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Subspace projection methods utilizing perturbative corrections have been proposed for computing 
the lowest few eigenvalues and corresponding eigenvectors of large Hamiltonian matrices. In this 
paper, we build upon these methods and introduce the term Subspace Projection with Perturbative 
Corrections (SPPC) method to refer to this approach. We tailor the SPPC for nuclear many-body 
Hamiltonians represented in a truncated configuration interaction subspace, i.e., the no-core 
shell model (NCSM). We use the hierarchical structure of the NCSM Hamiltonian to partition 
the Hamiltonian as the sum of two matrices. The first matrix corresponds to the Hamiltonian 
represented in a small configuration space, whereas the second is viewed as the perturbation 
to the first matrix. Eigenvalues and eigenvectors of the first matrix can be computed efficiently. 
Because of the split, perturbative corrections to the eigenvectors of the first matrix can be obtained 
efficiently from the solutions of a sequence of linear systems of equations defined in the small 
configuration space. These correction vectors can be combined with the approximate eigenvectors 
of the first matrix to construct a subspace from which more accurate approximations of the desired 
eigenpairs can be obtained. We show by numerical examples that the SPPC method can be more 
efficient than conventional iterative methods for solving large-scale eigenvalue problems such 
as the Lanczos, block Lanczos and the locally optimal block preconditioned conjugate gradient 
(LOBPCG) method. The method can also be combined with other methods to avoid convergence 
stagnation.

1. Introduction

Nuclear structure calculations require solving 𝐴-body Schrödinger equations where 𝐴 =𝑍 +𝑁 is the number of nucleons consist
ing of 𝑍 protons and 𝑁 neutrons. The Configuration Interaction (CI) method or no-core shell method (NCSM) [5], which represents 
the solution to the Schrödinger equation by a linear combination of 𝐴-body basis functions, reduces the problem to an algebraic 
eigenvalue problem:
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Fig. 1. (a) The Hamiltonian matrix 𝐻 of 12C constructed by the CI method with a truncation parameter 𝑁max = 4 and ℏΩ = 20 MeV, using the nucleon-nucleon 
interaction. The leading submatrix 𝐻̂0 (in blue) of 𝐻 (in black) that is around 63 times smaller is equivalent to the Hamiltonian matrix constructed by the CI 
method with a truncation parameter 𝑁max = 2. (b) Illustration of the eigenvector localization observed in the Hamiltonian matrix. The leading components (in blue; 
corresponds to the portion of 𝐻̂0 to 𝐻) of the eigenvector corresponding to the lowest eigenvalue of 𝐻 are several magnitudes larger than the tailing components. 
(For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

𝐻Ψ𝑘 =𝐸𝑘Ψ𝑘, (1)

where 𝐻 ∈ ℝ𝑛×𝑛 is the matrix representation of the 𝐴-body nuclear Hamiltonian operator in a configuration space (spanned by a 
set of 𝑛 𝐴-body basis functions), 𝐸𝑘 is the 𝑘th lowest eigenvalue of 𝐻 representing an approximation to a discrete energy level, and 
Ψ𝑘 is the corresponding eigenvector that contains the coefficients of the 𝐴-body basis functions in the expansion of the approximate 
eigenfunction in the 𝐴-body basis.

The dimension (𝑛) of the matrix 𝐻 depends on the number of nucleons 𝐴 and the size of the CI model space (determined by a 
truncation parameter 𝑁max). Although 𝑛 can be quite large, 𝐻 is very sparse, and often only a few of its eigenpairs at the low end of 
the spectrum are of interest, making iterative methods suitable for solving (1).

The construction of the matrix 𝐻 by the CI method is typically done in a hierarchical fashion where the leading submatrix of 
𝐻 corresponds to a matrix constructed from a smaller configuration space. Because the 𝐴-body basis functions that form the lower 
dimension CI space associated with a small 𝑁max are typically more important than basis functions outside of such a configuration 
space, the eigenvectors of 𝐻 tend to be localized; i.e., the leading components of the Ψ𝑘 tend to be larger in magnitude, while the 
tailing components are relatively small in magnitude. We illustrate these properties of a nuclear Hamiltonian and its wavefunction 
using the nucleus 12C as an example. The Hamiltonian is constructed with a nucleon-nucleon interaction Daejeon16 [36] where 
ℏΩ = 20 MeV describes the harmonic oscillator basis functions. Fig. 1(a) shows that the leading submatrix of 𝐻 , which is around 
63 times smaller, corresponds to a matrix constructed from a smaller configuration space. Fig. 1(b) shows that the eigenvector 
corresponding to the lowest eigenvalue is localized in a few low-lying components. The eigenvector localization suggests that the 
vector formed by padding the eigenvector of the leading submatrix with zeros can serve as a good initial guess for many iterative 
methods used to solve large-scale eigenvalue problems (1). Previous works [34,2] select such initial guesses for algorithms like the 
Lanczos algorithm [22], the block Lanczos algorithm [15], the Locally Optimal Block Preconditioned Conjugate Gradient (LOBPCG) 
algorithm [20], and the Residual Minimization Method with Direct Inversion of Iterative Subspace (RMM-DIIS) correction [40,19,32]. 
Another study [18] uses greedy algorithms to incrementally enlarge the submatrix and use the eigenvector of the enlarged submatrix 
as an improved starting guess to the Lanczos algorithm and the LOBPCG algorithm.

Subspace projection methods utilizing perturbative corrections have been previously proposed for solving large-scale eigenvalue 
problems [13,9]. In these methods, perturbative corrections to approximate eigenvectors are used to construct subspaces from which 
eigenpair approximations are obtained. However, the computational cost of these methods was not carefully analyzed and compared 
with those of state-of-the-art large-scale eigensolvers. In this paper, we build upon these ideas and present a detailed analysis and 
comparison of such methods with the state of the art conventional iterative eigensolvers. We introduce the term Subspace Projection 
with Perturbative Corrections (SPPC) to refer to this approach. Unlike previous work, we leverage the hierarchical structure of the 
NCSM Hamiltonian to define a partition of the Hamiltonian that allows efficient computation of the initial approximate eigenvectors 
and perturbative corrections.

