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SSA-Based Java Bytecode Verification

Andreas Gal, Christian W. Probst, and Michael Franz

Department of Computer Science
University of California, Irvine
Irvine, CA, 92697, USA
{gal,probst, franz}euci.edu

Abstract. Java bytecode is commonly verified prior to execution. The standard
verifier is designed as a black-box component that either accepts or rejects its
input. Internally, it uses an iterative data-flow analysis to trace definitions of
values to their uses to ensure type safety. The results of the data-flow analysis
are discarded once that verification has completed. In many JVMs, this leads
to a duplication of work, since definition-use chains will be computed all over
again during just-in-time compilation. We introduce a novel bytecode verifica-
tion algorithm that verifies bytecode via Static Single Assignment (SSA) form
construction. The resulting SSA representation can immediately be used for op-
timization and code generation. Our prototype implementation takes less time to
transform bytecode into SSA form and verify it than it takes Sun’s verifier to
merely confirm the validity of Java bytecode, with the added benefit that SSA is
available “for free” to later compilation stages.

1 Introduction

Mobile programs can be malicious. A host that receives such mobile programs from an
untrusted party or via an untrusted network connection will want a guarantee that the
mobile code is not about to cause any damage. To this end, the Java Virtual Machine
(JVM) pioneered the concept of code verification, by which a receiving host examines
each arriving mobile program to rule out potentially malicious behavior even before
starting execution. :

The verifiers in practically all JVMs implement essentially the same worklist-based
data-flow analysis algorithm [20, 28]. This analysis is necessary since the locations of
temporary variables in the JVM are not statically typed. If verification is successful, then
the original bytecode is forwarded to the JVM’s execution component, which may be an
interpreter or a just-in-time compiler. Specifically, beyond the result denoting whether
or not verification was successful, all other information computed by the verifier is
discarded and is not passed onwards. In many cases, this results in a duplication of work
when a just-in-time compiler subsequently performs a very similar data-flow analysis
all over again.

In this paper, we present an alternative verification mechanism that avoids such
duplication of work. Instead of verifying Java Virtual Machine Language (JVML) byte-
code directly, we first annotate it in such a way that the flow of values between in-
structions becomes explicit rather than going through the operand stack. We call this



first intermediate step annotated JVML (JVML ). In a second step, we then transform
further into a Static Single Assignment variant of JVML (JVML;;4). Verifying programs
in JVML g, can then be performed in near linear-time and without requiring an iterative
data-flow analysis. Moreover, since Dominator Tree construction and SSA generation
are already performed during the verification phase, and can be re-used “for free” during
subsequent code generation and optimization, our method can speed up just-in-time
(JIT) compilation significantly.

Our benchmarks indicate that the aggregate time required for first transforming
JVML via JVML 4 into JVML 4 and then verifying the JVML ¢4 representation is still
less than the time needed for performing the standard verification algorithm directly
on JVML. Our approach imposes no overhead for methods that will be interpreted
without JIT compilation, because SSA-based verification is still overall faster than the
traditional verifier. Moreover, by providing an SSA representation “for free”, the initial
cost of JIT compilation is lowered and larger parts of the program can be JIT compiled
to native code for faster execution.

While our actual implementation covers the complete JVM language, length re-
strictions prevent us from discussing in detail the SSA-based verification algorithm for
the entire JVML. Instead, we use a representative subset of JVML that we subsequently
call JVML;. The full implementation is available from the authors upon request and the
performance benchmarks towards the end of the paper refer to the full JVM language,
not just the subset used to discuss the algorithms.

The remainder of this paper is organized as follows: Section 2 gives a brief overview
of the traditional Java bytecode verifier. Section 3 introduces JVML;, the representative
subset of the Java bytecode language. In Section 4 we show the transformation from
JVML; via JVML; into JVML;4 and discuss how bytecode can be verified once the
code is in JVML g4 form. In Section 5 we compare the performance of our method to
that of Sun’s standard verifier. Section 6 discusses related work and Section 7 contains
our conclusion and points to future work.

2 JVML Bytecode Verification

JVML instructions (“bytecodes™) can read and store intermediate values in two loca-
tions: the operand stack and local variables. These locations are ad-hoc polymorphic in
that the same stack location or local variable can hold values of different types during
program execution. Verification ensures that these locations are used consistently and
intermediate values are always read back with the same types that they were originally
written as.

Verification also ensures control-flow safety, but this is a comparatively trivial task.
Conversely, verifying that the data flow is well-typed is rather complex. The JVM byte-
code verifier [19,20, 38] uses iterative data-flow analysis and an abstract interpreter for
JVML instructions for this. Unlike JVM, the stacks and local variables of the abstract
interpreter used for verification store types, rather than values. From the perspective of
the verifier, IVM instructions are operations that execute on types and not on values.



instruction ::= core | dataflow
core := iconst.n|lconst.l|iadd|ladd|ifeq L|return|return(z)

dataflow ::= dup |dup.2 | istore_z|iload.z|lstore r|lload

Fig. 1. Instructions in JVML;. The arguments n, [, z, and L must fulfill the conditions —1 <
n<51€{0,1},z,L e N.

JVML verification works on method level. With a co-inductional argument it fol-
lows that if every method is verifiable, the whole program is verifiable, too. In the rest
of this paper, we use program and method interchangeably.

