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ABSTRACT

Thé-infrared divergences éf qpan£dm electrodynamics are
elimiﬁa%ed to all orders 6f perturbation theofy in the.matrix
elements by ah appropriate choice of initial and final soft photon
states., The condition for this cancellafion restricts these states

to_repﬁesentations of the cénonical commutation rules which are

unitarily inequivalent to the usual Fock representation.
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I. INTRODUCTION

The matrix element in quantum electrodynamics for the
scatbering from an initial staté containing a finite number of

electrons and photons into a similar final state contalns an

integral which diverges logarithmically for small momentum Xk .

The conventional treatment of this "infrared divergence" has
been to sum the cross sections over all possible finsl states
consistent with experimental measurements. In particular, when
all states with any number of softbphotonsbwith moment? below
the threshold of observability are cohsidered, ﬁhe divergences

cancel, and the calculated cross sections are consistent with

experiment. It is therefore possible to attribute the original

" divergence in the matrix element to the inappropriate choice of .

initial and final states to represent the experimental situation.

" In an actual scattering experiment, an indefinite number of soft

phoﬁons are emitted, so that in some sense, states which are
elgenstates of the number operator are unphysical.

In this paper, we shall show that there exists a representation

of tﬁe photon states for quantum electrodynamics which appears more

appropriate for deséribing scattering than the usuval Fock representa-

tion in that the matrix elements do not have infrared divergences.

" These states are not eigenstates of the number operdtqr, and are

parameerized in d manner similar to that used by Glauber} Bargmann,2
end others. When certain conditions of convergence are imposed,

the states can be shown to form irreducible representdtions of the



( .section is based on a more complete discussion made in the artiqié :

-

' canonical commutation rules for the "in" and "out" fields which
' are'unitarily'iheQuivalént to the usual Fock,fepreSe_ntationo ‘Siﬁilar

A results have been obtained by _Shroer5 in certain model field theories. = ..

In the absence of known solutions to the fenofmalized field

équatiqns, we make no pretence to'mathematical rigor. In particular

. the Feynman-Dyson perturbation techniques are used throughout, and

most‘queétions of order in limiting proéedures,_etc.,are treated

.heuristicglly.

Section IT will summsrize the parts of the conventional

treatment of infrared divergences which we shail need.! This

" by Yennie; Frautschi, and Suura.'llL The parameterization of the states.

and its relationship to the usual occupation number parameterization .

ére introduced in Section IIT. We shall make use of the algebra of

states developed in Glauber's paper.l In Section IV the cancellation -
of the divergences to second order is demonstrated in order to.

illustrate the methods used in the succeeding sections. A calculation

of the matrix elements for potential scattering in Section V shows

that tﬁe_divergences indeed cancel to all orders. Iﬁ Section VI,
thévstructure and the physical meaning of the representations are v
examined. Then we.showAthat by squaring the matrix elements and
summing over the final states, results are 6btéined in low order

which agree with those obtained by Yennie et al? by the’conventional

 treatment. Some extensions and generalizetions of our treatment

are carried out in the appendices.'

e

.
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II. SEPARATION OFETHE INFRARED FACTORS

The following exposition of the separation of the infrared

parts frqm'the'matrix element can be found in the review article by

,Yenniei et'al.h We will summerize here what is relevart to our own

zdiscussion. For simplicity, we study the example of an electron

scattering from a potential;'althdugh similar results cah be obtalned

- for more general situations.

Consider a process in which there are a fixed number of

photons and an electron of momentum p in the initial state, and
' ' |

a fixed—number of photons with the scattered electron of momentum

p'  in the final state. The photons may or may not have interacted

~wlth the electron line. The complete matrix elemenf for this

process 1s given by

 Mh (gfg')v’ o (1)
n=0 ' '

e

M(EJE') =

vhere ,Mh(p,p') corresponds to the .sum of all diagrams in which

there are ..n-ivirtual photons which can be distiﬁguished from the
potential interactions in the "basic process" Mo . The real photon

variables have been suppressed.

The quantity p (k,+t*k ) 1s defined by the relation:

2
g - A+ 1e

. : ‘n | ' .
- -!.— ‘.A.‘ d k e 0 0
Mp = _nJ , f 11—_11 2 ?n(kl’ k), (@)



‘The remainder g(l) has no infrared divergence in kn,‘and its

-h" » . ) ‘ - ' - : ;‘L/

where A is the photon mass which we allow to approach zero later.' Ly

It has been shown that Py is of the. form

ol ek) = 80c) o (g eenk 1) + §(1>(k1,...k 2R 6

‘where S(kn) contains the Xk infrared divergence, and ®n have the

form:

ery = K,
5 ()

N

% | S(kn) ;,

infrared‘divergence in the other ~k's has not been made worse‘by

the separation.

l

By iteration of Eqnation (3), p (k1,~--,k ). can be expressed

as a sum over all permutations of the k's'

. l L
P (kl,.u,k ) Pem fo R 1H1 s‘(k ) & (ks ,kn), (5)

The functions gr. are noninfrared and symmetrical in the k's.' Iff

" we adopt the definitions

aB(g)g'). Ef __1.‘_.5.1.1‘_2. ] " e (6a)

52|ll

m (p,p')
P~ 1=1: k,

-—'J’ """L.E. (k_p"' ),'1” -‘(5'0)" v



5

then subétitution of (2);, (5), (6a),and (6b) into (1) results in -

the simple expression:

. - ,
M = exp (aB) & mo. o (7
n=0 .

