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ABSTRACT 

The infrared divergences of quantum electrodynamics are 

eliminated to all orders of perturbation theory in the matrix 

elements. by an appropriate choice of initial and final soft photon 

states. The condition for this cancellation restricts 1these states 

to representations of the canonical commutation rules which are 

unitarily inequivalent to the usual Fock representation. 
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I. INTRODUCTION 

The matrix element in quantum electrodynamics for the 

scattering from an initial state containing a finite number of 

electrons and photons into a similar final state contains an 

integral which diverges logarithmically for small momentum k • 

The conventional treatment of this "infrared divergence" bas 

been to sum the cross sections over all possible final states 

consistent with experimental measurements. In particular, when 

all states with any number of soft :photons with momenta below 
I 

the threshold of observability are considered, the divergences 

cancel, and the calculated cross sections are consistent with 

experiment. It is therefore possible to attribute the original 

divergence in the matrix element to the inappropriate choice of . 

initial and final states to represent the experimental situation. 

In an actual scattering experiment, a!l indefinite number of soft 

photons are emitted, so that in some sense, states which are 

eigenstates of the number OP,eratar are ·unphysical. 

In this paper, we shall show that there exists a representation 

of the photon states for quantum electrodynamics which appears more 

appropriate for describing scattering than the usual Fock representa-

tion in that the matrix elements do not have .infrared divergences. 

These states are not eigenstates of the number operator, and are 

~- ' 1 2 ;param=rlzed in a manner similar to that used by Glauber, Bargmann, . 

and others. When certain conditions of convergence are imposed, 

the states can be shown to form irreducible representations of the 
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canonic.al commutation rules for the "in.':' and "out" fields which 

are unitarily inequivalent to the usual Fock representation. Similar 

results have been obtained by Shroer3 in certain model field theories. 

In the absence of known solutions to the renormalized field 

equations, we make no pretence to mathematical rigor. In particular 

. the Feynman-Dyson per~urbation techniques are used throughout, and 

most questions of order in limiting procedures, etc., are treated 

heuristically. 

Section II will summarize the parts of the conventional 
' 

treatment of infrared divergences which we shall need.! This · 

section is based on a more complete discussion made in the arti~le 

·by Yennie, Frautschi1 and Suura. 4 The parameterization of the states 

and its relationship to the usual occupation number paramet.erization 

are introduced in Section III. We shall make use of the algebra of 

1 . 
states developed in Glauber's paper. In Section IV the cancellation 

of the divergences to second order is demonstrated in order to. 

illustrate the methods used in the succeeding sections. A calculation 

of the matrix elements for potential scattering in Section V shows 

that the divergences indeed cancel to all orders. In Section VI, 

the structure and the physical meaning of the representations are 

examined. Then we show that .by squaring the matrix elements and · 

summing over the final states, results are obtained in low order 

which agree with those obtained by Yennie et aL4 by the conventional 

treatment. Some extensions and generalizations of our treatment 

are carried out in the appendices. 

'' .. 

' 
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II. SEPARATION OF 

1
TffE INFRARED FACTORS 

The following exposition of the separation of the infrared 

parts fran the ·matrix element can be found in the review article by 
; 4 . . . 

. Yennie , et al. We will summarize here vrhat is relevant to our own 

discussion. For simplicity, we study the example of an electron 

scattering from a potential, althoUgh similar results can be obtained 

for more general situations • 

. consider a process in which there are a fixed number of 

photons and an electron of momentum p in the initial state, and 
I 

a fixe~ number of photons with the scattered electron of momentum 

p' · in the final state. The photons may or may not have interacted 

. with the electron line. The complete matrix element for this 

process is given by 

co ··c. 

= L M (E, f), n M(p,p') ....... 
n=O 

.where M (p,p') corresponds to the .sum of all diagrams in which 
n 

there are .;n ·:i.virtual photons which can be distinguished from the 

(1) 

potential interactions in the "basic process" M
0 

variables have been suppressed. 

The real photon 

M ·- 1...1 .. · .. ~J 
n -n! 

n 
n 

i=l 
(2) 
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where A. .is the photon mass which we allow to approach zero later. 

It has been shown that p is of the.form 
·n 

p (k, • • •k ) = S(k ) p (k . • ••,k ) + s(l)(k.., • ··,·k ; k ), (3) n 1 n n n-1 l' n-1 · -~ n-1 n 

i" 
wher~ S(kn) contains the kn ;infrared divergence, and am have the 

! 
fu~: I 

•. [' 2 ] Q\ 2p' - k •· 2p - k 02 

S (kn) = ~ ~:1() 4 . .-2~·: .. ~-~~~· .. : . ~ o ( 4) 
•;:2p·k-k . 

\ . I . 