3 JVML;

For the remainder of this paper, we will use JVML;, a subset of the Java bytecode
language defined following [35]. While very compact, JVML; is complete enough
to reason about properties of the Java bytecode language and to explain a number of
difficulties that occur during the verification of JVML. Later on, we will slightly extend
JVML; to deal with exceptions and arrays. JVML; has no construct that corresponds to
JVMUL’s subroutine construct. Subroutines are a significant complication when dealing
with Java bytecode [9, 12,25, 35] and have been shown to be not a very effective way of
reducing code size [7]. The compilers of future versions of Java will probably no longer
generate code containing the subroutine construct and we will disregard subroutines in
the remainder of this paper. Our prototype implementation for the full JVML resolves
the rare occurrence of a subroutine by inlining it into the body of the calling method.}
A JVML; program is a sequence of instructions (Figure 1):

program ::= instruction™

JVML; supports object types and two scalar types, integers (INT) and long integers.
Similar to JVML, long integers occupy two consecutive stack locations and variables.
In contrast, objects and INT values take up only a single stack location or variable. To
reflect this special property of long integers, we divide them into two halves: the bottom
half is of type LONG, while the top half is of type LONG’. Accordingly, long integer
values are divided into the two sets long and long’. The static semantics of JVML;
guarantees that both halves always occupy consecutive stack locations or variables, and
that operations on both halves are always atomic.

Instructions operate on an operand stack. Additionally, values can be stored in vari-
ables. Variables are non-negative integers that correspond to local variables in JVML.

! We have studied numerous bytecode applications including the Eclipse framework, different
Java APIs, and the SPEC benchmarks. Of approximately 5.4 million instructions we only
found 0.24% to be in subroutines. The average size of a subroutine was 7 instructions and it
was only called 2 times.



Code Abstraction
LONG, LONG')
LONG, LONG', LONG, LONG')

lconst 0

lconst_1

(
(
iconst_1 (LONG, LONG', LONG, LONG', INT)
ifeqlL (LONG, LONG', LONG, LONG')
(
{
(
(

LONG, LONG’, LONG, LONG', LONG, LONG')
LONG, LONG', LONG, LONG')
LONG, LONG')

)

local variable 0 = LONG, local variable ] = L.ONG’

dup.2
ladd
L: 1add

1lstore 0

Fig. 2. Example code and the abstractions computed for stack states and variables. Each stack
abstraction contains the bottom of stack on the left and the top of stack on the right.

The instruction set of JVML; consists of two kinds of instructions: core instructions
and data-flow instructions. Core instructions operate on values stored on the operand
stack, while data-flow instructions such as dup, dup.2, iload.z, and istore.x
only facilitate the flow of values between core instructions by manipulating the state of
the operand stack and exchanging values between operand stack and variables.

Values are produced by core instructions and can be consumed by other core instruc-
tions. During the lifetime of a value it can reside on the operand stack or in variables.
Values can reside in multlple locations at the same time. Data-flow instructions neither
produce nor consume values?, but merely transport values between stack locations and
variables.

Figure 1 gives the grammar for JVML; instructions. Informally, the instructions
behave as follows:

— iconst_n and lconst.l push a numeric constant onto the operand stack (as INT
or as pair (LONG, LONG'), respectively),

- iadd and ladd pop two INT values or two (LONG, LONG') value pairs, respec-
tively, from the operand stack, add them, and leave the result on the stack,

- ifeq L pops an INT value from the stack and transfers control to label L if the
value is unequal zero,

— dup duplicates the value on top of the operand stack,

— dup.2 duplicates the two topmost values on the operand stack. It can be used to
duplicate two INT values or one (LONG, LONG’) pair,

— istore.r and iload_r transfer an INT value between the operand stack and
variable z,

- lstore_zand 11load_r transfer a (LONG, LONG’) pair between the operand stack
and variable z. The bottom half (LONG) of the long variable is stored in or read from
variable z, the top half (LONG’) is stored in or read from variable = + 1, and

* The pop instruction in JVML is a data-flow instruction. While it mi ght seem to consume a
value at the first glimpse, it actually merely manipulates the stack in a way that this particular
alias of the value cannot be consumed by any core instruction.



— return and return(z) stop the execution of the program.

For a presentation of the semantics of JVML; (as well as the other languages
used in this paper) please refer to [11]. Due to length constraints we only list some
of the main properties ensured by the semantics. Lconst.! and 1add use the type pair
(LONG, LONG') atomically. For dup_2, two reference types or integers are allowed as
topmost stack cells, or a properly formed long integer pair (LONG, LONG’). Similarly,
long integers also occupy two consecutive variables when pushed on the stack or stored
in a variable (lstore_r and 11load._x).

Figure 2 shows a simple JVML; example. The code pushes two long constants on
the stack, based on an integer may add the second constant to itself, and finally adds the
remaining two long integers and stores them in variable 0. The right part of the figure
gives the abstractions computed for the states of stacks and variables.

4 Verification in Static Single Assignment Form

The central responsibility of the Java bytecode verifier is to ensure that stack locations
and local variables are used in a type-safe manner. This is the case if the definitions
and uses of values have compatible types. To ensure this, the verifier algorithm has to
determine the types of all stack locations and variables for each instruction in P. It does
so by using an iterative data-flow analysis to trace definitions of values to their uses.

In JVML, there is no obvious link between the definition of a value and its uses.
However, even if definition-use chains [1] were available for each value in a JVML
program, it would still be impossible to verify a Java program in a single pass by
comparing the type of each definition with its uses.

