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Daniel W. Hommes1, Gijs R. van den Brink1,2,4*
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Abstract

Clinical data suggest that progestins have chemopreventive properties in the development of colorectal cancer. We set out
to examine a potential protective effect of progestins and progesterone signaling on colon cancer development. In normal
and neoplastic intestinal tissue, we found that the progesterone receptor (PR) is not expressed. Expression was confined to
sporadic mesenchymal cells. To analyze the influence of systemic progesterone receptor signaling, we crossed mice that
lacked the progesterone receptor (PRKO) to the ApcMin/+ mouse, a model for spontaneous intestinal polyposis. PRKO-ApcMin/+

mice exhibited no change in polyp number, size or localization compared to ApcMin/+. To examine effects of progestins on the
intestinal epithelium that are independent of the PR, we treated mice with MPA. We found no effects of either progesterone or
MPA on gross intestinal morphology or epithelial proliferation. Also, in rats treated with MPA, injection with the carcinogen
azoxymethane did not result in a difference in the number or size of aberrant crypt foci, a surrogate end-point for adenoma
development. We conclude that expression of the progesterone receptor is limited to cells in the intestinal mesenchyme. We
did not observe any effect of progesterone receptor signaling or of progestin treatment in rodent models of intestinal
tumorigenesis.
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Introduction

The Women’s Health Initiative (WHI) was launched in 1991 to

conduct medical research into some of the major health problems of

older women. Among other studies, the WHI performed two large

prospective randomized clinical trials where postmenopausal

hormone use was evaluated. One trial consisted of treatment with

estrogens combined with the progestin medroxyprogesterone

acetate (MPA) versus placebo, to evaluate the risk of endometrial

carcinoma [1,2]. In the second trial estrogen alone was compared to

placebo in women that had previously undergone a hysterectomy

[1,3]. A substantial 40% risk reduction (P = 0.003) for colon cancer

development was observed in women that received the combination

therapy [4], whereas the risk of colorectal cancer was slightly but not

significantly increased by treatment with estrogens alone.

Based on these results, progestins have been suggested as

putative chemopreventive agents for colon cancer [5,6], however,

the mechanism of action by which they work in the intestine

remains obscure.

Progesterone signaling plays multiple roles in the physiology of

the female body. Perhaps best known for its important function as

a mitogen for endometrial tissue [7] and regulator of the

mammary stem cell development [8], it also has pleiotropic effects

on many other physiological functions. For example progesterone

signaling attenuates osteogenesis [9] and increases sexual recep-

tivity [10]. Also, progesterone reduces the immune response of the

uterine environment [11], and diminishes cytokine production by

plasmacytoid dendritic cells [12,13].

All major effects of progesterone are thought to be mediated by

the progesterone receptor (PR), a member of the nuclear receptor

superfamily. This receptor, has at least two isoforms (the PR-A and

PR-B), that have distinct effects [14]. Although signaling by

progesterone is mediated by the PR exclusively [15], Progestins

(synthetic progesterone receptor ligands) can have off-target effects

at high concentrations or dosages, that are mediated by other

steroid hormone receptors such as the androgen receptor (AR), the

estradiol receptors (ER) or the glucocorticoid receptor (GR),

depending on the progestin used.

Some investigators have reported that normal colonic tissue as

well as colorectal cancers express PR mRNA [16] or show

progesterone binding capacity [17]. In contrast, work by others

suggests that few colon cancers express PR and expression is low
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[18] or find no evidence for PR expression, at least in the

epithelium [19]. PR expression has been documented in colon

cancer cell lines and data on growth inhibition of these cell lines by

progestins points towards a role for progestins as being

antiproliferative [20]. No studies comment on the function of

PR in mesenchymal cells, whereas the role of mesenchymal cells in

colon cancer is of emerging importance [21–23].

In this study we sought to elucidate the role for the progesterone

receptor and progestins in colorectal carcinoma development.

Results

The progesterone receptor is not expressed in the
epithelium of the small intestine or colon

Hypothesizing that the progesterone receptor is the main

mediator of the effect of progestins, we set out to examine the

expression of the progesterone receptor in the epithelium of the

small and large intestine (Fig. 1). Since expression of PR in

some tissues is known to vary greatly during stages of the

estrous cycle [14], we analyzed tissue of female mice in all

stages of the estrous cycle as well as male mice (data of male

mice not shown). To avoid issues of detection level and

antibody specificity, we tested multiple antibodies (see Table 1

for antibody information, data not shown), and confirmed the

results with mRNA in situ hybridization. We observed no

detectable epithelial expression of the PR at either the mRNA

or protein level (Fig. 1A–K). In contrast, some PR positivity was

observed in rare cells in the lamina propria (Fig. 1C). All

antibodies reacted with PR in the mouse uterus, which was

used as a positive control (Fig. 1E) but not with the uterus of

mice that lack the PR (PRKO mice, data not shown). To

further confirm absence of PR in normal tissue, we performed

immunoblots on lysates of mouse colon and small intestine,

using the uterus as a positive control. Both isoforms of the PR

were highly present in the uterus, but we found no expression of

the PR in both colon or small intestine (Fig. 1K).