The remainder g (l) has no infrared divergence in kn' and its · 

infrared divergence in the other · k's has not been made worse by 

the separation. 
I 

\, By iteration of Equation· (3 ),· pn (~, • • ~·~ kn). can be expressed 

as a sum over all permutations of the k's: 

n . r 
p (k.., ••• , k ) = n -,~ n z z 1 

r --O · r! (n-r)! perm 
··,n s (k ) s (k • • • k ) 
i=l . i n-r r+l' ' n • 

The :functions t: are non infrared and symmetrical in the k' s. · If sr 

· we adopt .the definitions: 

· . 1 J r d
4
k 

= ~ n . .:.......1. s (k.., • • ·, k ) · · 
'-' . · · r· .- 2 r -~ n ' ::; . i=l·. ki 

. ,~· 
. j 

(6a) 

(6b) 

(5) 

•J 

:' 

lj 
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then substitution of (2), (5), (6ahand (6b) into (1) results in 

the simple expression:· 

00 

M = exp (dB) E m • 
n=O n 

(7) 

In this exp~ession m = p = s = M • The m 's in (7) are o o o o n 

divergence-free, so that the whole infrared divergence has been 

isolated in the argument a:B of the exponential. F'or ·future 

reference, we can write down the form of Re(a:B). which follows 

from ( 4) and ( 6) : 

Re(a:B) = 
2 

e 

The extraction of the infrared contribution to the matrix 

. element for the emission of real photons has a form similar to that 
.... 

in Equation (3). In this case we let p (k
1

, · •. •, k ) be the matrix 
n n 

(8) 

element corresponding to the emission or absorption of n undetectable 

photons with momenta k_ , • • • k , and for some arbitrary order in -"J.. n 

the v±rtual photon corrections. It has been shown that 

where S(k ) is the factor containir1g the infrared divergence, and 
n .· 

has the form: 



-6 ... 

[ 2 (2~ )3k
0 
]-/i 

s(k) = e [ r;': ;. - ~ : k] . 
and the (+) and (-). signs correspond to emission and absorption 

respectively. Again the remainder i(l) is· divergence-free in 
. ·1 .• 

k , and the divergences in the other k's is no worse f'or the n 

sep:~.ration. 

(10) 

It has been shown that the iteration of' (9) leads to the form 

p (k ••• k ) = 
n 1' ' n 

- . where the functions s are noninfrared and symmetrical in the k's, 

and . m corresponds to the number of absorbed photons. 

V' 

J 
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III. PARAMEI'ERIZATION:· OF _THE PHOTON STATES 

The properties of the states which we will find convenient 

to use have been discussed by several other authors1' 2 in different 

contexts·from the one in which we intend to use them. 

Let · (fi (k)} be a complete and orthonormal set of f'unctions 

defined on some region n of momentum space including ~ = 0 

(perhaps all of momentum space). A typical state "belonging· to 

the ~ th mode" is defined by 

exp(aia!) 

exp(~lail 2 ) 
lo> - exp(-~lail 2 ) E 

n 

where 

ai t. = Jd3k fi (k) a ~(k) 
is an. "in" or "out" creation operator. 

lo> · , 

In this expression ai is a complex number which can take 

on any value in the complex plane, at(k) is the photon creation 

operator which obeys the commutation rules 

(13) 

(14) 

[a(k),. at(k')] = B(k-k'), [a(k), a(k')] = [at(k), af(k')] = o, (15) 

and lo> 
rules 

is the state with no photons; 

B 
. ij, 

a t obeys the commutation 
i ' 

(i6) 
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From the· commutation rUles, it is· a trivial matter to show 

that these states are eige!rl'unctions of the destruction ·operator 

a(k) ~i } =. O:ifi (k) I o:i } 

or ai o:i } = o:i o:i } '. 

and that the mean number of ":photons" is 

It is sometimes usefUl to note that the state in Equation 

(13) can be "created" by a unitary operator 

which has the following "translation" :property: 

exp [ 1(ah* - a/t~1 )] D(a1 + t~1 )'. 
. . . 

· The states defined in this manner are ··nonorthogonal; the 

overlap between two states· I o:i} . and ·113 i} is given by 

' . 

(17) 

··(18).' 

'(19) 

(20) 

(21) 

' • r...; 

. ~· 
. ' ' . 

\, 

., 

• 

. . 
~ 

( -- . -.· .... _ 
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However., it follows from (21) that the states are normalized,' i.e., 

(22) 

. Another property which these. states possess is completeness. 

· In fact it is easy to show that 

(23) 

where the state denoted by .ni 
I is an eigenstate of the number of 

photons which have the momentum distribution described by the function 
2 . 

and d a = d (Re.ai) d (Im ai) is real. 

An arbitrary state of the !th mode has an expansion in 

terms of the n-photon states., of: the form ·.-.: · ·:···;. ·· : 

I> = !: c 
n n 

n 
(ai t) 

(n.! )2 
lo), In) = !: c n n 

where !: lc 1
2 

= 1. 
n n 

We associate with each such state an analytic 

function, .. 

Equation (24) may then be rewritten as 

n z 

(n! )2 

.... 

(24) 

(25) 

(26) 



·:-lo-
i 

(27) 

In (27( we have used the fact that the 

of the\destruction operator ai 

states are eigenstates 

In a similar fashion, the adjoint state vectors .{g I can 

be shown to possess ananalogous expansion:, 

A basis for the whol.e ele.ctromagnetic field is a dir'ect 

product of the states !ai} of the individual modes 

' 

I> = n lai} _ !Cai)}, 
i 

and the mean number of photons ·in such a state:is 

(28) 

{29) 

(30) 

(31) 



't. 

. . 

-11-

Equations (25 ), (27), and (30) ensure that states containing 

a finite number of photons (the usual Fock representation) can be 

expanded in terms of the states which satisfy ~lail 2 (oo 
i . 

. This will be shown in .Section VI. However, this restriction vTill 

not be imposed in the discussion that follows, i.e., we shall allow 

for the possibility that there exist · states in which the average 

nUmber of photons is not bounded • 
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IV. CANCELLATION OF TRE INFRARED DIVERGENCES 

TO SECOND ORDER · 

In order to illustrate the general procedure, we shall choose 

two particular photon ·states parameterized in tremanner· just discussed 

in Section III, and calculate in lowest order the matrix element for 

potential scattering from one to the other. The photon is assumed 

to have a finite .mass A which is allowed to approach zero at 

the end of the calculation. 