In the SPPC method, the Hamiltonian matrix to be partially diagonalized is viewed as the sum of two matrices, i.e., 𝐻 =𝐻0 + 𝑉 , 
where the eigenpairs of unperturbed 𝐻0 are relatively easy and inexpensive to compute, and 𝑉 is viewed as a perturbation to 𝐻0. 
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Perturbative corrections to eigenpairs of 𝐻0 in successively higher order can be computed by solving a sequence of linear systems of 
equations. Together with the initial approximation to the desired eigenvector obtained from 𝐻0 , these correction vectors form a low 
dimensional subspace from which approximate eigenpairs of 𝐻 are extracted through the Rayleigh-Ritz procedure [31]. When 𝐻0 is 
chosen to be a block diagonal matrix diag(𝐻̂0,0), where 𝐻̂0 is the matrix representation of the 𝐴-body nuclear Hamiltonian in a smaller 
configuration space associated with a smaller 𝑁max value, these linear systems can be solved efficiently in the small configuration 
space. The overall computational cost of the SPPC method grows linearly with respect to the highest order of perturbation included 
in the correction subspace. Adding each perturbative correction vector to the subspace and performing the Rayleigh-Ritz calculation 
requires multiplying the sparse matrix 𝐻 with a single vector. We show numerically that the low dimensional subspace constructed 
in a low order SPPC method provides a more accurate approximation to a few lowest eigenvalues of 𝐻 than a Krylov subspace of 
the same dimension constructed from the same starting guess. The method also appears to be more efficient than the locally optimal 
block preconditioned conjugate gradient (LOBPCG) method in early iterations even when a good preconditioner is available for the 
LOBPCG method. Although the SPPC method can stagnate as higher perturbative corrections are included, convergence stagnation 
can be mitigated by combining the SPPC with other iterative algorithms for solving large scale eigenvalue problems using the SPPC’s 
eigenvector approximation as the starting guess for secondary algorithms.

The rest of this paper is organized as follows. In Section 2 we describe the basic Subspace Projection with Perturbative Correc
tions (SPPC) method for computing one eigenpair of 𝐻 , and show how successively higher order perturbative corrections can be 
obtained from solutions of a set of linear systems of equations. We draw the connection between the SPPC and previously developed 
eigenvector continuation methods [12,33]. In Section 3, we present a version of the SPPC algorithm that can be used to compute a 
few lowest eigenpairs. A few practical implementation details of the SPPC method are discussed in Section 4. Numerical examples 
that demonstrate the efficiency of the SPPC method relative to other conventional large-scale eigenvalue computation methods are 
presented in Section 5. We also show the effectiveness of combining SPPC with a conventional eigensolver to avoid convergence 
stagnation.

2. Subspace projection with perturbative corrections (SPPC)

We split the matrix 𝐻 into the sum of two matrices 𝐻0 and 𝑉 , i.e.,

𝐻 =𝐻0 + 𝑉 , (2)

where

𝐻0 ∶=
[
𝐻̂0 0
0 0

]
, 𝑉 ∶=

[
0 𝑉12
𝑉21 𝑉22

]
, (3)

with the matrix 𝐻̂0 ∈ℝ𝑛0×𝑛0 (where 𝑛0 ≪𝑛) being the leading submatrix of 𝐻 that corresponds to the representation of the Hamil
tonian within a smaller configuration space.

The eigenvectors of 𝐻0, which can be obtained from the eigenvectors of 𝐻̂0, are computed at a significantly lower computational 
cost compared to those of the full matrix 𝐻 . They can be used as good initial guesses for conventional algorithms, such as the Lanczos 
and the LOBPCG algorithms, for computing the eigenpairs of 𝐻 .

The SPPC method uses the eigenvectors of 𝐻0 to initiate a subspace construction procedure to produce a subspace from which 
improved approximations of the desired eigenpairs can be obtained.

Instead of using the Lanczos algorithm or the LOBPCG method to construct the subspace, we use perturbative corrections to the 
initial eigenvector approximation to construct the subspace. In this approach, we introduce a scalar parameter 𝑐 and define a family 
of perturbed matrices:

𝐻(𝑐) =𝐻0 + 𝑐𝑉 . (4)

𝐻 can be viewed as the instance of the perturbed matrix (4) at 𝑐 = 1.
We denote 𝐸𝑘(𝑐) and Ψ𝑘(𝑐) as the 𝑘th lowest eigenvalue of 𝐻(𝑐), assuming that no eigenvalue crossings occur within the parameter 

domain of interest. In practice, for the parameter ranges and the eigenvalues we consider, we do not encounter such crossings, and the 
ordering remains stable. It follows from the Rayleigh-Schrödinger perturbation theory [35] that these eigenvalues and eigenvectors 
can be written in terms of the perturbative corrections to the eigenvalues and eigenvectors of 𝐻0 , which we denote by 𝐸(0)

𝑘
and Ψ(0)

𝑘
, 

i.e., {
𝐸𝑘(𝑐) =𝐸

(0)
𝑘

+ 𝑐𝐸
(1)
𝑘

+ 𝑐2𝐸(2)
𝑘

+⋯ ,

Ψ𝑘(𝑐) = Ψ(0)
𝑘

+ 𝑐Ψ(1)
𝑘

+ 𝑐2Ψ(2)
𝑘

+⋯ .
(5)

Here, (𝐸(𝑝)
𝑘
,Ψ(𝑝)

𝑘
)
𝑝≥1 represent the 𝑝th order perturbative corrections to the eigenpair (𝐸(0)

𝑘
,Ψ(0)

𝑘
), and are independent of the parameter 

𝑐.
Substituting (5) into the equation (1) to obtain

𝐻(𝑐)Ψ𝑘(𝑐) =𝐸𝑘(𝑐)Ψ𝑘(𝑐) (6)

and matching coefficients of the same degree yield the following set of equations
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𝐸

(𝑝)
𝑘

= (Ψ(𝑝−1)
𝑘

)𝑇 𝑉 Ψ(0)
𝑘

(𝐻0 −𝐸
(0)
𝑘
)Ψ(𝑝)

𝑘
= (𝐸(1)

𝑘
− 𝑉 )Ψ(𝑝−1)

𝑘
+
∑𝑝−2

𝑙=0 𝐸
(𝑝−𝑙)
𝑘

Ψ(𝑙)
𝑘

(7)

that allow us to compute 𝐸(𝑝)
𝑘

and Ψ(𝑝)
𝑘

in a recursive fashion.
The asymptotic expansion used in (5) assumes that 𝑐 is a small parameter. As a result, the expansion serves as a good approximation 

to the desired eigenpair only when 𝑐 is sufficiently small, i.e., when 𝑐 falls within the radius of convergence for (5), which is generally 
much smaller than 1. As a result, (5) cannot be used directly in general to approximate the 𝑘th eigenpair of 𝐻 [13,10]. However, the 
eigenvector Ψ(0)

𝑘
of 𝐻0 and the perturbative vectors Ψ(𝑝)

𝑘
can be used to construct a subspace


(𝑃 )
𝑘

∶= span{Ψ(𝑝)
𝑘

∶ 𝑝 = 0,1,… , 𝑃 }, (8)

from which approximation to 𝐸𝑘 and Ψ𝑘 can be obtained.
The idea of using perturbative corrections to construct an approximating subspace was proposed in [13,9] in the context of an 

eigenvector continuation (EC) method [12,33]. In an EC method, the aim is to approximate the eigenvectors of 𝐻(𝑐′) at a new 
parameter value 𝑐′ using information from known eigenvectors at other parameter values. Specifically, the eigenvectors of 𝐻(𝑐) for 
some choices of 𝑐’s are used to construct a subspace from which approximations to the eigenvectors of 𝐻(𝑐′) for 𝑐′ ≠ 𝑐 are obtained 
from the projection of 𝐻(𝑐′) into such a subspace.

