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Abstract of the Dissertation

Structural Learning for Visual Inferences

by

Quannan Li

Doctor of Philosophy in Computer Science

University of California, Los Angeles, 2013

Professor Zhuowen Tu, Chair

In this work, we investigate the structural information in typical problems in both

the machine learning and computer vision domains and propose effective yet effi-

cient methods to tackle those problems. In particular, for structural labeling, we

propose a fixed-point model which is able to learn/model long range structural

contexts and is very efficient to train. For visual codebook learning, we propose a

randomness and sparsity induced learning scheme which can fit to the local intrin-

sic structure of image patches. We also propose methods to tackle the problems

of mid-level feature learning and object tracking where the structural information

are helpful. For mid-level feature learning, we propose a fully automatic algorithm

which harvests effective visual concepts from a large number of Internet images

using text-based queries. For object tracking, we propose a disagreement-based

approach which can be built on top of nearly any existing tracking systems by

exploiting their disagreements. Our methods achieve state-of-the-art performance

and high efficiency.
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CHAPTER 1

Introduction

The structural information has proven useful for tasks in computer vision and ma-

chine learning in that it can help to improve either the accuracy or the efficiency.

When we talk about the structural information, the term structure can refer to

three categories. The first category refers to the correlations among the entities in

the structured outputs. For example, in the problem of Optical character recog-

nition, the structured inputs are the scanned texts and the labels of the letters

are correlated; in computer vision/image processing, the structured inputs are

the pixels in an image, and the labels of the pixels are correlated. To model the

contextual information of this category, there are already many classic methods

proposed, e.g., [GG84, LMP01, TJH05, TGK03, TB10, HGS08]. These methods

can model the contextual information well, but not very efficient to train. The sec-

ond category refers to the structure or the intrinsic dimension of high-dimensional

data spaces. Manifold learning methods such as Isomap [TSL00], LLE[RS00],

Laplacian Eigenmaps [BN02] aim to find a low dimensional space to describe the

original high dimensional space. In computer vision, as the feature data are often

of high dimension, it is beneficial to investigate the local intrinsic dimensionality

of the feature data space. The third category refers to the configuration of parts

of the objects. It is usually simpler to model the parts of the objects and if we

can model the configuration of the parts well, we can better recognize or track

the objects. Typical methods of this type include [FGM10, FH05, SPY11].

In this work, we aim to model the three categories of structural information
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to tackle problems in computer vision and machine learning. For the contex-

tual information of the first category, we propose a fixed-point model which is

much more efficient to train than the classic models; for the second category, we

propose a method to perform codebook learning by investigating the local regu-

larities of subspaces (local data clusters) of the high dimensional feature space.

In object recognition and object tracking, we have not headed to modeling the

configurations of the parts of the object. Still, we propose a method to learn

mid-level representation (visual concepts) for object recognition and a method to

combine multiple tracking systems for robust object tracking. Figure 1.1 summa-

rizes the relationship of the four methods of our work. Visual concept learning

and disagreement-based multiple system tracking are dashed because we have not

modeled the configurations of objects yet.

Figure 1.1: Relationship of the methods in our work.
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1.1 Fixe-Point model for structural labeling

Structural labeling is to jointly assign labels to all nodes in the structured input

as a joint output. This problem is very fundamental since structured inputs and

outputs are common in a wide range of applications. It is also very difficult

because of the correlations among the structured outputs.

Traditional methods such as [GG84, LMP01, TJH05, TGK03] can model the

correlations of the structured labels but are limited to capturing a few neighbor-

hood interactions due to the heavy computational burdens in their training and

testing (inference) stages. Recently, deep layered models [TB10, HGS08, DLM09]

are proposed to take the outputs of classifiers of the current layer as added fea-

tures to classifiers of the next layer. The layered models [TB10, HGS08] are able

to model complex and long range contexts more effectively but have to learn a

series of classifiers.

In this work, we propose a simple but effective solution to the structured

labeling problem: a fixed-point model. The fixed-point model is an algorithm

with a new perspective on layered models; we aim to find a fixed-point function

with the structured labeling being both the output and the input. The learned

function captures rich contextual information and is easy to train and test. Our

approach alleviates the burden in learning multiple/different classifiers in different

layers. We devise a training strategy for our method and provide justifications

for the fixed-point function to be a contraction mapping. On several widely used

benchmark datasets, the proposed method observes significant improvement in

both performance and efficiency over many state-of-the-art algorithms.

3



1.2 Randomness and Sparsity Induced Codebook Learn-

ing

Codebook learning deals with the fundamental representation problem which is

one of the central research topics in computer vision. In codebook learning, the

data are usually high-dimensional and live in complex manifolds. With their in-

trinsic and mathematical properties gradually unfolded, research in three general

directions has led to significant progress on classification, recognition, and com-

pression: (1) ensemble learning, (2) divide-and-conquer, and (3) sparse coding.

Ensemble learning approaches [BRE96, FS97, BRE01] have shown to be among

the best choices for classifiers [CN06, CKY08] with their superior robustness stem-

ming from the voting of multiple independent or complementary experts (weak

learners). The divide-and-conquer strategies [BEN80, QUI86, CZL07, CZL07] di-

vide the data space into subspaces which are often easier to deal with and are

more appropriate for high-dimensional data spaces. Sparse representations such

as compressed sensing [CT05] and LASSO [TIB96] have gained a great deal of suc-

cess and popularity since high-dimensional data within intrinsic lower dimension

can be well represented by sparse samples of high dimension.

In this work,we propose a new codebook learning algorithm, Randomized For-

est Sparse Coding (RFSC), by harvesting the three concepts. Given a set of

training data, a randomized tree can be used to perform data partition (divide-

and-conquer); after a tree is built, a number of bases are learned from the data

within each leaf node for a sparse representation (subspace learning via sparse

coding); multiple trees with diversities are trained (ensemble), and the collec-

tion of bases of these trees constitute the codebook. These three concepts in our

codebook learning algorithm have the same target but with different emphasis:

subspace learning via sparse coding makes a compact representation, and reduces

the information loss; the divide-and- conquer process efficiently obtains the local

4



data clusters; an ensemble of diverse trees provides additional robustness. We

have conducted classification experiments on cancer images as well as a variety of

natural image datasets and the experiment results demonstrate the efficiency and

effectiveness of the proposed method.

1.3 Harvesting Mid-level Visual Concepts from Large-scale

Internet Images

The inventions of robust and informative low-level features such as SIFT [LOW04],

HOG [DT05], and LBP [OPH96] have been considered as one of the main ad-

vances/causes for the recent success in computer vision. Beyond low-level fea-

tures, obtaining effective mid-level representations has become increasingly im-

portant and there have been many recent efforts made along the line of attribute

learning [FEH09, PG11a, LSX10]. These approaches, however, are mostly focused

on supervised or active learning where a considerable amount of human efforts are

required to provide detailed manual annotations. The limitations to the previous

supervised attribute learning methods are thus three-fold: (1) accurate data label-

ing is labor-intensive to obtain, (2) the definition of attributes is often intrinsically

ambiguous, (3) the number of attributes and training images are hard to scale.

In this work, we propose a fully automatic algorithm which harvests visual con-

cepts from a large number of Internet images (more than a quarter of a million)

using text-based queries. We take the advantage of having massive well-organized

Google and Bing image data; visual concepts (around 14, 000) are automatically

exploited from images using word-based queries; We apply the multiple instance

learning formulation [ATH02] to exploit common patterns from retrieved images,

which have a high degree of relevance to the query words; We use bottom-up

saliency detection to reduce the search space by finding potential candidates. Us-

ing the learned visual concepts, we show state-of-the-art performances on a variety
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of benchmark datasets. The good performance demonstrates the effectiveness of

the learned mid-level representations: being able to generalize well to different

image sets.

1.4 Disagreement-Based Multi-System Tracking

Object tracking has been a long standing problem in vision. Once a tracker gets

initialized, it starts to track the target in a video by making a prediction about the

location of the target and updating its object model (location, appearance, and

shape) based on the prediction. With the recent success in detection-based track-

ing approaches, an increasing amount of work has treated the tracking problem

as a semi-supervised learning problem [AVI05, TBZ07, GLB08, LRL08, BYB09].

Due to the errors introduced in both the prediction and model updating stage,

nearly any tracker will eventually fail with the errors being accumulated over the

time.

In this work, we tackle the tracking problem from a fusion angle and propose

a disagreement-based approach. While most existing fusion-based tracking algo-

rithms work on different features or parts, our approach can be built on top of

nearly any existing tracking systems by exploiting their disagreements. In contrast

to assuming multi-view features or different training samples, we utilize existing

well-developed tracking algorithms, which themselves demonstrate intrinsic varia-

tions due to their design differences. Our intuition is to find the location where the

current tracker is confident but disagrees with other trackers, while other track-

ers reach a high degree of agreement by seeking a balance between the current

tracker and the level of agreements among other trackers. We present encouraging

experimental results as well as theoretical justification of our approach. On a set

of benchmark videos, large improvements (20% ∼ 40%) over the state-of-the- art

techniques have been observed.
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CHAPTER 2

Fixe-Point model for structural labeling

2.1 Introduction

Here we study the problem of predicting a labeling for a structured input, which

is denoted as a graph, G = (V, E). Each node vi ∈ V corresponds to a data entry

with its features denoted as xi; the objective of the structured labeling task is

to jointly assign labels y = (yi : i = 1..|V|) (yi ∈ L, L is the label space) to

all nodes V = (vi : i = 1..|V|) as a joint output. This problem is fundamental

since structured inputs and outputs are common in a wide range of applications.

For example, in computer vision/image processing, a structured input is an image

of all pixels, and the structured outputs are the corresponding labels of these

pixels. There are correlations among the structured outputs, denoted by the edges

between the nodes, and the correlation may occur between neighboring nodes,

or the nodes relatively distant apart. These correlations make the structured

prediction problem a difficult task.

A simple scheme is to treat the structured outputs as independent entries and

apply the standard classification/regression algorithms. Such a scheme is straight-

forward, but it loses the important interdependency information, which is crucial

in modeling and understanding the structured data. The other extreme of the

solution is to treat each instance of y = (y1, .., y|V|) as a single label and transfor-

m the problem into a multi-class classification problem. This implementation is

infeasible because the space of the output labels is exponentially large at the size

7



of |L||V|.

Markov random fields (MRF) [GG84] and conditional random fields (CRF)

[LMP01] have been widely used to model the correlations of the structured labels.

However, due to the heavy computational burdens in their training and testing

(inference) stages, MRF and CRF are often limited to capturing a few neigh-

borhood interactions, and thus, limiting their modeling capabilities. Structural

SVM methods [TJH05] and maximum margin Markov networks (M3N) [TGK03]

model the correlation in a similar way as the CRF, but they try to specifically

maximize the prediction margin. These approaches are also limited in the range

of contexts due to the high computational demand. When long range contexts are

used, approximations should be used to trade-off the accuracy and the running

time [FJ08].

Recently, layered models [TB10, HGS08, DLM09], in the spirit of stacking

[WOL92], are proposed to take the outputs of classifiers of the current layer as

added features to classifiers of the next layer. Since these approaches perform

direct label prediction as functions instead of performing inferences as in MRF

or CRF, the layered models [TB10, HGS08] are able to model complex and long

range contexts.

In this paper, we look into the structured labeling problem from a different

angle and develop a simple yet effective approach, a fixed-point model. We intro-

duce a contextual prediction function f : (x,L|V|−1) → L with the output being

the labeling of an individual node and the input being both its features and the

labeling of the rest of the nodes (or its neighbors). The overall fixed-point function

f : (x1, · · · ,x|V|,L|V|) → L|V| is a vector form of the contextual prediction func-

tion of the nodes, and is trained with the property of a contraction mapping so

that an iterative solution is applicable in the prediction process. We also analyze

conditions for ensuring that our training strategy leads to a contraction mapping,

provably so in certain cases. Not only does the learned fixed-point function pre-

8



serve the modeling capability of the layered models [TB10, HGS08], but also it is

simper and much easier to scale since it only consists of a single layer function.

2.2 Related Work

The conditional random fields (CRF) model [LMP01] is a state-of-the-art work for

solving the structured prediction problem. In the max-margin Markov networks

[TGK03, TJH05], the authors propose to maximize the margin for structured

output, in a spirit similar to the multi-class SVM method [WW98]. Due to the

computational demand in both the training and the testing stages, usually only

a small number of interactions among the neighboring outputs are included in

both the CRF and the M3N. The hidden Markov models [RAB89] share a similar

property in modeling the graph connections.

The layered contextual models [TB10, HGS08] train a sequences of classifiers

using the output of the previous layers as additional features to the next layer;

on tasks where the long range contexts play a significant role, e.g., the OCR

task, they greatly outperform the CRF and M3N (as shown in the experiments).

The proposed fixed-point model has a similar modeling capability to model long

range contexts as the layered models. During the training process, while the

layered models train a series of classifiers, the fixed-point model trains a single

classification/regression function which assumes a stable status for the ground-

truth labeling. Layered models have to compute the classification scores for each

training sample as the input to the next layer, thus limiting their capability to

scale up. On the contrary, the fixed-point model is much faster to train than the

layered models, and thus is much more scalable. In addition, the convergence

behavior of the layered models has not been clearly stated so far, whereas the

proposed fixed-point model provides a contraction mapping interpretation to the

convergence.
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The pseudo-likelihood algorithm in [JUL75] models the conditional probability

of an entry based on its neighborhoods; in [SMJ10], a pseudo-max framework is

introduced to approximate the exponential number of constraints by a polyno-

mial number of constraints; in structured output-associative regression (SOAR)

[BS09], the output components, other than the one being considered, are used as

auxiliary features to train a vector of regression functions for the task of image

reconstructions and human pose estimation. Compared with SOAR, the main

purpose of the proposed fixed-point model is to train a fixed-point function that

assumes the stable status of the structured labels; in SOAR, a generalized linear

regression function is trained for reconstruction, whereas we study the structured

labeling problem by exploring rich contextual correlations; the lack of analysis in

the learned function also leaves the convergence in SOAR untouched; on the con-

trary, our algorithm is not limited to generalized linear regressions and, existing

methods such as logistic regression and random forest [BRE01] can be used too.

There are also other related algorithms. In [COL02], an averaged perceptron

algorithm is proposed: the training samples are processed iteratively; once a mis-

take occurs, the weight vector is updated according to the prediction error and the

final weight vector is a weighted version of all the vectors that have appeared. In

[NG07], an ensemble method is proposed to transform the predictions of different

models into a chain with state transition matrices and then dynamic program-

ming is used to get the voted prediction result. The underlying mechanism of the

fixed-point model is different from that of these algorithms, and we will compare

the performance in the experimental section.

It is worth mentioning that the proposed fixed-point model is not a method

merely designed to balance the performance and learning-time; it provides a new

way of thinking about the structured learning problem by investigating a shallow

model (instead of cascaded approaches with deep layers) and also having the

capability to incorporate rich structural/contextual information with effective and

10



efficient inference.

2.3 The Fixed-Point Model

2.3.1 Model Description

In this paper, we are interested in the structured labeling task for a graph G =

(V, E). The edges E decides the graph topology, and hence the neighborhoods of

each node. For instance, in sequence labeling, where the nodes {v1, v2, · · · , vn}
in V form a chain, we can specify the neighborhood Ni of vi to be the m nodes

preceding and after it, i.e., Ni = {vi−m/2, vi−m/2+1, · · · , vi−1, vi+1, · · · , vi+m/2}. We

use m to denote the number of neighbors a node can have in the neighborhood

specification.

We assume that our problem is a binary-classification problem where L =

{−1,+1}. To this end, we train a contextual prediction function which outputs

the labeling of the node. Note that, as a lexical category label, yi cannot be used

in the equation/function directly. Instead, we can represent y with a labeling

confidence q. For the binary class case, if yi = 1, qi = 1 and if yi = −1, qi = 0.