The reason for this becomes more obvious if we consider how instructions are
categorized in JVML;. In JVML, only core instructions define and use values. Data-
Sflow instructions merely facilitate the flow of values between core instructions. Core
instructions are always self-typed, i.e. the expected types of any consumed operands
and the types of any produced values are known statically.>

In contrast, data-flow instructions are not self-typed, i.e. they are polymorphic.
In general, it is not possible to determine the type of the value produced by a data-
flow instruction without knowing the type of its operands. The result type of a dup
instruction, for example, depends on the type of the value on top of the stack. While
local variable access instructions such as iload. .z suggest stronger static typing, this
works for scalar types only. In the JVM, object references are written and read from
local variables using astore_z and aload_z, and data-flow analysis is still necessary
to determine the precise type of the variables accessed.

The goal of our approach is to avoid an up-front iterative data-fiow analysis to
verify JVML. Instead, the JVML code is annotated so that the flow of values between
core instructions becomes explicit instead of relying on an operand stack. This enables

® The JVML array load instruction aaload is a core instruction, but it is not self-typed as its
return value has the element type of the array, which obviously depends on the type of the
array operand. We will show that while not self-typed in JVML, aaload is in fact self-typed
in JVML_;_;;.



us to eliminate all non-self-typed instructions (data-flow instructions) from the code
after SSA construction. These instructions are no longer needed because they only
facilitate data flow, but do not actually compute anything. Once the code consists of
self-typed instructions (core instructions) only and is in JVML g, form, it is possible
to perform type-safety checks by directly relating the type of each definition with the
corresponding uses (definition-use verification). As in other SSA based analyses, a data-
flow analysis becomes obsolete.

In the remainder of this section, we develop an algorithm that performs definition-
use verification in SSA form. The algorithm consists of the following steps:

Step 1. Starting from the entry point, follow all branches and annotate all reachable
instructions with the stack depth at that location.

Step 2. Calculate the Iterative Dominance Frontier (IDF) for all stack cells and local
variables and place ¢-nodes in the control-flow graph (CFG) accordingly.

ANNOTATE(%, 8)
1 if visited|d]

2 thenif s # StackDepth]i]

3 then FAIL("Stack depth mismatch™)

4 return

5 visited[i] := true;

6 while true

7 do StackDepthli] :=

8

9

switch ()
case iconst_n : ADD(DEF[s],i); s := s+ 1;

10 case lconst ! : ADD(DEF|s],1); ADD(DEF[s + 1],1); s := s+ 2;
11 case iadd : ADD(DEF[s — 2),1); s :== s — 1,
12 case ladd : ADD(DEF|[s — 4],1); ADD(DEF[s — 3],1); s := s — 2;
13 case ifeqL:s:=s—1;
14 case dup : ADD(DEF][s],1); s := s + 1;
15 case dup.2 : ADD(DEF(s], ); ADD(DEF{S +1],2); s == s+ 2;
16 case iload z : ADD(DEF(s],i); s := s+ 1;
17 case 11oad_x : ADD(DEF|s], i); ADD(DEF[s + 1],); s := s + 2;
18 case istore_z : ADD(DEF[MaxStack + z|,1); s 1= s — 1;
19 case lstore.r :
20 ADD(DEF[MaxStack + z],1); ADD(DEF|{MaxStack + = + 1],4); s := s — 2;
21 if (s < 0) V (s >= MaxStack)
22 then FAIL(”Stack underflow/overflow”)
23 if Pli] =ifeq L
24 then ANNOTATE(TARGET (%), 5);
25 if P[i] = return
26 then return
27 1 := NEXTINSTRUCTION(%);

Fig. 3. Step 1: Annotate instructions with the corresponding stack depth at that location. The
array visited is used to ensure that all instructions are visited at most once. When encountering
an already visited instruction, the previous stack depth is compared to the new stack depth.



Step 3. Traverse the CFG in Dominator Tree order, assigning a unique SSA-name to
all stack and local variable definitions and recording the type for each definition.
Data-flow instructions are eliminated through copy propagation.

Step 4. After merging the types in all ¢-instructions, iterate over all instructions and
match the expected operand types to the actual definition types. Whenever a type
error occurs, verification fails.

The objective of Step 1 is to transform the program so that the operand stack is
no longer necessary. Each instruction is annotated with the current stack depth so
instructions no Jonger depend on the stack to connect operands to their definitions.
We use a simple recursive algorithm to perform the annotation (Figure 3).* ANNOTATE
takes two arguments, the instruction 7 to visit next and the current stack depth s. Starting
with the first instruction in the program and an empty stack (s = 0), for each instruction
the stack depth is recorded in an array StackDepth. A second array visited is used to
ensure that every instruction is visited at most once. The runtime of the algorithm is thus
linear in the program length. The visited array is initially set to false for all instructions.
When ANNOTATE reaches an instruction for the first time, the stack depth is recorded
in StackDepth. When ANNOTATE revisits an instruction, it checks that the current stack
depth and the previously recorded depth match (line 2). Otherwise, the verification fails.