It was found in [13,9] that instead of using eigenvectors of 𝐻(𝑐) for several choices of 𝑐 ≠ 1 to construct a subspace from which 
approximate eigenvectors of 𝐻(1) are extracted through the standard Rayleigh-Ritz procedure, more accurate approximations to the 
desired eigenpairs of 𝐻(1) can be obtained from the subspace constructed from the eigenvector of 𝐻0 as well as the perturbative 
eigenvector corrections as discussed above.

In a Rayleigh-Ritz procedure, we compute an orthonormal basis matrix 𝑄(𝑃 )
𝑘

of (𝑃 )
𝑘

and form the projected matrix

𝐻̃ =
(
𝑄

(𝑃 )
𝑘

)𝑇

𝐻𝑄
(𝑃 )
𝑘

. (9)

If (𝜃, 𝑞) is an eigenpair of 𝐻̃ , then (𝜃, 𝑧) where 𝑧 =𝑄
(𝑃 )
𝑘

𝑞, yields an approximate eigenpair of 𝐻 . We consider an approximate eigenpair 
to have converged if its relative residual norm‖𝐻𝑧− 𝜃𝑧‖2|𝜃| (10)

is smaller than a preset tolerance value.
To obtain an approximate 𝑘th eigenpair (𝐸̃𝑘, Ψ̃𝑘) of 𝐻 , we choose (𝜃, 𝑞) as the lowest eigenpair of 𝐻̃ in the above mentioned 

Rayleigh-Ritz procedure. Our choice of selecting the lowest eigenpair of the projected matrix is motivated by the Ky-Fan trace 
theorem [11], which states that the orthonormal eigenvectors 𝑄 associated with the lowest 𝑘𝑒𝑣 eigenvalues can be obtained by 
minimizing the trace operator of the projection, or equivalently, the sum of Rayleigh quotients under the orthonormality constraint 
𝑄𝑇𝑄 = 𝐼 :

min 
𝑄𝑇 𝑄=𝐼𝑒𝑣

Tr(𝑄𝑇𝐻𝑄) = min 
𝑞𝑇
𝑖
𝑞𝑗=𝛿𝑖𝑗

{
𝑞𝑇1 𝐻𝑞1 + 𝑞𝑇2 𝐻𝑞2 +⋯+ 𝑞𝑇

𝑒𝑣
𝐻𝑞𝑒𝑣

}
. (11)

In our approach, by selecting the lowest eigenpair of the projected matrix, we effectively minimize a Rayleigh quotient in (11). 
We present the SPPC method in Algorithm 1. We should point out that Algorithm 1 does not explicitly enforce the approximate 
eigenvectors to be orthonormal. However, if the selected eigenvectors of 𝐻0 are sufficiently close to the desired eigenvectors of 𝐻 , 
the orthonormality constraint can automatically be satisfied as the approximated eigenvectors converge to the desired eigenvectors.

Algorithm 1: The SPPC for the 𝑘th eigenpair.

Input: A nuclear CI Hamiltonian 𝐻 ∈ℝ𝑛×𝑛 partitioned as 𝐻 =𝐻0 + 𝑉 , where 𝐻0 = diag(𝐻̂0,0) with 𝐻̂0 constructed from a small configuration space (of 
dimension 𝑛0); convergence tolerance (𝑡𝑜𝑙); and maximum order of perturbation allowed (𝑚𝑎𝑥𝑖𝑡𝑒𝑟)

Output: An approximate 𝑘th eigenpair (𝐸̃𝑘, Ψ̃𝑘) of 𝐻
1 Compute the 𝑘th nonzero eigenpair (𝐸(0)

𝑘
,Ψ(0)

𝑘
) of 𝐻0 .

2 Set 𝜃 = (Ψ(0)
𝑘
)𝑇𝐻Ψ(0)

𝑘
and 𝑧 =Ψ(0)

𝑘
.

3 Return (𝐸̃𝑘 = 𝜃, Ψ̃𝑘 = 𝑧) if the relative residual norm (10) is less than 𝑡𝑜𝑙.
4 for 𝑝 = 1,… ,𝑚𝑎𝑥𝑖𝑡𝑒𝑟 do

5 Compute the correction energy 𝐸(𝑝)
𝑘

and correction vector Ψ(𝑝)
𝑘

.

6 Compute an orthonormal basis matrix 𝑄(𝑝)
𝑘

of (𝑝)
𝑘

and form a projected matrix 𝐻̃ .

7 Compute the lowest eigenpair (𝜃, 𝑞) of 𝐻̃ and set 𝑧=𝑄
(𝑝)
𝑘
𝑞.

8 Return (𝐸̃𝑘 = 𝜃, Ψ̃𝑘 = 𝑧) if the relative residual norm (10) is less than 𝑡𝑜𝑙.
9 end 

We should point out that the main distinction between the SPPC method proposed here and the EC method lies in the subspaces 
constructed in these methods and the cost of construction. Because EC projects 𝐻 onto a subspace constructed from the eigenvectors 
of 𝐻(𝑐) for several (nonzero) 𝑐’s, the cost of subspace construction may be just as expensive as the cost of solving the target eigenvalue 
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problem with a particular choice of 𝑐. On the other hand, because the subspace constructed in the SPPC method uses perturbative 
corrections that can be obtained by solving much smaller linear systems, the cost of subspace construction is significantly lower.

Although the basic idea of using perturbative corrections to construct a subspace for eigenvalue computations was presented 
in [13,9], the computational cost of this method was not carefully analyzed and compared with those of state-of-the-art large-scale 
eigensolvers. In [13], the eigenvectors of 𝐻0 can be computed analytically for the one-dimensional quartic anharmonic oscillator. 
However, in general, identifying a 𝐻0 that can be diagonalized analytically is not possible. In [9], the method is used to perform a 
𝐴-body nuclear structure calculation. However, a different 𝐻 =𝐻0 + 𝑉 splitting scheme is used, and the eigenvectors of 𝐻0 are not 
easier to compute than those of 𝐻 . In contrast, our splitting scheme results in an 𝐻0 whose eigenvectors can be computed efficiently, 
as it corresponds to a smaller configuration space associated with a lower 𝑁max value. In addition, our splitting allows us to construct 
perturbative corrections at a lower computational cost.

3. Targeting first few eigenpairs

Although we can use Algorithm 1 to compute each of the first 𝑘𝑒𝑣 eigenpairs one by one (or in parallel), approximations to larger 
eigenvalues and the corresponding eigenvectors appear to converge slowly, and sometimes to wrong values. It’s not always the case 
that the lowest eigenpair of the projected matrix corresponds to the 𝑘th eigenpair of 𝐻 . In some cases, the desired 𝑘th eigenpair may 
be the second lowest, third lowest, or even another eigenpair of the projected matrix. We show this in Section 6.