At the prediction process, the label yi is unknown, and thus q can be relaxed to a

real value ranging in [0, 1]. We use qNi
to denote the labeling of the neighborhood

of vi and use q to denote the labeling of all the nodes in G. This can easily be

extended to multiclass problems by encoding the labeling with a matrix.

For each node vi, the contextual prediction function f takes in both vi’s feature

xi and the labeling qNi
of its neighborhood. The contextual prediction function

f can be formulated as

qi = f(xi,qNi
; θ), (2.1)

where f is a regression function within range [0, 1], and θ is the parameter of the

function. From Equation 2.1, the labeling q of all the nodes can be written in a

11



vector form,

q = f(x1,x2, · · · ,xn,q; θ), (2.2)

where q = [q1, q2, · · · , qn]T , f(·) = [f(x1,qN1
; θ), f(x2,qN2

; θ), · · · , f(xn,qNn
; θ)]T .

As from Equation 2.2, the labeling q appears as both the output as well as

part of the input. Given the labeling q and the features {x1,x2, · · · ,xn} of the

training data, we learn the parameter θ.

To get the labeling of a structured input G, one can solve for the non-linear

equation set q = f(x1,x2, · · · ,xn,q; θ), which is generally a difficult task. In

this paper, we focus on a type of functions f that assumes the property of a con-

traction mapping, i.e., having a stable status (an attractive fixed-point) for each

structured input. When using the ground-truth labeling in the training process,

the ground-truth labeling is assumed to be the stable status and the existence

of the stable status leads to the fixed-point iteration in the prediction process:

qt = f(x1,x2, · · · ,xn,q
t−1; θ) and qt → q as t → ∞. We name the functions

f with such a property the fixed-point functions (models). In the following sub-

sections, we provide a sufficient condition for the fixed-point model, propose the

learning strategy, and describe the training and testing processes.

2.3.2 Contraction Condition for the Fixed-Point Model

In this section, we give a sufficient condition for f(x1,x2, · · · ,xn,q; θ) to be the

fixed-point model and illustrate it using a logistic regression model first.

Our derivation is based on the Banach Fixed-Point theorem [BAN22]: for a

complete metric space (X, dist) and a mapping F : X → X , if there exists a

non-negative real number ρ < 1 such that,

dist(F(a),F(b)) ≤ ρ× dist(a, b), ∀a, b ∈ X, (2.3)

then F is a contraction mapping and it has a unique fixed-point.
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Since for a node vi, its feature xi is given and fixed, we thus for notational

simplicity we can simply write qi = fi(qNi
; θ) and q = f(q; θ).

Assuming fi is a continuously differentiable real-valued function, then accord-

ing to the mean value theorem for a scalar function of several variables, ∀ q,q

fi(qNi
; θ)− fi(qNi

; θ) =
〈
∇fi(q̃Ni

;θ),(qNi
−qNi

)
〉
, (2.4)

where ∇fi(q̃Ni
; θ) is the gradient of fi at q̃Ni

= (1 − ci)qNi
+ ciqNi

, for some

0 < ci < 1. For f ,

f(q; θ)− f(q; θ) = Jf (q− q), (2.5)

where Jf is a matrix of coordinate-wise derivatives, and its i-th row corresponds

to ∇fi(q̃Ni
; θ): for the (i, k)-th element of Jf , if the node vk is a neighbor of node

vi, Jfi,k = ∂fi
∂qk

|q̃k (q̃k = (1 − ci)qk + ciqk); if vk is not in the neighborhood of vi,

Jfi,k = 0. Clearly

‖f(q; θ)− f(q; θ)‖
‖q− q‖ =

‖Jf (q− q)‖
‖q− q‖

≤ max
q−q 6=0

‖Jf(q− q)‖
‖q− q‖ = ‖Jf‖, (2.6)

where ‖Jf‖ denotes the matrix norm on Jf induced from some vector norm

‖ · ‖. For example, ‖Jf‖1 = max1≤k≤n

∑n
i=1

∣∣∣ ∂fi∂qk
|q̃k

∣∣∣, the induced ℓ1 norm of Jf .

We then have the following:

Lemma 1 If ‖Jf‖ < 1 ∀ q,q, then f is a contraction mapping.

2.3.2.1 Contraction for logistic regression

Now we assume a linear logistic regression model. θ can be decomposed into α

(α ∈ Rd×1, d is the dimension of xi) and β (β ∈ Rm×1), corresponding to the

appearance feature xi and the contextual feature qNi
respectively. qi = fi(qNi

; θ)
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can be formulated as

qi =
exp(〈α,xi〉+ 〈β,qNi

〉)
1 + exp(〈α,xi〉+ 〈β,qNi

〉) . (2.7)

In the following, we use I(k, j) to denote the index of the node that has vk as

its j-th neighbor and define an auxiliary function

hi(α,β) =
exp(−〈α,xi〉 − (

∑m
j=1 βj −

∑m
j=1 |βj|)/2)

(1 + exp(−〈α,xi〉 − (
∑m

j=1 βj +
∑m

j=1 |βj|)/2))2
. (2.8)

In Lemma 2, we give a sufficient condition for ‖Jf‖1 < 1 for logistic regression.

Lemma 2 For the logistic regression model, if max1≤k≤n

∑m
j=1 |βj| hI(k,j)(α,β) <

1, ‖Jf‖1 < 1 and the fixed-point function f is a contraction mapping.

Proof If vk is the j-th neighbor of vi, then the partial derivative

∂fi
∂qk

=
βj exp(−〈α,xi〉 − 〈β,qNi

〉)
(1 + exp(−〈α,xi〉 − 〈β,qNi

〉))2 (2.9)

. As qk is in the range [0, 1], for the term 〈β,qNi
〉, its minimum is (

∑m
j=1 βj −

∑m
j=1 |βj |)/2, the sum of the negative entries of β, and its maximum is (

∑m
j=1 βj+

∑m
j=1 |βj |)/2, the sum of the positive entries of β. So

exp(−〈α,xi〉−〈β,qNi〉)
(1+exp(−〈α,xi〉−〈β,qNi〉))2 ≤

hi(α,β) and
∣∣Jfi,k

∣∣ =
∣∣∣ ∂fi∂gk

|q̃k
∣∣∣ ≤ |βj| hi(α,β).

Ignoring the boundary effect of the structured input, the k-th absolute column

sum of Jf sums over the m nodes that have vk as their neighbor giving
n∑

i=1

∣∣Jfi,k
∣∣ =

∑

i:vk∈Ni

∣∣∣∣
∂fi
∂qk

|q̃k
∣∣∣∣ ≤

m∑

j=1

|βj| hI(k,j)(α,β). (2.10)

Thus, ‖Jf‖1 ≤ max1≤k≤n

∑m
j=1 |βj |hI(k,j)(α,β). If max1≤k≤n

∑m
j=1 |βj |hI(k,j)(α,β) <

1, f is then a contraction mapping.

The value of x plays a role in the constraint requirement in Equation 2.10. So

long as the value of x satisfies the constraint requirement in Equation 2.10, the

fixed-points can be guaranteed. Another possible sufficient condition is ‖β‖1 < 1

as
∣∣Jfi,k

∣∣ = |βj| qi(1− qi) < |βj |. This condition is much simpler but more difficult

to satisfy because it ignores dependency on x entirely.
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2.3.2.2 Contraction in general cases

The condition described above can be used as constraints for the fixed-point func-

tion in the training process when f is restricted to a logistic regression function.

We now briefly discuss a scheme for learning a contraction function in a more

general setting, which can be used to implicitly enforce the contraction condition

for other functions.

It is well-known that adding some amount of input noise (also called input

jitter) during the training process can improve the robustness of neural network

classifiers [ROM92]. Moreover, this is generally true with recursive models such

as the algorithm being proposed herein, in part by favoring the contraction con-

dition. For example, when training the function q = f(x1,x2, · · · ,xn,q; θ), we

may produce some replica Q = {q + δr, r = 1..R} by introducing small random

perturbations δr. This small amount of randomness is added to the input q of

the function f while keeping the targeted output the same as the ground-truth

q, leading to an augmented training set. Given modest assumptions on the space

of classifiers and training algorithms, it is possible to show that when a sufficient

number of such replica are included with suitable distribution, then a contraction

mapping will be obtained as part of the learning process with high probability.

Intuitively, this occurs because these replica will effectively reduce the relative

importance of q as an input feature to f(x1,x2, · · · ,xn,q; θ). In the case of lo-

gistic regression, this is tantamount to reducing the magnitude of the coefficients

β; however, with other classifiers the effect may be less transparent. While it is

difficult to know the optimal distribution of such replica a priori, we have found

empirically that a contraction mapping is consistently obtained without sensitiv-

ity to this distribution. For evaluation purposes, the gradient of any classifier

can be computed in principle, numerically or analytically, to examine if the con-

traction condition is satisfied in a particular region. Additionally, if a classifier

is ever observed to violate the contraction condition, we can always retrain after
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increasing the number and/or magnitude of the replica. Given some assumptions

about the classifier and the replica, we next briefly discuss efficient methods for

checking (at least locally around the training data) whether or not a contracting

function has been obtained.

From Lemma 1, we want to guarantee that ‖Jf‖ < 1, for some norm ‖ · ‖. If

we choose the induced ℓ∞ norm, this corresponds to the requirement that all rows

of Jf have ℓ1 norm less than one. This can be guaranteed if the gradient of each fi

with respect to q is less than one for all q. Let ψi(q) denote this gradient. Using

a Taylor series expansion we can approximate each function fi as

fi(q+ δr) = fi(q) + δr · ψi(q) +O(∂nfi, n ≥ 2), (2.11)

where for simplicity we use fi(q) to denote the i-th element of f(x1,x2, · · · ,xn,q; θ).

It is not uncommon to assume a relatively smooth function fi with small higher-

order derivatives O(∂nfi), n ≥ 2. Moreover, we may also assume in some situations

that the δr are small, in which case higher-order terms can be largely ignored.

Let fi(q + δr) − fi(q) = er for all r = 1..R. Given the first-order Taylor-series

approximation, we then have

δr · ψi(q) ≈ er, r = 1..R. (2.12)

The above constraints represent a linear system that can be viewed as random

samples of the unknown ψi(q). These samples, which can be efficiently collected

and monitored during the training process, can then be used to help determine

whether or not the contraction condition is satisfied (at least in the locality of the

training data). Depending on the neighborhood structure of the graph, we know

that ψi(q) will typically be sparse, with nonzero-valued locations inferred from

the edges. In cases where this degree of sparsity is sufficiently high relative to

the number of replica, we can simply solve for ψi(q) directly via the above linear

system. However, when this is not possible, we may still potentially estimate

16



whether ‖ψi(q)‖1 < 1.

For example, assume for simplicity that the replica δr are iid Gaussian dis-

tributed with zero mean and known covariance σ2I (other distributions can be

accommodated as well). It then follows that each er represents an iid sample

from a zero-mean Gaussian with variance σ2‖ψi(q)‖22. Given R such samples,

it is a simple matter to design any number of standard statistical tests to in-

fer the likelihood that ‖ψi(q)‖22 < C for any constant C. So we need only

determine some C sufficiently small such that we ensure the contraction con-

dition holds, namely ‖ψi(q)‖1 < 1 with high probability. Now assume that the

number of significant elements in ψi(q) is less than or equal to some value τ

(in addition to zero-valued elements enforced by the graph, there are typically

many other elements with marginal influence, although these locations may not

be known). Using the well-known relationships among p-norms, if τ‖ψi(q)‖22 < 1,

then ‖ψi(q)‖1 ≤
√
τ‖ψi(q)‖2 < 1. So C = 1/τ is an appropriate choice.

This methodology can be loosely used to show that our learned function sat-

isfies the contraction condition of ‖ψi(q)‖1 < 1 at the q from the training data

and in neighboring regions such that an affine approximation to the true f is

sufficient. We could also potentially incorporate an additional penalty term to

encourage each er and therefore ψi(q) to be small. In practice, as shown in the

experiments, our method can learn a good contraction mapping with few or even

no perturbations during training. Moreover, it can quickly converge to good so-

lutions even though we always initialize from q = 0 in testing, demonstrating a

nice convergence property of the fixed-point model.

2.3.3 The Training and Prediction Processes

The training and prediction processes are depicted in Algorithm 1 and Algorith-

m 2. The training process is to learn a contextual prediction function f by favoring
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Algorithm 1 The training process of the fixed-point model

Input: Training structures {G1,G2, · · · ,GN} and their labelings

{q1,q2, · · · ,qN};
Output: The trained contextual prediction function f ;

1: For each q, produce some replica Q = {q + δr} by adding random

perturbations;

2: For each node vi, create the contextual feature qNi
from the perturbed

labeling q ∈ Q;

3: Based on the feature xi and qNi
, train a f : qi = f(xi,qNi

; θ).

Algorithm 2 The testing process of the fixed-point model

Input: The testing structure G = (V, E); the trained contextual prediction

function f ; the number of iterations T ; a threshold ε;

Output: The labeling q of G;
Initialize: t = 1; for each vi ∈ V, q0i = 0;

repeat

1: For each node vi, compute the labeling qti : q
t
i = f(xi,q

t−1
Ni

; θ);

2: t = t+ 1;

until t ≥ T or ‖qt − qt−1‖ ≤ ε.

q = [qt1, q
t
2, · · · , qtn]T .

fixed-point solutions (or nearly so) using some perturbations. Once learned, the

contraction mapping is applied iteratively to the new structured inputs. For a

novel structured input G = (V, E), the labeling qi of a node vi ∈ V is initialized

with a value. Note that qi is not sensitive to the choice of initialization, and it is

simply initialized with 0 in our experiments.
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2.4 Experiments

We now apply the proposed fixed-point model to the tasks of Optical Character

Recognition (OCR), Part-of-Speech tagging (POS) and Hypertext (web pages)

classification. The data in OCR and POS have chain structure and the average

error per sequence in [NG07] is used for performance evaluation. In hypertext

classification, the linking structure of the hypertext is highly non-regular and we

use the average labeling error over all the testing web pages.

2.4.1 Optical Character Recognition (OCR)

Optical character recognition involves the identification of letters in scanned texts.

In this work, the benchmark dataset [TGK03] is used.

In OCR, a word corresponds to a structured input V and the i-th character cor-

responds to vi. We use the m/2 characters preceding and the m/2 characters after

vi as its neighbors and thus m indicates the complexity of the interdependence.

For each character, its pixel values are concatenated to form xi. In training, the

lexical label yi is encoded to a |L|-dimensional contextual feature vector, which

has value 1 only at the entry corresponding to the value of yi. In all, a |L| ×m-

dimensional contextual feature is created. In testing, the entry corresponding to

the label with the maximum score is assigned 1 at each iteration. No perturbed

replicas are used in OCR and we use kernel logistic regression (KLR) [ZH01] as

the contextual prediction function; at the testing process, 5 iterations are used,

i.e., T = 5.

In Fig. 2.1 (a), we compare the fixed-point model with the auto-context model.

Both of the two methods use KLR with RBF kernel as the classifier. We note

that the original result of the auto-context model reported in [TB10] is only 19.5%

because the Harr-like features used in that work are not so effective on the OCR

dataset. We compare the two models by varying m from 0 to 14. As from Fig. 2.1
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Figure 2.1: (a): comparison of the testing errors on the OCR dataset by varying

m; (b): the training and testing errors on the OCR dataset as T varies.

(a), the errors decrease monotonously as m increases. The fixed-point model

performs slightly worse than the auto-context model, but it is simpler and more

efficient: it takes about 7.55 minutes to train the model, while the auto-context

model takes around 50 minutes because the auto-context model needs to train T
classifiers sequentially and apply the classifiers to each of the training sequences.