Tn this expression m =p = E =M {; The m 's in (7) are
divergence-free, so that the whole‘infrared divergence has been
isolated in the argumént aB of the exponential.' For future
reference, we can write down the form of . Re(aB). which follows
from (4) and (6): | ,

apé -k 2pu-ku

b - (8)
sopikan  2pekaa® ) e

e2 d3k

Re(aB) = 3 T
L(2x) (k2+ }\2)2

The extraction of the infrared qontribution to the matrix

" . element for the emisslion of real photons has a form similar to thet

iﬁ Equation (3). In this case we let :n(kl,'t-,kn) be the ﬁatrix
:element'cqrresponding to the emission or absorption of n undetectable
photons with momenta‘ kl,°'"kn, and for some arbitrary order in

the virtual photqn corrections. It has been shovm that
5, ek ) = F B0) B Gg,eeeie) + EP g, e k), (9)
nvl ’™n n’ “nel kl’ n . kl’ ’“ne1 * "n’?

where g(kn) is the factor containing the infrared divergence, and
has the form: . |

- |
|
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~ . e . ’1.e ' . e ) . |
50 - (B org]. oo
: [2(2n)5k ] '
)
and the (+) and (~) signs correspond to emission and absorption

respectively. Again the remainder EE%) is-divergence-free in

kn’ and the divergences in the other k's 1is no worse for the

separation.' ,

It has been shown that the iteration of (9) leads to the form
S e,k ) = 5 B (AP el T OB() B G, eenk ) (1)
A LA A Fila-T)t 1 ’ :

T (ot ) ! - ’
perm r=0 riln-r). 4 4 1% "n-x r+l” n.:

“where the functioné -E are noninfrared and symmetrical in the k's,

énd. m acorresp0nds to the number of absorbed photons.



o

L

-7

-T-

+

III. PARAMETERIZATION: OF THE PHOTON STATES

The pfoperties of the states which we will find convenient

‘ to use have been discussed by_several other au.thorslf’2 in different

contexts from the one in which we intend to use them.

Let-‘{fi(k)} be a complete and orthonormal.set of functions
defined on some region 2 of mdmentum'space including .§'= 0
(perbaps all of momentum space). A typical state "belonging to
the itﬁa mode" 1is defined by‘ | |

n

(o al) o (@e,t)
o) = —E1 o) = exp(-bloy?) s —AL1 foy (13)
exp(3]ay |7) o n : RS
where‘ . »
af = [, 00 ot o aw

is an. "in" or "out" creation operator.

In this expression ¢, is a complex number which can take

i .
on any value in the complex plane, a*(k) is the photon creation

operator which obeys the commgtation rules - -
(20l at(x)] = 8x), [a(x), a(x)] - [a’f(k)‘, at@)] =0, (15)

and IO) 1s the state with no photons; aiT obeys the commutation

rules

h’aﬂ = oy, [owey] = [ 1] - o0 " 6)
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Ffom the'commutation'rﬁles, it is-a triviglzmattér to show.f

" that these étatés are_eigehfunctions of "the destruction»opéfator

ool fay ) = ayt, (o) | o )

g Loy ) oo= oy l,ai‘)ﬁ‘

or o S a

and that the mean number of "photons" is

- (ailﬁ'ai) - ;j&5k (aij at(x) a(k) |a;) j=“-|di|2f i 2(18)‘;

It 1is sometimes useful to note that fhe state in Equation

(13) can be "created" by a unitary operator

D(ai) = e#p {;faif_- aifai] . L = '(19).

whichihas'the following "translation" property:

3 .

D(oy ) D(By) = exp {%(aiﬁif - aifsi)] D(oz:;l BN (20)

¢

" The states defined in'this manner are umonorﬁhégonal; the
overlap between two states Iai)f and '161) ~1s given by

H

Noylspl? = exp (lay- 8,7, @

A(i}j ;*
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 Howéver,'it‘follows from (21) that the states are normalized, i.e.,

_ Another propefty which these states Possess is completeness.

In fact it is easy to show that

el < prowl - @
i

where the state denoted by n, 1is an elgenstate of th% number of

i
photons which have the momentum distribution described by the function
£,(k), eand dCo = d(Req,) d(Im o) is real.
An arbitrary state of the ;fh mode has an expansion in
terms of the n-photon states.of. the form - .- e s
n

-‘..

(a,)

D=zc ) =5c —2elo, (a4
n n n (n!)? '

vhere X ]cnl2 = 1, We associate with each such state an analytic

n Y
function, X
. . zn
CE(z) = 2 e —— . Y . (25)
" n (n!)2

Equation (2L4) may then be rewritten as

18 = 2N oy, s



e : | .
Using (23), we can'expand [£) in%terms of ‘the new states:

=10w

I

I F i—fdeai la,) (ay] £(a,) Joy-

. | | |
afe g0 * 12
| E.[A oy loy) 2oy) exn(-3ly [7)

In (27? we have used the‘factvthaﬁ the.states lo&) are eilgenstates

”,of thé\destruction operator ay :

e - |> e

SN

'In & similar fashion, the adjoint state vectors {g| cen

v

be shown to possess an: analogous expansion,

-<g'|»'_=';:§-f[g<s-i’f>] (ailexp(-alsile)dai, ey

A basis for the whole electromagnetic field is a direct

' product of the states lo&) ~of the 1ndividual modes

D= mlay s len, oo

- and the mean number.of photons in such’a state is

i

S e

I N ¢ 5)



P ™

ﬁqpations(25), (27), and (30) ensure that states containing
a finite numbér of photons (the usual Fock representation) can be
- expanded in terms of‘the states ][a&}) which satisfy Z]aile(oo
. This will be shown in.Section VI, However, this restriciion wiil
not be imposed in the discussion that folloﬁs, i.e., we shall allow

for the poésibility that there exist - states in which the average

number of photons is not bounded.,
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IV. CANCELILATION OF THE INFRARED DIVERGENCES °

TO SECOND ORDER

In 6rdervto illustrate the genergl rrocedure, we shall choose:
ﬁﬁo farticular photon-sﬁates4parame&ﬂized in themanner Just discussed
inASeétion'iII, and calcuwlate in lowest order the matrix element for
potential scattering from one to the other. The phqfon is assumed "
tb have a finite.mass A which is allowed to approach zero at

* the end of the calculation.