Additionally to populating StackDepth, ANNOTATE also tracks the instructions that
define values—either on the operand stack or in local variables—and records these in
an array of sets DEF. Values on the stack are labeled relative to their distance to the
bottom of the stack (BOS). The value produced by an iconst instruction executed on
a previously empty stack, for example, would be labeled with 0, because it is currently
at the bottom of the stack. Executing another iconst on this stack would produce a value
that is labeled with 1, because its distance from the bottom of the stack is one stack
cell. This labeling scheme allows to assign a numeric representation to values produced
on the operand stack. Additionally, the label for a value will remain constant until it is
removed from the stack. DEF is also used to track definitions of values that are stored in
JVM local variables. To avoid collisions with stack cells, local variables are numbered
from MaxStack, which is the maximum stack depth used by the program.

As explained above, following the JVML machine model we split long integers
into two halves in JVML;. Thus, instructions operating on long integers push and pop
pairs of values onto and from the operand stack (c.f. lconst, ladd, 1load, and
lstore in Figure 3). Correspondingly, for each definition of a long integer two entries
are created in DEF, one for the bottom half (type LONG), and one for the top half (type
LONG’). For the remainder of the verification process, we will consider these two halves
as separate and individual values.

Figure 4 shows the result of the annotation for the example program from Figure 2.
The first 1const_0 instruction pushes the bottom half (LONG) of the long integer onto
the stack, followed by the top half (LONG’). Correspondingly, the bottom half is labeled
with 0 and the top half with 1. For both values the defining instruction (PC = 1) is

* Our verifier does not reject type-unsafe code that is unreachable (dead code). Instead, it is
essentially stripped from the program and does not appear in the JVML;sq representation.
Such programs are also not rejected by the traditional Java verifier.



PC| Instruction StackDepth DEF

1 lconst. 0 0 DEF[0] = {1}, DEF[1] = {1}

2 lconst.1 2 DEF[2] = {2}, DEF[3] = {2}

3 iconst.l 4 DEF[4] = {3}

4 ifeq L 5

5 dup.2 4 DEF[4] = {3,5}, DEF|[5] = {5}

6| 1aad 6 | DEF[2] = {2,6}, DEF[3] = {2,6}
7| L: 1ada 4 DEF[0] = {1,7}, DEF[1] = {1,7}
8 lstore.0 2 DEF(6] = {8}, DEF([7) = {8}

Fig. 4. Example code after annotation with ANNOTATE. Each instruction is labeled with the stack
depth prior to the execution of that particular instruction. Additionally, each definition of a value
is recorded in DEF. For long integers, each half is registered in DEF separately. Since MaxStack
for the program is 6, the 1store.0 instruction creates values in DEF[6] and DEF|[7).

DEFINE(t) PLACEPHI()

1 n = label++; 1 for each b in BasicBlocks
2 typeln] i=t; 2 do PhiBase|b] := label,

3 return n; 3 for each y in IDF(b)

4 do DEFINE(L);
ISPHI(z) 5 PhiCount := label,;

1 return (z < PhiCount)

Fig. 5. Step 2: Placing ¢-nodes. DEFINE is called every time a new value is defined, using label
to assign a unique SSA-name to each definition. The result types of ¢-nodes are initialized to 1.
The actual type will be updated in Step 4 (RESOLVEPH]I). The total number of ¢-nodes inserted
is recorded in PhiCount. As ¢-nodes are numbered consecutively from 0 to PhiCount — 1, this
property can be used to check whether a particular definition is a regular instruction or a ¢-node
(ISPHI).

recorded in DEF. As discussed above, definitions of local variables are labeled starting
from MaxStack. Since MaxStack for the example program is 6, the final 1store_0
instruction records the definition of the the two local variable halves in DEF as 6 + 0
and 6 + 1.

Step 2 of our verification algorithm first computes the Iterative Dominance Frontier
for all definitions listed in DEF'. It has been shown that this can be done in near-linear
time (c.f. [30,31}), and we will not discuss the IDF calculation in detail.

Once the IDF is known for all stack cells and local variables, ¢-nodes are inserted
accordingly. The corresponding algorithm PLACEPHI is shown in Figure 5. PLACEPHI
does not actually modify the program to place the ¢-nodes, but instead records informa-
tion about their placement in PhiBase, PhiCount, and PhiOperands. DEFINE is used to
introduce a new SSA-name for each encountered definition. For this, DEFINE maintains
a global counter label, which is initially set to 0. For each basic block b, the SSA-name
of the first ¢-node in that block is recorded in PhiBase[b]. The total count of ¢-nodes



RENAME(%, V)

1
2
3

4
5
6
7
8

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

while true
do IN[i] := 0;
s := StackDepth|i];
switch (¢)
case iconst.n : OUT[i] := {V[s] := DEFINE(INT)};
case lconst. :
OUTYi} := {V[s] := DEFINE(LONG), Vs + 1] := DEFINE(LONG')};
case iadd :
INz] == {V[s — 2], V]s — 1]}
OUT}i) := {V|s — 2] := DEFINE(INT)};
case ladd :
IN[§] == {V[s — 4], V[s = 3}, V[s — 2], V[s - 1]};
OUT(i] := {V'[s — 4] := DEFINE(LONG), V[s — 3] := DEFINE(LONG')};
case ifeq L :
INll = {V[s — 1)};
case dup : V[s] := V[s — 1]; KILL(3);
casedup 2 : V' :=V; Vis] = V'[s - 2]; V[s + 1] := V'[s — 1]; KILL(¥);
case iload.z : V[s] := V(z]; KILL(Z);
case 1load.r :
Vis] = V[z]; V[s + 1] := V[z + 1]; KILL(3);
case istore z:
V[MaxStack + z] := Vs — 1]; KILL(3);
case lstore_x :
V|MaxStack + x] := V[s — 2); V[MaxStack + z + 1] := Vs — 1]; KILL(4);
for each z in IN[7]
doif rype[z] =T
then FAIL(”undefined variable™);
if ENDOFCURRENTBASICBLOCK(7)
then for each i in SUCCESSORBLOCKS(7)
do g := PhiBaselii];
for r := 0 to (MaxStack + NumLocals — 1)
do if 4 € IDF|r]
then ADD(PhiOperands{g++], Vr]);
for each i in DOM[i]

doV' =V,
RENAME(ii, V');
return

i := NEXTINSTRUCTION(z);