A more effective way to obtain approximations to the first 𝑘𝑒𝑣 eigenpairs is to combine the SPPC subspace (𝑃 )
𝑘

(8) constructed 
for each eigenpair to create a larger subspace

(𝑃 ) ∶= span{Ψ(𝑝)
𝑘

∶ 𝑝 = 0,1,… , 𝑃 , 𝑘 = 1,… , 𝑘𝑒𝑣}, (12)

from which 𝑘𝑒𝑣 approximate eigenpairs can be extracted simultaneously through the Rayleigh-Ritz procedure, by targeting the 𝑘𝑒𝑣
lowest eigenpairs of the projected matrix. Algorithm 2 shows how this approach works.

Algorithm 2: The SPPC for the first few eigenpairs.

Input: A nuclear CI Hamiltonian 𝐻 ∈ℝ𝑛×𝑛 partitioned as 𝐻 =𝐻0 + 𝑉 , where 𝐻0 = diag(𝐻̂0,0) with 𝐻̂0 constructed from a small configuration space (of 
dimension 𝑛0); number of desired eigenpairs (𝑘𝑒𝑣); convergence tolerance (𝑡𝑜𝑙); and maximum order of perturbation allowed (𝑚𝑎𝑥𝑖𝑡𝑒𝑟)

Output: Approximate 𝑘𝑒𝑣 lowest eigenpairs {(𝐸̃𝑘, Ψ̃𝑘)}
𝑘𝑒𝑣
𝑘=1 of 𝐻

1 Compute the eigenpairs {(𝐸(0)
𝑘
,Ψ(0)

𝑘
}𝑘𝑒𝑣
𝑘=1 of 𝐻0 .

2 Compute an orthonormal basis matrix 𝑄(0) of (0) and form the projected matrix 𝐻̃ .

3 Compute the 𝑘𝑒𝑣 lowest eigenpairs {(𝜃𝑘, 𝑞𝑘)}𝑘𝑒𝑣𝑘=1 of 𝐻̃ and set {𝑧𝑘 =𝑄(0)𝑞𝑘}
𝑘𝑒𝑣
𝑘=1 .

4 Return {(𝐸̃𝑘 = 𝜃𝑘, Ψ̃𝑘 = 𝑧𝑘)}
𝑘𝑒𝑣
𝑘=1 if the relative residual norm (10) is less than 𝑡𝑜𝑙 for all 𝑘= 1,… , 𝑘𝑒𝑣 .

5 for 𝑝 = 1,… ,𝑚𝑎𝑥𝑖𝑡𝑒𝑟 do

6 Compute the correction energy 𝐸(𝑝)
𝑘

and correction vector Ψ(𝑝)
𝑘

for 𝑘= 1,… , 𝑘𝑒𝑣 .
7 Compute an orthonormal basis matrix 𝑄(𝑝) of (𝑝) and form a projected matrix 𝐻̃ .

8 Compute the 𝑘𝑒𝑣 lowest eigenpairs {(𝜃𝑘, 𝑞𝑘)}𝑘𝑒𝑣𝑘=1 of 𝐻̃ and set {𝑧𝑘 =𝑄(𝑝)𝑞𝑘}
𝑘𝑒𝑣
𝑘=1 .

9 Return {(𝐸̃𝑘 = 𝜃𝑘, Ψ̃𝑘 = 𝑧𝑘)}
𝑘𝑒𝑣
𝑘=1 if the relative residual norm (10) is less than 𝑡𝑜𝑙 for all 𝑘= 1,… , 𝑘𝑒𝑣 .

10 end 

4. Practical considerations

In this section, we describe a few practical implementation details of the SPPC algorithm.

4.1. Computing the correction vectors

We refer to the 𝑘th eigenvector of 𝐻0, denoted by Ψ(0)
𝑘

, as the zero-th order approximation to the 𝑘th eigenvector of 𝐻 .

When 𝐻0 is of the form given in (3), Ψ(0)
𝑘

can be obtained by computing the 𝑘th eigenvector of 𝐻̂0, denoted by Ψ̂(0)
𝑘

, and appending 
it with zeros to yield

Ψ(0)
𝑘

=
[
Ψ̂(0)
𝑘

0

]
. (13)

It follows from (7) and the block structures of 𝐻0, 𝑉 , and Ψ(0)
𝑘

that the first order corrections to the 𝑘th eigenvalue and eigenvector 
of 𝐻 are

𝐸
(1)
𝑘

= 0, Ψ(1)
𝑘

= 1 
𝐸

(0)
𝑘

𝑉 Ψ(0)
𝑘
. (14)
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It is easy to verify that

Ψ(1)
𝑘

=
𝐻Ψ(0)

𝑘
−𝐸

(0)
𝑘
Ψ(0)
𝑘

𝐸
(0)
𝑘

,

i.e., the first order correction to the eigenvector is simply the residual associated with the zero-th order approximation.
Because 𝐸(1)

𝑘
= 0, we can simplify the linear system in (7) to

(𝐻0 −𝐸
(0)
𝑘
)Ψ(𝑝)

𝑘
= −𝑉 Ψ(𝑝−1)

𝑘
+

𝑝−2 ∑
𝑙=0 

𝐸
(𝑝−𝑙)
𝑘

Ψ(𝑙)
𝑘
. (15)

The matrix 𝐻0 −𝐸
(0)
𝑘

is in a block diagonal form

𝐻0 −𝐸
(0)
𝑘

=

[
𝐻̂0 −𝐸

(0)
𝑘

0
0 −𝐸(0)

𝑘
𝐼

]
(16)

consisting of two blocks where the first block 𝐻̂0 −𝐸
(0)
𝑘

∈ℝ𝑛0×𝑛0 is relatively small and the second block −𝐸(0)
𝑘
𝐼 ∈ℝ(𝑛−𝑛0)×(𝑛−𝑛0) is 

a scalar multiple of the identity matrix. As a result, solving the linear system in (15) essentially reduces to solving a much smaller 
linear system with 𝐻̂0 −𝐸

(0)
𝑘

being the coefficient matrix. If we partition Ψ(𝑝)
𝑘

conformally with the blocks in (16) as Ψ(𝑝)
𝑘

= [𝑥1, 𝑥2]𝑇

and the right-hand side of (15) as 𝑏 = [𝑏1, 𝑏2]𝑇 such that 𝑥1, 𝑏1 ∈ℝ𝑛0 and 𝑥2, 𝑏2 ∈ℝ𝑛−𝑛0 , 𝑥2 can be easily computed as

𝑥2 = − 1 
𝐸

(0)
𝑘

𝑏2, (17)

and 𝑥1 can be obtained by solving

(𝐻̂0 −𝐸
(0)
𝑘
)𝑥1 = 𝑏1. (18)

Note that equation (15) is singular because 𝐸(0)
𝑘

is an eigenvalue of 𝐻0. However, since (𝑃 )
𝑘

already includes Ψ(0)
𝑘

and we are 
only interested in contributions in the orthogonal complement of Ψ(0)

𝑘
from the solution of (15), we can project out Ψ(0)

𝑘
from the 

right-hand side of (15) before solving this equation. This is equivalent to projecting out Ψ̂(0)
𝑘

from the right-hand side of (18), i.e. we 
solve

(𝐻̂0 −𝐸
(0)
𝑘
)𝑥1 = (𝐼 − Ψ̂(0)

𝑘
(Ψ̂(0)

𝑘
)𝑇 )𝑏1. (19)

4.2. Rayleigh-Ritz calculation

After obtaining the correction vectors, we generate an orthonormal basis matrix of the subspace spanned by these vectors and 
then perform the Rayleigh-Ritz procedure. We lay out these steps for approximating a single eigenpair and the first few eigenpairs.