In Table 2.1, we compare the fixed-point model with several state-of-the-art

algorithms: SVM [CS01], SVMstruct [TJH05], M3N [TGK03], Perceptron [COL02],

KLR [ZH01], SEARN [DLM09], CRF [LMP01], HMM [RAB89], structured learn-

ing ensemble (SLE) [NG07], kernel conditional graphic model (KCGM) [CGP07]

and the auto-context model [TB10]. For SVMstruct, M3N and CRF, the results

are from [NG07] with linear kernel. As from Table 2.1, with the exception of

the auto-context model, the fixed-point model outperforms the state-of-the-art

methods.

In [KS07], CRF and structural SVM are implemented with a different set
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Table 2.1: Average errors on the OCR dataset in percentage. The results of

SVMstruct2 and CRF2 are from [KS07]

SVMstruct SVMstruct2 M3N SVM Perceptron KLR SEARN

21.16 19.24 25.08 28.54 26.4 26.7 27.02

CRF CRF2 HMM SLE KCGM Auto-context Fixed-Point

32.30 19.97 23.7 20.58 5.8 2.22 3.6

of features and the performance is better than that in [NG07], see CRF2 and

SVMstruct2 in Table 2.1. Still, the errors are much higher than that of the fixed-

point model. In [TGK03], M3N reports the average error per character 12.8%

with cubic kernel while the average error per character of the fixed-point model is

2.13%. One may argue that if CRF, SVMstruct and M3N were to use the contexts

like those in the fixed-point model, they would generate similar results. However,

it is exactly their large computational burden in taking into account long range

interactions that limits their modeling ability.

In Fig. 2.1 (b), we illustrate the convergence rate of the fixed-point model,

revealing that both the training and testing errors are very small after the second

iteration. This suggests that we are able to train a fixed-point function that sat-

isfies the conditions for convergence. In addition, the fixed-point model converges

very quickly at the testing stage with only 2 ∼ 3 iterations.

2.4.2 Part-of-Speech Tagging (POS)

For the Part-of-Speech Tagging task, we use the POS dataset [TRE02] and comply

with the training/validation/testing splits in [NG07]. For each word, 446, 054

lexical features are used. We use the L1 regularized support vector machine (SVM-

L1) provided in the LIBLINEAR software package [FCH08a] as the classifier.
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Table 2.2: Average errors on the POS dataset in percentage. The results of

SVMstruct2 and CRF2 are from [KS07].

Train Size 500 1000 2000 4000 8000

SVM-L1 8.74 6.74 5.67 4.81 4.28

SVMstruct 8.37 6.58 5.75 4.71 4.08

SVMstruct2 8.38 7.15 5.63 - -

M3N 10.19 7.26 6.34 5.26 4.19

Perceptron 10.16 7.79 6.38 5.39 4.49

SEARN 10.49 8.92 7.58 6.44 5.48

CRF 16.53 12.51 9.84 7.76 6.38

CRF2 8.84 7.08 5.83 - -

HMM 23.46 19.95 17.96 17.58 15.87

SLE 7.71 5.93 5.14 4.19 3.67

Auto-context 8.12 6.34 5.38 4.6 3.91

Fixed-point 8.24 6.40 5.48 4.66 4.02

In our experiment, m = 6 is used as it gives the best results on the validation

datasets. For each sequence, one perturbed replica is produced using Gaussian

noise with δ = 0.25 and the contextual prediction function is trained with the

perturbed replica and the original sequences.

In Table 2.2 and Table 2.3, we compare the average errors and the times to

train the classifiers respectively. HMM is the most efficient in training, but its

performance is poor. The fixed-point model is nearly as efficient as SVM-L1 since

it needs only more feature dimensions and more training samples than SVM-L1;

it is much simpler and more efficient than algorithms such as the auto-context

model: on the data split of 8, 000 training sentences, it takes 2.214 hours for the

auto-context model to train, while it takes only 0.192 hours for the fixed-point
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Table 2.3: Training times on the POS Dataset (in hour)

Train Size 500 1000 2000 4000 8000

SVM-L1 0.0027 0.004 0.0053 0.009 0.0166

SVMstruct 0.11 0.21 0.38 1.7 2.2

M3N 12.0 22.9 46.2 144.4 204

Perceptron 0.107 0.22 0.53 1.02 1.27

SEARN 0.035 0.043 0.053 0.096 0.13

CRF 0.53 2.33 5.4 13.3 32.7

HMM 6E-5 8E-5 1E-4 2E-4 3E-4

Auto-context 0.144 0.271 0.543 1.097 2.214

Fixed-point 0.009 0.019 0.037 0.08 0.192

model to train. The average error of the fixed-point model is slightly worse than

the auto-context model but the difference is rather small. With the exception

of the auto-context model and SLE, the fixed-point model outperforms the other

methods. SLE performs the best but is the most complex since it is an ensemble

method using about 200 different models and its training time is not listed in

[NG07].

2.4.3 Hypertext Classification

Hypertext classification aims to classify the web pages based on their contents and

the linking structures. We use the WebKB dataset in [CDF98] which contains web

pages from 4 universities: Cornell, Texas, Washington and Wisconsin. Each page

belongs to one of the 5 categories: course, faculty, student, project or other. The

Bag of Words representation is used, and a codebook with 40, 195 codes is built

using Rainbow [MCC96]. We compare the fixed-point model with SVM, CRF,
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Table 2.4: Comparison on the WebKB Dataset.

CRF SVM Auto-context Fixed-Point

error (%) 15 22.95 16.55 16.47

train time(s) 3005 0.05 1.85 0.3

and the auto-context model. The statistics (a normalized histogram) of the labels

of the in-linking and out-linking pages are used as the context feature. The fixed-

point model and the auto-context algorithm both achieve small average errors

when the third-order in-linking and out-linking statistics are used. For CRF,

we adopt the UGM toolbox [SCH11] and use loopy belief propagation for the

inference. The first order, token-independent first order, and token-independent

second order feature functions are used as these feature functions give the best

performance in [KS07].

The models are trained on three universities and tested on the remaining one.

The average errors of the 4 universities are reported in Table 2.4. With one layer

of fixed-point function, the proposed method achieves comparable result but is

more efficient than the auto-context model. CRF performs the best but is much

more computationally demanding.

2.5 Conclusions

In this work, we have proposed a fixed-point model for the structured labeling

problem. The fixed-point model takes the labeling of the structure as both the

input and the output with the assumption that the ground-truth labeling being

the stable status for the function. The fixed-point model preserves the ability to

capture long range contexts as in more complex layered models. A simple learning

strategy is adopted and contraction conditions are analyzed. On three structured
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labeling problems, the fixed-point model has achieved encouraging performance

and efficiency.
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CHAPTER 3

Randomness and Sparsity Induced Codebook

Learning

3.1 Introduction

A large number of applications in machine learning, medical image classification,

and computer vision deals with the fundamental representation problem where the

data are high-dimensional and live in complex manifolds. With their intrinsic and

mathematical properties gradually unfolded, research in three general directions

has led to significant progress on classification, recognition, and compression: (1)

ensemble learning, (2) divide-and-conquer, and (3) sparse coding. More specifi-

cally, four concepts have emerged as being essential to the three directions: (1)

voting, (2) randomizing, (3) partitioning, and (4) sparsity.

Ensemble learning approaches such as bagging [BRE96], boosting [FS97], and

random forests [BRE01] have shown to be among the best choices for classifier-

s [CN06, CKY08]. The superior robustness of these ensemble methods comes

from the voting/averaging of multiple independent/complementary experts (weak

learners). Certain randomness in the data and feature selection stage leads to ad-

ditional robustness, as shown in the random forests [BRE01] where multiple trees

are learned from multiple randomly drawn subsets with the splitting criterion be-

ing locally optimal on some random features. In Extremely Randomized Trees

[JEW03] and Random Projection Trees [DF08], the full data sets are used since

the randomization in both feature/basis and threshold selection already provide
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sufficient diversities.

As real data are of high dimension and they typically do not live in a well-

regularized space, assuming a Gaussian type distribution leads to limited repre-

sentational power [TUR91]. When it is hard to fit a global model to the data,

divided sub-problems are often easier to deal with. This is a divide-and-conquer

strategy [BEN80]. In machine learning, decision tree [QUI86] is a standard ap-

proach where training data are recursively partitioned into subsets. The random

forests method also has this step in training the individual tree classifier. In ad-

dition to tree node splitting, other logic rules such as And/Or can be used as well

[CZL07]. The random projection tree [DF08] also has recursive data partition

based on randomly generated bases.

More recently, sparse representations such as compressed sensing [CT05] and

LASSO [TIB96] have gained a great deal of popularity. One message emerging

from sparse representation is that high-dimensional data within intrinsic lower

dimension can be well represented by sparse samples of high dimension. The

robustness of the sparse representation often assumes a subspace of certain regu-

larity, e.g. well-aligned data [WYG09].

In this work, we tackle the problem of codebook learning for high dimensional

visual data. Inspired by the above observations, we propose a randomized forest

sparse coding (RFSC) method. Given a large set of visual data, we train an

ensemble of random splitting/projection trees (when we are not sure about the

form of the whole data population, it is desirable to perform random partition

with certain local optimality); for each leaf node in the tree, we learn a set of

bases to best represent the data with sparse coefficients. The overall codebook

is a collection of all the bases from all the tree leaves. RFSC carries the ideas

of voting, randomizing, partitioning, and sparse coding in a natural way. It’s

applicable to applications such as natural image classification, and modern cancer

diagnosis.
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Modern cancer diagnosis largely benefits from high resolution histopathology

images, which provide distinctive and reliable cues for discriminating abnormal

tissues from normal ones. Therefore, automatic recognition and analysis of cancer

in histopathology images are very important assistant means for doctors. In this

work, we verify our algorithm on a collection of colon cancer images. As shown

in the experiment section, promising results are obtained.

3.2 Related Work

As we have discussed, our approach is inspired by the literature in ensemble

learning [BRE96, FS97, BRE01], divide-and conquer approaches [BEN80, QUI86,

CZL07], and sparse representation [CT05, TIB96, WYG09, MBPar]. Two types

of work are particularly related to our approach: tree based splitting/projection

methods, e.g., Extremely Randomized Trees [JEW03] and Random Projection

Trees [DF08], and sparse coding based codebook learning techniques [YYG09a,

LSP06a, GTC10].

Extremely Randomized Tree (ERT) [JEW03] is a variant of random forest.

ERTs randomize both the feature selection and the quantization threshold search-

ing process, making the trees less correlated. When used for visual codebook

learning (ERC-Forest) in [MNJ08a], the generated trees are not treated as an

ensemble of decision trees, instead, they are referred to as an ensemble of hier-

archical spatial partitioners. The samples (image patches) in each leaf node are

assumed to form a small cluster in the feature space. The leaves in the forest

are uniquely indexed and serve as the codes for the codebook. When a query

sample reaches a leaf node, the index of that leaf is assigned to the query sam-

ple. A histogram is formed by accumulating the indices of the leaf nodes, which

serves as a Bag of Words (BOA) representation. Similar to ERC-Forest, [SJC08]

introduces a semantic texton forest using ERT to perform image classification and
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segmentation.

Random Projection Tree [DF08] is a variant of k-d tree. The k-d tree splits

the data set along one coordinate at the median and recursively builds the tree.

Though widely used for spatial partitioning, it suffers from the curse of dimen-

sionality problem. Based on the realization that, high dimension data often lies

on low-dimensional manifold, RPT splits the samples into two roughly balanced

sets according to a randomly generated direction. This randomly generated direc-

tion approximates the principal component direction, and can adapt to the low

dimensional manifold. The RPT naturally leads to tree-based vector quantization

and an ensemble of RPTrees can be used as a codebook.

We use Extremely Randomized Trees/Random Projection Trees to partition

the samples. But instead of splitting the samples till we cannot split any more, we

stop early according to certain criterion and find some bases that can best recon-

struct all the samples in that node. These bases serve as codes of the codebook.

There are already some methods using sparse coding for codebook learning.

In [YYG09a], the authors generalize vector quantization to sparse coding, and

construct the histogram using multi-scale spatial max pooling. Each patch can

be assigned to several (sparse) codes, and thus the reconstruction error can be re-

duced. Also, this method extends the Spatial Pyramid Matching method [LSP06a]

to a linear SPM kernel. In [GTC10], Laplace sparse coding preserves the consis-

tency in the sparse representation and alleviates the problem in [YYG09a] that

similar patches may be assigned to different codes. In [WYY10a], a locality-

constrained linear coding scheme is proposed that utilizes the locality constraints

to project descriptors to their local-coordinate system. This scheme can preserve

the property of local smooth sparsity. Compared with these methods, the advan-

tages of RFSC is obvious. One advantage is the efficiency. Utilizing techniques

such as ERT and RPT, the sparse coding is performed only in subspaces and the

computational burden is greatly reduced.
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The second advantage is the potential promotion of the discriminative ability.

The label information can easily be used into the tree splitting process (ERT) and

the codebook created could have more discriminative power.

3.3 Randomized Forest Sparse Coding

3.3.1 Problem Formulation

Suppose we are given a set of training data S = {xi}ni=1 and xi ∈ R
D (in a

supervised setting, each xi is also associate with a label yi ∈ Y = {0, ..., K} and

thus S = {(xi, yi)}ni=1), our goal is to learn a codebook (set of basis) B = {bi}mi=1

and bi ∈ R
D such that

minB,w

∑n
i=1

∥∥∥xi −
∑m

j=1wijbj

∥∥∥
2

2

s.t. ∀i,∑j |wij | ≤ τ (3.1)

The first term in Eqn. (3.1) minimizes the reconstruction error and the second

term gives the sparsity constraints on the reconstruction coefficients. Eqn. (3.1)

actually includes two coupled optimization problems: (1) givenw, find the optimal

codebook B; (2) given a codebook B, find the best reconstruction coefficients w.

A similar formulation appears in [YYG09a].

After an optimal basis set B∗ is found, for a new sample x, we can compute

its reconstruction coefficients w via:

minw

∥∥∥x−∑m
j=1wjbj

∥∥∥
2

2

s.t.
∑

j |wj| ≤ τ (3.2)

The vector w can be used to characterize the sample x. In codebook learning,

each bj serves as a code, and the reconstruction coefficients with respect to the

codes are pooled to form a histogram.

In Eqn. (3.1), the norm of bj can be arbitrarily large, making wij arbitrarily
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small. Further constraints should be made on bj . In our work, we make a rea-

sonable constraint that all the basis in the codebook should be from the training

set S, i.e., B ⊂ S. With this constraint, Eqn. (3.1) can be transformed into

minv,w

∑n
i=1

∥∥∥xi −
∑n

j=1wijvjxj

∥∥∥
2

2
(3.3)

s.t.
∑

j vj ≤ m, vj ∈ {0, 1}

∀i, ∑j |wij| ≤ τ (3.4)

Here, vj serves as an indicator value ∈ {0, 1} and B = {xj : xj ∈ S, vj = 1}.
Eqn. (3.3) is seemingly more complex than Eqn. (3.1) with the introduction of v.

However, it can be solved more efficiently since the search space for the basis is

greatly reduced.

Learning a codebook of size greater than e.g. 5, 000 from tens of thousands of

samples is computationally demanding. However, recent research reveals that data

of real-world complexity often live in complex manifolds. As motivated before,

we could perform a divide-and-conquer strategy to partition the data space into

local subspaces. Within a subspace, it is then much more efficient to learn bases

for a sparse representation.

3.3.2 Randomized Forest Data Partition

In this section, we take the Extremely Randomized Tree (ERT) [JEW03] and

Random Projection Trees (RPT) as examples to illustrate the data projection

process. Both ERT and RPT partition the samples recursively in a top-down

manner. ERT adopts the label information and uses normalized Shannon entropy

as the criterion to select features. RPT is unsupervised and it does not need any

label information; it splits the data via a hyperplane normalized to each individual

randomly generated projection bases.
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3.3.2.1 Discriminative Partition via Extremely Randomized Tree

Given a labeled sample set S = {(xi, yi)}ni=1, ERT proceeds by randomly selecting

a subset of features from the feature pool {fi, 1 ≤ i ≤ D}. For each selected fea-

ture fi, a threshold θi is sampled according to a uniform distribution (in [MNJ08a],

a Gaussian distribution adapted to the feature values in that dimension). Based

on the features selected and thresholds sampled, boolean tests {Ti : x(i) < θi}
can be used to split the set S. If Ti = true, x goes to the left branch S1, else, x

goes to the right branch S2.