Fig. 6. Step 3: Rename definition and uses of stack cells and variables. The current SSA-name
of variables in stored in an array V. The CFG is visited in dominator tree order. At the end of
each basic block, the ¢-nodes in all successor blocks in the CFG are updated with the current
SSA-name of the ¢-operands. Data-flow instructions are eliminated through copy propagation.
For each core instruction, the SSA-name of its operands is tracked in an array of lists IN, the
SSA-name of values it defines in an array of lists OUT.




RESOLVEPHI(w, visited)
1 t:=1;

2 for each z in PhiOperands|w)

3 doif IsPHI(w)

4 then t := MERGETYPES(t, rype{z]);

5 visited[w] = true;

6 for each z in PhiOperands|w)

7 do if ISPHI(w) A —wisired[z]

8 then ¢t := MERGETYPES(t, RESOLVEPHI(w));
9 return t;

CHECK(P)
1 for w := 0to (PhiCount — 1)
2 dofor each x in PhiOperands(w]

3 do if —~ISPHI(z)

4 then rype[w] := MERGETYPES(type[w], type|z]);
5 forw := 0to (PhiCount — 1)

6 do type[w] := RESOLVEPHI(w);

7 for eachiin P

8 do for each jin GETOPERANDS(i)

9 dot:=npe[V]i]);
10 if MERGET YPES(t, STATICOPERANDTYPE(i,f)) € {L, T}
11 then FAIL(”Operand type mismatch.”);

12 if (t = LONG) A (IN[i, 7] # IN[z,5 + 1])
13 then FAIL(”Invalid LONG integer.”);

Fig.7. Step 4: Algorithm for definition-use verification. First, the type of all ¢-nodes is
determined through a depth-first search. After that, the remaining core instructions are visited
and the definition type of their uses is match to the expected operand type.

inserted is recorded in PhiCount. As ¢-nodes are placed first before any other definitions
are processed, their numbering ranges from 0 to PhiCount — 1. This property is used by
IsPHI to determine whether a certain definition given by its SSA-name is a ¢-node or a
regular definition. The type of each definition is recorded by DEFINE in the array type.
As the types of ¢-nodes are not yet known, they are initially recorded as type L.

After placing all ¢-nodes, Step 3 visits each reachable instruction in the program in
dominator-tree (DT) order and eliminates all data-flow instructions. We will not further
elaborate on the calculation of dominator-trees [18], which also runs in near-linear time,
but assume that one has been calculated and that an array of sets DOM contains for each
basic block the list of its dominated blocks.

Using the algorithm Rename shown in Figure 6, all references of core instructions
to stack cells and local variables are resolved to SSA-names (line 5-14). The array
IN contains for each instruction the SSA-names of all its uses. Array QUT stores
the SSA-names of all definitions of an instruction. While RENAME iterates over the
dominator tree, the current SSA-names of all stack cells and local variables are stored
in a renaming table (array V).



Instruction StackDepth IN ouT \'s PhiOperands
lconst.0 0 2,3|1Vi0]=2V[l]=3
lconst.1 2 4,51 V[2]=4,V[3]=5
iconst.1 4 61V[4=6
ifeqL 5 6
dup_2 (*) 4 V4 =4,V[5]=5
ladd 6 4,5,4,5) 7,8(V[2]=7,V[3]=38
L:¢ 4 0|V[2=0 4,7
@ 4 1|Vi3]=1 5,8
ladd 4 2,3,0,119,10| V0] =9,V[1] =10
lstore. 0 (*) 2 V{71 =9,V[8 =10

Fig. 8. IN, OUT, V, and PhiOperands for the example code from Figure 4. ¢-nodes are shown
here for completeness only and are not actually inserted into the program. After renaming is
complete, the data-flow instructions dup.2 and 1store_0 (*) are removed from the program
(KiLL)

Data-flow instructions do neither produce nor consume any values and thus are not
recorded in IN and OUT. They only affect the renaming table V. The dup instruction
(line 15), for example, pushes a copy of the TOS value onto the stack. As our operand
stack has pre-increment semantics, the TOS value is labeled s — 1, with s being the
current stack depth (SzackDepthli]). Accordingly, the new value dup pushes onto the
stack will have the label s. To ensure that downstream accesses to either of these two
stack cells will point to the same definition (which has just been duplicated by dup),
RENAME copies the original SSA-name from Vs — 1] into the new TOS V'[s]. Once
the renaming table has been adjusted, the data-flow instruction itself becomes obsolete
and is removed using the helper function KILL. Successive accesses will be guided by
the renaming table directly to the corresponding definition.