Let the initial momentum of the electron be 

final momentum of the scattered electron be pf • 

state we choose 

For the initial 

I> = i exi~ ~ fis< t) (k) 12 d3k}exp{ ~ ~3k s<t) (k)e ( t) (k)a ( t )t(k)} lv(p )) l t=l i t=ljd i 1 

. (32) 

= exp{-~ !: lt3~a1 2}exp{l: ,~~fo3k ;a(k) e(t)(k) a(t)t(k)}jt(p1 )}, 
t,a t,a 

. . 

where 

-;.. (t)( ) . si k = e 

[~(2~)3 k! 
l. 

P e
(t) 

1. 

isa .~ction which depends on the momentum of the initial electron. 

I t<Pi) > is the: ~ave function for the electron., and e Ct) (k) · e.re . 

the polarization vectors. The superscript (t) is the polarization 

index. Since Equation (33) is meant to define the momentum distri­

bution on1¥ as lk 1-+ o , the fU:Uction si (k) for k 1 o can be 

(33) 

,.) 
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chosen in any manner which makes the integrals in (32) converge as 

k-+ oo • The second form given above exhibits the relation to the 

. t discussion in Section III. The coefficients ~ia are the 
... t 

coefficients obtained in the expansion of si (k) in terms of the 

chosen orthonormal set. 

The initial state can then be expanded in lowest order ·to 

give 

Similarly, the final state can be expanded to give 

I> ~ (i-~ ·~ fis (t)(k)l 2 d3k) (1+ ~ ~3k s (t)(k) e<t>(k) ~<t>t(k)lil<P >>, 
.f. t=l f . . t+lJ f f 

where 

s (t)(k) = 
f 

(35) 

e 
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Let the basic interaction given by the matrix element M
0 

be the single potential interaction shown above in Figure (IV .la;. 

In order to calculate the S· -matrix to· order 
2 e , the contributions 

from all , .·.· the diagrams in Figure ~:rv.1:: and Figure :rv.2 ~· must 

be summed. Diagrams (b), (c), and (d) of Figure (IV.l) correspond 

. to .the virtual photon radiative corrections to M
0 

~ . iDiagrams (b), 

(c), (d), and (e) of' Figure ·~IV.2 ·: account for the possibility of 

emission. or absorption of' single real photons, while: :Diagram (a) of 

Figure (IV.2 ~ accounts 'for the possibility that the photon does 

not interact with the electrons at all. ;. .. , 

From the discussion in Section II of' this paper, one knows 

that the diagrams in Figure (IV.l: will contribute 

where 11 ~ is a quantity which is not infrared divergent as A. -+ 0 • 

The contribution from Diagrams (b) and (c) of' Figure (IV.2 ~ gives 

a term with a 'factor 

' 

(36) 

'(37) 

where S(;t)(k) was defined in Equation (10) A similar contribution 



• 
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from ·Diagrams (d) and (e) of Figure :)V.2: is 

The disconnected Diagram (a) of Figure (IV.2: is given by 

Summing Equations (36) to (39) with the proper normalization 

given by Equation (54), one' finds the result·:;· ·:.· . ,:. :-.!: · 

where 11 is non-infrared divergent. -Thus 

= (1-taB) M + (Tl+fi) M + M !:fls(t')(k) 12 
d3k 

0 0 0 t 

- Mo ~Jd3k{i21S1 (t )(k) 12 + iiSf (t) (k) 12- s/t )(k)81 ( t )(k)} 

· =. (1-taB+~ !:Jls(t) (k) 12 d3k) M. + (Tl+~) M + O(e3) 
t 0 0 , 

where we have used 

(39) 

(41) 

(42) 



'. 

From (~0) we have. the relS.ti6n<~ 

Thus 

I 
I 
\ . 

3 
- I: 

t=O 

·= 

-_ a B. 

. \ 

-16-

By comparing Equation (43) with EqUa.tion (8), one can see .that the 

(43) 

(44) 

infrared divergence which occurs whi:m A.~ 0 has been cancelled in 

·' Equation ( 44). 
i' 
'i 

Note that 'it is the matrix element whidh is finite. Thus 

in the calculation of the cross section? there will be no need to 

deal with an infinite sum of divergent integrals, as must be done 

in the conventional treatment of infrared divergences. 

I' 

. ' .., 

. '· 

t 
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V. CANCELLATION OF INFRARED DIVERGENCES TO ALL ORDERS 

It is now a matter of algebra to calculate the matrix 

element for the transition from a state of electron momentum ~ 
i ," A./ 

and photon "quantum munbers" (c:l"J to a state of electron momentum a 
. . \ ~ 

J?' and photon "quantum numbers" (r } , where 
AJ .• ' : c 

exp L: [o: ~ f d3k f (k) e (~) (k) a (~)+(k)l 
I (o: ~} ) = II ~ a n a ~ J . I 0). 

· a a exp(~ t lo:a>--1 ] 

The superscripts (~) refer to the polarization indices. 
I 

I 

'\ . Consider all the diagrams representai by Figure ·;:v .. l :, ·in which 

there are m real photons absorbed by the electron line, m' real 

photons emitted by the electron. line, and t photons which do not 

interact with the electron at all. 

·.' 