We next analyzed PR expression in adenomas of Apcmin/+ mice.

These mice carry a mutation in the Apc gene that resembles

oncogenic mutations in patients with the Familial Adenomatous

Polyposis syndrome and in most sporadically occurring colorectal

carcinomas (Su et al., 1992). ApcMin/+ mice develop multiple polyps

in the small and large intestine and due to their resemblance with

human colorectal adenomas, they are widely used as a model for

human colorectal cancer [24–26]. In adenomas of Apcmin/+ mice

we found that the PR was expressed by rare lamina propria cells

but not by epithelial cells (Fig. 1D).

Figure 1. Progesterone Receptor expression in mesenchymal cells in the intestine, not in the epithelium. A–E) PR
immunohistochemistry on the mouse colon (A) and small intestine (B,C) where rare cells express PR (arrowhead). And in an adenoma of an
ApcMin/+ mouse (D). PR is widely expressed in the mouse uterus (E). F,G) In situ hybridization in mouse uterus (F) and small intestine (G). All murine
tissue shown was taken from A female animal in diestrous stage, when progesterone is high [39]. H–J) PR Expression in the human colon is located in
mesenchymal cells (I) and the smooth muscle layer (J), similar to the mouse intestine. For in situ hybridization, thick (10 mm) sections were used,
which makes identification of mesenchymal cells difficult. K) PR immunoblot on the mouse colon and small intestine. L) PR immunoblot on a panel of
colon cancer cell lines shows no expression of either PR-A or PR-B isoform. The breast cancer cell line T47D is used as a positive control.
doi:10.1371/journal.pone.0022620.g001
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Immunohistochemical analysis of PR expression in the human

colon was similar to expression we found in the mouse. In human

mucosa, PR positive cells were observed in the mesenchyme such as

leukocytes and smooth muscle cells but no epithelial expression was

detected (Fig. 1 H–J). This was the case in normal colonic

epithelium as well as adenomas and carcinomas (data not shown).

As it was previously suggested that colon cancer cells may express

PR [20], we next examined a number of different colon cancer cell

lines for expression of PR at the protein and RNA level and using

the T47D breast cancer cell line as a positive control. In a panel of 6

frequently used colon cancer cell lines, we found no evidence of PR

expression at either protein (Fig. 1L.) or RNA level (not shown)).

No effect of progesterone signaling or progestins on
intestinal epithelial proliferation or tumorigenesis

Since no PR was detectable in colon cancer cell lines, PR-

mediated signaling is not possible in these cells. At high

concentrations progestins, such as MPA that was used in the

WHI study, bind to steroid hormone receptors other than the PR

[27]. Such off-target effects might be important in the protective

role of progestins. To investigate a possible off-target effect of

MPA or progesterone directly on colonic epithelial cells, we

treated all cell lines that were previously tested negative for

expression of PR, with increasing concentrations of these steroids

(Fig. 2A). To prevent interference from steroids that are present in

high concentrations in FCS, we charcoal stripped our serum prior

to use. Additionally we used medium that was phenol red free,

since this has weak estrogenic capacities [28]. Measuring viability

of all cell lines, no effects were seen treating with concentrations up

to 200 ng ml21, which is approximately 10 times higher than

physiological plasma levels of progesterone or than levels of MPA

that are achieved with contraceptive [29].

Even though intestinal epithelial cells may not express PR and

do not seem to be affected by progestins, these cells may be

indirectly affected by PR signaling in adjacent cells in mesen-

chyme. Also, it has been reported, that tumorigenesis can be

influenced indirectly, via systemic or central effects [30]. We

therefore decided to cross the ApcMin/+ mouse to a PRKO

background to examine whether systemic absence of the PR

affects intestinal adenoma development in mice. Analysis of both

tumor number and size did not yield differences between PRKO

and WT mice. Also, localization of tumors throughout the

intestine and colon was not different (Fig. 3 A–C).

Although we did not observe any effect of PRKO on the

development of adenomas in the ApcMin/+ mouse, this does not

exclude potential off-target signaling, mediated by other receptors.