Whenever the last instruction of a basic block is encountered (line 28), the current
SSA-name for each stack cell and local variable is propagated into all successor basic
blocks in the control-fiow graph, if a corresponding ¢-node exists there. The operands
of each ¢-node are stored in an array of lists PhiOperands. The index of the first ¢-node
in each basic block b has already been recorded by PLACEPHI (line 2) in PhiBase[b].
Because PLACEPHI consecutively numbers ¢-nodes in each basic block, we can simply
set g to the index of the first ¢-node (Figure 6, line 30) and then increment it for each
successor basic block in IDF]r| (line 33).

Once all ¢-nodes in the successor blocks have been updated, RENAME continues to
descend the dominator tree (line 36). For each child node in the dominator tree, a copy
of the renaming table is created (line 35) to make sure there is no cross-interference
between the effects of dominated child nodes.

After Step 3, the program is in JVMLg,, form and we can now perform the actual
type checking (Step 4). First, the type of each ¢-node is computed using RESOLVEPHI



(Figure 7). Similar to type inference performed by the traditional verifier, the type of
#-nodes is the common supertype of each definition the ¢-node refers to (¢ operands).
Each of these definitions is either produced by a core instruction or another ¢-node, as
all data-flow instructions have already been eliminated. For core instructions the type
of values they define can be looked up in the array fype, where it was stored by DEFINE
(Figure 6). For ¢-nodes, however, it might not yet have been calculated.

To calculate the type of ¢-nodes, CHECK first calculates the consensus type of all
non-¢ (core instruction) references of all ¢-nodes (Figure 7, line 1-4). The consensus
type of a ¢-node is the supertype of all its operands for which the precise type is already
known because its defined by a core instruction. The consensus type for each ¢-nodes
is stored in type, which previously only contained L for all ¢-nodes.

To merge types and to determine the nearest common supertype, a helper function
MERGETYPES is used, which merges two types t; and t, according to the rules of the
Java type system. Merging incompatible types resultsin T, and merging any type ¢ with
1 returns t.

After calculating the consensus types, RESOLVEPHI is invoked on each ¢-node
and performs a recursive depth-first merge of all ¢-operands of ¢-nodes, leaving the
definitive type of all ¢-nodes in the array type.

With rype now containing a complete list of all definitions and their types for core
instructions and ¢-nodes, all we have to do to complete type-checking is to match for
each core instruction the type of its uses with the corresponding definitions (Figure 7,
CHECK, line 10). For this, CHECK relies on the helper function STATICOPERAND-
TYPE, which returns the expected type of an operand according to the static semantics
of a core instruction.

Additionally, we have to verify that long integers are still used in proper pairs.
The numbering scheme used by DEFINE is crucial for verifying this property. For long
integers, DEFINE is invoked twice consecutively, resulting in the two long integer halves
being labeled with two consecutive labels. This is verified by CHECK (line 12) to make
sure that the two halves used together actually belong together.

If all checks in Step 4 are passed, the program is considered type-safe and passes
our verifier.

Considering only the dynamic semantics, the data flow we just verified is obviously
equivalent to the data flow that would have resulted by interpreting the original JVML;
program. However, because data-flow instructions have been eliminated, some of the
restrictions enforced by their static semantics do no longer apply. E.g., the following
JVML; program will be rejected by the Java verifier, but is valid in JVMLgsa:

lconst 0
istore.l
iload.l

lstore 2

S ow N e

In this example, in Line 1 a long integer is pushed onto the stack as a pair of
halves (LONG, LONG'). Partially storing the long integer in an integer register as shown
in Line 2 is rejected by the traditional verifier. In contrast, since our verifier does
not consider the typing rules of data-flow instructions, it accepts this code fragment,




because the (LONG, LONG') pair defined in Line 1 is restored on the stack before it is
used in Line 4. It is important to note that this program, while rejected by the JVM, is
perfectly safe when executed.

4.1 Exceptions

The JVML; subset we have presented in Section 3 does not model exceptions. However,
extending our verifier algorithm to support exceptions is straightforward. In JVML,
exception handlers are regular code fragments. A list of exception handlers specifies
what code areas a particular handler guards. If an exception of matching type is thrown,
control is transfered to the handler. Otherwise, it is rethrown in the outer scope. While
the stack is cut if an exception occurs, exception handlers can access local variables
defined during method execution. Thus, to ensure that the Iterative Dominance Frontier
is calculated properly along regular control flow edges as well as exception edges,
instructions that can throw exceptions have to be connected to all potential exception
handlers within the same method. This means that during the stack depth annotation
(Step 1) and for the calculation of the Dominator Tree, all instructions that can throw
exceptions have to be treated as implicit branch instructions and they terminate basic
blocks. As the JVML specification does not guaranteed that code regions guarded
by an exception handler must contain instructions that can actually raise that kind of
exception, the resulting CFG is not always fully connected. This has to be considered
during calculation of the Dominator Tree.

4.2 Arrays

The complete JVM language uses the aaload instruction to load values from an array.
Multi-dimensional arrays are modeled as arrays of array objects. To read a number
from a two-dimensional integer array (int[][]), an aaload instruction followed by an
iaload instruction are used. First the aaload instruction returns a reference to an
array of integers (int[]), and then the iaload returns the actual numeric value of type
int. While aaload is obviously a core instruction, it does not fit the definition of core
instructions we gave for JVMLg, because it is not self-typed. With a small extension to
our verifier algorithm, however, it is possible to support the proper array semantics of
JVML.