(45) 



. -18-

. Th~ matrix element for the process I ( o:a ~}, pi)..,. I ( r c ~I) , pf~ . 

is then a sum• over all diagrams of the kind shown in Figure V.l for 

all .values of m, m', and t, and with the proper factors determined 

by Equations (45). 

Considerations which enter the calculation of this matrix 

element. are explained below: 
''-··· 

(a) There is an infrared divergent factor edJ3 due ·to the 

virtual photon corre~tions. (See Equation 7.) 

(b) The overlap of the t initial-state noninteracting 

photons witl\ the \t final-state nonint~racting photons 
I 

contributes a fac~or 

\ 

. . ' \ ~ t t![· I: '~r~·A.' rd3k f*(k)f (k)e(~)(k)e(A.')(k) = 
J.la 

.cJ<. c a 1.1. 1.1. . 
· J ) c, · I 

. A., A.' . 

t;., 

. (~) 'Equation (11) gives the contribution due to the interaction 

.of rn initial-state photons and m' final-state photons 

with the electron line·: 

~(A.} . 
P / . (k_ • • • k \ ) = 

· m+m' .-~' ·' m+m '· 

(A.} 
1 X s ,., ' t (kt 1' ••• ,k , ') 

m+m - + m+m . t , ( r. t ) , . • m+m - • .. 

(d) Contribution (c) must be integrated over the momentum 

distribution that is obtained from the formal expansion 

of the initial and final states (See Equation 45): 

(47) 
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(-e) The formal expansion of Equation (45) also leads to the 

factors ... r· 

1 
(m+t)! 

1 '. 

(m 1 +t)! exp (·~I: 
a, /I. 

/a a"-(\ exp (_~ I: , / r/' /2 ) 
) \ c,/1.' . • 

. . 

I 
(f) In addition to the above, there is a combinatorial·factor 

which accounts for the number of ways that {m+t) . initial-state 

photons and (m 1 +t) final-state photons can be distributed among m 

initial-state interacting photons, m1 final-state interacting 

photons, and t · noninteracting photons: 

(m+t)! 
m! t! 

{m 1 + t)! 
m'! t! · • 

After summing over all numbers m, m'. and t, we arrive at 

the fol~owing expression for the matrix element M: 

I 
'\ 

(49) 
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M = ·eC(J3 ~ ~ ~~ [--J;;...-
t=O m=O m'=O (m+t)t 

1 J [ (m+t)! (m!rtll] 
(m 1+t)t · m!ril' :t.!t~ 

x~(· ; L a ]I.Jd3k f (k )) Gm. +~' L r* ""fa.3k ':r*(k ·V · _1 '\. a r a r ,_ +l i\1 ,... c r c r r- ""'a . r -m , "' . . 

(k ••• k ) ] 
·~' . ' m+ml 

Another factor corresponding to the contribution from the 

(51) 

scattering of photons by photons could have been·included explicitly, 

but since this term does not contribute to the cancellation of infrared 

·
1
. divergences, nor does add to the divergences, it bas not been considered 

in this analysis. 

Making the appropriate cancellations, and combining the terms 

·with a little bit of carefUl counting, we arrive at the expression 

M = eC(J3 ~ f, '; 1r- ~ m~ 1 [ Z rfa r:""J{~ ~~ 
t=O • m=O m. m'=O • a,X.: j=O j 1=0 j!(m-j)l 

m! m'! 
j I ! (ml -j I ) ! 

(52) ' 

I 
~ .u 

iJ 



1: 

where 
•j.. 
(s ., f ) 

a n 

(f~, sA.') 
.n 

and 

Pj, j.' 

-

-
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1 d3k s(A.) (k) fa (k) , 
n . 

J d3k s<A.') (k) f~(k) , 

(53) 

Defining the "residuals" mj,j' by 

= Pj, j ~ 
j !j I! J 

and reordering the sums in (52), we can write 

To simplify the notation further, we define the coefficients f3 A. by a 

~ A, 
~-'a -

t, 
·~. 

(54) 

(56) 
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Since tp.e function S .·is real, Equation (55) becomes 

'. 

As in Section IV, it proves convenient to split the 

function §(A) into.two parts: 

! . 

(57) 

p ; e(A) f_ e(A) 
s<A) (k) 

; p • 
i f' {!! 

k·Pi ' f' -· 
.· [ 2 (21t )3ko]2 

We can then def'ine the coef'f'icients t3A and 
1a 

A 
f3ia = (r* .s (A)) . 

a' i ' n 

so that by Equations (10) and (56)~ 

(:r* S (A)) 
a' f' ., . n 

k·P 

by 

The complex coef'f'icients {a A} and 
a. 

{r.A'} which specify . _c . 
the initial·and f'inal states. of' the photons may be regarded as a set 

of' coordinates in some complex infinite-dimensional space X. It 

is then possible to simplify Equation (57) by making a translation 

• 
f'. 

(59) 

(60) 

of' the coordinate system in X by the amounts defined in Equation (59): 

,. . 
. i 

(58). 

'· 

' . 
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}.. . }.. . 
f3i + ei . a a ~ 

(61) . 

Thus 

M = eci:B{exp a~J~I~ia"-+<1~12 -tj~~+<~l2 + (~~+E~) (~~+<~)* 

. :}.. . }.. *Ao, .. }.. A, A.*J} { CD . } 
• (~ia +eta} f3a .:r. f3a (f3f'a + ef'a) m,.;~=O mm,~' . (62) 

<~~·1+ ~r·; - ~1~;- •t•;>l}, 

{ 

ciD .} X .L: m , ,_
0 

m,m , 
m,m -

where the mode and polarization indices have been suppressed f'or 

convenience•. 