Targeting the 𝑘th eigenpair. We use the Gram-Schmidt process [16] to obtain an orthonormal basis of the subspace (𝑝)
𝑘

. The or

thonormal basis forms the columns of the matrix 𝑄(𝑝)
𝑘

∈ℝ𝑛×(𝑝+1). The (𝑝+ 1)th column, denoted by 𝑞(𝑝)
𝑘

, is generated as follows.

Φ(𝑝)
𝑘

=
[
𝐼 −𝑄

(𝑝−1)
𝑘

(𝑄(𝑝−1)
𝑘

)𝑇
]
Ψ(𝑝)
𝑘
,

𝑞
(𝑝)
𝑘

=
Φ(𝑝)

𝑘‖Φ(𝑝)
𝑘
‖2 .

(20)

We append 𝑞(𝑝)
𝑘

∈ℝ𝑛 to 𝑄(𝑝−1)
𝑘

such that

𝑄
(𝑝)
𝑘

= [𝑄(𝑝−1)
𝑘

, 𝑞
(𝑝)
𝑘
]. (21)

Note that the projected matrix (𝑄(𝑝)
𝑘
)𝑇𝐻𝑄

(𝑝)
𝑘

can be constructed recursively. Assuming (𝑄(𝑝−1)
𝑘

)𝑇𝐻𝑄
(𝑝−1)
𝑘

has been computed in 
the previous step, we just need to compute 𝐻𝑞

(𝑝)
𝑘

and append an additional row and column to (𝑄(𝑝−1)
𝑘

)𝑇𝐻𝑄
(𝑝−1)
𝑘

as shown below.[
(𝑄(𝑝−1)

𝑘
)𝑇𝐻𝑄

(𝑝−1)
𝑘

(𝑄(𝑝−1)
𝑘

)𝑇𝐻𝑞
(𝑝)
𝑘

(𝑞(𝑝)
𝑘
)𝑇𝐻𝑄

(𝑝−1)
𝑘

(𝑞(𝑝)
𝑘
)𝑇𝐻𝑞

(𝑝)
𝑘

]
. (22)

Therefore, the major cost for constructing the projected matrix in each step of the SPPC method is in performing a single sparse 
matrix-vector multiplication (SpMV) in 𝐻𝑞

(𝑝)
𝑘

.
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Targeting the first few eigenpairs. To obtain an orthonormal basis 𝑄(𝑝) ∈ ℝ𝑛×𝑘𝑒𝑣(𝑝+1) for the combined subspace (𝑝), we replace 
the Gram-Schmidt process (20) with the block Gram-Schmidt process [6]. If Ψ(𝑝) = [Ψ(𝑝)

1 ,Ψ(𝑝)
2 ,… ,Ψ(𝑝)

𝑘𝑒𝑣
], the block Gram-Schmidt 

procedure yields

Φ(𝑝) =
[
𝐼 −𝑄(𝑝−1)(𝑄(𝑝−1))𝑇

]
Ψ(𝑝). (23)

We then perform a QR factorization of Φ(𝑝), i.e.,

Φ(𝑝) = 𝑞(𝑝)𝑅(𝑝), (24)

to generate an orthonormal basis 𝑞(𝑝) for Φ(𝑝). We append 𝑞(𝑝) ∈ℝ𝑛×𝑘𝑒𝑣 to 𝑄(𝑝−1) such that

𝑄(𝑝) = [𝑄(𝑝−1), 𝑞(𝑝)] (25)

is an orthonormal basis for (𝑝).
Again, the projected matrix (𝑄(𝑝))𝑇𝐻𝑄(𝑝) can be constructed recursively by utilizing the projected matrix from the previous step, 

computing 𝐻𝑞(𝑝), and appending an additional row and column.

(𝑄(𝑝))𝑇𝐻𝑄(𝑝) =

[
(𝑄(𝑝−1))𝑇𝐻𝑄(𝑝−1) (𝑄(𝑝−1))𝑇𝐻𝑞(𝑝)

(𝑞(𝑝))𝑇𝐻𝑄(𝑝−1) (𝑞(𝑝))𝑇𝐻𝑞(𝑝)

]
. (26)

The computational cost at this step is dominated by the cost for computing 𝑘𝑒𝑣 SpMVs in 𝐻𝑞(𝑝).

4.3. Computational cost

We now discuss the overall computational cost of the SPPC method. We can see from Algorithm 1 and Algorithm 2 that the two 
major components of the SPPC algorithm are: (1) Solving the linear system (15); (2) forming the projected matrix (𝑄(𝑝))𝑇𝐻𝑄(𝑝). We 
have already shown that the projected matrix can be computed recursively using 𝑘𝑒𝑣 SpMVs in each step of the SPPC algorithm. The 
reduced linear system (18) of the correction equation (15) can be solved iteratively using, for example, the MINRES algorithm [30]. 
Because it has a much smaller dimension, the SpMVs performed in each MINRES iteration are relatively cheap. However, at the 𝑝th 
iteration, forming the right-hand side of the equation (15) requires multiplying 𝑉 with Ψ(𝑝−1)

𝑘
(for 𝑝 > 1), which has nearly the same 

complexity as multiplying 𝐻 with Ψ(𝑝−1)
𝑘

. Therefore, it may appear that each SPPC step requires performing 2𝑘𝑒𝑣 SpMVs. We will 
show below that this is not the case. Both the right-hand side of (15) and the projected matrix can be obtained from the same 𝐻𝑞(𝑝−1)

product, which was computed in the previous iteration. As a result, each step of the SPPC algorithm only requires performing 𝑘𝑒𝑣
SpMVs.

