0ms preresponse. This frontal theta effect was hypothesized to
be parametrically enhanced in the hard vs. easy contrast.

Outcomes: 5C-CPT
In humans, the difficulty manipulation (masking), caused a
significantly lower hit rate, longer RTs, and lower d prime,
indicative of worse attention but no change to false alarms
(response inhibition) or, importantly, bias of responding. There

Table 3. Summary of simple effects.

Low freq High freq Start time End time t df p d Match?

PRBT alpha Human 8 12 0 200 6.14 51 <0.001 0.92 Yes

Mouse 8 12 0 200 2.15 19 0.04 0.66

PLT delta Human 1.3 2 250 550 2.44 17 0.03 0.56 Yes

Mouse 1 1.4 250 550 2.78 12 0.02 0.40

5C-CPT theta Human 4 8 −500 0 5.58 54 <0.001 1.06 No

Mouse 4 8 −500 0 0.68 10 0.51 0.26

Time and frequency ranges for event-related tf-ROIs and simple effects statistical contrasts (paired t statistic, Cohen’s d) within each task. For the PRBT, the
contrasts are early > late trials. For PLT, contrasts are low > high reward probability. For the 5C-CPT, the simple effect is the go hard > go easy condition.
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were no main or interactive effects with sex, (Table 2). In mice, the
difficulty manipulation (stimulus duration), induced faster RTs but
no changes to performance measures. There were no main or
interactive effects with sex (Table 2). Following minimum epoch
count requirements, there were n= 55 humans (M = 26, F = 29)
and n = 11 mice (M = 8, F = 3). In humans, there were significant
main effects of preresponse theta power to response (target >
nontarget) and difficulty (hard > easy), and an interaction (hard
target > easy target > nontarget) (Table 1). For mice, there was
only a significant main effect of response (target > nontarget). All
other F tests < 1 (Table 1). Since the response data were locked to
different events (there were no responses on nontarget trials), this
response contrast was not an effective assessment of cognitive
control, more likely reflecting attentive functioning. The contrast
between difficulty conditions is better-suited as an assessment of
control since the imperative events were identical. Preresponse
theta was only modulated by difficulty in humans (hard target >
easy target), while there was no effect in mice (Table 3). There
were no main or interactive effects with sex for either species
(Tables 2 and 3).

DISCUSSION
Here, we report that consistent behaviors and related neural
signatures can be elicited across various tasks and domains in
humans and mice. These candidate EEG responses displayed
remarkable temporal, spatial, and frequency consistency between
species, largely consistent with our a prior hypotheses. Specifically,
the PRBT (effortful motivation) and PLT (reward learning) revealed
consistent neural signatures of posterior alpha and reward delta
respectively, seen in both humans and mice while performing
these tasks. Additionally, the 5C-CPT revealed consistent target-
locked theta across species.

Effortful motivation: PRBT
The behavioral performance of humans and mice in the PRBT was
consistent with earlier reports [15, 16, 58]. Previous EEG studies
have implicated alpha power with effortful behavior in humans
[41–43], including changes due to physical and mental fatigue
[44, 45]. More recently, diminished alpha power was described in
mice lacking metabotropic glutamate receptor 5 [59], and rats
lacking the Fmr1 gene [60], although it is not clear if this was tied
to motivational state since it was simply in awake rodents. Our
present data, therefore, add to human literature showing a
duration-specific decline in posterior alpha power in humans,
confirming this same effect in mice performing the PRBT, thereby
enabling assessment of both patient populations and their rodent
models. The scale of this alpha power decline correlated with the
breakpoint in humans, but evidence for a similar relationship in
mice was uncertain, likely due to lower sample sizes. Some
evidence in support of the relationship emerged when comparing
the alpha power of animals with differing breakpoints and
requires future study. Given that posterior alpha is the single
most dominant background rhythm in humans, these data
support the idea that some common neural architecture is
preserved across mammalian species that is stimulated during
the performance of the same task. Future studies will have to
confirm that this neural correlate of effortful performance is
altered across clinical populations and in animals manipulated to
be relevant to the population, and whether it is sensitive to
pharmacologic agents.

Reward learning: PLT
While humans were predictably effective at performing this task,
mice performed just above chance, unless the task was simplified.
Despite these addressable difficulties in training and performance,
the similarities between tasks facilitates comparison of EEG
responses during task completion. The analytic contrasts were

able to be well-controlled within each species, facilitating a
comparison of the underlying process (e.g., low vs. high
probability corresponding to high vs. low reinforcement predic-
tion error), without interference from different sensory or
imperative stimuli. The prediction of a delta-band enhancement
to reward surprise was borne out in both species. An additional
study with easier discriminability replicated the observation of the
delta-band effect with consistent confidence intervals, albeit not
the statistical differentiation. This spectral representation of the
reward positivity ERP component has been described in humans,
particularly its sensitivity to formal estimates of reward prediction
error [50]. These findings are the first demonstration of this same
spectral response in dura-recording from rodents, although a
similar slow cingulate-recorded ERP response in this same time
range was observed in the difference between the reward and
punishment trials in rats [61]. Mice are a prey species and are more
sensitive to punishment [62, 63] than rats in similar paradigms
[64]. Although not specified by our a priori predictions, we also
investigated punishment surprise-evoked theta power (Supple-
mental Figure S4). However, this response was not significantly
modulated in mice.