By Equations (43), (53), (56),and (60), we have 

-0: ;B • 

Substi tut.ing Equation ( 63) into ( 62), we arrive at the important 

result: 

1 A. }.. 2 
( -) -2 L: le - e I i¢ M = e o:BtaB . e · . A., a f'a · ia e 

{ 
CD 1 L: m ' ,_0 m,m . , m,m -

(64) 
... 
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'i 

where ¢ is real. 

The argument of the first exponential was shown in Section IV 

to be infrared divergenceless in the limit of zero photon mass. The 
! 

third exponential bas modulus unity, and the last. sum is term by 
i 

I 
term divergence-free. If the po~sible states of the system are· 

I 
rest~icted by the condition: \ 

A., a 
le A. -

fa 

I 
I 

\ 2 

€i~l < 00 ' (65). 

the second exponential is ... nonzero, but less than or equal to unity. 

' 
With t4is condition satisfied the infrared divergences have been 

· eliminated. The interpretation of this restriction is discussed 

in the next section. 

. '· 

~ 'I l 
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VI o INTERPREI'ATION OF THE PHOTON STATES 

In the beginning of this section, we will show that 

Equation (65) defines a separable Hilbert space. To do this, we 

study a related space ~ which will turn out to be 1dentical to 

the ordinary Fock space ~ • Translations like Equation (61) 
(X) 

will not change the intrinsic properties of this $pace. Finally 

a calculation of the total cross section will relate this whole 

discussion to experiment. 

Much of the mathematical material here will be treated 
I 

heuristically, but a more rigorous formulation of the statements 

can be found in the papers by v. Bargmann.2'5 · 

We will define a separa~le Hilbert space ~ in the following 

manner: Let (ei} be an infinite ·sequence .of complex numbers. A set 

of "principal vectors" j[ei}) 

= exp [ -~ 

I 

I 

and the condition: 

is then defined by the equation 
I 

\ 
I . 

i,e/] exp h a1t] lo) ; 
:. 

(66) 

(67) 
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·The elements of ~- are taken ·to be the closure of all finite 

linear combinations of the princip3.l vectors. 

+ From (66) and the commutation rules .for· a (k), the inner "' 
p (j) 

product of two elements, jf) = ~ ~j ICei }) ; and 
q j=l 

ltf) = ~l -~ I (ei (k)} >~ is given by 
k= 

(rjr•) = j;k Aj ~ {exp [~ e~(j\ (k)J ex{?.~ le/j)l}cp[-t ~ Je/k)!
2J}. 

(68) 

In particular, the inner product of two principal vectors ICei (j)}} 

and I ( e (k)}) 
i 

has the property< ·.::: -. ······ .. ,., . 

so that the principal vectors are all normalized to unit length. 

Moreover, by Equation (67), no two principal vectors are normal 

. to each other • 

(69) 

. The properties· of the sp3.ce could in fact have been derived 

by using Equation (69) tnstead.of Equation (66), but we wish to retain 

the connection with the previous sections of this paper. 

· The separability of ~ follows from the existence of a countable 

sequence of vectors which is dense in ~ • · Let I ( 9 i} ) be any 

principal vector. From Equation. (67), it is known that for any 
2 

8N >·o there exists an integer N such that ~ le1 1 < 8N 
i>N 

\ 
\ 
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Moreover, for ahy . i < N and 8 > 0 it is ~lways possible to find 

rational numbers (Ri} such that I ei- Ri 1
2 < s· • 

Consider a principal vector ·I (e:i.}) such that. e1 = 0 for 

i > N, and ei = Ri for .i < N •. Let . !: I ei 1
2 = A2 

• Then . 
. . i 

and 

Thus, 

lim !: 9*9' I = . i i 
i 

' 

~ . ~ 
j(ei}) - I (ep> 

= 2 -exp[-l ~lei l2]exp[ -i. ~lej_l2 ] 

x{exp [ E e; e;} exp [ E e~· e1J}· 
i '. i ' 

-- 2 -exp [-~~lei'- e11
2
] {exp[i Im ~ 9~91] 

+exp [ 1Im ~ 9~' 91 ]} .. 

= +{xpf-l ~ I~- e11
2
]) ~os [ Im ~ et91D} 

2 
~ (A + 1) (N8 + 8N) 
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Since· I (ei}) , ~, and 5 .. were ·arbitrary.; we· have shown 

that· any principal vector can be approxima~ed ·by another principal 

vector be~onging to a denumerable set. The denumerable.set which 

consists of all finite sums of principal vectors 11-ke I (ef)) is· 

dense in ~ • 

In the case of massless soft photons, there is no reason t6 

restrict the photon states by Equation (67). Let (9 (o)} be a 
i 

sequence of complex numbers which are not square-summable, i.e~, 

· Then the. states defined by the complex numbers (ei} , and which 

satisfy the condition 

(71) 

form a separab~e Hilbert spa.ce~(o) 'With' all the properties of ~, 
except ... Equatiqn·:(67·). :.·'(. )\. (o) is unitarily inequivalent to~, i.e·., 

it forms a unitarily inequivalent representation of the canonical 

commutation rules. 

In Section. III we discussed the connection between·the Fock 

states and the principal vectors fqr a ·single mbde. We will now 

briefly study the relationship between the occupation number 

pa.ram~zation and the principal vector param~zation. 