To select the best boolean test for splitting, the normalized Shannon entropy

was used:

Score(S, Ti) =
2 · IY ,Ti

(S)

HY(S) +HTi
(S)

(3.5)

where, IY ,Ti
(S) = HY(S) −

∑2
p=1

np

n
HY(Sp). IY ,Ti

(S) is the information gain, a

non-negative scalar denoting the uncertainty reduced by the test Ti. HY(S) =

−∑
y∈Y

ny

n
log2(

ny

n
) denoting the entropy of class distribution of the original set

S. HTi
(S) = −∑2

p=1
np

n
log2(

np

n
) denotes the entropy for the test Ti that splits the

data into two branches. The Ti with the largest Score(S, Ti) is selected.

The use of HTi
(S) as a normalization term in Eqn. (3.5) was first introduced in

[QUI86] to resolve the bias problem: the criterion IY ,T (S) will be biased towards

the attributes leading to more branches. In codebook learning, since we are using

binary splitting, this bias problem is not a concern. In fact, the use of HTi
(S) as a

normalization term will favor uneven splitting, making the forest more unbalanced.

In our randomized forest sparse coding scheme (RFSC), it is desirable to have

balanced trees, so we use a slightly modified form of Eqn. (3.5):

Score(S, Ti) =
2 · IY ,Ti

(S)

HY(S) + 1−HTi
(S)

(3.6)

Since HTi
(S) is a concave function and it achieves the maximum value 1 when

the numbers of samples in S1 and S2 are the same, this criterion can make the

trees more balanced.
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Figure 3.1: Illustration of the idea of RFSC using Random Projection Tree (best

viewed in color). (a) The forest consists of ensemble of random projection trees;

(b) The spatial partition of the dataset by one tree (A copy from [FDK07]). A

cell stands for a leaf node. The width of the separation line indicates the level of

the tree. (c) For RFSC, it does not build the tree to fine level. At certain level

when local manifold structures are found, bases (indicated by the red stars) are

learned for the local structure in each cell. (d) For the samples in each cell, their

reconstruction coefficients with respect to the bases are different.

3.3.2.2 Unsupervised Splitting via Random Projection Tree (RPT)

At each node, RPT chooses a random unit projection b ∈ R
D, and splits the sam-

ples into two roughly equal-sized sets. The random projection and thresholding

also serve as a type of boolean test. We use the splitting criterion as

T := xTb ≤
(
median(zTb : z ∈ S) + δ

)
.

Here δ is a random perturbation that adapts to the structure of S. Splitting

around the median value makes the splitting balanced while the perturbation δ

introduces certain randomness [DF08].

Since RPTs can automatically adapt to the low dimensional manifold of the

dataset S, the samples in the leaf nodes observe local subspaces. The local struc-

tures of all the leaf nodes thus collectively comprise the global structure of the

data set S (Fig. 3.1 (b)).
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3.3.2.3 Basis Pursuit at the Leaf Nodes

Both ERT and RPT build the trees to the fine scale and use the leaf nodes as

the codes. Instead of building the trees of very deep level, RFSC stops at some

relatively higher level (e.g., when the number of samples is less than M). At

such nodes, the local manifold structure is assumed to be relatively simple and

regularized. RFSC seeks a set of bases to sparsely represent the subspaces at

those nodes. This process can be illustrated using Random Projection Tree in

Fig. 3.1 in which a visualization is displayed and RPT tends to split the data

along the principal component direction (Fig. 3.1 (b)). For RFSC, when the local

structure is relatively regularized, it seeks some bases (the red stars) to sparsely

represent the local subspace. Different from RPT or ERT that use the mean of

the local subspace or a single index to represent the cell, the information conveyed

via the reconstruction coefficients with respect to each basis (Fig. 3.1 (d)) is richer

and more informative. Note that the bases in different clusters could be spatially

close to each other. As an illustration, see the two bases on the bottom right in

Fig. 3.1(c). From this point of view, the number of basis and the redundancy would

increase. However, multiple graphs [UST09] could help to smooth the boundaries

of the overall data representation, and thus, lead to enhanced overall performance.

Also, according to Theorem 1 in the justification part, the total number of bases

in all the leaf nodes is bounded. Since at each node when the splitting process

stops, there are generally 80 ∼ 200 samples (depending on the codebook size) and

3 ∼ 10 bases, the computational overhead of subspace learning is not significant

compared with directly pursuing basis from the entire sample set.

3.3.3 Optimization Scheme

The constraint that vj ∈ {0, 1} makes Eqn. (3.3) a hard problem. In this subsec-

tion, we present two schemes to solve this optimization problem. The first one is

34



to relax vj to a real value and use coordinate descent algorithm to optimize on w

and v iteratively. The second one is a greedy pursuit approach that selects the

bases one by one.

Convex Relaxation The first optimization scheme is to relax the values of

vj to real numbers and use ℓ1 constraint
∑

j |vj | ≤ m instead of ℓ0 like constraint

in Eqn. (3.3). Putting this constraint as a regularization term, we can transform

this problem into an equivalent form:

1

2

n∑

i=1

∥∥∥∥∥xi −
n∑

j=1

wijvjxj

∥∥∥∥∥

2

2

+ λ1
∑

i,j

|wij|+ λ2
∑

j

|vj | (3.7)

Here, vj ∈ R. λ1 and λ2 are regularization parameters that make the trade-offs

between the residue and the norms of the weight vectors.

There are two sets of variables w and v in Eqn. (3.7). To optimize Eqn. (3.7),

we adopt an EM-like algorithm that iterates by fixing one set of variables and

optimize on the other set using coordinate descent algorithm [FHH07].

By fixing w, we can get the updated value ṽj of vj as:

ṽj =
shrink (

∑
iwijβij, λ2)∑

iw
2
ijx

T
j xj

(3.8)

Here, βij = xT
j

(
xi −

∑
k 6=j wikvkxk

)
. shrink(f, λ) is an operator to shrink the

value of f toward 0:

shrink(f, λ) =





f − λ if f > λ

0 if − λ ≤ λ ≤ λ

f + λ if f < −λ

(3.9)

By fixing v, we get the updated value w̃ij of wij as:

w̃ij =
shrink (vjβij, λ1)

v2jx
T
j xj

(3.10)

For the sake of efficiency, in practice, instead of using the pathwise coordinate

descent algorithm [FHH07] that sweeps all the variables sequentially,we adopt
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an adaptive and greedy sweeping version [LO09] that sweeps the variable that

decreases the objective function most at each iteration. For wij and its updated

value w̃ij, the decrease of the objective function is

∆Rwij
= 1

2v
2
j ‖xj‖22 (wij − w̃ij)

(
wij + w̃ij − 2vjβij

v2j ‖xj‖
2

2

)

+λ1(|wij | − |w̃ij|) (3.11)

For vj and its updated value ṽj , the decrease of the objective function is

∆Rvj =
∑n

i=1
1
2w

2
ij ‖xj‖22 (vj − ṽj)

(
vj + ṽj − 2wijβij

w2
ij‖xj‖

2

2

)

+nλ2(|vj | − |ṽj|) (3.12)

At each iteration, the updating rule is to select the variable that leads to the

largest decrease in the objective function. Thus, when fixing v to optimize on w,

w∗
ij = argmax

wij

∆R(wij) (3.13)

and when fixing w to optimize on v

v∗j = argmax
vj

∆R(vj) (3.14)

In our experiment, the adaptive and greedy sweeping proves efficient for practical

use. After the optimization process converges, we rank the samples according to

their vj . The first m samples with the largest non-zero vj are selected as the basis.

Greedy Pursuit Approach Starting from an empty basis collection, the greedy

pursuit approach selects the basis one by one. Suppose some l samples Bl =

{xsi, 0 ≤ i ≤ l, 1 ≤ si ≤ n} have been selected from the n samples, i.e., vsi = 1.

To select the (l + 1)th basis, we optimize the following function:

sl+1 = min
k/∈{si}

1

2

n∑

i=1

∥∥∥∥∥∥
xi −

∑

j∈{si}

wijxj −wikxk

∥∥∥∥∥∥

2

2

+λ1

n∑

i=1

∑

j∈{si}

|wij|+ λ1

n∑

i=1

|wik| (3.15)
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According to Eqn. (3.15), the sample that reconstructs all the n patches together

with the first l selected basis is selected as the (l + 1)th basis.

The greedy approach finds suboptimal solution to Eqn. (3.3). But it’s more

efficient than the convex relaxation approach, and in practice, we find that its

performance is comparable with the convex relaxed solution. Thus in some of our

experiments, we only use this greedy approach.

3.3.4 Theoretical justification

In this section, we give some theoretical justification to our approach. Our in-

stitution is to show that the three steps in randomized forest sparse coding: (1)

ensemble of trees, (2) randomized projection tree, and (3) sparse coding leads to

the same complexity level in the number of basis as to the original data.

Given S = {xi, i = 1..n} with xi ∈ R
D, assume that xi lives in the intrinsic

lower dimension d ≪ D. It can be seen that the number of basis needed to

reconstruct S is bounded. Following the definition of Assouad dimension [ASS83]

[DF08]:

Definition: For any point x ∈ R
D and r > 0, let B(x, r) = {||x−z|| ≤ r} denote

the closed ball of radius r centered at x. The Assouad dimension of S ∈ R
D is

the smallest integer d such that for any ball B(x, r) ∈ R
D, the set B(x, r)∩S can

be covered by 2d balls of radius r/2.

Theorem 1 The number of basis needed to reconstruct S by Randomized Forest

Sparse Coding (RFSC) is O(2d log d).

Proof:

Fixing radius r, suppose we want to create a codebook such that each basis

function covers r/2, a size of O(2d) codebook is required to cover the entire dataset

S, according to the definition of Assouad dimension.
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The main result in [DF08] shows that O(d log d) levels of a random projec-

tion/partition tree would reach cells with radius r/2. Therefore, the number of

cells is O(2d log d). Suppose there are k trees in the forest, and in each leaf node,

l basis are found, then the number of the basis becomes O(kl2d log d). As k and l

are generally small and can be kept constant, the bound still reduces to:

O(2d log d).

Although RFSC slightly increases the size of the codebook compared to O(2d),

since d is generally small (d≪ D), this is reasonably bounded.

3.4 Experiments

To evaluate the effectiveness of the proposed codebook learning algorithm, we

conducted extensive classification experiments on a collection of cancer images

and a variety of natural image datasets: Graz-02 image set, the INRIA Horse

dataset, and the PASCAL 2005 image set.

As the baselines, we obtained the source code for ERC-Forest from the authors

of [MNJ08a] and implemented the RPTs according to [DF08]. In our experiments,

the feature vectors are used without any normalization, which is sometimes done

in subspace learning and sparse coding (we found that performing normalization

does not affect the overall performance in the experiments reported here). For

each leaf node, 5 bases are learned. For the Graz-02 image set, λ1 = 2 and λ2 = 6,

while for the INRIA Horse dataset and the PASCAL 2005 image set, λ1 = 15

and λ2 = 6. To solve the subspace learning problem via sparse coding defined

in Eqn. (3.3), 10 iterations between w and v are enough to find a good sparse

solution.

In the following, we use RFSC to denote subspace learning via sparse cod-

ing under Extremely Randomized Trees; RPT-SC denotes subspace learning on
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Figure 3.2: Cancer image examples. The images in the green box are normal

samples. i.e. there are no cancerous cells. The images in the red box are abnormal

samples, i.e. there are cancerous cells.

Random Projection Trees. For RFSC and RPT-SC, the postfix “-Cvx” refers to

using the convex relaxation version and “-Gdy” regards to using the greedy basis

pursuit version. For the classification task of Cancer Images, the performance is

measured using the Area under the curve of the ROC curve, while for natural

image classification, the performance is measured using the classification accura-

cy at the Equal Error Rate and the reported accuracies are the averages of 10

rounds of execution. As can be seen from the experiments, our method achieves

comparable or superior performance with the alternatives.

3.4.1 Experiments on Cancer Images

Dataset: We used a histopathology image data set with 60 colon images (30

cancer images and 30 non-cancer images). Some example images from this dataset

are shown in Fig. 3.2. The images are in the resolution of 1280 × 1024. All the

images are labeled as cancer or non-cancer by two pathologists independently. If

disagreement happens for a certain image, these two pathologists together with a

third senior pathologist will carefully examine and discuss until final agreement.

Experimental Setup: Before feature extraction, the original images are down-
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sampled with a factor of 2. Since no obvious spatial regularities are observed from

the images (Fig. 3.2), we didn’t densely compute local features and construct Bag-

of-Features (BOF) vectors. Instead, we randomly sample N = 200 local patches

(32 × 32) for each image. Each patch is represented by Lab color histogram,

Local Binary Pattern [OPM02], and SIFT [LOW04]. For the proposed method,

each patch is encoded by the proposed coding schemes RFSC or RPT-SC; for

the baseline, we use the raw feature. Random Forests [BRE01] is adopted as the

strong classifier for its simplicity and high performance. The overall classification

score of an image is the mean of the scores of all the patches. Half of the images

in the dataset are chosen randomly for training and the rest for testing. We run

the experiments 5 times for each method and report the averaged performance.

For RFSC and RPT-SC, the convex relaxation versions are used. We compare

the Area under the ROC curve between RPT-SC, RFSC, ERC-Forest, RPT, and

raw feature. The Area Under Curve (AUC) for the methods are RPT-SC 0.98,

RFSC 0.987, RPT 0.927, ERC-Forest 0.95, and raw feature 0.967 respectively;

our method performs better than the alternatives.

3.4.2 Experiments on Natural Images

The reconstruction coefficients are pooled in the natural image classification task.

To pool the reconstruction coefficients, unless otherwise stated, max-pooling is

used as in [YYG09a]. The pooled reconstruction coefficients of the trees are

concatenated to form a histogram leaving the voting process till the classification

step. SVM is used as the classification model, and the linear kernel is used. To

understand better the behavior of the competing codebook learning algorithms, in

all the following image classification experiments, we do not include the adaptive

saliency map process. This makes the image classification performance of ERC-

Forest slightly worse than that reported in [MNJ08a]. However, this performance

degeneration is understandable and in accordance with the case illustration in
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[MNJ08a]. Focusing on the core codebook learning part helps to better validate

the underlying benefits of our method against the competing algorithms.

GRAZ-02 dataset [OPF06] GRAZ-02 image set consists of three object

categories and one counter-category: Bicycles (365 images), Cars (420 images),

Person (311 images) and None (380 images). For each category, the categorization

task is to distinguish the object category from the counter-category, None. Similar

to [MNJ08a], we also pick the two hardest cases: Cars vs. None and Bikes vs.

None. Patches are sampled from the images and 768-D wavelet feature vectors

are used as the descriptors.

To make a direct comparison with [MNJ08a] and [OPF06], we conduct the

experiment according to the setting in [MNJ08a]: the first 300 images of each

category are used and 5 trees are trained. We use the greedy version of RFSC

and vary the codebook size from 5000 to 9000. From Table 3.1 and Table 3.2,

we observe that, RFSC-Gdy performs better than ERC-Forest and the method

in [OPF06]. Although RPT-SC-Gdy does not outperform ERC-Forest, it still

performs better than RPT on both of the two cases. RFSC-Gdy outperforms

RPT-SC, indicating the promotion of the discriminative ability by introducing the

label information in the divide-and-conquer process. Even without the adaptive

saliency map process, the accuracy (83.9%) of RFSC-Gdy on the case of Bikes

vs. None approaches that reported in [MNJ08a] (84.4%). Note that we only

use 5 bases in each leaf node to represent a 768 dimensional feature space; the

large improvement in classification accuracy not only proves the relative regularity

in the local subspaces, but also supports the formulation in Eqn. (3.1) and the

effectiveness of the sparse representation.