Hypothesizing that progestins, such as MPA, harbor effects that

are independent from the PR, we decided to examine the effect of

daily physiological doses of MPA (4 mg kg21) and progesterone

(32 mg kg21) on epithelial homeostasis in the normal mouse and

the effect of MPA (1 mg kg21) on aberrant crypt focus formation

in azoxymethane treated rats.

First, we examined if proliferation of epithelial cells was

influenced by administration of MPA or progesterone. We treated

female mice for 4 days with these hormones, and counted the

number of BrdU positive cells per crypt (Fig. 2B). No difference in

proliferation was found between animals that were treated with

MPA, progesterone or vehicle (corn oil), respectively. Also, there

were no gross changes in intestinal architecture or in differenti-

ation of distinct epithelial cell types, as could be judged on sections

of intestine of these mice, stained with Haematoxylin and Eosin.

To investigate the possibility that progestins exert their effect on

dysplastic cells rather than normal epithelium, we treated rats with

slow release pellets that contained either MPA or vehicle, and

induced colonic tumorigenesis by injecting these animals with the

Table 1. Antibodies used for immunohistochemical detection of PR.

Company Antigen Clone Raised in animal Antigen retrieval Dilution used

ABR PR MA1-410 Rabbit polyclonal Citrate 1:400

Dako PR A0098 Rabbit Polyclonal Citrate 1:400

NeoMarkers PR SP2 Rabbit Monoclonal Citrate 1:200

NeoMarkers PR AB13 Rabbit Polyclonal Citrate 1:1000

Roche BrdU BMC 9318 Mouse Monoclonal Citrate 1:200

doi:10.1371/journal.pone.0022620.t001

Figure 2. Lack of off-target effects from progestins on intestinal proliferation or development of acfs. A) Treatment of a panel of colon
cancer cell lines with MPA or progesterone (P4) has no effect on viability at relevant concentrations. B) BrdU incorporation in small intestine or colon
after challenging female animals with MPA or progesterone (P4) for four consecutive days. C–E) Acf count in the Azoxymethane treated rat shows acf
number (C), localization of acfs throughout the colon (D) and multiplicity (E) (number of crypts per acf).
doi:10.1371/journal.pone.0022620.g002
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carcinogen azoxymethane. This agent causes DNA mutations in

epithelial cells, that lead to development of aberrant crypt foci

(ACFs) [31]. ACFs are hyperproliferative crypts, of which is

thought that a proportion develops into polyps and later into

carcinomas [32,33].

There was no change in the numbers of ACFs in placebo-

treated versus MPA-treated animals. Also, no effect was found on

the localization of these ACFs throughout the colon, or on the

multiplicity, (i.e. the number of crypts of which an ACF consists)

(Fig. 2C–E).

Discussion

Progestins reduced the risk of colorectal cancer in a large

randomized prospective study in postmenopausal women [2,4].

We have analyzed expression of the PR and function of the PR

and of Progestins in colorectal cancer models. We find that

although there are rare mesenchymal cells that express the PR in

the lamina propria, the PR is not expressed in either normal or

malignant intestinal epithelium or in colorectal cancer cell lines.

We do not observe any effect of either progesterone or MPA on

intestinal epithelial homeostasis or rodent models of intestinal

tumorigenesis.

The expression of the PR was previously demonstrated in whole

tissue RNA of both normal colon and colorectal cancer samples

[16,18]. Slattery and colleagues subsequently found no evidence

for PR expression in the epithelium of either normal colon or

colon cancer samples using immunohistochemistry [19]. More

recently expression of PR was described in HT29 and HCT116

colon cancer cell lines and the same authors described inhibition of

the proliferation of these cell lines by MPA.

Our findings corroborate those of Slattery and colleagues as we

find no evidence for PR expression in the epithelium of normal

small intestine or colon in humans and mice. Also, we did not

detect any PR in either human colon cancer cell lines, human

samples of colorectal cancer, in mouse adenomas or aberrant crypt

foci in the rat. Our findings suggest that the PR mRNA that was

found in whole tissue by others may have been derived from PR

positive cells present in the lamina propria or from intestinal

smooth muscle cells. Using the T47D breast cancer cell line as an

appropriate positive control for PR expression we find no evidence

of PR expression at either mRNA or protein level in any of the

colon cancer cell lines examined. In accordance with the absence

of PR expression from intestinal epithelium and colon cancer cell

lines we did not find any effect of either progesterone or MPA on

the proliferation of either normal intestinal epithelium in vivo or

colon cancer cell lines in vitro.