. l. 
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The states in the.Fock space ~ 00 are specified by a 

set M of infinite sequenc~s of nonnegative integers (mi} , ·­

or "occupation numbers" of which a finite number are different 

from zero. An orthonormal basis of Fock space is given by 

An arbitrary state If} 

lr> -

of~ (J!) is given by 

where the:.compleJ(. 6oefficiehts.~ ·?'{rri}' -.satisfy·: .. _.;; 

:E r (m} 2 < 00 ~ 
(m}€M. 

. 
and 

mi 2m 
(ei) 2 (00 lei! ,i)= L: In = II L: exp 

(m}€M i -y;;;:r. i m=O . mi • mi • . 

2 
(~le1 1 )<(J!). 

(72) 

(73) 

(74) 

(75) 

(76) 
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The scalar product of two vectors If) and If') in ~00 
can be obtained f'rom (72) and (73): . 

2: ·l '1' 
(m}eM (m}. (m} 

Let ~ (mi} be the truncated sequence 

and define a projection on ;r by 
co 

1 . 

where M is the set of all sequences of the form given b,y. . n 

Equation (78) •. Then it follows f'rom Equation (74) that E -If) 
. n. 

converges strongly to jf) as n ~ oo. We will show that E If) 
n 

is contained in~, ·which implies that ~ = ~. 
. co 

(77) 

(78) 

The expansion of E jf} in terms of the principal vectors . . n 

follows directly from Equation (27): 

where 

m 
(ei*) i 

I ( e , e , • ·., e , o, o, • •• ) ) _ 
1 2 . n ... r:::-, 

. . ymi • 
, 

·• 

(80) 

(81) 
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From Equation (99), it is clear that principal vectors I (ei}} which 

do not satisfy Equation ( 67) are orthogonal to E If}. Theref.ore n . 

En lr} € ~ and the result ~ 
00 

= ~ follows, 1. e., the Fock space 

built from states with a finite number of photons, and the space of 

principal vectors satisfying. Equation (67), are the same space. 

In order to satisfy the requirement Equation ( 65) for f.ini te 

matrix elements; it will be necessary not to restrict the scattering 

states to ~ • For if t.he initial state were in~, i.e., the 

(a A} of Equation (45) satisfied the.condition a 

A2 
~. Ia I < ~, 

a. A, a 

then the final state .param~zed by the sequence of complex numbers 
A . 

(r } would be given by a 

where we have used Equation (61), and the € 1 s would satisfy 

2 
~ 1€ "' - € AI fa ia A, a. 

<oo 

But we know from. Section IV and Equa tiori ( 63) that 

. (82) 

(83) 

(84) 

' (85) 
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-and B-+ oo as the photon mass· approaches zero. Th:ereforeJ ' "' ,I. ~ 
~ ... ~'· .. ; 

.-+ CD (86) 

as the. photon mass approaches zero.· Thus the final state cannot 
i 

belong to 
i 

Nevertheless, the coeffibients (y ~} define a final state. 
\ a 

It must be that the final state belongs to an inequivalent representa-
1 . . . I I ' 

t16n; of the canonical commutatiqn rules whose most outstanding 

' ' 
feature is that the average number of photons is infinite. Not any 

final state will dop however, for the boundaries of this new space 

"' ~ are restricted by the condition Equation (65). 

One of many ways to satisfy Equation (65) which preserves 

1, symmetry between the initial and final states is to write these 

states as: 

r A. -
a 

and to restrict· the states by 

. 2 

I A.l . !: €fa · 
A., a 

<ro 
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Then.we would get different theories by different choices· of the 

sequence 
').. 

(€ .}. 
oa. 

·With such a choice, the photon states would 

have a dependence upon the momenta of the participating electrons. 

So far we have not spoken at all about- n , the region of 

momentum sp:tce on which the ·single photon states (fa} were defined. 

In an experimental situation, ·there is always a threshold below which 

a single photon cannot be detected. We identify n with what we 

shall.call the· "resolution region, 11 i.e., all photons with momentum 

k € n are not detectable, while those which satisfy k € n are 

detectable. In what follows, the nondetectable photonp will be 

spoken of as 11 soft 11 photons, 1o1hile the others will be called "hard." 

Furthermore, we shall indicate the resolution region of the momentum 

s p:t.ce by a sub script, ~ ., Xn • 

In a practical calculation where one wants to treat,. for 

example, the scattering of an electron with the emission of hard 

photons, the hard photons can be. dealt with by the conventional. 
. ! . 

occup:ttion-number param~zation, while the soft photons are 
I . 

described in terms of the translated principal vectors. More 
I . 
I 

specifically., consider the calculation of the cross section for an 

electron qf momentum pi scattering into a state with an electron 

of momentum pf plus several hard photons. The incoming electron 

is associated with a photon field described by a sequence 

and the outgoing electron has· a photon·field (r ')..) . ·In Equation 
a 

( 64) the "basic matrix element" m corresponds to diagrams with' 
o, 0 

only the detectable real photons and these virtual photons necessary 
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for the process to occur. · The terms mij for ), j ,;, 0 contain the 

effects of the noninfrared parts of the real and virtua.L soft photons 

to higher order in the coupling constant. 