We also conduct the experiments using all the images instead of the first 300

images. Average-pooling is adopted here and the results are reported in Table 3.3

and Table 3.4. The performance of the two optimization schemes is similar: for

the case of Cars vs. None, RFSC-Gdy achieves the best accuracy 75.5% and for
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Table 3.1: Comparison of the accuracy on the case of Cars vs. None in the

GRAZ-02 images [OPF06].

size of codebook 5000 6000 7000 8000 9000

[OPF06] 70.5%

ERC-Forest 71.3% 73.5% 74.5% 74.7% 74.8%

RPT 66.5% 66.6% 65.3% 67.7% 66.9%

RFSC-Gdy 73.4% 74.3% 75.7% 74.9% 74.3%

RPT-SC-Gdy 68% 69.8% 69% 69.5% 68.2%

Table 3.2: Comparison of the accuracy for Bikes vs. None in the GRAZ-02 images

[OPF06].

size of codebook 5000 6000 7000 8000 9000

[OPF06] 77.8%

ERC-Forest 78.8% 78% 78.5% 78.5% 78.5%

RPT 73.3% 74.3% 74.1% 75.1% 74.4%

RFSC-Gdy 80.7% 83.9% 80.8% 81.3% 80%

RPT-SC-Gdy 76.5% 76.8% 76.1% 76.7% 76%
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Table 3.3: Comparison of the accuracy using all the images for Cars vs. None in

the GRAZ-02 images [OPF06].

size of codebook 5000 6000 7000 8000 9000

ERC-Forest 67.2% 67% 68.6% 68.8% 71.3%

Leaf-Kmeans 68.2% 70.9% 73% 72.6% 73.2%

RFSC-Cvx-1tree 72.6% 72.2% 71.4% 75% 75%

RFSC-Cvx 75% 75% 73.7% 73.1% 75.2%

RFSC-Gdy 74.3% 75.5% 74.5% 74.8% 75.5%

Table 3.4: Comparison of the accuracy using all the images for Bikes vs. None in

the GRAZ-02 images [OPF06].

size of codebook 5000 6000 7000 8000 9000

ERC-Forest 77.8% 78.3% 78.3% 79.1% 78.8%

Leaf-Kmeans 75.1% 74.4% 79.7% 78.7% 79.5%

RFSC-Cvx-1tree 77.8% 78.2% 78.6% 79.5% 79.5%

RFSC-Cvx 80% 82.2% 82.6% 81.4% 81.8%

RFSC-Gdy 81.5% 80.3% 81.5% 80.8% 80.9%

Bikes vs. None, RFSC-Cvx achieves the best accuracy 82.6%. RFSC-Cvx-1tree

refers to using one randomized tree instead of the forest, an ensemble of trees. It

performs worse than RFSC. This justifies the benefit of using ensembles and is in

accordance with the spirit in ensemble learning: the randomized partition process

provides sufficient diversities among codes of the forest, and the concatenated

codebook produces better and more robust results via voting.

We do not compare RFSC and RPT-SC with directly performing dictionary

learning on the image classification task since solving Eqn. (3.1) directly when
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m = 5, 000 or 9, 000 is time consuming. However, benefiting from the divide-and-

conquer process, it takes less than 1 hour for RFSC and RPT-SC to build a forest

with 5 trees and 9, 000 codes. This improvement in efficiency stems from seeking

a small amount of bases from hundreds of patches instead of seeking thousands of

bases from tens of thousands of training patches. Other efficient algorithms such as

[LBR07] can be used to solve Eqn. (3.1), but the conclusion of the improvement

in efficiency induced by the divide-and-conquer process still holds. RFSC and

RPT-SC are also very efficient at the testing stage. It takes about 0.5 second to

process an image and pooling the reconstruction coefficients. As a comparison,

it would take around 30 seconds for K-Means to assign patches to the codes for

an image when the feature vector is of dimension 768 and the codebook size K is

5, 000.

INRIA Horse Dataset [FJS07a] INRIA horse dataset contains 170 horses

taken from the Internet with different sizes and poses. The training/splitting ratio

of this dataset and the size of the codebook were not reported in [MNJ08a], so we

randomly selected 85 horse images for training and varied the size of codebook

from 5, 000 to 9, 000. The SIFT descriptor is used to describe the patches and we

used the dense SIFT implementation in [VF08]. The greedy pursuit approach was

used. In Table 3.5, we report the best accuracy of each method and the size of the

codebook at which the best accuracy is achieved. From Table 3.5 we observe that,

RFSC-Gdy performs better than ERC-Forest and RPT-SC-Gdy performs better

than RPT. The performance of ERC-Forest has the potential to be improved if the

size of the codebook increases. We did not carry out the experiment, since even

without estimating the saliency map and with small codebook, RFSC-Gdy has

already achieved better result (85.9%) than that reported in [MNJ08a] (85.3%).

PASCAL 2005 image set [EZ05] We also compare our method with

ERC-Forest on PASCAL 2005 image set. The results are shown in Table 4.1.

RFSC-Gdy achieves better results on all of the 4 categories than ERC-Forest.
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Table 3.5: Comparison of the accuracy on the INRIA Horse dataset [FJS07a].

method ERC-Forest RPT RFSC-Gdy RPT-SC-Gdy

Accuracy 79.2% 75.7% 85.9% 80.4%

size of Codebook 9000 7000 5000 8000

Table 3.6: Comparison of the accuracy on PASCAL 2005 image set [EZ05].

method motobikes cars bikes person

ERC-Forest 96% 95% 89% 90.9%

RFSC-Gdy 96.4% 95.3% 90.6% 91.4%

3.5 Conclusion

In this work, we have introduced a codebook learning method called randomized

forest sparse coding that integrates three concepts: ensemble, divide-and-conquer

and sparse coding. Justifications for the effectiveness and efficiency of our method

are also provided. The proposed scheme is applied to both the Cancer Image Clas-

sification and natural image classification and observes significant improvement

in performance.
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CHAPTER 4

Harvesting Mid-level Visual Concepts from

Large-scale Internet Images

4.1 Introduction

The inventions of robust and informative low-level features such as SIFT [LOW04],

HOG [DT05], and LBP [OPH96] have been considered as one of the main ad-

vances/causes for the recent success in computer vision. Yet, one of the most fun-

damental issues in vision remains to be the problem of “representation”, which

affects an array of applications, such as image segmentation, matching, recon-

struction, retrieval, and object recognition.

Beyond low-level features, obtaining effective mid-level representations has be-

come increasingly important. For example, there have been many recent efforts

made along the line of attribute learning [FEH09, PG11a, LSX10]. These ap-

proaches, however, are mostly focused on supervised or active learning where a

considerable amount of human efforts are required to provide detailed manual

annotations.The limitations to the previous supervised attribute learning meth-

ods are thus three-fold: (1) accurate data labeling is labor-intensive to obtain,

(2) the definition of attributes is often intrinsically ambiguous, (3) the number of

attributes and training images are hard to scale. Some other methods in which

detailed manual annotations are not required (e.g. classemes [HDF12]) however

are not designed to build a dictionary of mid-level representations.

In this work, we propose a scheme to build a path from words to visual concept-
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s; using this scheme, effective mid-level representations are automatically exploited

from a large amount of web images. The scheme is inspired by the following ob-

servations: (1) search engines like Google and Bing have a massive number of well

organized images; (2) using text-based queries, such as “bike”, “bird”, “tree”, al-

lows us to crawl images of high relevance, good quality, and large diversity (at least

for the top-ranked ones); (3) the multiple instance learning formulation [ATH02]

enables us to exploit common patterns from retrieved images, which have a high

degree of relevance to the query words; (4) saliency detection [FWT11] helps to

reduce the search space by finding potential candidates. The main contributions

of this work thus include the following aspects: (1) we emphasize the importance

of automatic visual concept learning from Internet images by turning an unsuper-

vised learning problem into a weakly supervised learning approach; (2) a system is

designed to utilize saliency detection to create bags of image patches, from which

mixture concepts are learned; (3) consistent and encouraging results are observed

by applying the learned concepts on various benchmark datasets.

Visual attribute learning has recently attracted a lot of attention. However,

many existing algorithms were designed as supervised approaches [FEH09, PG11a,

LSX10, PG11b, LSX10], preventing them from scaling up to deal with a large

number of images.

A term, “classeme”, was introduced in [TSF10] which also explores Internet

images using word-based queries; however, only one classeme is learned for each

category and the objective of the classeme work is to learn image-level represen-

tations. Instead, our goal here is to learn a dictionary of mid-level visual concepts

for the purpose of performing general image understanding, which goes out of the

scope of classeme [TSF10] as it is computationally prohibitive for [TSF10] to train

on a large scale.

A recent approach [SGE12] learns “discriminative patches” in an unsuper-

vised manner. However, [SGE12] learns discriminative patches while we focus on
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dictionary learning for the mid-level representations; [SGE12] uses an iterative

procedure, while our method adopts saliency detection, miSVM and K-means in

a novel way; in addition, our method significantly outperforms [SGE12] with a

relative 37% improvement on the MIT-Indoor scene dataset, on which both the

approaches have been tested. In [LRM12], high-level features are built from large

scale Internet images with nine layers of locally connected sparse autoencoder;

however, their auto-encoder approach is much more complex than the scheme

proposed in this work. In [ZWW12], saliency detection is utilized to create bags

of image patches, but only one object is assumed in each image for the task of

object discovery. Although multiple clusters are learned in [XZC12], its goal is to

identify a few cancer patterns for medical image segmentation; in addition, the

lack of explicit competition among clusters leads to poor results in our problem.

In [HSH13], compositional sparse codes are learned for natural image represen-

tation, and in [SZ12], hybrid image templates consisting of sketches, texture /

gradients, flat areas, and colors are learned. Both of the two representations are

generative and visually meaningfully, but they take a long time to learn. In terms

of large-scale natural images, ImageNet [DDS09] is shown to be a great resource.

Here, we find it convenient to directly crawl images from the search engines using

word-based queries.

4.2 Automatic Visual Concept Learning

Starting from a pool of words, we crawl a large number of Internet images using the

literal words as queries;patches are then sampled and visual concepts are learned

in a weakly supervised manner. The flow chart of our scheme is illustrated in

Fig. 4.1. Following our path of harvesting visual concepts from words, many

algorithms can be used to learn the visual concepts. In this work, we adopt a

simple scheme, using the max-margin formulation for multiple instance learning
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in [ATH02] to automatically find positive mid-level patches; we then create visual

concepts by performing K-means on the positive patches. The visual concepts

learned in this way are the mid-level representations of enormous Internet images

with decent diversity, and can be used to encode novel images and to categorize

novel categories. In the following sections, we introduce the details of our scheme.

Figure 4.1: The flow chart of learning visual concepts from words.

4.2.1 Word Selection and Image Collection

The literal words are selected from ImageNet [DDS09], which is based on Word-

Net [MIL95] and Classeme [TSF10]. For the words with similar meanings, e.g.,

“people”, “guest”, “worker”, and “judge”, we keep the most generic one. In all,

M = 716 words are selected. Most of the words are representative ones of the

popular categories in ImageNet such as “animal”, “plants”, “scenes”, “activities”,

“foods”, and “materials”. For each word, we crawled the top 400 images from

google.com and the top 30 images from bing.com and merged the images by re-

moving the duplicates. For each category (word), around 400 images are retained.

Fig. 4.2 shows the top ranked images for 26 words. From Fig. 4.2, we can see
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Figure 4.2: Sample images collected for 48 words.

that most of the retrieved images are generally of high relevance to the query word.

Also, these images provide sufficient diversity stemming from the intra-category

variances. For example, for the word “table”, besides the images of dinning tables,

images of spreadsheets appear as well. The retrieved images for words such as

“video” and “bird” are even more diverse. The diversity in these crawled images

makes it inappropriate to train only a single classifier on the images, forcing

us to investigate the multiple cluster property. Further, the object of interest

usually does not occupy the entire image, making the multiple instance learning

formulation a natural fit for this task.
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4.2.2 Saliency Guided Bag Construction

The problem of visual concept learning is firstly unsupervised because we did not

manually label or annotate the crawled images. However, if we view the query

words as the labels for the images, the problem can be formulated in a weakly

supervised setting, making our problem more focused and easier to be tackled.

Firstly, we convert each image to a bag of image patches with size greater than

or equal to 64 × 64 that are more likely to carry semantic meanings. Instead of

having randomly or densely sampled patches as th in [SGE12], we adopt a saliency

detection technique to reduce the search space. Saliency detection assumes that

the object of interest is generally salient in an image. Fig. 4.3 shows sample

saliency detection results (the top 5 saliency windows for each image) by [FWT11],

a window based saliency detection method. From Fig. 4.3, we observe that within

the top 5 saliency windows, objects such as airplanes, birds, caterpillars, crosses,

dogs, and horses are covered by the saliency windows. In addition, for the airplane

and the caterpillar, the salient windows naturally correspond to the parts. This

illustrates the benefit of the use of saliency detection: it helps to identify the

regions and parts with more significance naturally. In our experiment, the top

50 salient windows are used as the instances of a positive bag directly. For large

salient windows with sizes greater than 192 × 192, smaller patches within them

are sampled, resulting in possible parts of the relevant patterns.

Although the saliency assumption is reasonable, not all category images satisfy

this assumption. For example, for the images of “beach”, the salient windows

only cover patterns such as birds, trees, and clouds (see the salient windows of the

“beach” image in Fig. 4.3). Although these covered patterns are also related to

“beach”, they cannot capture the scene as a whole because an image of “beach” is

a mixture of visual concepts including sea, sky, and sands. To avoid missing non-

salient regions for a word, besides using the salient windows, we also randomly
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sample some image patches from non-salient regions. As non-salient regions are

often relatively uniform with less variation in the appearance, a smaller number of

patches are sampled from the regions. After the patches are sampled, we perform

overlap checks between the image patches with similar scale is performed. If two

patches are of the similar scale and have high overlap, one patch will be removed.

Each bag constructed in this way thus consists of patches from both salient

and non-salient regions. A portion of the patches may be unrelated to the word

of interest, e.g., the patches corresponding to the sea in the image of “horse” in

Fig. 4.3. Such patches are uncommon for the word “horse”, and will be naturally

filtered under the multiple instance learning framework.

Thus, for a word with N (N ≈ 400) images, N bags {Bi, 1 ≤ i ≤ N} can be

constructed, each bag Bi = {xij, 1 ≤ j ≤ m}, where m is the number of patches

sampled for the image and is about 150 in our work; xij is the descriptor of the

patch.

4.2.3 Our Formulation

To learn visual concepts from the bags constructed above, there are two basic re-

quirements: 1) the irrelevant image patches should be filtered, and 2) the multiple

cluster property of these visual patches should be investigated. Many methods

meet these two requirements. In this work, we simply use the max-margin frame-

work for multiple instance learning (miSVM) in [ATH02] to learn a linear SVM

for each word, and then perform clustering on the positive instances labeled by

the linear SVM. It is worth mentioning that another formulation for learning the

multiple instance multi-classes problem can also be used, but it is not the main

focus of this work.

In multiple instance learning, the labeling information is significantly weakened

as the labels are assigned only to the bags with latent instance level lables. In
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Figure 4.3: Top five salient windows for images from 12 words. Except for the

words “sky”, “beach”, and “yard”, the patterns of interest can be covered by a few

top salient windows. For objects such as “caterpillar”, “bicycle”, and “conductor”,

parts can be captured by the salient windows.

[ATH02], the relationship between the bag level labels and the instance level labels

is formulated as a set of linear constraints. With these linear constraints, soft-

margin SVM is formulated into a mixed integer programming problem, which can

by solved heuristically by iterating two steps: 1) given the instance level label y

for an instance x, solving the optimization discriminant function f(x) = 〈w,x〉+b
via Quadratic programming, where w is the weight vector, and b is the bias term

and 2) given the discriminant function f , updating the instance level labels y. For

more details on miSVM, the readers can refer to [ATH02].