Let‘the'initial momentum of the electron be p,, and the

t

final momentum of the scattered electron be P, + For the initial

state we choose

2 Y (2 (a0, ¢ -
- expl-d 52 (1112 Bxbexo e 808 (30 () () (V)1
|}, = expi &fl‘ﬁsi ()" % ? Li:lﬁksi (ke (w)a™ " T(x)p [W(p, ))

| | (52)
AR &féaaiajé5k e, (0) ) a Wt obu(e, 0,
where ) - . .-e(z) - ;
5,y - —= L 33)

[2(25{)3 kf - .. L

[

iS'é‘fuqction which deﬁends on the‘momentum of the initial eléctrgn.
V_I?(pi)> is theiﬁave function for the electron, and é(z)(k)7 are .
the polarization vectors. The superseript (L) is the polarization
index. Since Equation (33) is ﬁeant to define the momentum distri-

bution only as |k|» 0, the function §i(k) for k # 0 can be

| o |
L v \
. , \

‘ |

!
1
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chosen iﬁ any menner which makes the integrals in (32)‘converge as

k- o . The second form given above exhibits the relation to the

discussion in Section III. The coefficients BiaL are the

'coéfficients obtained in the expansion of §i&(k) in terms of the

chosen orfhonormal set.

give

e

n,

L~
y
R

where

c (

The initial state can then be expanded in lowest order -to

(1-3 ;%ljﬁgi(‘)(k)lg a%k). (1+ i_fABR 58 ) e x) W) a1

L+1
| ! . (34)
Similarly, the final state can be expanded to give

441

2 . 2 4 o
1 (2) 2 .3 3 0~ (2 x¢
1.1 eilﬁgf (k)] d.k) (1+ Zﬁi X sf( )(k) o )(k) a(‘)*(k)_[{/(pf)),

i o (35)
(¢)

Pf"e

~ (L) e
S (x) = T -~
: [2(27{)31{;2‘ k_ Fr

PN
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Léf the basic interaction given by the matrix element M
be the singlé potential interaction shown above in Figure {IV.la’.
In order to calculate the S matrix to‘order e2, the contributions
from all .. the diagrams in Figure ‘IV.1: and Figure ' Iv.ef.. must
be summed. Diagrams (b), (c), and (d) of Figure (IV.1l} correspond
-foAthe virtual photon radiative cofrections to Mb . Dlagrams (b), |
(e), (@), and (e) of‘Figure ‘IV.2' account for the possibility.of
eﬁission.or absorption of §ingle real bhotons,whileUDiagram (a) of '
Figure {IV.2} accounts for the possibility that the photon dées
not interqcf with the electrons at all. : o
From the discussion in Section II of this papér; one knows

that the diagrams in Figure IV.1® will contribute
M+ (B + 1) M., | ' (36)

~ where 1. 1s a quantity which is not -infrared divergent as A -+ O .
The contribution from Diagrams (b) and (c) of Figure (IV.2) gives

a term with a factor

IBk S (")(k)[ (’”)(k) M+ §(k)] ;. ._ | "(37).

where (L)(k) wa.s defined in Equation (10) . A similar contribution
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from Disgrams (d) and (e) of Figure (IV.2 1is

) zfaﬁk 5, (M) {é(")(k) M+ §(k)]. ) (38)

The disconnected Diagram (a) of Figure (IV.2' 1s given by '
M z]dBk S (&)(k) S (”(k). o : (39)
° ,J i f o : :

Summing Equations (36) to (39) with the proper normalization

givén by Equation (54), one finds the result - - .;Ahh'
M, e 5 (+aBe) M (1-3 zf|§ () (x)Pa3x) (1-3 zfl's: () [? adx) |
| Tt St | (%0)

s (1) = (1) &t 3, . | 3. 5 (£)(a
Sl -8 80 S i, vz [ s, OV,

~

where 1 1s non-infrared divergent. Thus

=2
1l

e = (LHOB) M+ (n4) U+ M fﬁg(‘)(k) Pdx - (w)

. Mo i‘.dek{%lgi(z)(k)le + —é—|§f(~")(k)|2_ §f(&)(k)§i(l’)(k)} + O(ei)

I

 (140B+d zfl-é'(”)(k)la k) M+ (1) M_ + 0(e?),
L ' .

where we have used

x §(L)(k) - gf(&)(k) - §i(t)(k). 'v  : - (hé) :



From (;LO) we.have";bhe relation« w
\ ’ . : ’ I ) ' .
\ ' o [ o

’ ~ @

2 3. 2 , plee ‘ ( )

L 17 =0 I(2x) k. by P c

2 p' P o)
- T dek-.-%--{*g (43)
1!-(21;) k prk p
= (04 ﬁﬂ
Thue ‘
CMe < (eoBeoB)u e (i) My +0(S) DL (W)

i-f .
) : . L ,
: By comparing Equation (h}) with Eqpation (8), one can see.that the ‘
infrared divergence which occurs when k-» 0 has been cancelled in
vKuation (hh). | | |

Note that it is the matrix element which 1s finite. Thus
In the calculation:of theicresS section, therevﬁill be no need‘to
deal with an infinite sum of divergent integrals,Aas must be doee

in the conventional treatment of ihfrared‘divergences.

)

oW
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V. CANCELLATTON OF INFRARED DIVERGENCES TO ALL ORDERS‘I

It is now a matter of algebra to calculate the matrix

element for the transition from % state of electroh momentum B

~and photon qpantum numbers" [oﬁ] to a state of electron momentum

p' and photon ' 'quantum. numbers" {7 N , where

. exp ;:\{ IBk £ (k) e (7‘)(1:) ()‘)+(k)}
[(a™ Y= T ~—
S8 a exp[:Z 3 Iogkl ]

N

oy, (5)

The superscripts (A) refer to the polarization indices.
‘ Consider all the diagrams represenbai by Figure:V.l', in which

theré are m realAphotons absorbed by the electron line, m' real |

photoné emitfed by the eleétronvlineg and { photons which do not

interact with the electron at all.
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| vl:The ﬁétrix element for the jrocess .'{aéx}, pi)->[{§ch1), pf§"
is then é sun'. over all diagrams of the kind shown in Figure V.l for
ﬁil,values of m, m‘, end ¢, and with the proper faétprs determined
by Eqpations (45). | | |
Considerations which enter the calculation of this matrix
~ element are explained below* v
(a) There 1s an infrared divergent factor eQB due'to'thé-
virtual photon corrections. (See Eqpation 7.) V
- (b) The overlap of thé L initial-state noninteracting
| photons with the ¢ final-state nonintéracting photons.;

1
|
contributes & factor

IR R WS B M 1o M) oy M, . e
v = dyh Jadk gz, (ke M e M )| = ¢ 07"* 5] - (46)
- Bya,Cy ’ T l ' }"’)‘"

X}h' ’ ’ a,, ' . !

o _(é) Equation (11) gives the contribution due to the interaction
i of m initial?staté_phbfons and m' final-state photons

~with the electron line:

(M) o  mm

B Gk e 55 (ar( w s(")(k) B
e T perm =0 1=1 | | .
k's . . . .
g | _— oo ()
{a} S

X ’§m+'m'-t (kt+1’ t "km’+'m'.)