Using the matrix splitting 𝐻 =𝐻0 + 𝑉 , we can rewrite 𝑉 Ψ(𝑝−1) as

𝑉 Ψ(𝑝−1) =𝐻Ψ(𝑝−1) −𝐻0Ψ(𝑝−1) (27)

where Ψ(𝑝−1) =
[
Ψ(𝑝−1)
1 ,… ,Ψ(𝑝−1)

𝑘𝑒𝑣

]
. Therefore, 𝑉 Ψ(𝑝−1) can be obtained by subtracting 𝐻0Ψ(𝑝−1), a much lower computational cost, 

from 𝐻Ψ(𝑝−1).
We now show that 𝐻Ψ(𝑝−1) can be easily obtained from 𝐻𝑞(𝑝−1). It follows from (23) and (24) that

𝐻
[
𝐼 −𝑄(𝑝−2)(𝑄(𝑝−2))𝑇

]
Ψ(𝑝−1) =𝐻𝑞(𝑝−1)𝑅(𝑝−1). (28)

As a result, we can obtain 𝐻Ψ(𝑝−1) from 𝐻𝑞(𝑝−1) by using the following identity

𝐻Ψ(𝑝−1) =𝐻𝑄(𝑝−2)(𝑄(𝑝−2))𝑇Ψ(𝑝−1) +𝐻𝑞(𝑝−1)𝑅(𝑝−1). (29)

Note that the analysis of the computational cost assumes 𝐻𝑄(𝑝−2) , which contains 𝐻𝑞(𝑗) as its columns for 𝑗 = 0,1, ..., 𝑝−2, has been 
stored in memory.

As we will show in section 6, the highest order perturbation is often limited to 15, beyond which no significant improvement in 
the approximate eigenpair can be observed. Therefore, the dense linear algebra operations such as computing (𝑄(𝑝−2))𝑇Ψ(𝑝−1) and 
diagonalizing the projected matrix can be performed with a relatively low cost compared to the cost of multiplying 𝐻 with 𝑞(𝑝−1).

5. Combining SPPC with other algorithms

As we will show in the next section, the perturbative correction is typically effective when the order of perturbation 𝑝 is relatively 
low. The convergence of SPPC can stagnate when 𝑝 increases, i.e., adding higher order perturbative correction may not help because 
they may be linearly dependent with respect to the basis vectors included in (𝑝) already. In this case, it is useful to combine SPPC 
with another algorithm that can take the eigenvector approximation produced by SPPC as the starting guess.

Algorithms that can be combined with the SPPC method in a hybrid algorithm include, but are not limited, to the following:
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Table 1
Properties of the test matrices 𝐻 .

Nucleus 𝑁max dim(𝐻) dim(𝐻̂0) nnz(𝐻) nnz(𝐻̂0)
6Li 6 197,822 17,040 106,738,802 4,122,448 
7Li 6 663,527 48,917 421,938,629 14,664,723 
11B 4 814,092 16,097 389,033,682 2,977,735 
12C 4 1,118,926 17,725 555,151,572 3,365,009 

• The Lanczos algorithm, which is a classical algorithm that generates an orthonormal basis of a Krylov subspace using the Gram
Schmidt procedure. It is initialized with an approximate eigenvector produced from the SPPC or a linear combination of 𝑘𝑒𝑣
approximate eigenvectors. It uses one SpMV per iteration to compute the next basis vector. The eigenpairs are approximated 
using the Ritz pairs obtained from the Rayleigh-Ritz procedure with the basis vectors of the Krylov subspace.

• The block Lanczos algorithm, which is a variation of the Lanczos algorithm that operates in blocks. It is initialized with a block 
of vectors approximating several eigenvectors of 𝐻 and builds a Krylov subspace in blocks. For our numerical experiments, 
we initialize with 𝑘𝑒𝑣 eigenvectors and choose the block size of 𝑘𝑒𝑣. This results in each iteration performing 𝑘𝑒𝑣 SpMVs. The 
main advantage of the block Lanczos algorithm over the Lanczos algorithm is that it can make use of approximations to several 
eigenvectors more effectively and most dense linear algebra operations can take advantage of level 3 BLAS. The computational 
efficiency of the block Lanczos algorithm is discussed in [17] and restart variants for overcoming the storage bottleneck are 
presented in [23,37,39,41].

• The LOBPCG algorithm, which is an iterative method that solves the equivalent trace minimization formulation of the eigenvalue 
problem. Similar to the block Lanczos algorithm, it can be initialized with approximations to several eigenvectors. For our 
numerical experiments, we initialize with 𝑘𝑒𝑣 eigenvectors, resulting in 𝑘𝑒𝑣 SpMVs for each iteration. One advantage of the 
LOBPCG algorithm is that it can utilize a preconditioner if it is available. The use of a good preconditioner can accelerate 
convergence [21,29,3]. A common choice for the preconditioner is a block diagonal part of the Hamiltonian matrix or a shifted 
matrix of the Hamiltonian for some appropriately chosen shift [25,20,2]. For our numerical experiments, we use a shifted 
preconditioner that involves a specific block diagonal part of the Hamiltonian matrix and a constant shift that approximates the 
lowest eigenvalue following the work in [2]. The LOBPCG algorithm has similar convergence properties as the Davidson [8,24,28] 
and Jacobi-Davidson [14,4] algorithms which we will not include in the discussions below.

• The residual minimization method (RMM) combined with the Direct Inversion of Iterative Subspace (DIIS) refinement algorithm 
(RMM-DIIS), which is a quasi-Newton algorithm for improving a specific eigenpair without computing other eigenpairs, provided 
that the initial approximation to the desired eigenpairs is sufficiently accurate. Each RMM-DIIS iteration performs one SpMV. 
The RMM-DIIS can also incorporate a preconditioner to accelerate convergence. For our numerical experiments, we choose the 
same preconditioner we use in the LOBPCG algorithm.

6. Numerical results

In this section, we demonstrate the effectiveness of the SPPC algorithm and compare it with other existing algorithms for computing 
the ground and a few low excited states of several light nuclei. We also show that the SPPC can be effectively combined with the 
RMM-DIIS to yield an efficient and accurate hybrid eigensolver for nuclear configuration interaction calculations. We call this hybrid 
eigensolver the SPPC + RMM-DIIS method.

For all algorithms tested in this section, we use the relative residual norm (10) as the stopping criterion and set the convergence 
tolerance to be 10−6. To ensure a fair comparison with the SPPC, we use the eigenvectors of the zero-order part 𝐻0 as the initial 
guesses for the algorithms. All experiments were conducted using MATLAB.