4.2.3.1 Visual Concept Learning via miSVM

Using miSVM and assigning the literal words as the labels for the Internet images,

visual concept learning for each word can be converted from an unsupervised
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learning problem into a weakly supervised learning problem. For a word k, its

bag Bi is assigned with a label Yi = 1. The instance level label yij for each

instance xij ∈ Bi is unknown and will be automatically discovered by miSVM.

For negative bags, we create a large negative bag B− using a large amount of

instances (patches) from words other than the word of interest. The number of

instances in B− is generally 5 ∼ 10 times more than the number of all the instances

in the positive bags. The purpose of creating the large negative bag is to model the

visual world, making the visual concepts learned for a word discriminant enough

from the other words. For example, for words such as “horse” and “cow”, using

a large negative bag B−, the common backgrounds such as the grassland and the

sky can be filtered.

Based on {Bi, 1 ≤ i ≤ N} and B−, a linear SVM fk can be learned by

miSVM for the k-th word. The positive patches related to the word are also

automatically found by miSVM. Given a patch, the linear SVM fk can output

a confidence value indicating the relevance of the patch to the word of interest.

Therefore, the linear SVM fk itself can be treated as a visual concept that models

the patches of a word as a whole. We call it a single-concept classifier. Due to

the embedded multi-cluster nature of diversity in the image concepts, a single

classifier is insufficient to capture the diverse visual representations to a word

concept. Thus, we apply another step in our algorithm: the positive instances

(patches) automatically identified by the single-concept classifier are clustered to

form some codes Ck = {Ck
1 , C

k
2 , ..., C

k
n}. We call these codes multi-cluster visual

concepts. Different from the single-concept classifier, each multi-cluster visual

concept corresponds to a compact image concept.

Therefore, for each word k, we learn two types of visual concepts, the single-

concept classifier and the multi-cluster visual concepts Ck. From Internet images

of the M words, we can learn M single-concept classifiers F = {f 1, ..., fM}, and
a set of multi-cluster visual concepts C = {Ck, 1 ≤ k ≤ M}. The single-concept
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classifiers and the visual concepts can be applied to novel images as the descriptors

for categorization.

Figure 4.4: Illustration of the single-concept classifiers and the multi-cluster visual

concepts for 6 words. (a) “building”, (b) “flower”, (c) “balcony”, (d) “ferry”, (e)

“tiger”, and (f) “horse”. For each word, the first row shows the original images;

the second row shows the assignment of the codes, and the third row shows the

outputs of the single-concept classifier (the linear SVM for each word). See text

for details.

In Fig. 4.4, we illustrate the outputs of the single-concept classifiers on the

images, as well as the assignments of patches to the multi-cluster visual concepts.

For clarity, for each word we cluster six multi-cluster visual concepts from the

positive patches and assign them different colors randomly. For each image, we

sample dense mid-level patches and apply the single-concept classifier to label the
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patches. We then assign the patches labeled as positive to the six multi-cluster

visual concepts in a nearest neighborhood manner and display the colors of the

assigned visual concepts in the centers of the patches.

The third row in Fig. 4.4 shows the outputs of the single-concept classifiers.

Though learned in a weakly supervised manner, the single-concept classifiers can

predict rather well. However, it cannot capture the diverse patterns of the patches,

e.g., for the word “building”, the walls of the left two images are different from

the walls of the right three images. On the contrary, the multi-cluster visual

concepts can capture such differences. The walls in the left two images of the

word “building” have the same patten, and they are assigned to the same multi-

cluster visual concept that has relatively sparse and rectangle windows (indicated

in green). The walls on the right three images have a different pattern and they are

assigned to another visual concept that has square and denser windows (indicated

in magenta). For the word “balcony”, the columns are assigned to a multi-cluster

visual concept indicated in yellow. For the other four “words”, the objects of

interest are generally a combination of several multi-cluster visual concepts. This

illustrates that the single-concept classifiers and the multi-cluster visual concepts

correspond to different aspects of images and complement each other.

4.2.4 Application for Image Classification

As our visual concept representation has two components, the single-concept clas-

sifiers F = {f 1, ..., fM} and the multi-cluster visual concepts C = {Ck, 1 ≤ k ≤
M}, we apply the two components separately on novel images. Each novel im-

age is divided into grids of a three-level spatial pyramid [LSP06b]. The single-

concept classifier fk is applied to the densely sampled patches from the grids, and

the responses of the classifiers are pooled in a max-pooling manner. For natu-

ral images, the objects are generally varying in different scales, and we run the

classifiers on the novel images on these scales. Since our method works on the
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patch level and the visual concepts are learned with image patches of different

scales, two or three scales are enough for testing images. The pooled responses

across different scales are concatenated, leading to a feature vector with dimension

M × 21× number of scales.

We use the multi-cluster visual concepts C = {Ck, 1 ≤ k ≤ M} in a simple

way as a single codebook in a spatial pyramid matching manner (SPM) [LSP06b]:

multi-scale mid-level patches are assigned to the multi-cluster visual concepts via

hard assignment; a histogram is constructed for each grid of the three-level spatial

pyramid and the feature is the concatenated version of the histograms of all the

multi-cluster visual concepts. In this way, for each novel image, we obtain a

feature vector of dimension M × n × 21, where n is the number of multi-cluster

visual concepts for each word.

Definitely, there are several other options. One is to train a linear classifier

model for each visual concept, and apply the classifiers to the novel images. In

this work, we simply use the basic scheme to illustrate the effectiveness of the

visual concepts we learned.

Finally, the features corresponding to the single-concept classifiers and the

multi-cluster visual concepts are combined like multiple kernel learning [BLJ04,

LCB04]. The kernels KF for the single-concept classifiers and KC for the multi-

cluster visual concepts are computed respectively and combined linearly: K =

wKF + (1 − w)KC. In our work, as there are only two kernels, instead of using

advanced techniques such as the SMO algorithm in [BLJ04], we can simply use

cross-validation to determine the best w∗. χ2 kernel is used in the experiments,

and it can be computed efficiently using the explicit feature map in [VZ12, VF08].
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4.3 Experiments and Results

On the PASCAL VOC 2007 [EVW], scene-15 [LSP06b], MIT indoor scene [QT09],

UIUC-Sport [LF07] and Inria horse [FJS07b] image sets, we evaluate the visu-

al concepts learned from the Internet images. On these image sets, the visual

concepts achieve the state-of-the-art performances, demonstrating its good cross-

dataset generalization capability. Also, as a type of generic knowledge from Inter-

net images, when used with the specific models learned from specific image sets,

the results can be further improved to a large extent.

4.3.1 Implementations

For each patch, we use HOG [DT05] (of 2048 dimensions), LBP [ZP07] (of 256

dimensions) and the L∗a∗b∗ histogram (of 96 dimensions) as the feature; these

features are concatenated, leading to a feature vector of dimension 2400. As from

Figure 4.5, by combining the three kinds of features, better result of the single-

concept classifiers can be achieved.

The toolbox of LIBLINEAR [FCH08b] is adopted for efficient training; for

each word, five iterations are used in miSVM. To create the visual concepts, on

the patches labeled as positive by miSVM, 20 clusters are found using K-means;

Thus, 716×20 = 14320 multi-cluster visual concepts are created for the 716 words.

We have created another two codebooks of size 14320. The first codebook is

created by quantizing the densely sampled multi-scale image patches from images

of all the words. The second codebook is created by finding 20 clusters from the

images for each word. In the following, we name the first codebook KMS-ALL,

and the second codebook KMS-SUB. As the two codebooks are created without

using the saliency assumption and the multiple instance learning framework, they

serve as two good baselines.
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Figure 4.5: Illustration of feature combination: better response can be achieved

by combining HoG, LBP, and L∗a∗b∗ histogram.

4.3.2 Quantitative Results

PASCAL VOC 2007 Image Set This dataset contains 20 object classes and

9963 images. It is split into training, validating and testing sets, and the mean

average precision (mAP) of the 20 categories on the testing set is reported. The

dataset is challenging, with large intra-class variances, cluttered backgrounds, and

scale changes. When applying the visual concepts to the dataset, image patches

of three scales 64× 64, 128× 128 and 192× 192 are used.

In Table 4.1, we compare the mAPs. Firstly, we compare the visual con-

cepts with the two baselines KMS-ALL and KMS-SUB. The multi-cluster visual

concepts outperform both KMS-ALL and KMS-SUB, indicating that, the multi-

cluster visual concepts learned are more effective. Though there are only 716

single-concept classifiers, they perform reasonably well, achieving an mAP 51%.

By combining the single-concept classifiers and the multi-cluster visual concepts,
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the mAP is 57.5%, much higher than that of KMS-ALL and KMS-SUB.

We also compare our visual concepts with the improved Fisher-kernel (FK),

locality-constrained linear coding (LLC)[WYY10b], and vector quantization (VQ).

The fisher kernel starts from a Gaussian Mixture-Model (GMM), and concatenates

the average first and second order differences between the patch descriptors and

the centers of the GMM, leading to a feature vector of very high dimension. In

[PSM10], the Fisher-kernel is improved by reducing the dimensionality of the patch

descriptors using PCA. LLC [WYY10b] projects the patch descriptors to the local

linear subspaces spanned by some visual words closest to the patch descriptors,

and the feature vector is obtained by max-pooling the reconstruction weights.

The improved Fisher-Kernel and LLC stand for the state-of-the-arts. For FK,

LLC and VQ, the results reported here are from the image classification toolbox

in [CLV11]. In [CLV11], multi-scale dense SIFT descriptors are used as the local

features and the χ2 kernel is used in SVM when classifying the images. From

Table 4.1, we can observe that even though we do not use images from PASCAL

VOC 2007 in the learning stage, the result of our visual concepts approach is

comparable to that of the states-of-the-arts.

We investigate the complementariness of our visual concepts with the model

learned from the images of the PASCAL VOC 2007 image set with advanced

Fisher-kernels. The kernel matrices of the visual concepts and the improved

Fisher-Kernels are combined linearly. The combination weight is learned on the

validating set. For the improved Fisher-kernel, its result reported in [CLV11] is

61.69%, but when we run the toolbox with the suggested experimental settings,

we get the mAP 59.6%. By combining the improved Fisher-kernel and our visual

concepts, the result is boosted to 62.9%. This illustrates that our visual concepts

do add extra information useful to the models learned from specific data sets.

Multiple clustered instance learning (MCIL) [XZC12] investigates the multiple

cluster property at the instance level in the MIL-Boost framework. We applied M-
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FK LLC-25k VQ-25K MCIL KMS-SUB

59.6% 57.66% 56.07% 43.3% 53.9%

KMS-ALL SCCs MVC VC FK+VC

53.3 51% 55.6% 57.5% 62.9%

Table 4.1: The mean average precisions on PASCAL VOC 2007 image set. FK:

the improved Fisher-kernel with 256 components; LLC-25k: LLC with 25, 000

codes; VQ-25k: vector quantization with 25, 000 codes; MCIL: multiple clustered

instance learning[XZC12]; KMS-SUB: the codebook created by clustering on each

word; KMS-ALL: the codebook created by clustering on the image data from

all the words; SCCs: the single-concept classifiers; MVC: the multi-cluster visual

concepts; VC: the visual concepts, combination of the single-concept classifiers

and multi-cluster visual concepts; FK+VC: combining the improved fisher kernel

with our visual concepts.

CIL to learn a mixture of 20 cluster classifiers for each word, and used the outputs

of the cluster classifiers as the features to encode the novel images. The result of

MCIL is much worse than that of the visual concepts. The reason is that, in M-

CIL, as the number of weak classifiers increases, the number of positive instances

decreases dramatically and the cluster classifiers in MCIL learn little knowledge

about the image set because of the lack of positive instances. Also, there is no

competition between the cluster classifiers in MCIL, making the multiple cluster

property of the image data not fully investigated.

Scene Classification We evaluate the visual concepts in the task of scene

classification on three scene image sets, Scene-15 [LSP06b], MIT indoor scene

[QT09], and UIUC-Sport event [LSX10]. Scene-15 has 15 natural scene classes;

100 images from each class are randomly selected for training and the remaining

images are used for testing. UIUC-Sport has 8 complex event classes; 70 images
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from each class are randomly sampled for training and 60 images are sampled

for testing. On both Scene-15 and UIUC-Sport, we run the experiments for 10

rounds, and report the average classification accuracy. MIT Indoor scene consists

of 67 clustered indoor scene categories and has fixed training/testing splits.

On the scene image sets, image patches of two scales 64 × 64, 128 × 128 are

used. The results are reported in Table 4.2. On the three datasets, our visual

concepts approach outperforms KMS-ALL and KMS-SUB significantly. Object

bank learns detection models for 200 objects from supervised data. Even though

our visual concepts are learned in a weakly supervised manner, the visual concepts

still outperform the detection models of object bank. The main reason for the

superiority of our visual concepts is that, while object bank tries to capture an

object using a single detection model, our method can capture the multiple cluster

property with 14, 200 visual concepts and can model the diversity of the Internet

images. We also test vector quantization (VQ) with 10, 000 codes on the three

image sets using the toolbox [CLV11]. With such a large amount of codes, VQ

performs surprisingly well on the UIUC-Sport and the MIT Indoor scene sets.

On all the three scene image sets, our visual concepts perform comparably to VQ

though we do not use the images from those image sets. By combining the VQ

with our visual concepts, the performance can be boosted significantly. Relatively,

the improvement is about 3% on the Scene-15 and UIUC-Sport image sets, and

10% on the MIT indoor scene set. For VQ, with the number of codes increased,

the performance will saturate: we have tested VQ with 24, 000 codes on the MIT

indoor scene image set, and the accuracy is 47.1%, even a slight decrease. From

Table 4.2, we can see that, our method also outperforms recent methods such as

[WLJ12], [NHG12],[YYG09b], [SGE12] and [KVR12].

Inria Horse Image Set INRIA horse dataset contains 170 horse images and

170 background images taken from the Internet. We randomly selected half of the

images for training and the remaining images for testing and run the experiments
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Scene-15 UIUC-Sport MIT-Indoor

Object Bank [LSX10] 80.9% 76.3% 37.6%

Yang et al. [YYG09b] 80.4% - -

Li et al. [LF07] - 73.4% -

Singh et al. [SGE12] - - 38%

Pandey et al. [PL11] - - 43.1%

Quattoni et al. [QT09] - - 26%

Niu et al. [NHG12] 78% 82.5% -

Wang et al. [WLJ12] 80.43% - 33.7%

Kwitt et al. [KVR12] 82.3% 83.0% 44.0%

KMS-ALL 78.7% 81.5% 38.8%

KMS-SUB 80.4% 83.2% 41.9%

VQ 82.1% 85.6% 47.6%

VC 83.4% 84.8% 46.4%

VC+VQ 85.4% 88.4% 52.3%

Table 4.2: The classification accuracies on the scene datasets.
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for 10 rounds. On this image set, the accuracy of our visual concepts is 92.47%,

better than the accuracy 91.4% of VQ with 10, 000 codes and 85.3% in [MNJ08b].

4.4 Conclusion

In this work, we have introduced a scheme to automatically exploit mid-level

representations, called visual concepts, from large-scale Internet images retrieved

using word-based queries. From more than a quarter of a million images, over

14,000 visual concepts are automatically learned. These learned visual concepts

are generic and have good cross-dataset generalization capability; when combined

with the models learned from specific dataset, our algorithm improves the state-

of-the-arts to a large extent, demonstrating the complementariness between the

visual concepts and the image content in specific datasets.
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CHAPTER 5

Disagreement-Based Multi-System Tracking

5.1 Introduction

Object tracking has been a long standing problem in vision. Once a tracker gets

initialized, it starts to track the target in a video by performing two steps: (1)

making a prediction about the location of the target, and (2) updating its object

model (location, appearance, and shape) based on the prediction. This is in spirit

very similar to the bootstrapping and learning procedure in a learning algorithm.