After completing the operand cells and variable renaming in Step 3, the program is
in SSA-form. This allows us to determine the precise type of each aaload instruction
using a simple depth-first search (DFS). Starting at any aaload instruction we track
its array operand to its definition, which is trivial due to the SSA-form and the copy
propagation we have performed in Step 3. If the definition points to another aaload
instruction, its return type has to be resolved first. Otherwise, the return type of the
original aaload instruction can be derived from the type of the definition that it refers
to. After visiting all aaload instructions, they are annotated with their precise return
type and become self-typed. It is always possible to resolve such chains of aaload
instructions, as typing rules forbid any circular flow of array operands between aaload
nstructions.



# of methods|method size| stack depth [local variables

[/ max] |[¢/max, cells]|{[¢ / max, bytes]
java/* 6490|41.36 / 4065 274114 247137
javalio 1213(38.12./ 1295 239/8 235715
java/lang 1336{38.41/ 4065 2.32/10 2.17/37
java/math 405|72.67 / 3041 3.16/8 3.73129;
java/nio 2096 26.80/417 3.05/11 231/15
javalutil 2359(49.21/2916 264/14 2621725

Fig.9. Characteristics of the test set we used to compare the runtime of our SSA-based verifier
with the runtime of the traditional verifier. The method count of the individual subsets does not
add up to 6490, because certain JVM-internal classes such as String and Class are preloaded and
always verified by preverify.

4.3 Object Initialization

Ensuring proper object initialization in Java has been subject of intensive research [10,
27, 34]. The following code is legal in Java:

l: new A

2: dup

3: invokespecial A.<init>
4: invokevirtual A.m

In this example, an object of type A is instantiated in Line 1, and the reference to that
object is duplicated in Line 2 using the dup instruction. Line 3 contains the constructor
call that initializes the object. It must appear before calling any other methods (Line 4).
To verify proper object initialization, an alias analysis has to be performed to make sure
that at least one alias of each newly allocated object is initialized along all possible
paths before any other action is performed on the object. The traditional approach is to
perform this alias analysis as part of the iterative data-flow analysis.

In our verifier, we use a different approach. We extend the static semantics of new
in such a way that it produces two return values: the regular return value, which is a
reference to the newly allocated object, and an initialization guard. Guard
variables are void in the dynamic semantics and do not incur any runtime overhead. In
the renaming array V, this guard variable initially maps to L, indicating that it has not
been defined yet. If a constructor call is encountered, a new definition is entered in V for
the associated guard variable. All instructions operating on object references contain a
rule in their static semantics that the guard associated with their array operand must not
be undefined in V.

To accommodate partial initializations, for example only along one case of an if/else
branch, during renaming the definition of guard variables is implicitly reverted to L in
the Iterative Dominance Frontier of the constructor invocation instruction.

5 Benchmarks

To evaluate the performance of our SSA-based verifier, we have implemented a proto-
type verifier based on the algorithm presented in this paper. Our prototype inlines sub-



verifier (DFA)|verifier (SSA){DOM|IDF
[s] total [s] [s}] | Is]

java/* 14.09 12.56] 1.19| 3.3
java/io 2.84 245! 0.24]|0.59
java/lang 2.86 2.62| 0.25]0.69
java/math 1.69 1.24| 0.09]0.34
java/nio 3.28 2.89{ 0.30{0.73
java/util 6.66 5421 048|1.28

Fig. 10. Benchmark results for 100 verifications of each method in each test set.
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Fig. 11. Contribution of Dominator Tree construction (DOM) and Iterative Dominance Frontier
calculation (DF) to the total SSA-based verification time.

routines before verification. In order to arrive at a fair comparison with Java’s standard
verifier, we use the same modified Java code with inlined subroutines also for the JVML
verification benchmarks. Our rationale behind this is that the subroutine construct in
Java is obsolete and will probably be removed in future versions of the Java virtual
machine. Furthermore, our current algorithm depends on the fact that the control-flow
graph can be recovered quickly from JVML code. In the presence of subroutines, this
is not always the case as returning edges from subroutines are not explicit.
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Fig. 12. Comparison of the total runtime of the traditional DFA-based verifier with our SSA-based
verifier.

As a comparative benchmark, we compare the total runtime of our SSA-based
verifier to the runtime of Sun’s DFA-based verifier. In both cases, we use the preverify
tool shipped as part of Sun’s Kilobyte Virtual Machine [36] to inline all subroutine
calls before measuring the actual verification times. Both verifiers are implemented
in C and use the same underlying framework to read and represent Java class files
as both are embedded in Sun’s preverify tool. Our implementation uses the DJ-graph
algorithm [30,31] to obtain the IDF. The Dominator Tree is calculated according to
Lengauer et al. [18].

To eliminate any cache effects and to compensate for timing errors, both verifiers are
run one hundred times on each method from the test set. Unfortunately, there is currently
no established set of benchmarks to test the performance of verifiers. Benchmark suites
such as SPECjvm [32] are designed to evaluate the performance of code execution,
not code verification. Thus, we have decided to use various parts of the Java Runtime
Libraries (JDK 1.4.2) as test set (Figure 9). All measurements were conducted on a
Pentium4 2.53GHz CPU with 512MB of RAM, running under RedHat Linux 9. An
overview of the benchmark results is shown in Fi gure 10.

' Figure 11 shows the contribution of Dominator Tree construction (DOM) and Itera-
tive Dominance Frontier calculation (DF) to the overall run time of our algorithm. Both



of these analyses can be re-used by the just-in-time compiler. The actual time solely
dedicated to verification is approximately 65% (Check).