! (mmt-t)! . .
. (4) Contribution (c) must be integrated over the momentum
distribution that is obtained from the formal expansion 4

of the initial and final states (See Equation 45):
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m ) S 5 m 5 f* N{K;K'}
I =z dkf (k d’k ( ) G g_l;l:_“},kmm,)
r= %,a —m+l %u . *
(18)
(e) The formal expansion of Equation (U5) also leads to the
factors _ g
' A K'
1 1 €Xp 2 Z ,a ' exp\| - I ()4‘9)
(m+L) (m +L) ;) <i c,x'

(f) In addition to the above, there is a combiﬂatorial-factor

which accounts for the number of ways that (m+l) - initial-state

photons and (m'+%{) final-state photons can be distributed among m

initial-state interacting photons, m' final-state interacting

photons; and { “~noninteracting photons:

(m+£)!  (m'+ ¢)!
m! ! mt! LI e

After summi over all numbers m, m', and ¢, we arrive at
i >4 3 .

the following expression for the matrix element M:

T T I T I O e

s |
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N : @w o ' : : YT AVEY
B oo ,eag s » % [ 1 1 ][(nﬁ%).(m+&),]
: 1=0m=0 m'=0 L[ (m+£)! (m'+L)!Jlminm®teie!

| X [éxp Q‘% - 10;;‘|2>exp G. L Iy2|2> {“][fa oM _‘7*;‘\] &_.

S/
* N [.3
Xil o Za kf(k [dkf(k)
T i\r=1 N a —m+l k" ‘c r! ¢ r!

ML

pm_*_m' (kl)v'..,km'*'m'

Another factor corresponding to the contribution from the
scat£eriﬁg of photoﬁs by photons could have'been‘includéd explicitly,
but since this term does not contributé to th¢ éancel1gtion of infrared
divergences{ nor does add to the divergences, it.has not been considered
in this analysis. |

Making the appropriate.cancellationé, and combining the terms

‘with a little bit of careful counting, we arrive at the expression

)| S (51)

@ les) W m m . 1 11
M=e® = & 5 = 3 m——}'[zquzx} .. 2
=0 7° m=0 """ m'=0 ~ * {a,\: J=0 3'=0 ji(m-3): 3" !'(m' -3")!

2 : ‘
Xl -3 2 loM Jem(-% = M), (52)

o
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where ) . : .
@) = [ PN g0,
a’g ' :
- Q _
| (f’;,gh') j x 80 ) ) f*;(k)' ,
and B « . '
J
- () f 3 A
P = (- I [d’k = f (k
| 33" = (-1) <:?=l Na %, fa( r) .
' B S )
j ] 3 *KI * ~ '
< e Tollenr) Eyge (eppoky )
- | ' |
Defining the '"residuals" m, Iy by
: : v s
Pj it o '
. mJ’Jl'(Pi,pf) = 'jljll 2 (51")
and reordering the sums in (52), we can write
~ oB | 2 A &N
M = e exp[-%z la l [— 7, M ex‘p[Za 7*]
>\-; 7\1 >‘-) :
® - 2(55)
Xexp[-}'.'. a)"(Sf) }exp[ *%‘(f S) ] X moo
nea ‘ N, C ) 9]} m,m*=0 4
To simplify the notation further, we define the coefficients vBa by
Bt = (£, 8 . | (56)

& Q




=2 -

w22

‘Since the function § 1s real, Equation (55) becomes

= eaBekp[ %, Z laxl ]exp( Z ]7K!%Fxp[ PN ahy ] exp [ z QA B*k] \ﬁﬂ |
o : : ‘ L aa I
.xexp_[ = g} 7*2}- I <p1,pf> e
Me n'=0 ™ A
As in Section IV, it v'proves convenient to split the .
function _§(x) 1nto'two_parts::
- . ) R o)

(= . : P, e . . L ¥ P.* e .
5N ) < e . 4 L M) - S (58)
i 312 kai t : 3 2 k'Pf .

[2(2:r) ko] . [2(2n) k ] ‘
We can then define the coefficients B?é and B?a' by'.
Ao oeeox (W)Y A e (V) S
Bye = (5 )g 0 By = (5e 22, . | (59)
so that by Equations (10) aﬁd (56) ,
BT A W W o .' '
Be = Py = Bia . _ S - (60)

The complex coefficients [a h} and {7 Al } which specify
the initial and final states ‘'of the photons may be regarded as a set
of coordinatgs'in some complex infinite-dimensional space X. It
is then poséible t§ éimplify Equation (57) by making a translatioﬂ

of the coordinate system in X by the amounts defined in Equation (59):




\ N RS : . - - | :
| 75% = 5fax * efax ’ aéx' = Biah + eiah . | (61)
Thus
~ oB ' 1 ')\ 7\.2 A )\‘.*
M= e Xexp azh[-§1ﬁia +eia[ - Iﬂfa+ef | + (ﬁia+e1 ) (5fa fa)
P .
-(B X)B*K+B (B)‘+ex)*] % a L«
N | e mu'=0 ™ - @)
dB 2 | | .
= & {exp a>:k[+2|ﬁ - Bil -3 le -€ l +1Im (Bie + ﬁrfef Biﬂf &€ f}
2 .

DI I : N
X m,m'=0 mym’ | > o _ ' .

‘ vhere the mode and polarization indices have been suppressed  for
,convenience;.

By Equetions (43), (53), (56), and (60), we have

1l Mg | - =i ! []dBR 5™ (x)e .(k)} Uﬁ?k'g()‘)(k' )f*'(k')J
A,a fa ia %oa k ald a a
| ,‘ | - (63)
=z —%ﬁ?k‘ 'é(}‘)(k) §(>‘)(k) = aB.
A |
Substituting Equation (63) into (62), qe_arrive at the important
result: | |
s Z e l i ® .
% e(ch+odB) 2 na fa o s m (64)

' m,m' {5
m,m'=0 s . 4



. ,_2)4,_, L -

where § is real.

The argument of the first exponentialvﬁas shown in Section IV

to be infrared divergénceless in‘the 1limit of zero phdton mass. The
i
third exponential has modulus unity, and the last. sum is term by

v(_term divergence-free. If the possible states of the system are-

restricted by the condition: \

% e :.- e <o o u o (65)

~ the sépond eprnential 1s mnonzerd, but less than or egpalvto unity.