With the recent success in detection-based tracking approaches, an increasing

amount of work has treated the tracking problem as a semi-supervised learning

problem [AVI05, TBZ07, GLB08, LRL08, BYB09]. Picking a target to track at

the beginning provides supervised data; the remaining of the frames for the tracker

to explore do not contain label information and thus is unsupervised. Due to the

errors introduced in both the prediction and model updating stage, nearly any

tracker will eventually fail with the errors being accumulated over the time.

Disagreement-based semi-supervised learning approaches [ZL10], such as co-

training or tri-training [BM98, ZL05], provide a mechanism to allow classifiers

trained on different views or data samples to exploit unlabeled data. The learn-

ing process is a type of ensemble learning [DIE00, KUN02, BDM02]. It involves

multiple classifiers which label the unlabeled data to update and improve each

other [WZ07]. From a different angle, the use of multiple classifiers can be viewed

as a fusion problem and it has been shown that fusing complementary features
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in a tracking system often leads to enhanced performances [WH04, SM02, TN01].

However, less efforts have been made in learning to fuse well-developed existing

algorithms through semi-supervised learning; we will see later (in both theory and

experiments) that a disagreement-based fusion significantly improves the perfor-

mance over direct combination of features/systems [SM02, SS03, KL10].

In this disagreement-based multi-system tracking approach, we seek a balance

between the current tracker and the level of agreements among other trackers. Our

intuition is to find the location where the current tracker is confident but disagrees

with other trackers, while other trackers reach a high degree of agreement. We

provide both theoretical and experimental evidence to our approach and show

much improved results over the state-of-the-art techniques on benchmark videos.

5.2 Related Work

A number of tracking methods have been proposed to perform fusion[WH04,

SM02, I L06, ZYC10, SS03, TN01, KL10]. Different from [WH04, KL10] where

multiple parts were tracked and correlated, we deal with a single target. In

[SM02, SS03] multiple trackers were fused but these trackers represent different

features and they were directly combined. In [I L06] the tracking approach was

combined via the weighted combination of the PDFs. Different from [I L06], our

method does not perform direct multiplication but seeks a balance between the

PDF of one tracker and the degree of agreement by the other trackers; also, in our

method, each tracker performs prediction separately maintaining certain indepen-

dence and patches at the agreed positions can be recommended to update the other

trackers. In [SWC09], the tracking combination method is trained for specific sce-

narios. Different from [SWC09], our method is based on the disagreement-based

semi-supervised learning and do not require an off-line training process; also, it

can be applied to general videos, and performs very well on a fairly large bench-
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mark dataset. In [MC10], mutual information was used for the fusion. Here, the

proposed fusion approach is based on the disagreements among the trackers. The

most related work to our approach is [TBZ07], where the co-training idea was used

to retrain classification-based trackers. However, [TBZ07] followed the standard

co-training implementation using one specific type of classifier, SVM. In [ZYC10]

several tracking algorithms were combined in a Bayesian framework whereas we

here emphasize disagreement-based fusion through semi-supervised learning.

In disagreement-based semi-supervised learning, much of the work has been

focused on using multi-view features [BM98] or different data samples [ZL05].

The spirit of all such kind of approaches [BM98, CS99, ZL05, LT08] is to train

multiple classifiers with disagreements, and then label the unlabeled instances for

each other to update/improve the model. [DLM99] provided PAC bounds with

multi-view features, while [WZ07] provided a sufficient condition for multi-view

as well as single-view features. Recently, a sufficient and necessary condition

was proved for disagreement-based semi-supervised learning, by establishing a

connection between disagreement-based and graph-based approaches [WZ10].

In this work, we emphasize taking advantages of having various well-developed

tracking algorithms. In the democratic co-learning framework [ZG04], different

algorithms are also used; however, their approach is for classification and a direct

voting of all the methods is used. A main difference between tracking and classifi-

cation is that there is no labeling information provided once the tracking process

starts (it is a dynamic system), whereas most disagreement-based semi-supervised

learning algorithms can still use labeled data in retraining. Notice that the ex-

istence of large disagreements among the classifiers is a premise for the learning

or tracking process to continue [WZ07], while the prediction is made by seeking

the agreements among the classifiers. For example, in [CS99, LT08], classifiers

are learned so that they not only fit the supervised data well, but also themselves

reach a high degree of agreement; the tri-training algorithm [ZL05] uses confident
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and agreed data from two classifiers to help the third classifier. Our agreement is

used in the prediction stage like the bootstrapping stage in [ZG04], and we further

emphasize the consistency with the information provided by the current tracker.

Our work is also related to the active learning literature [DAS05] but we do not

have humans in the loop.

5.3 Disagreement-Based Tracking

The problem of making predictions in a tracking system has its own unique char-

acteristic, and directly applying the standard co-training formulation [TBZ07]

may not necessarily yield a good solution. Instead, we take advantages of having

well-developed existing algorithms, experts, and combine them by exploiting the

disagreements among the experts. The differences in the intrinsic design of the

existing systems will naturally lead to a certain amount of biases/variations, a

property the disagreement-based approaches requires [WZ07].

5.3.1 Prediction of Single Tracker

In this section, we first clarify our notations for a single tracker. A tracker can

be viewed as a learner denoted by ht = (A, f t, X t) since it always updates itself.

Here, A is a specific tracking method e.g. mean-shift tracker [CRM00], or particle

filtering [IB98]; f t is the underlying appearance model about the target at time

t which can be represented by a discriminative model [BYB09], generative model

[LRL08], or template matching [CRM00]; X t is the position of the target at time

stamp t. Given a new image I t+1 at time stamp t+1, tracker ht makes a prediction,

X t+1, about the position of the target and updates its underlying appearance
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model to f t+1. We can view tracking a target of a tracker A as computing

qt+1
A (x) ≡ pA(yx = +1|I t+1(x), f t) · p(X t+1 = x,X t)

and
∑

x

qt+1
A (x) = 1 (5.1)

Here yx = +1 indicates the occurrence of target at location x and I t+1(x) is

an image patch centered at x. Motion coherence is assumed that the prediction

on the time stamp t + 1 is smooth w.r.t. to the prediction on the time stamp t,

for example, p(X t+1 = x,X t) can be a constant within a neighborhood of Xt and

zero outside. This corresponds to the local search strategy adopted by most of

the trackers.

Now that qt+1
A (x) ∈ [0, 1] indicates how likely xt+1 is the correct position

for the target. For an existing tracking algorithm, it may not strictly follow the

formulation as in Eq. (5.1), but we still can use it so long as it outputs a probability

map for the prediction.

5.3.2 Disagreement of Trackers

Suppose we have a set of existing trackers (experts) for making a prediction in a

tracking system S = {hi, i = 1..n} with n ≥ 3 being the number of trackers and

each hi is a tracker trained by tracking algorithm Ai. Given an input I t+1 at a time

stamp t + 1, each tracker hi computes a qt+1
i (x) to make a prediction of random

variable X . Let pt+1(x) denote the ground probability map which indicates how

likely x is the correct position, our general objective is to combine the probability

maps by different trackers to obtain high probability modes in the “ground-truth”

pt+1(x).

A direct way to fuse the multiple trackers is by linearly combining the proba-

bility maps together [TN01]. Here, we call it direct tracker fusion (DTF), which

serves as a baseline algorithm:
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q̄t+1(x) =
1

n

n∑

i=1

qt+1
i (x) (5.2)

with the hope that q̄t+1(x) → pt+1(x) as each tracker being unbiased and in-

dependent. Algorithms like [TN01] perform in this way with an adaption in the

weighting parameters. The target location is retrieved by x̌t+1 = argmaxx q̄
t+1(x).

In DTF, at each time, all trackers use the same prediction, x̌t+1, and each tracker

updates its appearance model to f t+1
i based on x̌t+1 separately and continues the

tracking process. Fusing trackers leads to improvement over the original ones (see

Section 5.3.2.1 and Section 5.4 for theoretical and empirical justification respec-

tively).

However, predicting the position for the target w.r.t. Eq. (5.2) has a big draw-

back, i.e., the average performance qt+1(x) of the n trackers may be degenerated

by one bad tracker in the group. Here we give an example to illustrate this: sup-

pose there are four trackers f1, f2, f3, f4 and two candidate positions x∗ and x
′

at

t+1, where x∗ is the correct position for the target. The outputs of the four track-

ers on the two candidate positions are q1(x
′

) = 0.9, q2(x
′

) = 0.4, q3(x
′

) = 0.4,

q4(x
′

) = 0.4 and q1(x
∗) = 0.1, q2(x

∗) = 0.6, q3(x
∗) = 0.6, q4(x

∗) = 0.6. The

tracker f1 is very confident but disagrees with other trackers and makes a wrong

prediction. To some extent, this kind of tracker which is confident but disagrees

with other trackers can be thought of as a outlier tracker. If we fuse the four

trackers with direct tracker fusion (DTF), the position x
′

will be predicted as the

position for the target according to x = argmaxx q
t+1(x). Unfortunately, we get

a wrong position x
′

due to the outlier tracker f1 at t + 1 although three trackers

make correct prediction with confidence larger than 0.5.

Let ζt+1 denote the probability mass on such an event that the average per-

formance qt+1(x) is degenerated by some outlier tracker fi, i.e., the other n − 1

trackers agree with each other and predict the correct position with high confi-

dence while the DTF in Eq. (5.2) predict the position wrongly due to the outlier
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tracker fi at t + 1. Next, we give the formulation for combining the multiple

trackers based on their disagreement to avoid this kind of event for the purpose

of robustness. Given n trackers, we still let each tracker perform prediction sepa-

rately. If the current tracker is confident but disagrees with other trackers while

other trackers reach a high degree of agreement, the current tracker is prone to be

drifted to the agreed position of other trackers to reach more robust predictions.

Our intuition is that we seek a balance between the generated distribution qt+1
i (x)

of the current tracker and the degree of agreement by the other trackers as

Qt+1
i (x) = (1− α)qt+1

i (x) +
α

n− 1
[

n∑

j=1,j 6=i

qt+1
j (x)] ·

δ(∀j 6= i, qt+1
j (x) ≥ TH)

(5.3)

and the specific location by the i-th tracker is x̃t+1
i = argmaxxQ

t+1
i (x). TH is a

threshold corresponding to a confidence zone. α balances the importance of each

tracker’s own prediction and the influence from other trackers. The derivation of

TH and α will be given in Section 5.3.2.1.

Note that the second term is non-zero only when all the other trackers have a

high-degree agreement; this is different from the traditional fusion-based tracking

[TN01] where weighted sum is performed; in addition, we emphasize that Eq. (5.3)

focuses mainly on the places with high probability and it is not necessary to fit

pt+1(x) at all xs as in the general statistical learning; our disagreement formulation

in Eq. (5.3) can take advantage of this property.

Eq. (5.3) can be understood as the following: if the current tracker disagree

with the other trackers while the other trackers are confident and agree with each

other, the prediction of the current tracker will be influenced towards the agreed

location (depending upon the overall probability map); otherwise, tracker hi gives

out a prediction as if there were no other trackers. In such a way, the trackers can

keep relative independence and also enable confident interactions between each
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other. This makes our approach robust to outlier trackers. In addition, using the

agreement of other trackers gives the overall system an ability to be self-aware of

when the system starts to drift. This happens when all trackers have high entropy

of qt+1
i (x) with large disagreement.

The overall output is then given by xt+1 ∗ = argmaxx Qt+1(x) and

Qt+1(x) =
1

n

n∑

i=1

Qt+1
i (x) (5.4)

Note that xt+1 ∗ is the output of the overall system but it does not participate in

the retraining of the individual trackers. The pseudo code of disagreement-based

tracking is shown in Fig. 5.1. Tracking based on the disagreements among the

trackers shows advantage over using a direct combination and we justify this point

both theoretically and empirically in the following sections.

5.3.2.1 Theoretical Justification

We first show that a linear combination of multiple trackers as in Eq. (5.2), direct

tracker fusion (DTF), gains improvement over the individual systems. Let pt+1(x)

denote the ground truth which indicates how likely x is the correct position, and

let qt+1
i (x) ∈ [0, 1] be the output of algorithm Ai.

Lemma 3 If we take an average of the predictions from all the experts: q̄t+1(x) =

1
n

∑n
i=1 q

t+1
i (x) as in Eq. (5.2), then the average is bounded in a PAC sense. We

suppose that the n trackers are independent and unbiased: then qt+1(x) → pt+1(x)

as n→ +∞.

Proof For any small ǫ > 0, with Hoeffding inequality, we get that P (|qt+1(x) −
pt+1(x)| ≥ ǫ) ≤ 2 exp(−2nǫ2).

Lemma 3 shows that qt+1(x) can converge to the ground truth pt+1(x) expo-

nentially. Let errort+1
i denote the error rate of the tracker fi at t + 1, i.e., the
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Given n trackers {hi, i = 1..n}, each tracker hi = (Ai, f
t

i
, Xt

i
) adopts a specific

tracking method Ai. At the time stamp t = 0, a target is manually identified

located at X0. All trackers start with the sameX0 and obtain their appearance

model f0
i
. Given a new image It+1 at time stamp t+ 1,

• Each tracker hi searches a local neighborhood around Xt

i
and generate

a probability map qt+1

i
using Eq. (5.1).

• Find modes of x̃t+1

i
for Qt+1

i
(x) as in Eq. (5.3). x̃t+1

i
keeps a balance

between the estimation of the current tracker and the level of agreements

among other trackers.

• Assign Xt+1

i
= x̃t+1

i
, sample patches around Xt+1

i
and update the ap-

pearance model of each tracker to f t+1

i
using the embedded model up-

dating/learning rule in Ai

• Based on xt+1 ∗ = argmaxx
∑

i
Qt+1

i
(x), report the xt+1 ∗ as the track-

ing result for disagreement-based tracking (DBT).

Figure 5.1: Pseudo code of disagreement-based tracking.

probability that fi predicts a wrong position for the target at t + 1, errort+1
min =

mini{errort+1
i } and errort+1

max = maxi{errort+1
i }, we give the following theorem to

show that fusing the multiple trackers according to Eq. (5.3) and Eq. (5.4) will

improve the performance at least ζt+1 − n(errort+1
max)

n−1, contrasting to the direct

tracker fusion (ζt+1 was defined in the previous section).

Theorem 2 If we fuse the multiple trackers according to Eq. (5.3) and Eq. (5.4)

where α ≥ 2
3
and TH ≥ 1

2
, contrasting to the direct tracker fusion in Eq. (5.2),

the performance at t+1 can be improved at least ζt+1−n(errort+1
max)

n−1, where ζt+1

is the probability of the event that the average performance qt+1(x) is degenerated

by some outlier tracker.
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Proof Let X t+1 denote the set of candidate positions at t + 1. If there is some

x∗ ∈ X t+1, at which qt+1
i (x∗) ≥ TH for all i ∈ {1, . . . , n}, it is easy to find that

such x∗ is unique, since TH ≥ 0.5 (Here we neglect the probability mass on the

event that at t+1 there are two positions x and x
′

at which qt+1
i (x) = qt+1

i (x
′

) = 1
2
).

Considering Eq. (5.3) we get Qt+1(x∗) = 1
n

∑n
k=1 q

t+1
k (x∗), and x∗ will be selected

as the tracking result, no matter whether argmaxQt+1(x) or argmax qt+1 is used.

If for any x ∈ X t+1 there are less than n−1 trackers with qt+1
i (x) ≥ TH , then the

second term of Eq. (5.3) is zero. So for any x ∈ X t+1, Qt+1(x) = 1−α
n

∑n
k=1 q

t+1
k (x).

Predicting the tracing result according to argmaxQt+1(x) is equal to predicting

according to argmax qt+1. Next we analyze the situation when there is some

x̂ ∈ X t+1, at which qt+1
i (x̂) < TH and qt+1

j (x̂) ≥ TH for all j 6= i. Obviously,

such x̂ is also unique, since TH ≥ 0.5 and n ≥ 3.