6.1. Test matrices

We use the 𝐴-body Hamiltonian matrices corresponding to the nuclei 6Li, 7Li, 11B, and 12C in the following numerical experiments. 
The superscripts indicate the number of nucleons in the nuclei; for example, 7Li indicates Lithium with 3 protons plus 4 neutrons. The 
Hamiltonian matrices 𝐻 are constructed in a truncated CI space defined by a truncation parameter 𝑁max and ℏΩ = 20 MeV, using 
the nucleon-nucleon interaction Daejeon16 [36]. For the same nucleus, a larger 𝑁max results in a larger matrix 𝐻 , but the size of 
the matrix is independent of the interaction. Note that with three-nucleon interactions, the number of nonzero matrix elements is an 
order of magnitude larger than the one for the nucleon-nucleon interactions, and the number of iterations and the actual eigenvalues 
of any eigensolver will be different. As we indicated earlier, the construction of 𝐻 can be done in a hierarchical fashion so that a 
leading submatrix 𝐻̂0 of 𝐻 corresponds to the same nuclear 𝐴-body Hamiltonian represented in a lower dimensional configuration 
space associated with a smaller 𝑁max . In this section, if 𝐻 is the matrix representation of a nuclear 𝐴-body Hamiltonian represented 
in a configuration space associated with 𝑁max = 𝑛𝑐 , the submatrix 𝐻̂0 corresponds to the representation of the same Hamiltonian 
in a configuration space associated with 𝑁max = 𝑛𝑐 − 2. We list the dimension of 𝐻 (denoted by dim(𝐻)), the dimension of 𝐻̂0
(denoted by dim(𝐻̂0)), the number of non-zero elements in 𝐻 (denoted by nnz(𝐻)) and 𝐻̂0 (denoted by nnz(𝐻̂0)), and the 𝑁max
value associated with 𝐻 in Table 1. 
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Fig. 2. The convergence of algorithms for computing the lowest eigenpair of the Hamiltonians matrices (12C on (a) and 6Li on (b)). The major cost of one iteration 
equals one SpMV for all algorithms so that a direct comparison between the algorithms is possible in terms of the number of iterations needed for convergence.

6.2. Targeting the lowest eigenpair

We report the performance of the SPPC, the Lanczos algorithm, the LOBPCG algorithm, and the SPPC + RMM-DIIS for targeting 
the lowest eigenpair of the matrix 𝐻 . As mentioned earlier, we use a preconditioner for the LOBPCG and the RMM-DIIS algorithms. 
The primary cost of all these algorithms is the number of SpMVs they perform before reaching convergence. Because each algorithm 
performs one SpMV per iteration, we can directly compare them by the number of iterations required to reach convergence.

The left plot of Fig. 2 shows the convergence history of the algorithms chosen for comparison for 12C with respect to the iteration 
number. We observe that the SPPC algorithm converges in 16 iterations, which is the least among all methods, while the Lanczos 
algorithm and the LOBPCG algorithm converge in 22 iterations.

The result shown in the right plot of Fig. 2 is for the Hamiltonian associated with 6Li. Several features of the SPPC algorithm 
are observed. The first observation is that the SPPC method converges more rapidly in the early iterations (up to the 15th iteration), 
and can be up to at most two orders of magnitude more accurate than other algorithms in these early iterations. However, the SPPC 
approximation appears to stagnate in subsequent iterations. This suggests that higher order correction vectors produced in later 
iterations (after iteration 15) do not contribute to improving the subspace constructed by the correction vectors produced in the early 
iterations. To verify this conjecture, we plot the angle between the current correction vector and the subspace spanned by the previous 
correction vectors, denoted by ∠(Ψ(𝑝),(𝑝−1)), with respect to the iteration number 𝑝 in Fig. 3. We observe that ∠(Ψ(𝑝),(𝑝−1)) is 
relatively large in the first few SPPC iterations, and gradually decreases to the level of 10−5 . This is the point at which the new 
correction vector contributes minimally to the expansion of the subspace.

To overcome this stagnation, we consider a hybrid approach, the SPPC + RMM-DIIS, where we use the SPPC until the point of 
stagnation, and then switch to the RMM-DIIS. This hybrid approach takes advantage of the fast convergence of the SPPC for the 
first few iterations and the fast convergence of the RMM-DIIS when initialized with a good initial guess to the desired eigenvector. 
Specifically, we choose the initial guess in the RMM-DIIS as the Ritz vector produced from the SPPC method at the point of the switch. 
For 6Li, we use the RMM-DIIS after the 15th iteration of the SPPC. We observe that the SPPC + RMM-DIIS breaks the stagnation of 
the SPPC and converges in 23 iterations, while the Lanczos algorithm and the LOBPCG algorithm converge in 31 and 25 iterations, 
respectively.

Fig. 4 shows the convergence history of the algorithms for the other two Hamiltonian matrices; 7Li on the left plot and 11B on the 
right plot. The SPPC stagnates at the order of magnitude 10−5 around the 15th iteration for the Hamiltonian 7Li, while it stagnates at 
the order of magnitude slightly above 10−6 around the 17th iteration for the Hamiltonian 11B. For these cases, we also consider the 
SPPC + RMM-DIIS. We observe that this hybrid approach converges the fastest with the fewest SpMVs performed. Table 2 provides a 
summary of the SpMV counts used by several algorithms tested in this section for all four Hamiltonian matrices. 

6.3. Targeting the five lowest eigenpairs

We can use either Algorithm 1 or Algorithm 2 to compute the lowest 𝑘𝑒𝑣 eigenpairs. In the left plots of Fig. 5 and Fig. 6, we show 
the relative residual norms of the approximation to the 5 lowest eigenpairs of the 6Li Hamiltonian at each iteration of Algorithm 1
and Algorithm 2, respectively. The relative residual norms associated with the first three eigenpairs drop below 10−4 by the 15th 
iteration. However, for the fourth and the fifth eigenpairs, the relative residuals obtained by Algorithm 1 jump to a larger value 
at a certain point and never become small in subsequent iterations. We can also observe that the Ritz values deviate from the true 
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Fig. 3. The subspace angle between the correction vector at iteration 𝑝 and the subspace spanned by the previous correction vectors from iteration 1 to 𝑝− 1. 

Table 2
SpMV count of the algorithms for computing the lowest eigen
pair. The SPPC eventually converges for 11B while it does not con
verge (DNC) for 6Li, 7Li. For these three Hamiltonians, the hybrid 
method, the SPPC + RMM-DIIS, is also considered where the RMM
DIIS switches with the SPPC.

Nucleus SPPC Lanczos LOBPCG SPPC+RMM-DIIS 
6Li DNC 31 25 23 
7Li DNC 31 25 22 
11B 29 30 27 18 
12C 16 22 22 

Fig. 4. The convergence of algorithms for computing the lowest eigenpair of the Hamiltonians matrices (7Li on (a) and 11B on (b)). The major cost of one iteration 
equals one SpMV for all algorithms so that a direct comparison between the algorithms is possible in terms of the number of iterations needed for convergence.

eigenvalues of the Hamiltonian at the point of the jump, as shown in the right plot of Fig. 5. In these cases, the lowest eigenpair of 
the projected matrix no longer corresponds to the intended eigenvalue because the corrected eigenvector approximations were not 
mutually orthogonalized explicitly. Numerical round off error introduced in step 6 of Algorithm 1 moves the approximation to the 
fourth and fifth eigenpairs towards lower eigenpairs. When targeting the fourth eigenpair, the second lowest eigenpair of the projected 
matrix provides a better approximation, and when targeting the fifth eigenpair, it is the third lowest eigenpair that aligns with the 
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Fig. 5. Algorithm 1 to compute the first 5 eigenpairs of the 6Li Hamiltonian, one by one. (a) Relative residual norms for each eigenpair. (b) Comparison of approximated 
eigenpairs (solid lines) with the true eigenvalues (symbols without lines).