1

:'With this condition satisfied the infrared divergenceé have been

. eliminated. The ihterpretation of.thig restriction 19 discussed

in the ﬁext'section.
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VI. INTERFRETATION OF THE PHOTON STATES

In the beginning of this section, we will show that
Equation (65) defines a separablevHilbert-spéce. To do fhis; we
study a related space :% which will turn out to be ¥ entical to
the ordinary Fock space t%cn . Translations like Equation (61)
will not change the intrinsic propertiés of this space. Finally
a calculation of‘the total cross section will relate this whole
discuésion to experiment.

" ‘Much of the mathematical material here will be treated

A _ n :
heuristically, but a more rigorous formulation of the statements

can be found in the papers by V.'Bargmann.a’j '

We will define a separable Hilbert épace ék in the following
manner: Let [ei} be &n infinité'sequence\of-cpmplex numbers. A set
of "prineipal vectors" I{ei}) %s then defined by the equation

i L | \

\

: - o R |
lte;3 ) = g LA .)' - exp {‘% l‘eil ]exp [91 aif} |o) s

| | (66)

 Texp {% :.leile}exp {e‘i ffi(k) aT(k)} ,IQ) :

’

Vo
- and the condition:

| <o, e
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The elements of X are taken»to be the closure of all finite
_ linear combinations of the princ1pal vectors.

From (66) and the commutation rules for a (k), the inner

> )
product of two elements, |f) = = xj I[e 1) .
j_

|£1) = % Hk I(G (x )}) is given by
k=1

R R e
(£]£") ji:kx pk ‘p{ze

i(k)] exp(-z > Ie ('j)l }exp{ b le (k)l J
1 1 1

' . (68)
In particular, the inner product of two principal vectors I{Q (J)})

and I{G (k)}) has the property.- 2

. o2 2" o 27 2

Ly 2

= ey le§3)- e§k>| (69)
so that the principal nectors are ail normalized to unit'lengtho

Moreover, by Equation (67), no two principal vectors are normal

- to each other.

The properties’ of the space could in fact have been derived

by using Equation (69) instead of Equation (66), but we wish to retain

the connection with the previous sections of this paper.

" The separability of X follows from the exlstence of a countable
sequence of vectors which is dense in¥ . let ]{61}) be any
principal vector. From Equation (67), it is known that for anf
8

y > O there exists an integer | such that I ]6 l < B

| AN N
|

|

{

K5 el
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Moreover, for any ‘1 <N and & >0 A it is always possible to find

rational numbers {Ri} such that lei- Ri|2 <8 .
Consider a principal vector "I[Sj'_}) such that €; = 0 for
1>N,and 6 =R, for 1 <N: Let = |6,|° =A% . Then
e T | - FERAE!
= el -6 % < +8
1 i i ~ N
_and
¥at] - _ * v a¥ t
| Tm z_eieij‘ = |Im= ojo, + Im X 67 (O} - ei)l
i i i :
% 1
g lf o] (8 - &)l
. < -\/zv Ie_il2 b Iei - eile |
' 1 i ,
< A\/N® + 5N .
Thus,

PO o
_l o) - Itogh)] " = 2 - (Lol (6] - ((o}] [0e;])

= 2 -exp[-%'zfeilg]ekp{-%‘Eleilg] |
1 g4 1 :

1|
n
[ ]
[
X
Lo}
L
]
nj
M
©

2
'0_ : W~
i eil {exp[i Im ? 9191]

.+exp[iIm2 9*'9]
LT g 1 i

‘2{%"9[‘% 2 1e; - o,]) ( [1a 2 e*;eiD

(A?+.1) (W8 + sN)

A
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_ éince I[G 13 ’iﬁN; and 5. were'arﬂitrafy;'we'have shown

" that any principal vector can be approximated by another- principal
vector belongipg to_a denumerable set. The'denumerable_set which
cdnsists of all finite suﬁs,of jrincipal vectors like 1[6;}) is>AL
-‘dense in :$ . | |

In the case of-méssless‘SOft'photons, there is no reaéon to
,-resfrict the photon states B&;Eqpation.(67). :Lét {Gi(o)} be a

 sequence of complex numbers which are not square-summable, i.e.,

(0),° o ' o
z 16, ko, B (70)
i L S o

. Then the states defined by the complex numbers (Qi} , and which

satisfy*fhe condition
o o |
fl,i ()I <o, (7)

form & separable Hilbert spacefk( °) itn all the properties of §%
~except.” Equation- (67). " :*( °) is unitarily inequivalent to'Tb 1i. e;,
.it forms a unitarily inequivalent representation.of the canonical
commutation rules. |

In Section,IIvae diécussédvthe conneétiqnzbetweeﬁ'the Féck _
‘states'and the pfingipal‘vectors,fqr atsingle mode. ‘Wé‘w111 now
briefiy study the relationship between the'occupation number

parameterization and the principal vector parameterization.
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The states in the Fock space \i’oo- are specified by a
set M of infinite sequences of :nonnegative integers [mi} s
or "occupation numbers" of which a finite number are different
from zero. An orthonormal basis of Fock space 1s given by
) '
ai< g ‘
la) = 1 SRZ o, @
i ‘ . o

m, !
i

‘An arbitrary state |f) of 3@ is given by
l£) =" = g dun g ), (1)
| (m)ey ~tml " lm} T o
where the’complex. éoeffieients: Vi) satistys. i o
Y <o, - (74)
{m}em ™. S

At this point, it should be apparent that ¥<H  , since

T’mi - M
(8,8, 1) ' - (8y) T
[te,) = = I i o)y = & @ 2 LY (75)
{m}eM m, ! | {mleM 1 \/mil : :
and
m 2

\ (e,) 1o, 00 Ieil‘ I'ni 2 '

s m | = n{ = , = exp (2o, | ) <@ (76)
{m}eM 1 /my ! i \\m=0 m ! i S
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The scalar product of two vectors 1) and  [£') in \;\‘m

‘vcén be obtained fron (72) and (73):
‘(flf"‘). B .{1.11)}:eM 7‘)Em}._ 7 {m) | . m
let Qn{m‘i} be th‘e .‘brunca.t.e.d sequence
Qn(éi} = (mi,mz,.,.; mh,o,oi...); -  { , - (}gs
gndbdéfine & projection on j&oé by ) | i'A r