·To lowest order in the noninfrared photons, the squar~d 

matrix element for a particular d;I.agram m
00 

is from Equation ( 64): 

2 . 2(R~B+Cffin) . [ 
I:MI =. e · exp - I: 

. ~,a 

We can then sum over final states. The result (to lowest order) is 

independent of the initial state: 

I: IMI 
final 
state 

2 
lim 

n-+co 

The rema1.ning exponential conta1.ns part of the effect of the ch6ice 

of Si (k) and the region of resolut.ion n ; and we obtaj.n a similar 

result to what Yennie et aL obtained (for a non~energy-conserving 

pote~tial). In fact, the "reas'?n11 why the results are the same is 
i 

that in the·:.:: summation over all final states in the conventional . . I 
. . I . 

treatment of the infr~ed divergence, the main contributions came 
. . i 
I I 

from' states which were not in thb usual Fock space, but were in 
i 

a ··nonseparable space defined by \Equation (72) without· any restric-

tions on the sequence (m} of occupation numbers. In particular, 
. I 

the separable ,space of final states ~ is contained in this. · 
.~l 

'!t~ ' 

I 

\ 
\ . 

. .. 

(88) 

· .. 

1". 



-35-

' nonseparable space. 

In the above computation, and in Section V, the resolution 

regions for the initial and final states were assumed to be the same. 

One can argue that the resolution region of the initial state can 

be made arbitrarily small, but finite, by waiting a sufficiently 

long time before the scattering experiment. The situation where 

the initial resolution region is smaller than the final state 
' 

resolution region is discussed in the Appendix. 
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APPENDIX A 

GENERALIZATION OF THE CANCELLATION TO SEVERAL ELEcmoN LINES 

For simplicity, only the case of a single electron line inter-

acting with a potential was treated in Section v. .The generalization '· 

to several electron li~es interacting with me another will be outlined 

here for completeness. It· is possible to make an extension to positron 

scattering, pair production, and other processes, but ye shall n~do 

so here. 

Since the cancellation of the infrared divergences in this 

I 
more complicated situation requires a proliferation of·. subscripts 

and superscripts, we drop all notation having to do with the 

polarization of the photons. Superscripts will now designate the 

electron line. 

The initial state consists of · N incoming electrons w:i.th 

momenta along with some photons. They 

scatter into a final state of N outgoing electrons with momenta 

Pfl' ···,pfv' ~ ~~PfN' . again w·ith some photons •. We have assumed that 

all resolution regions are identical. 

Thus the soft photon initial state can, for example, be 

conveniently written as 

lo>,.. 
a 

(A:l) 

. ' 
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where 

(A!2) 

The final· state soft photons are _described by a similar expression. 

The interaction is illustrated in Figure ::A-d~. 

In this diagra~, our attention is focused on the ~th 

electron line. v The integer m~ denotes the number of photons in 

the initial state which '.'belongs" to the .§ 'th electron and interact 

with the ~ th electron line. Similarly mt is the number of 
.. 

photons in the final state belonging to the ~th electron which 

interact with the y tb. electron line. The number of · non interacting 

photons coming from the· ith incoming electron, and becoming part 
' . 

of the outgoing electron,is given by the integer 

We arrive at an equation analogous ·to Equation (64) through 

the following considerations. 

-· .' ~ 
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(a) The overlap of the t =. ~ teer initial-state non­
H' ~~ . 

interacting photons with the t final- state ~no ninteracting photon 

contributes a factor 

where 

a g 
a 

t:l. g + € g 
- ~-'fa fa 

. . 

Note again that the superscript s refers to the electron line, 

and not to the_polarization. 

(b) A contribution from· the 
N v . 

of m = .E mg 

initial-state photons, and the 

interaction 
N v 

m' - ~ m1 
; 

~g 
final-state photons 'ijs s, 

with the N electron lines,gives 

(;_) 

v ,;v. .t rm ~ · m · 
p((mgv_Hm'gv})=IIl .E II(-l)vS(kvi)~.v v (kvt+l~···,k .... v v) 

v t=O i=l ' m +m.' · -t · ' · v;, m ~' 

tl(mv~,•-t)l ], 

where 

• I 

J 

(~) Contribution (b) must be integrated over the momentum 

distribution that is obtained from the formal expansion of the . 

initial and final states, 
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\ . 

where 

m' ' s 

(d) The formal expansion of Equation (A:l) also leads. 

to the factors : 

where t' = 
E 

(e) In addition to the above; there is a combinatorial 

factor which accounts for the number of ways that the (m+t) 

initial-state photons, (m'+t) final-state photons, and the t 

·non·interacting photons, ca~ be distributed among themselves: 

(f) There is an infrared divergent factor due to virtual 

photon correetions. (see Yennie. et al: • 4): 



\ 
\ -4o- . 

. :; 
: . . . ·~ .. . ... -·-~ -· "'"• 

. '··' . . •'. 

To get the matrix element M ., the contributions are sunimed over , 

all values of (m~v}, (m~v}, (t~g,}, 

1 e e, t H '] 
(E ci'' r*~ ) a a a 

The last factor in the braces can be reduced by separating out the 

divergent terms: 
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.Again one defines a divergence-free "residual" by 

m(j, j') = 
p 

so that 

Making the translation to a new coord.inate system, we get_. 

a ~ - ~ia~ + €ias' 'V . s = ~ s + € s . . ~ v - ~ v - ~ v a ..., 'a ..., fa fa ' ..., a - ..., fa ..., fa ' 

and witha·little additional algebra, the.final result is exhibited: 

. s s 2] i¢ . 
ex:p[-~zlze·-e I e . a s fa ia 

(A:3) 

00 
!: 

jgv=O 

The divergences in the factor F, and the first exponential cancel. 
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(Yennie ~t al~ .4")~ Again the condition for finite Itia.trix elements is 

. s s 2 . 
1: I 1: ·e· - € 1 I < oo • · 
a g fa a . 