We were subsequently unable to find a role for progesterone

signaling in initiation or progression of intestinal adenomas in the

ApcMin/+ mouse or on aberrant crypt formation in azoxymethane-

treated rats.

In the WHI studies it was found that the combination of MPA

plus estrogen had chemopreventive effects on colon cancer

development whereas estrogens alone had no effect. Since

treatment with MPA as a single drug has no role in postmeno-

pausal women, it was never examined. Our studies clearly show

that progesterone signaling alone does not affect rodent models of

intestinal tumorigenesis, nor were we able to find any off-target

effects of Progesterone or MPA.

Although it may be possible that the combination of estrogen

and MPA may affect colorectal cancer, this does not seem very

likely in light of the absence of PR expression in either normal

colon or colorectal cancer and lack of effect of PRKO on ApcMin/+

adenomas. Rodent models for colorectal cancer do often not

progress to the post-adenoma stage (e.g. adenocarcinoma and

metastasis). Our studies thus can not rule out a role in late stages of

colorectal tumors for either progestin monotherapy or a

combination with estrogens.

In conclusion, our studies do not support a role for either

progesterone or MPA signaling homeostasis of normal colonic

epithelium or in colon cancer development.

Methods

Animal experiments
All experiments were performed according to the Leiden

University Medical Center animal experimental committee

guidelines. Animal experiments were approved by the animal

experimental committee (DEC) of the animal research facility

(PDC) of the Leiden University Medical Center under approval

numbers 08138 and 08145.

Wild type rats and mice were obtained from The Jackson

Laboratory (Bar Harbor, MN, USA) or from our own breeding

facility. ApcMin animals [34] were obtained via The Jackson

Laboratory. PRKO mice [35] were bred heterozygously into

ApcMin/+ males. Male animals that were heterozygous for both

alleles were bred into females, heterozygous for the PRKO allele

to generate females that were PRKO ApcMin/+.

For the Rat azoxymethane experiment five week old rats were

ovariectomized and slow release pellets with MPA or vehicle

(Innovative Research of America, Sarasota, FL, USA) were

implanted subcutaneously in the neck. These pellets contained

25 mg of MPA in a 90 day slow release pellet. Vehicle pellets

were of the same size and composition, but contained no

steroids. After surgery and implantation of the pellet, rats were

left to acclimatize for one week prior to injection with

azoxymethane.

Subsequently, rats were injected twice with azoxymethane

(10 mg kg21 day21; Sigma-Aldrich, Zwijndrecht, Netherlands)

with 7 days between the two injections. Six weeks after the first

injection, animals were sacrificed and colons were fixed.

To assess proliferation in vivo, BrdU incorporation studies were

performed. Six weeks old mice were injected on four consecutive

days MPA (Sigma-Aldrich), Progesterone (Sigma-Aldrich) or

vehicle (10 animals per group). Hormones were dissolved in

DMSO which was subsequently diluted to 10% in corn oil. All

volumes were equivalent. One hour prior to sacrifice, all animals

were injected with 200 ml BrdU (10 mg ml21 in PBS; Sigma-

Aldrich).

Hormone treatment
For rat studies, the MPA dosage used was based on the IC50 of

ovulation-inhibition in rats (0,1 mg kg21 day21) [36], to guarantee

physiologically active concentrations, this concentration was

multiplied tenfold (1 mg kg21 day21). Rats received a 90 day

slow release pellet to ensure stable release. This was approximated

by placement of a pellet containing 25 mg of MPA (1,1 mg kg21

day21).

Figure 3. The Progesterone receptor has no influence on intestinal polyposis. A–C) Development of spontaneous polyposis in the ApcMin/+

mouse is not altered by PRKO (10 female animals per genotype).
doi:10.1371/journal.pone.0022620.g003
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For mouse BrdU incorporation studies, the concentration of

MPA was multiplied by 4 to ensure allosteric conversion between

rats and mice [37]. The concentration of progesterone was based

on the report of Yamanouchi et al. [38], where estrogen induced

proliferation in rats was inhibited by treatment with 8 mg kg21

day21 progesterone. Allosteric conversion resulted in treatment

with 32 mg kg21 day21 progesterone in mice.

Tissue processing, Immunohistochemistry and In situ
hybridization

Tissue was fixed in 10% ice-cold formalin embedded in

paraffin. Sections of 4 mm were deparaffinized in xylene and

rehydrated.

For immunohistochemistry, endogenous peroxidase was

blocked using 0.3% H2O2 in Methanol. The sections were cooked

in 0.01 M Citrate buffer pH 6.0 for 20 minutes and incubated

with the primary antibody in PBS with 1% BSA and 0.1% Triton

X-100.