E, 1) = = () oy ¥ (mzeﬁ 7{m} lu(m} >> (79) (i)
Awhére Mn is the set of all seq_uen.c:e.s_ of the form given by -
Equation (78). Then it follows from Equation (T4) that E_|£)
converges strongly to lf) as n—+> o, We will show that En'f.-)
is contained in \ﬁ‘, irhich implies that E'oo = .
The expansion of En[f-)- in terms of the iarincipal vectors

follows directly from Equation (27):

|£) nf I oy o) (80)
E |f) = I jdu 0.,0,5°°;,8 , 0,0, — 0
n m]eM 7 {m) jmpd 1 VYR ;"..n’ ' Va,

where

dp, = exp [—% Iei! } a(Re ei) d(Im o) . o (8y)
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_‘From Equation (69)', it 'is clear that princ-ii:al vectors ltei})' which
do not satisfy‘Eqpation*(6f) are orthogonal to. Eﬁlf); Therefore
Enff) € and the résult'§¥my = X follows, 1.e., the Fock space

| built from states ﬁith a finite ﬁumber of photons, and the spaée of
principal &ectorsrsatisfying.EquAtion (67), are the same épaée. |

| In order to satisfy the requirement Equation (65) for finite
matrix élements; it will be hecesséry not to restrict the scgttering

| states to ¥ . For if the initial state were in\}‘, il.e., the

(a;‘} ~of Equation (45) satisfied the condition

5 lo M

< o, 4 | (8e)

then the final state paremeterized by the sequence of comﬁlex numbers

{7;‘} would be given by

. A A A
: Ta = % F (Bfa

a x)

- Biax) +.(efak ~ €0 /s . (83)

vhere we have used Equation (61), and the e's would satisfy

2
A
Z o fegy - eyl

N8

<o | (8Y4)
But we know from.Section IV and Equation (63) that

2

= IBfaX ) Biaxl

2 2 '
| - f|§<*><k)y Pk = oF, (85)
A2 Ct=1 , , T '
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‘and B - o as the photon mass approaches zero, Thereforel i ti i1

ST s I Ui
[ AV I B 4 - e oda b .

M e, ey
S VR . , :

as the,pﬁotbn mass approaches ze%o.;Thus ﬁhe finellstate.cannot

belong to. ?*I. : | 1 ' _
. ; _

" Nevertheless, the coeffitients {737?} define a final state.

It mﬁsﬁ be that,ﬁhe final state ?elongs'to eh iqequivalent representa-v

) tich of the canonical commutati%h rules whose most eukstending

: feature is fhatlthe average numbe; of phbtons‘ie infinite. Noﬁ ahy

final state will do, however, for the boundaries of this new space

<!
N are restricted by the condition Equation (65)

\ .
‘One of wany ways to satisfy Equation (65) which preserves
symmetry between the initial and final states is to write these

states as:

N N A 1

QE = eia. + ﬁia ,+ eoa. s
R S T WY
7& - _*efa +6fa. feoa ’

. and to restrict the states by B

| : e,
A ML .-

sle,. "] <o, = le. !

T W g
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Then we would get different theories by different cholces of the
sequence {eoa%}. . With such a_choice; the photon‘states~wouldl
have a dependence upon the momenta of the participeting electrons,

So far we have not spoken at all about 2 , the region of
momentuﬁ stace on which the'singlevphoton states ‘{fa} were defined.
. In an experimental situation,-tﬁere is alweys a threshold below which
a single photon cannot be detected. We identify & with what we
shall .call the "resolution region,” i.e., all photons with momentum
k € & are not detectable, while those which satisfy k € & are
‘detectable. In what folIOWS, the nondetectable photons will be
spoken of as "soft" .photons, while the others will be called "hard."
Furthermore, we shall indicate the resolution region of the momentum
s;ace.ti a subscript, eg., Xh .

In a practical calculation where oﬁe wants to treat,'for
example,_the scattering of an electron with the emission of hard
photons,'the ‘hard photons.can be dealt with by the conventional
,occupation -number parame&ﬂizatioh, while the soft photons are
described in terms of the transthed prrincipal vectors. More
'specificallyg consider the calcu}ation of the cross‘section for eo
eiectron_of momettum Py scatteting into‘a state with an electron
of momentum Pp plue several haro bhotons. The incomihg electron
is.associated with a photon field described byAa sequence [an}
end the otthing»electron has a photon field (7éh} . - In EQuation ‘

)

(64) the Vbasic'matrix element" m corresponds to diagrams with

only the détectabie real photone and those virtual photons necessary



;-Bh,
for the process to occur., The terms mij for 4,3 = O contain the . )
effects of the noninfrared parts of the real and virtual soft photons
to higher order in the coﬁpling constant. ‘ ' f$

To lowest order in the noninfrared photons, the sqparéd

. matrix element for a rerticular diagram m_ is from Equation (6h):

- 2(Ré0B+OB ) SN 2
2 ' 19} A A :
]ﬁl =e. exp |- & 'ef& e €ia ! lmo’ol R , (87)

9% _ : -
_ We can then sum over final states. The result (to lowest order) is
independent of the initial state: ‘ l
| Bo) " A e P
L2 2(ReaB+B - 1 ~ ~le
= IMI =ecx & lmo o' 1im ('It.l) [fdeef e T }
final : ’ n—-oo - T
states L : - (88)
2(RecB+0B)) 2 o
=e. m_ |

The feﬁéining exponential contains par? of the effect of the choice.
of. §i(k) ‘and the reéion of resolution Q ; aﬁd we obtain a similar
result to what Yennie et al obtained (for a nonéehergy-conserving
potehtiéi); In fact, the "reasqn" why the reéults are the same is
that in tﬁei; summation‘qver ali final states in the conventional
treatment of the_infrafed diverg%nce, the-mgin contribufions caﬁe

from states which were not in thé usual Fock space, but were in

‘.a'vnonseparable space defined by{Eqpation'(72) without any restric-
tions on the sequence {m} of occupation numbers. In particular, .

_the separable space of final states R is contained in this. -
b
.,‘ :

!



«nonSeparéble épace.