Fig. 6. Algorithm 2 to compute the first 5 eigenpairs of the 6Li Hamiltonian, one by one. (a) Relative residual norms for each eigenpair. (b) Comparison of approximated 
eigenpairs (solid lines) with the true eigenvalues (symbols without lines).

desired eigenpair. This discrepancy arises because the subspace constructed by Algorithm 1 for higher eigenpairs is not sufficient 
enough to isolate the target eigenvector. It is generally not possible to know a priori which of the eigenpairs of the projected matrix 
aligns with the target eigenpair. In contrast, as shown in the right plot of Fig. 6, by constructing a larger subspace consisting of 
perturbative corrections to several eigenvectors, Algorithm 2 computes approximate eigenvalues that do not deviate from the true 
eigenvalues. We observe in the left plot of Fig. 6 that all the approximate eigenpairs obtained by Algorithm 2 converge within a 
reasonable accuracy.

For the other three Hamiltonians 7Li, 11B, and 12C, we observe a similar behavior as the 6Li Hamiltonian where the relative 
residuals of the higher order eigenpairs obtained by Algorithm 1 would jump to a larger value at some point. Algorithm 2, on the 
other hand, has no such erratic behavior and refines eigenpair approximations for correct eigenpairs. Due to this observation, and 
because the driving cost of the two algorithms is both 𝑘𝑒𝑣 at each iteration, we use Algorithm 2 for approximating multiple lowest 
eigenpairs of the Hamiltonians.

When targeting a few lowest eigenpairs, the SPPC approximations can also stagnate in later iterations. In the left plot of Fig. 7, 
we observe that the relative residuals of the 5 lowest eigenpair approximations of the SPPC method for the 12C Hamiltonian decrease 
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Fig. 7. The convergence of algorithms for computing the 5 lowest eigenpairs of the 12C Hamiltonian. (a) Convergence of the SPPC and the LOBPCG. The SPPC exhibits 
a more rapid convergence compared to the LOBPCG in the early iterations but starts to stagnate at the 17th iteration. (b) Convergence of the SPPC + RMM-DIIS. The 
SPPC + RMM-DIIS switches to the RMM-DIIS from the SPPC after the 17th iteration to escape the stagnation.

Table 3
SpMV count of the block Lanczos algorithm, the LOBPCG algo
rithm, and the SPPC + RMM-DIIS for computing the 5 lowest eigen
pairs. The convergence of the SPPC tends to stagnate for some 
eigenpairs so the hybrid approach, the SPPC + RMM-DIIS, is con
sidered. The RMM-DIIS switches from the SPPC after the 15th 
iteration for 6Li and 7Li, and after the 17th iteration for 11B and 
12C.

Nucleus Block Lanczos LOBPCG SPPC+RMM-DIIS 
6Li 155 140 119 
7Li 175 150 123 
11B 170 125 93 
12C 155 150 89 

steadily until the 17th iteration, at which point the approximations stagnate. However, we also observe that the SPPC method 
converges more rapidly, up to at most two orders of magnitude accuracy, compared with the LOBPCG algorithm in these early 
iterations. This indicates that we can once again leverage the rapid convergence of the SPPC method in the early iterations and use 
the RMM-DIIS method to escape the stagnations when they occur. We switch to the RMM-DIIS method from the SPPC method when 
the relative residual norm of any of the eigenpairs starts to stagnate. In this hybrid approach, a separate RMM-DIIS run is used to 
refine each approximate eigenpair. It is initialized with the corresponding eigenvector approximation returned from the SPPC method 
at the point of the switch.

The right plot of Fig. 7 illustrates the convergence of the SPPC + RMM-DIIS for the 12C Hamiltonian. We choose to switch to the 
RMM-DIIS from the SPPC at iteration 17, a point of stagnation for most eigenpairs. We observe that the SPPC + RMM-DIIS breaks the 
stagnation of the SPPC and that all 5 eigenpairs converge.

In Table 3, we present the SpMV counts of the block Lanczos algorithm, the LOBPCG algorithm, and the SPPC + RMM-DIIS for 
computing the 5 lowest eigenpairs of the four Hamiltonians. The switch to the RMM-DIIS algorithm occurs for the SPPC + RMM-DIIS 
after the 15th iteration for the 6Li and 7Li Hamiltonians, and after the 17th iteration for the 11B and 12C Hamiltonians. The block 
Lanczos algorithm and the LOBPCG algorithm are block methods, thus requiring continued iterations until every eigenpair converges 
and consequently a full 𝑘𝑒𝑣 SpMVs at each iteration as their driving cost. In contrast, the SPPC + RMM-DIIS targets each eigenpair 
individually after it switches to RMM-DIIS, so it does not incur more SpMVs for the converged eigenpair as it targets the non-converged 
eigenpairs. Due to this advantage and the leverage of the rapid convergence of the SPPC method in the early iterations, we observe 
that the SPPC + RMM-DIIS converges the fastest with the fewest SpMVs.

7. Conclusion

In conclusion, the Subspace Projection with Perturbative Corrections (SPPC) method, combined with the Residual Minimization 
Method with Direct Inversion of Iterative Subspace (RMM-DIIS), presents an advancement in the efficient computation of eigen
pairs for large Hamiltonian matrices in nuclear structure calculations. The SPPC method leverages perturbative correction vectors 



Journal of Computational Physics 531 (2025) 113921

13

D.M. Roh, D. Lee, P. Maris et al. 

to enhance the accuracy of eigenpair approximations in the initial iterations, substantially reducing the number of sparse matrix
vector multiplications (SpMVs) required for convergence. Although the SPPC may experience stagnation in subsequent iterations, 
this challenge is effectively mitigated by integrating it with the RMM-DIIS algorithm, which provides robust refinement of eigenvec
tor approximations. Our numerical experiments across several nuclear Hamiltonians demonstrate that the SPPC + RMM-DIIS hybrid 
approach outperforms traditional methods in terms of SpMVs. This hybrid method offers a promising solution for large-scale nuclear 
structure calculations, providing a reliable and efficient approach to solving the 𝐴-body Schrödinger equation.

While the preliminary results of the SPPC are promising, we have not yet provided a theoretical background explaining its ef
fectiveness. We plan to address this in our future work, discussing the convergence behavior in detail. From a practical standpoint, 
we aim to develop a method to automatically detect stagnation, eliminating the need for manual decisions on when to switch to the 
RMM-DIIS. Additionally, we are interested in implementing the SPPC in a hybrid MPI/OpenMPI code, such as the software MFDn 
(Many-Fermion Dynamics for nuclear structure) [38,26,1,7,27], to be run at high-performance computing centers. We also want to 
explore further optimizations and applications of the SPPC to other large-scale eigenvalue problems in nuclear physics and beyond.
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