Case 1: x̂ is the correct position for the target at t + 1. We will show that

even if qt+1
i (x̂) is very close to 0, i.e., tracker fi is an outlier at t + 1, it will not

degenerate the fusion of the multiple trackers due to Eq. (5.3). We obtain

Qt+1
i (x̂) = (1− α)qt+1

i (x̂) +

α

n− 1

∑

j 6=i

qt+1
j (x̂) ≥ (1− α)qt+1

i (x̂) + α · TH (5.5)

Qt+1
j,j 6=i(x̂) = (1− α)qt+1

j (x̂) ≥ (1− α) · TH

Thus,
n∑

k=1

Qt+1
k (x̂) ≥ (1− α)qt+1

i (x̂) + α · TH +

(1− α)(n− 1)TH (5.6)

For an incorrect position x′ 6= x̂, since
∑

x∈X t+1 q
t+1
k (x) = 1, it is easy to see that

Qt+1
i (x′) = (1− α)qt+1

i (x′) ≤ (1− α)(1− qt+1
i (x̂))

Qt+1
j,j 6=i(x

′) = (1− α)qt+1
j (x′) ≤ (1− α)(1− qt+1

i (x̂))

≤ (1− α)(1− TH) (5.7)
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Therefore,

n∑

k=1

Qt+1
k (x

′

) ≤ (1− α)(1− qt+1
i (x̂))

+ (1− α)(n− 1)(1− TH) (5.8)

We see that in general
∑n

k=1Q
t+1
k (x̂) ≥ ∑n

k=1Q
t+1
k (x

′

) for α ≥ 2
3
and TH ≥ 1

2
.

This makes the correct position more robust, i.e., the prediction of the disagreement-

based tracking will never be influenced even if fi is a outlier tracker. So the

improvement is at least ζt+1.

Case 2: x̂ is not the correct position for the target at t+1. Since qt+1
j (x̂) ≥ TH

for all j 6= i and TH ≥ 1
2
, n − 1 trackers predict the wrong position x̂ as the

tracking result at t + 1. Now we bound the probability of such event. Since

errort+1
j ≤ errort+1

max and the multiple trackers are assumed to be independent, the

probability mass on the event that n− 1 trackers predict the position mistakenly

is at most n(errort+1
max)

n−1. The worst situation is that the fusion according to

Eq. (5.3) performs worse than the direct tracker fusion in case 2 completely. We

get Theorem 2 proved.

From Theorem 2 we know that the fusion will get benefit from Eq. (5.3) under

the situation that one bad tracker degenerates the direct tracker fusion. When n

(the number of the trackers) is large, it would be difficult for the remaining n− 1

trackers to achieve some agreement (See the experiment “Non-Relax” in Section

5.4). In practice, we can relax this constraint, e.g., when two or more trackers

achieve agreement, the agreement term would take effect.

Note that the performance of Eq. (5.2) and Eq. (5.3) depends on the cor-

relation between the trackers. The correlation depends on two factors: (1) the

intrinsic design of the trackers; (2) the training samples used to train the trackers.

Two trackers with the same design trained on the same set of samples are highly

correlated, and two different types of trackers trained on the same set of samples
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are more correlated than those trained on different set of samples. If the n trackers

are the same, then using Eq. (5.3) shows no advantage over Eq. (5.2).

In summary, Lemma 3 suggests that fusing the multiple experts directly might

gain exponential improvement, contrasting to the single tracker; Theorem 2 shows

that our disagreement-based fusion method can provide more robustness to the

tracking system, which motivates the use of Eq. (5.3) by keeping a balance between

the current expert fi and the agreement from the other experts.

5.4 Experiments

In the experiments, we make a comprehensive comparison between the perfor-

mance of disagreement-based tracking, direct tracker fusion, and the individual

trackers. Four trackers are used and the experiment is conducted on 11 commonly

tested videos (listed in Table 5.1). The trackers used are MilTracker [BYB09], the

semi-supervised on-line boosting tracker (semiBoost)[GLB08], Incremental Visual

Tracker (IVT)[LRL08], and Incremental Visual Tracker using edge information

(IVTE).

Since the individual trackers perform prediction separately, the computational

complexity of the proposed method only adds slight overhead over the individual

ones with the multi-core processor and parallel computing. Compared with the

large performance gain, this computational overhead is tolerable.

From the experiments, we observe that, statistically, each individual tracker

gets significantly improved by using Eq. (5.3): the average center location error

has been reduced by more than 12 pixels and the success rate has increased by

20% ∼ 40%. The result of DBT (Disagreement-Based Tracking) also outperforms

the system by directly combining the original trackers, i.e., DTF, with 3.3 pixels

reduction in center location error and 4.4% improvement in success rate. DBT

also significantly outperforms PROST [SLS10].
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5.4.1 Implementation details

While a wealthy body of tracking papers/systems have been reported, we found

a few systems (with available source code) having decent performance on gen-

eral videos. Here, we provide brief descriptions for these trackers we used with

necessary changes made to them.

MilTracker adopts an online multiple instance learning algorithm to train a

discriminative classifier. In order to handle the ambiguity of sampled patches, a

bag of potentially positive image patches are extracted. MilTracker maintains a

pool of Haar features and the online boosting mechanism is adopted.

SemiBoostTracker also adopts an online boosting mechanism and it formulates

the update process in a semi-supervised fashion combined with a given prior. This

helps to alleviate the drifting problem.

The IVT incrementally learns a low dimensional eigenspace representation

to model the appearance changes of the object. In IVT model, the target is

represented as a vector of gray-scale value, and the motion is modeled by an

affine image warping. To propagate sample distributions over time, a particle

filter framework is adopted. Since both MILTracker and SemiBoostTracker do

not support affine transformation, we disabled the scaling and rotating ability of

IVT. IVTE is similar to IVT, except that it uses level set as the feature.

The forms of the 4 tracking systems’ outputs are rather different. MILTracker

and SemiBoostTracker produce scores on local search regions; IVT and IVTE

propagate probabilities via particles. In the experiment, we map the scores

of MILTracker and SemiBoostTracker to the range [0, 1] to produce probabili-

ty maps qMIL and qSBT (The probability maps are normalized to make sure that
∑

x q
t+1
A (x) = 1). For IVT and IVTE, we keep the position entries (ai, bi) of

the particle and use a parzen window approach to estimate the probability for

prediction. For a point x = (a, b) on the image, its probability is calculated as
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qIV T (x) =
∑M

i=1wi ∗max{0, 1−
√

(a− ai)2 + (b− bi)2/L}. In our experiment, L

is set to 15. A map qIV TE is produced similarly as qIV T for IVTE.

Based on qMIL, qSBT , qIV T , and qIV TE we respectively compute the correspond-

ing QMIL, QSBT , QIV T , and QIV TE using Eq. (5.3) (Since 4 trackers are used, we

relaxed Eq. (5.3) that when 2 trackers achieve confident agreement, the agreement

term will take effect) and thus, each tracker makes its own prediction separately.

As we have mentioned before, x̃t+1
i found by mean shift algorithm [CRM00] can

represent multiple points (modes). For each tracker, e.g., MILTracker, the one

mode with the maximum value is reported as its prediction, significant modes

found are used to retrain the tracker and as the seeds for further search at the

next time stamp. For the results reported in our experiment, α is set to be 0.67

as suggested by the theoretical section. The threshold TH in Eq. (5.3) is set as

0.8/(Λ/3) (Λ is the size of the search window). For each tracker, 2 modes are

kept.

5.4.2 Quantitative Results

The average center location error The average center location error is a

commonly used metric to measure the performance of tracking and is defined as the

average error between the predicted locations to the ground truth. In Table 5.1,

we summarize the results of the average center location error on all the 11 videos.

It’s clear that our disagreement based tracker outperforms the individual trackers,

Direct tracker fusion, and the co-training scheme. For non-relax (using Eq. (5.3)

directly without relaxation), it’s less possible for the trackers to achieve some

agreements, and the chance of interaction between trackers is reduced. Still the

result is better than the individual trackers.

The success rate If the location error on one frame is less than a pre-specified

threshold, the prediction is regarded as a successful prediction. The success rate is
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Table 5.1: Comparison of Average Center Location Error. Non-Relax indicates to

use Eq. (5.3) directly without relaxation;Co-Training stands for the results using

co-training method.

videos MilT IVT IVTE SBT DTF Co-Training Non-Relax DBT

Girl 31.9 25.2 18.1 19.3 20.6 39.8 23.3 13.4

CokeCan 20.5 55.3 11.0 14.9 9.3 49.0 7.9 6.6

Tiger1 15.9 71.9 56.6 20.9 37.7 64.1 49.0 31.2

Sylv 10.9 44.0 19.5 16 19.5 31.7 7.3 10.8

StatOcc 27.8 3.3 4.8 74.4 2.5 41.2 26.2 3.0

David 22.9 4.9 16.9 26.4 7.0 9.2 7.9 4.1

Cliffbar 12.0 31.4 78.6 29.9 27.1 45.6 16.7 8.5

Surfer 9.2 6.7 23.9 67.6 5.1 4.7 5.1 4.8

faceocc2 20.1 14.2 9.1 17 6.5 12.4 12.0 6.1

Indoor 17.2 30.2 193.5 116.5 4.7 61.9 10.7 4.5

faceocc 27.1 11.8 11.3 6.8 8.9 23.3 7.6 9.7

In all 20.8 21.8 22.3 37.3 11.5 32.7 15.8 8.2
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defined as the ratio of successful predictions over all the predictions. To compute

the success rate, we set T as certain ratio of the average width of the target,

i.e., T = β ∗ (w + h)/4, where, w and h are the width and height of the target

respectively. Conceptually, this is similar to the overlap score evaluation used in

[SLS10] and thus, success rate is conceptually similar to the tracked percentile in

[SLS10]. We observe that, the trackers can not track the target precisely at all

times, if there is no overlap but the prediction of the tracker is not far from the

target or within the search area of the tracker, it’s often possible for the tracking

process to recover. Our evaluation measurement can reflect such a phenomenon.

We compare the success rate in Table 5.2 and from Table 5.2, the DBT achieves

the highest success rate.

Table 5.2: Comparison of success rate when β = 0.5.

MilT IVT IVTE SBT DTF Non-Relax DBT

0.596 0.733 0.753 0.592 0.862 0.84 0.900

Comparison of probability maps In Fig. 5.2, we show how the probabil-

ity maps are generated in Eq. (5.2) and Eq. (5.3) on a testing video, Tiger1.

In Fig. 5.2, (a) shows the results by DTF. (b) and (c) display the probability

maps generated by disagreement-based tracking. The probability maps inside the

dashed yellow rectangle are shown below the screen shots. Underneath each figure,

from left to right, the probability maps are IVT, IVTE, MILTracker, Semiboost

tracker respectively (see the discussions about these trackers in the experiments).

For DTF in (a), the fifth probability map is the combined map. For disagreement-

based tracking in (b) and (c), the first rows shows the original probability maps,

and the second row shows the Qt+1
i computed by Eq. (5.3).

DTF drifts from the 30th frame; on this frame, the predictions of the trackers

are rather diverse. In DTF, however, the individual tracker’s prediction is not
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fully respected and it has to comply with the voted prediction; this is the primary

reason for drifting and getting trapped; using Eq. (5.3) however leads to a more

robust prediction. As we can see from the second figure, on the 30th frame,

MILTracker and Semiboost tracker achieves certain agreement, but IVT and IVTE

still complies with its own prediction since the agreement is weak. On the 35th

frame, when MILTracker, IVT and Semiboost tracker achieve confident agreement,

IVTE is pulled back to the agreed position and the four trackers merge again. The

benefit of our disagreement-based tracking is obvious: the trackers then keep their

relatively different traces and the risk of getting trapped is reduced.

(a) (b) (c)

Figure 5.2: Illustration of the probability maps where four trackers (experts) are

adopted (the figures have been scaled for visualization).

Comparison with other methods PROST [SLS10] is another fusion based

tracking algorithm that adopts 3 trackers (a template model, an optical-flow based

mean-shift tracker and an online random forest tracker). Table 5.3 and Table 5.4

compare the average location errors and the tracked percentage (computed using

the overlap score in [SLS10]) with PROST. From the two tables, we can observe

that, our disagreement-based tracking outperforms PROST and achieves better

tracked percentages on most of the videos.

The best experimental performance of Democratic Integration in [TN01] was

achieved by using uniform qualities, which assigned equal weights to all the clues,

and corresponded directly with DTF. In addition, we implemented the quality

81



Table 5.3: Comparison of average center location error with [SLS10]

noalign Method Girl tiger1 sylv David faceocc faceocc2

[SLS10] 19.0 7.2 10.6 15.3 7.0 17.2

Ours 13.4 31.2 10.8 4.1 9.7 6.1

Table 5.4: Comparison of tracked percentage with [SLS10]

Method Girl tiger1 sylv David faceocc faceocc2

[SLS10] 89 79 73 80 100 82

Ours 97 30 83 100 100 100

measure of normalized saliency and the performance was not as good as DBT:

their average center location error is 13.8 with success rate 0.87.

We did not get the implementation of [TBZ07]. Nevertheless, we did exper-

iment on some videos used in [TBZ07] and the results of DBT are better than

[TBZ07] qualitatively (skipped here due to page limit). Moreover, we indeed im-

plemented co-training and reported the result in Table 5.1 (average center location

error 32.7), which is much worse than DBT.

Table 5.5: Performance by varying α and TH (TH = R/(Λ/3))

R/α 0.8/0.3 0.8/0.67 0.8/0.85 0.7/0.67 0.9/0.67

Average Error 10.0 8.2 9.8 9.95 9.8

Success Rate 0.875 0.90 0.895 0.87 0.89

Robustness by varying the parameters In table 5.5, we summarize the

performance of disagreement-based tracking by varying the parameters α and TH ,
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which are the two key parameters in Eq. (5.3). We can see from this table, by

varying TH and α, the results (especially the success rate) do not change too

much. This demonstrates the robustness of disagreement-based tracking. The

average center location error has relatively larger change because on portions

of the videos Tiger1 and Indoor, disagreement-based tracking gets distracted to

positions distant from the targets. In such cases, the success rate does not vary

too much, but the center location error is increased.

Figure 5.3: Comparison of tracking results on the video Girl. The first row: the

results of disagreement-based tracking; the second row: the results of 4 individual

trackers and direct tracker fusion; the right plot: the comparison of center location

error; dotted green: IVT, dotted black: MILTracker, dotted blue: IVTE, dotted

yellow: Semiboost tracker, solid Red: disagreement-based tracking, and solid

magenta: Direct tracker fusion.

Screenshots of the results In Fig. 5.3, we compare the tracking results on

the video Girl. This video undergoes several challenges: fast appearance change

and occlusion. Although both MILTracker and IVTE can track the face of the girl

successfully, the tracking process is not very stable. IVT drifts from the face at the

20th frame. From the 391th frame, direct tracker fusion also drifts and get trapped

at the background of the images. As can be seen from both the screen shots and

the error plot on the right of Fig. 5.3, we find that disagreement-based tracking

tracks most robustly and accurately. In Fig. 5.3, we can also find a very nice

property of democratic tracking that, the traces of the four trackers are similar

but not exactly the same, thus, they can explore different spaces, recommend
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confident samples to other trackers, and thus avoid to be trapped at an incorrect

position.

5.5 Conclusion

In this work, we have introduced a disagreement-based tracking method which

fuses multiple existing tracking systems in the following way that seeks a balance

between the coherence of the current tracker and the degree of agreements among

other trackers. In such a way, it enables the interaction between trackers and

keeps the appealing characteristics of the trackers at the same time. As illustrat-

ed in the experiments, the balance complies with the characteristic of tracking.

Disagreement-based tracking can be built on top of various existing well-developed

tracking systems utilizing their intrinsic biases. Adopting several state-of-the-art

tracking algorithms, our approach is able to improve each of them by a large

margin on widely used benchmark videos in the literature
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