In the above computation, and in Sectlion V}'the feéolution
~ regions for the initial and final states wefe.assumed to be the same.
.Cne can argue that the resolution region of the initiél'State can
be made arﬁitrarily small, but finite, by waiting é sufficiently
long time before the scattering experiment. The situation where
the initial resolution region is‘smaller than the final state

resolution region is discussed in the Appendix.
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" APPENDIX A

| GENERALIZATION OF THE CANCELLATION TO SEVERAL ELECTRON LINES

~ For simplicity, only the case of a single electron line inter-

écting with a potential was treated in Section V. The generalization
to'several electron lines interacting with(ne-ahother will be outlined
here for completeness. It is possible to make an exteﬁsion to positron
scattering, pair prdducﬁion, and other processes, but we shall nd do
so here. |

Since the cancellation of the infraredAdivergences in thié |
ﬁore éomplicated situatién requlires a proliferation of{subscripts
and superscripts, we drop all notation having to do with thg
polarization of the photons. Superscripts will now designate the:'
elecﬁron.line.

The initial state consists of - N ‘incoming electrons with
momenta, Py piE’...PiV’...piNV’ along with some photons. They".
scatter into a final state of N outgoing‘electrons with momenta

o0

5 JRPEEES J _again with some photons.lfWe have assumed that

all resolution regions are identical.
Thus the soft photon initial state can, for example, be

conveniently written as

éxp [ 1>/: '(fs mv+ ei:')gj d?k fa(k)a+(k)}
I

[ W
expt% IE Biay+ eiavl J

oy, (A



where -

i

Biav' <%af’ Si(p:i.v):>$.z ; _ | - (a)

The final-state soft ‘photons are described by a similsr expression.

The interaction is 1llustrated in Figure ’A<l..

In this diagram, our attention is focused on-the y%h |

electron ;ine. The integep mgv denqtes the number of photoné in

. the initlal state which "belongs" to the .g%h electron and interact

with the y%ﬁ, electron line. Similariy mév is’the number of
. photons in the final state belonging to the é%ﬁ electron which
interact with the y%h electron line. The number of %noninteracting
photons coﬁing'from the- éﬁﬁ incoming eiectron, and becoming part
of the éjfﬁ outgoing electron,is giyén by the integer T
We arrive at an equation analogous to Equation (6k4) .through

the following considerations.
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(2) The overlap of the & = initial-state none

z?
. ee 58 S
interacting photons with the ¢ final-state .noninteracting photon

contribﬁtes,a factor

. ) ' .' , z , | .
b {LEE',; (za,’ 72F )55] . )

where

E . . & _F & ¢ £
@y = Bia"+ €40 7 % = Bfa t Cpg v
!
Note again that tﬁe supérscfipt £ féfefs tb the electron line;

and not to the polarization.

. T . N .
(b) A contribution from the interaction of m = X mgv :
S ' N yE
initial-state photons, and the m' = I mé? final-state photons
_ : : 1 S '
with the N electron lines,gives '
SRR NI L TS SR )
- p({m, Y ' = n[ T I (-1) “§(x E k yeee,k
- e ¢ vl t=0 1-=1 R PTL S e Vi Y’
l ]
£ (m 'V t)s 1
where m' = Zm,’, n'’' = zZm!’, .
£ € _ £ 3 L

(¢) Contribution (b) must be integrated over the momentum
distribution ﬁhat is obtained from the formal expansion of the .

initial end final states,



Yz

. o
o e
. gjs. , | *5[3 &
. Jg <;r¥l g a; T g, ;> —m +l g 7 g,r' a g,r'j)

\

E((ﬁgv}’ (m'gv}_ﬁ Kyt sk, ook +m') .

where

(a) The formal expansion of Equation (A:l) also leads

to the factors

(2) In addition to the above; there is a combinatorial
factor which accounts for the number of ways that the (m+t)
initial-state photons, (m'+f{) final-state photons, and the ¢

‘noninteracting photons, can be distribﬁted'among themselves:

1 !

(m§+ L,) (m' + &g) !
I i
L n(m )! H(ng,) } [g I(m ‘.’)' g( eer )

(£) There is an infrared divergent factor due to virtusl

photon corrections. (see Yennie et alf.h):




o m ‘ 'mgﬁév | ' _' .
3 a 3y . ' xE[3 |
x H{K{Hl(-l) z: o fd g,rfa(kg,r)Q __g " g 7, [a'k ke of c g r,)Jp(’lg_, f‘k m,).
e : g

- The last factor in the braces can be reduced by separating out thé

F = exp [OB] R R cee .,.:7._'_ L '...:.:._. e e e a. R
. A Y LIRS .l‘_t, T e SR

”To get the matrix element M , the contributions are summed over B

§§'}

ft=F = 'z o |n- |
. | {&ggl}:‘o {mg }=O {mg }=o g (m€+‘t§)' (mg'*'f'g)' .

. ;:,m(mgﬂ;.:; )v! o . .‘(mv '+1, ' )v . .
{n ( ) I[(g, )i n' n(m') H(z ) |
£ II{m ' : : L

21l values of {m vy, [m Yy,

o X{exp[--é— z [z o] ] exp|- 12 |>37 | ]M I o4t (2 of yx&y
L fag 20T

§ g€ a

divergent terms:

( v ntV Ny v
(04 ] .
v jg=0 aév =0 (3 (m -J¢ )' (337 (my¥-3;") (a : / |
> ‘ '
, RV

Y
‘<27*§(f SDJE'P} -,

where

o : 5 o B
P({3" }(J' 3o, ), (p f3k Z‘.oz ' (k) fdi E‘}'*gf‘*(k)
108 )3 pg b (og ) [& n —3 “ N

X gv’ v(l ek V)}
Cdetle T dgty
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Again one defihes a divergence-free "residual” by
: i P
.m(,j,j’ ) =

o~ ) 1 .‘. ". 2 . , . l 2
M= F[gg, exp[g oﬁ 7;§ }lexp{f E‘IE aﬁl _}exp[e § ]§v7a§lA]‘

2wt ).
v : :
=0 !