Cognitive control: 5C-CPT
The 5C-CPT assesses cognitive control and is sensitive to deficits in
clinical populations and modulations by pharmacologic agents.
Although humans easily maintain focus on the screen between
stimuli (enabling EEG assessment locked to stimulus presentation),
such assessment is much more difficult in mice given their need to
turn around toward the food delivery area, thereby increasing
misses to the moment of stimulus presentation, limiting stimulus-
locked EEG events. Without aggressive implementation changes,
such as head-fixing, mice are unlikely to reliably visually attend to
the screen during the ITI, driving stimulus-locked EEG events,
unlike humans. The addition of different auditory tones for target
and nontarget trials may be needed for effective stimulus-locked
manipulation for future trials, though the need for trial-and-error
parameterization will likely delay the utilization of this task. The
response-locked differentiation of EEG signals to target and
nontarget trials presented here is technically a misnomer because
correct rejections to nontarget trials do not include a response.
These EEG “responses” were at the end of the hold period, thus,
the intrinsic EEG response differed between conditions, by
definition. The novel difficulty manipulation was, therefore, used
to assess related domain constructs on hit trials where the
imperative event (i.e., a response to targets) was identical.
Response-locked theta was strongly enhanced in more difficult

hit trials in humans. While response-locked theta was seen in mice,
no effect of difficulty was observed on performance or this EEG
response in mice. This difference likely reflects the ineffectiveness
of manipulating trial difficulty based on stimulus durations by trial
type in mice—shorter delays make target trials more difficult but
makes withholding from nontarget trials easier. Ultimately, more
work is required for manipulation of spatial attention and
parameterization of difficulty in mice (e.g., a similar backward
mask used in humans), although the addition of discriminant
auditory tones may be able to address multiple issues. A wealth of
prior findings suggests that it is too early to rule out frontal theta
as a viable candidate for cross-species translation. Posterror
cingulate theta power enhancement has been shown in humans
and rats [65], as has a cue-locked dopamine-dependent theta
signal [66]. These data, therefore, provide support but require
further work.

Limitations and future directions
While the mere concept of comparing cross-species brain
responses deserves a critical appraisal, there is good reason to
theorize that some electrophysiological activities remain pre-
served across species. Although classic EEG frequencies are non-
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specifically related to cognitive constructs and are likely to simply
reflect the intrinsic computations of the generative cortex, event-
related local field oscillations are closely linked to any neuronal
mechanism that implements neural computations [67–70]. There
is a marked preservation of temporal activity across vertebrate
brains, likely due to architectural adjustments that evolved to
prioritize retention of temporal coding schemes [71]. Increasing
evidence also confirms neurodevelopmental CNS synchronization
in EEG responses between humans and rodents, as well as the
consistent impact of alcohol and auditory stimuli on these event-
related oscillations [65, 72–74]. These theoretical justifications and
empirical outcomes are compelling, and they dovetail with the
potential for assessing electrophysiology in each species.
Statistical effects reported here were modest. As noted earlier,

modulation of these exact tf-ROIs will be tested in future studies
as a continuation of the novel UH funding mechanism via an
overall “learn-confirm” design strategy. This report serves to
convey a crystallized set of parameters that will be used in future
tests of pharmacologic modulation. With additional experiments
and increased sample sizes in mice (comparable to that of
humans), the degree of test-retest reliability will be established
and further consistencies may be revealed across species. We
included both males and females of both species and, while sex
differences in learning have been reported [75–77], we largely
have not seen such sex differences. These future studies will add
to our current knowledge.
These data only compared findings from a single electrode in

humans with a single dura lead in mice. While this theory-driven
reduction of spatial dimensionality is appropriate with our a priori
hypotheses and the preliminary goals of this study, it offers only a
fraction of assessable EEG activities in each species. Any
conclusion of translational similarity is also based on a qualitative
assessment of common within-species statistical effects. While this
simplicity is beneficial here, future comparative studies could
utilize data normalization, computational modeling, and covar-
iance statistics for quantitative assessments of common neural
signatures between species. Notably, these data-driven strategies
require a large amount of data, and thus they are not likely to be
undertaken unless they follow compelling findings from small-
scale hypothesis-driven studies, as presented here.

CONCLUSION
The failure of preclinical models based on behavioral measures
alone is well-established. If we are to understand the complex
neural mechanisms underlying cognitive deficits in psychiatric
disorders, novel approaches linked to neural outcomes must be
taken. This field is most likely to advance by investigating similar
bio-signals between species. The comparison of mouse and
human event-related EEG responses is, therefore, an appropriate
next step, based not only on the methodological advantages but
also the theoretical similarities between potentially preserved
neural mechanisms. Here, we present three tasks that are for the
first time revealing a common translational event-related EEG
responses between humans and mice.
Importantly, the PRBT revealed that arousal-related posterior

alpha appears common between species, and it should be easy to
assess the generalizability of this effect within a variety of other
tasks. From the PLT, we reveal a very compelling similarity
between species based on a common computation defined by
reinforcement learning: the degree of reward surprise coded
within mid-frontal delta-band power. These two successful
paradigms—PLT and PRBT—are both currently being assessed
with pharmacologic manipulations across species. While the 5C-
CPT presented potential consistencies with target-locked theta
seen across species, more work is required for parametric
confirmation in mice. The candidate biomarkers advanced here

will soon be further evaluated as electrophysiological signatures of
behavioral dimensions from cross-species paradigms.

CODE AVAILABILITY
All data and Matlab codes are available on Openneuro.org, accession #ds003638.
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