Antibody binding was visualized with Powervision HRP labeled

secondary antibodies, and diaminobenzidine for substrate devel-

opment. All sections were counterstained with Mayer’s haema-

toxylin. For a list of all antibodies used, see Table 1. Immuno-

histochemistry in figures was done with the rabbit monoclonal

antibody from Neomarkers (clone SP2), since the background was

low using this antibody.

For in situ hybridizations, sections were deparaffinized and

rehydrated. Subsequently, sections were incubated in 1 M HCl for

10 minutes, treated with proteinase K in PBS for 20 minutes, and

refixed with 4% paraformaldehyde for 10 minutes. Sections were

acetylated with acetic anhydride, and incubated with a digox-

igenin (DIG)-labeled probe over three nights at 68uC. After three

stringency washes with 50% formamide in SSC buffer (pH 4.5) at

65uC, sections were incubated with alkaline phosphatase-labeled

anti-DIG Fab fragments (Roche). Probe binding was visualized

using the NBT-BciP substrate (Sigma-Aldrich).

BrdU and aberrant crypt focus (acf) counting
For BrdU incorporation studies, sections were stained as

described above. Blinded to treatment group, the number of

BrdU+ cells was counted in at least 30 crypts in each animal

(n = 10 per group).

For counting of aberrant crypt foci (as), fixed colons were

stained with 1% methylene blue (Sigma-Aldrich) in PBS and

washed in fresh PBS. Acf number and multiplicity was evaluated

in the entire colon under a dissection microscope.

Immunoblotting
Cells and tissue were lysed in cell lysis buffer (Cell Signaling

Technology, Leiden, Netherlands). Protein concentration in

lysates was assessed by bicinchoninic acid protein assay reagent

(Pierce, Thermo scientific, Etten-Leur, Netherlands). Lysates were

boiled in sample buffer containing 0.25 M Tris-HCl pH 6.8, 8%

SDS, 30% glycerol, 0.02% bromophenol blue and 1% b-ME.

Separation was done on 10% SDS-PAGE, and proteins were

transferred to a PVDF membrane. Specific detection was done by

incubating the blot overnight in TBS with 0.1% Tween-20 with

1% BSA with anti-PR (NeoMarkers 1:500) and anti-Actin (1:2000;

Santa Cruz Biotechnology, CA, USA) antibodies. Antibody

binding was visualized using the Lumi-Light western blotting

substrate (Roche).

Charcoal stripping of fetal calf serum
Five grams of charcoal (Merck) was put into 50 ml of FCS and

left overnight on a rollerbank at 4uC. The charcoal was pelletted

by spinning at 5000 rpm subsequently and the serum was

decantated and filtered through a 0,22 m filter.

Cell Culture and MTT
Cells culture was maintained in DMEM, supplemented with

10% FCS and 1% penicillin and streptomycin. For the MTT

assay, cells were plated onto 96 well plates in phenol red free

DMEM F12, supplemented with 5% Charcoal stripped FCS and

1% penicillin and streptomycin. Cells were left to adhere

overnight. Per condition, 10 wells with cells were treated with

the indicated concentration of either MPA or Progesterone

(Sigma-Aldrich), dissolved in 100% ethanol. In all conditions, a

final concentration of 1% ethanol was maintained. After 48 hours

of treatment, thiazolyl blue tetrazolium blue (MTT) substrate

(Sigma-Aldrich) was added to each well (5 mg ml21 end

concentration), and incubated for 4 hours. Culture medium

containing excess MTT was taken off, and cells were lysed in

isopropanol. MTT was measured colorimetrically at 570 nm. The

average of all 10 wells per condition was taken as the outcome of

one experiment.

Concentrations used in in vitro studies were based on reported

medical reference values: in healthy cycling females, progesterone

concentrations range from 1–20 ng ml21. Progesterone plasma

concentration is maximally 90 nanomole l21 (approximately

30 ng ml21) in healthy females. MPA plasma concentrations, 5–

20 days after injection of a standard contraceptive dose (consisting

of an intramuscular injection of 150 mg MPA) ranges from 10 to

25 ng ml21 [29].

Statistical analysis
All data are presented as mean 6 standard error of the mean.

Cell culture experiments were repeated at least three independent

times. Statistical analysis of cell culture experiments was performed

by 2-way ANOVAs analysis.

For animal experiments, student T-Test or 1-way ANOVAs

tests were used. In sub analysis of localization or size, 2-way Anova

tests were used. All Anova tests were followed by Bonferroni’s post

test for multiple comparisons.
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