Figure 12 compares the total runtime of the traditional DFA-based verifier with
our SSA-based verifier. Verification in SSA-form is approximately 15% faster than the
traditional algorithm when comparing the total runtime. Not considering the time spent
to calculate DOM and DF, SSA-based verification is approximately 45% faster.

6 Related Work

Java bytecode verification has been explored extensively in the past [19, 33]. In addition
to the informal description of the JVM [20], a number of formal specifications of the
JVML and its verifier have been proposed [8, 10, 35], and proven to be sound {26, 13—
15, 34,4]. Resulting from the formalization of the verification process, improvements
over the original specification have been proposed [5,29]. In this context, subroutines
are of particular interest and several type systems have been proposed for them [35, 25,
27,16]. All these approaches have in common that they rely on some form of iterative
data-flow analysis [19, 28] to decide type-safety.

Proof-carrying code (PCC) [23,22] addresses this problem by relieving the code
consumer of the burden to verify the code. Instead, the code producer computes a
verification condition based on a public safety policy and proves it to be true for the
program. This proof is shipped to the code consumer along with the code. Upon receipt,
the code consumer recomputes the verification condition and can then check whether
the attached proof indeed establishes the verification condition as claimed by the code
producer. However, this systematic advantage for PCC does not come entirely for free
as additional information has to be shipped to the code consumer, which inflates the
size of mobile code components. SSA-based verification, in contrast, has the advantage
that it can operate on the standard Java class file format [20] and does not rely on any
additional annotations. While more recent improvements over the original PCC idea
have significantly reduced the sizes of the proofs and the verifier [24, 3], we still believe
that our approach is a meaningful alternative to PCC in certain domains, in particular if
backward compatibility to existing, un-annotated, Java code is desired.

The split verifier approach [37] is very similar to PCC. It annotates the JVML with
the fixed-point of the data-flow analysis otherwise performed by the JVM during class
loading. For annotated class files the verification is reduced to confirming that the
annotation is indeed a valid fixed-point, which can be completed in near-linear time.
Just as in the case of PCC, the annotations enlarge the overall size of class files, while
our approach does not rely on any additional annotation. '

Inherently safe mobile code representation formats such as SafeTSA [2] eliminate
the need for verification as mobile code is stored in a self-consistent format that cannot
represent anything but well-formed and well-typed programs. Just like PCC, such for-
mats have a systematic advantage over SSA-based verification, but require abandoning
the existing Java class file format, which is not always acceptable. Our approach and
SafeTSA have in common that they both make the code available to the JIT in SSA-
form, which can be used to speed up code generation.



SSA-based representations have been used in several approaches to compilation of

bytecode. Marmot [6] is a research platform for studying the implementation of high-
level programming languages. The main difference to our work is that Marmot only
accepts verifiable programs. This property of the input program allows to make certain
assumptions on properties of the code, e.g. about the types of local variables and stack
entries. Similar to our work, Marmot inlines subroutines to avoid complex encoding as
normal control flow similar to Freund [7].
" Even closer related to our approach is the work of League et al. [17]. AJVM, a
functional representation of Java bytecode, makes data flow explicit, just like our work.
They also split verification up in two phases, one during the construction of AJVM
code, and a simple type checking later. However, they initially perform a regular data-
flow analysis to infer types for the stack and local variables at each program point. This
is in contrast to our approach, were the reason for splitting the verification in two phases
is exactly to avoid the initial data-flow analysis.

7 Conclusions and Future Work

Existing JVML verifiers perform substantial data-flow analysis but do not preserve the
results of this analysis for subsequent code generation and optimization phases. We have
presented an alternative verifier that not only is faster than the standard Java verifier,
but that additionally computes the Dominator Tree and brings the program into Static
Single Assignment form. As a result, the respective computations need not be repeated
in subsequent stages of the dynamic compilation pipeline. Since our algorithm has an
overall lower cost than traditional Java bytecode verification, this essentially makes an
SSA representation available “for free” to the virtual machine, reducing the cost for JIT
compilation. .

In the larger context of verifiable mobile code, our results indicate that verification
should not be practiced in isolation “up front”, but integrated with the rest of the client-
side mobile code pipeline. Hence, we expect our approach to be applicable to other
mobile-code systems besides the JVM, such as Microsoft’s .NET platform [21].

Our work is also relevant for all existing JVM implementations which already use
SSA internally for code optimization. If a VM already has means to translate code into
SSA, having an “up front” data flow based verifier is simply redundant. We have shown
that it is possible to delay type checking and to first transform the program into SSA.
In fact, our algorithm is the first documented approach to safely translate Java code into
SSA without any prior data-flow analysis and verification.

In the future, we plan to examine how subroutines could be supported in our frame-
work. While subroutines are rapidly disappearing from JVML, they are still interesting
from an academic perspective. They reinforce the question whether and how an SSA-
based representation can be obtained for polymorphic code in which not all control-flow
edges are explicit.

We are also interested in exploring structural SSA-annotation of JVML code. For
this, JVML code is rearranged in such a way that a specific structure-aware SSA-
based verifier can infer the final SSA-form of the code without actually calculating
the Dominator Tree and Iterative Dominance Frontiers. As the code is still expressed



in pure JVML, it is fully backward compatible with existing VMs and does not require
any additional annotations. While the rearranged code is likely to be less compact than
its original form, this scheme will further reduce the required verification effort.
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