(A!4) 

... 

. 1 . 

. ' ,, 
l ~ . ' 

\ 
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APPENDIX B 

THE PROJECTION Ol!'"' ENERGY .. MOMENTUM EIGENSTATES 

For completeness, the procedure for projecting out energy-

momentum eigenstates will be given here. Consider a typical soft 

photon st~te described by a princip:~.l vector I {aa ;} ) : 

. J . . I 
/< [ E a ~ · d3k fi (k ) 

a n a n 
a,A. Q I 

. \ 
\ 

Using the formula_. 

. 2~ f eixy dy = 8(x), 

it is then possible to project out from· !Caa"-J} the eigenstates 

of energy momentum: 

(B:2) 



I 
\ 

ll 

= 

exp [-! .!; 
. . A., a 

-41+-

·1 nr 

X {Jd3k
1

• • ·d3k . ~. [. E d'-t (k
1 

)e (:>.) (k
1 

)a (A.)+ (k
1
· )) o(E-!: m

1
.)o3 (IC-1: k1~ / o) 

. . n 1=1 a,;\ a a . . . 1 . . ... i - J 

= exp(- t ~ lo:a "-1
2

] ~ it . 1 J dy d3x e1Ey e149~ 
· ;\, a n=O n • ( 21! ) 4 ... · 

. 1 . f 3 . [ 1 ;\ 21 iEy+:l!S·~ [ . .;._ r 3 -i~ -i!s·~ 
-.;;;.._,.4 dy d x exp - 2 !: Ia I e exp ~ ct -j d k e e 
(21!) "' · ;\,a a . . · ;\

1 
a a 

(B:B) 
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APPENDIX c· 

DITTIAL AND FINAL STATES WITH DIFFERENT RESOLUTION RIDIONS . 

Suppose that we are dealing with the situation where the 

resolution region Q for the initial state is smaller than the 

resolution region Q' for the final state (ncn'). In other 

words, the threshold for detecting low-energy photons is lower 

before the scattering experiment than afterwards. Then an infrared 

divergenceless matrix element in a form analogous to Equation (64) 
l 

may be obtained with very little additional complication. 

Let us define a do.main D of momentum space such that 

Q' = nun where nvn = o. 

Then we suppose that there exists a complete set of orthnormal 

functions ( g j(k)} . d.efined on D. .A. typical final state is 

now given by 

exp [~ r i jd3
k fi (k)a +(k)J 

I f) =I Cr i' r j J) = ___ ._n_---;::-
2
---

exp[~ ~ lril ] 
', i 

The indices having to do ~nth polarization have been suppressed. 

(C:l) 

The result of the modification is that in the derivation of Equation 

(55), one must make the substitutions: 

., 
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r ;\. J· f · e(~)___,r ;\. Jf e(;\.) 
a .· a a · a 

· n · n 
+ r';\. J. g 

a a 
D 

. (;\.) 
e ' 

' I 

so that Equation (55) is , correct· .only :;if ·:we: have <on· the.:'right-...hand 

. side . .'the :additional factor · ... · ....... :" ·. :: ::.:: 

and the divergenceless sum 

.. 
00, 
!:' 

m,m'=O 

cantains integrals of the fm1ctions (g
0

} over the addition region D. 

We now define new coefficients ~,;\. and variables e' ;\. in a fa 

·a similar way to Equations (59) and (61), 

Af;\_ = (g* S(;\_)) J i'';\_ : Qf;\_ .+ E' ;\_· 
~-'a a' . · D a ~-'a fa ( c :2) ' 

Then the additional (non-infrared-divergent) factor be_comes. 

It is.natural to define 

(C:3) 

.. 



. · so that. Equation ( 64) becomes 

(~ . . 

(o::s-raBQ~) [ A. A. 2 
M. = e . eXp - ~ !: I efa - eia .I J 

· [ · A. 2 J i¢ 00 A., a 
)<. exp -~ !: I efa I e !: mm m' 

A.,a m,m'=O ' 

(c:4) 

.. In this expr-ession the infrared divergences cancel in the 

s~ o:B-KXBn of the argument of th~ first exponential. The term 
CiBn . . . . . 

e .accounts for the difference in resolution regions. The 

condition for finite matrix elements is. now: 

Jefa 
A. i\2 

!: - eia I <(X)' 
f.., a 

(C:5.) 

2 
!: le' i\J < ~·. 

f.., a. 
fa· 

\. ,, 
' 

li 

... 

.i 
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i 
FIGUREICAPriONS 

Fig. IV .. l. Contributions to the ~1econd-order virtual photon radiative 
I 

corrections. Diagram '{a) corresponds to the original· 

uncorrected matrix element M . - 0 

Fig. IV-2. Contributions to the second-order corrections due to 

emission or absorption of real soft photons. Diagram (a) 

, accounts for the possibili~y that the photon does not 
. \ 

interact with the electrons at all. 

Fig. V-1. · Representation of t noninteracting real soft photons, 
. l 

m real soft photons absorbed by the electron line, and 

m' real soft photons emitted by the elecron line. 

Fig. A-1.· Representation of t noninteracting real soft photons, 
v . . 

ms real soft photons associated with the ith electron -

and absorbed by the ~th electron, and real soft 

photons associated with the ith electron and emitted by 

_ the vth electron. 
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