1
3

Making'the translation to a new coordinate system, we gét,

£ . g E &8 B E L v_ v v
K “ - Pio * €102 Yo =Pps * g By = 6fa_“ Pee »

'andeith'a-littie additional algebra, the final result is exhibited:

. : S - | ' 2 Ai¢ 
o - F‘exp{%—az‘ IE. Bfg - ;3i§ | exp[ 5—12—5 lgg efi- eiil ]e
(Az3) -
| | x| T T T m”, (aé"})] .
- ' vE Vv A v : " -
.. . ) ) J§= jg ,=0 . ) :

I

The divergences in the factor F, and ﬁhe first exponéntial cancel.
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- - (Yennie et al, .1}'). Again the condition for finite matrix elements is

zlzeig-e Y <o .- o (ask)
a§ a - . . g v

R
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APPENDIX B
_ THE FROJECTICN OF ENERGY-MOMENTUM EIGENSQATES
For completeness, the procedure for projecting out energy-

momentum eigenstates will be given here. Consider a typlcal soft

photon state described by a principal vector ‘{QEE}):

: ]fQQ}S = éxp [~% }»q{ Z a% .j’dBP £ (k) e(k)(k) a(k)+(k ]IO) (B:l)
ook AT AT A B o ) ]
= eXP["a)falOQ' ]nfq,%{'zx% id kl'fa(kl)e "g"*(k)} |

Using the formula;
o é};fem ay = 8(x), . o (Bi2)

1t 1s then possible to project out from ](a x}) the eigenstates

of energy momentum



CREK) [0 M))= exp

- i~ ny

bl

2y @ - o
Mo &

[- 2.2 o
- E n=0 n;

B
?\,,a. )

=1 a,x

[ 5 a?‘f (i, )e(")(k )a(’“)““(k )] 8(E-Z @ )5 (K-z k )}lo)

1

2y o . A | |
= .exp(-%z Ioza)‘[} b) &-—,i—ﬂfdyderyiK’x

N

[
n=0 % (2x

)

-ik

X [Pxedi o] 5 oo Py (%) (”(k ) oo (x >] oy

= ——xfdy d3§;exx>[-%

(2x)

o

o 1Ey+iK-x -iay -ik-x
PR lal] ""exp{Zo]‘ere e
- Ma : - Na

X 1,00 M) a”‘)*'(k)] | 3



dse
APPENDIX C
INTTIAL AND FINAL STATES WITH DIFFERENT RESOLUTTON REGIONS.

Suppose thét we ére dealing with the sifugtion where the
resolution region 2 for the initial state is smaller than the
resolution region &' for the_finél state (R<Q'). In other
words, the threshold for detecting low-energy photons 1is lower
before the scattering experiment than afterwards. Then.an.infraredc
divergenceless matrix element in a form analogous'to Eguatioﬁ (§h)
may be obtained with vefy little additional complicati;n;‘.'

Let us define & domain D of ﬁoﬁentpm space such that

Q' = QUD wvhere QVD =0,

Then we suppose that there exists a complete set of orthnormal
functions (g,(k)} efined .on D. A typical Pinal state is

now glven by

exp [g 7%;/A5k fi(k)g+(k)] exp | IL.v! d3k.gﬁ(k)a+(k)]

' J
. o y J -
2 =[try7i)) = - 2} : I oy, -
em%?bd | ew&?hﬂ]
\ (C:l)

" The indices having to do with polarization have been suppressed.
" The result of the modification is that in the derivation of Equation'

(55), one must make the substitutions:



s0. that Equation (55) 1s correct only if we haVE(on the right-hand

sside. the. additlonal factor WLt s

1

. \

exp{ - %2 |7'7‘12 ]e@ [ z 7'*7" (e; B SO")) }

Me | C A, C
and the divergenceless sum ' , - , o
®
. z mm,.m' *

m’ m’=0
contains integrals of the functions (gc} over the addition region D.

We now define new coefficients Bé ‘and varisbles e%ah in

‘& similar way to Equations (59) and (61),

A S

By (e bo‘)> , 7= 8 +e%a7‘ (c:2)"

&

Then the additional (non-infrared»divergenf) factor becomes..

. | . .' 2 ) ' '
exp[ - <1]f3’ |- le}_.;'l +1Im ea;,a%' B;")] .

Tt is natural to define

af) = ex] = 3l

A ' .
2 T, o (c:3)
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‘8o that Equation (64) becomes

(oB+oBgtal) 2 _ '
~. Q
| W= e Cem -3z leg e M ] C(oxh)
- . 1 1¢ ® Aqa :
/Yexp[?g' = lep, M ] 5 e
’ )" mm'—O ’
In this expression the infrared divergences cancel 1n the
. sum oziB+ozBS2 “of the argument of the first exponential. The term
e accounts for the difference in resolution regions. The
‘condition for finite'matrix elements;ism now:
- .
A A ! _
Z ]e ~-€,. | <oo, . S ,
ana fs, ia R )
| . (c5)
2
A :
! . .
. z Iefa,'] < w.

N a
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FIGURE | CAPTIONS

Fig. Iy.l., Contribﬁtions to the %econd-ordér.virtual{photon ré@iative
. corrections. Diagram ka) corresponds to ﬁhe:original' _
'Uncorrected,matrix‘element _MO ;
. Fig. IV-é. Contributions to the secénd-order cqrrection§ due to
emission or absorption of‘réal éoft photons.’ Didgrami(a)
accounts for the possibility that the photon does not
interact with the electrons at all.
Fig. V-i.‘ ﬁébreséntation of ¢ ‘nbnipteracting real S?ft photons,
R real soft photons ébsorbed by the electrgn line, and
m' real soft photbns emitted by the elecron line.
| Fig. A-1.,. Representation 6f ¢ noninteracting feal soft phétons,
: mgv ‘real sdft photons associatéd with the gﬁh electron‘a
" and absbpbed‘ﬁy‘the vth electron, and mév‘ real soft
photons:associated with the &th elgctroh and emitted by

_the zﬁh electron.
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This report was prepared as an account of Government
sponsored work. Neither the United States, nor the Com-
mission, nor any person acting on behalf of the Commission:

A. Makes any warranty or representation, expressed or
implied, with respect to the accuracy, completeness,
or usefulness of the information contained in this
report, or that the use of any information, appa-
ratus, method, or process disclosed in this report
may not infringe privately owned rights; or

B. Assumes any liabilities with respect to the use of,
or for damages resulting from the use of any infor-
mation, apparatus, method, or process disclosed in
this report.

As used in the above, "person acting on behalf of the
Commission" includes any employee or contractor of the Com-
mission, or employee of such contractor, to the extent that
such employee or contractor of the Commission, or employee
of such contractor prepares, disseminates, or provides access
to, any information pursuant to his employment or contract
with the Commission, or his employment with such contractor.








