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ABSTRACT 

 
A number of adaptive control algorithms have been developed in the US and overseas.  However, the 
practical implementation of adaptive control is limited especially in California. There is a need to develop 
adaptive control algorithms, evaluate their performance through a field test, and develop a deployment 
plan for possible Statewide application. The objectives of the study are identify and select the most 
promising of existing adaptive control algorithms, develop improved algorithm(s) as appropriate, conduct 
field tests on real-world arterials, and develop recommendations for deployment of adaptive control. 
 
This report describes the work performed in the first phase of the research conducted under PATH Task 
Order 5322. It summarizes the findings from the literature review and presents the study methodology.  A 
section of the Pacific Coast Highway in the city of Lomita was selected as the test site for evaluation of 
adaptive signal control strategies. A methodology was developed to develop a time-varying origin-
destination (OD) matrix from the system loop detector data at the site.  The calibrated OD matrix was 
applied to a microscopic representation of the site created in PARAMICS. Finally, a plug-in for 
simulating signal control in PARAMICS was written. It simulates non-adaptive strategies such as 
pretimed, isolated actuated, coordinated actuated, traffic responsive, and critical intersection control, as 
well as adaptive strategies such as RHODES and TUC.  

 

Keywords: Traffic signals, adaptive control, simulation, origin-destination matrix estimation 
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EXECUTIVE SUMMARY 
 
A number of adaptive control algorithms have been developed in the US and overseas.  However, the 
practical implementation of adaptive control is limited especially in California. There is a need to develop 
adaptive control algorithms, evaluate their performance through a field test, and develop a deployment 
plan for possible Statewide application. The scope of the project is to identify and select the most 
promising of existing adaptive control algorithms, develop improved algorithm(s) as appropriate, conduct 
field operational tests on real-world arterial corridors, and develop recommendations for deployment of 
adaptive control.  The report describes the work performed and the finding in the first phase of the project 
(PATH Task Order 5322).   
 

 A test site with seven signalized intersections was chosen for evaluation of adaptive signal control 
strategies. The selected test site is a section of the Pacific Coast Highway running through the city 
of Lomita, managed by Caltrans District 7. Over seventy days of loop detector data were 
collected for this site using the CTNet software.  Additional data on geometrics and signal 
settings were collected from Caltrans staff and field visits to the site.  A model of the test site was 
constructed in the PARAMICS microscopic simulation model to evaluate the effectiveness of 
control strategies prior to field implementation. 

 A methodology was devised for synthesizing a time-varying OD matrix from the loop detector 
data.  This procedure makes few assumptions on the availability of data, and allows the user to 
directly affect the resulting turning flows by manipulating the input parameters. The calibrated 
OD matrix was input to the PARAMICS model to simulate existing operating conditions at the 
test site. 

 A signal control plug-in was written to model control strategies with PARAMICS. It simulates 
non-adaptive strategies such as pretimed, isolated actuated, coordinated actuated, traffic 
responsive, and critical intersection control, as well as adaptive strategies. The plug-in can be 
applied to any PARAMICS network. The plugin is based on a control interface which allows it to 
communicate with arbitrary "black box" algorithms via standard hold, force-off, and omit 
messages. When connected to an external control algorithm, the plugin acts in much the same 
way as a real controller, providing safety and minimum phase timing guarantees.  

 
Ongoing research in the second phase of the project under the PATH Task Order 6322 includes the 
following tasks:  
 

 Evaluation of the selected existing and proposed adaptive control algorithms through simulation. 
The best adaptive control algorithm will then be selected for field testing based on the analysis of 
the simulation results.  

 Development of a test plan for field implementation. The test plan will specify the hardware and 
software requirements and level of effort required for field implementation of the adaptive 
algorithm.  The test plan will also specify the duration of the field experiment, the method of data 
collection, the duration of the field experiment, and the analysis of the results.  

 Development of guidelines for deployment of adaptive control based on the findings from the 
simulation results. The issues to be addressed in the deployment plan include the system 
performance, costs (installation, operations and maintenance), system reliability, and integration 
with other traffic management systems. We also provide an assessment on how well the proposed 
adaptive system adapts to changing traffic conditions, and how well they, if not stand-alone 
system, coexist with standard time-of-day signal control systems.   
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CHAPTER 1 
INTRODUCTION 

 
1.1 Introduction 

Optimal traffic signal control has been recognized as a very cost/effective strategy to improve the efficiency 
of existing transportation facilities. Synchronizing traffic signals along arterials or in a network, and 
optimizing the signal settings, result in smoother traffic flows, reducing idling and stopping.  This, in turn, 
reduces fuel use, saves motorists travel time, diminishes wear and tear on vehicles, and cuts vehicular 
emissions (22). Furthermore, effective arterial control is an important step in developing a systematic 
integrated control of freeways and arterials for corridor management.  
 
Most traffic control systems today are based on time-of-day schedules where the traffic signal settings 
(cycle length, green times, offsets) are set by time-of-day based on historical data on traffic demand (e.g., 
am peak hour turning movement counts). Some systems operate in a traffic responsive mode where the  
signal timing plans are selected based on observed volumes and occupancies. Traffic responsive systems 
find the best match between a plan that was developed based on design volume and occupancies values 
and observed values. There is no guarantee that a traffic responsive system will have a plan for the 
observed conditions.  A truly traffic adaptive system will adjust the settings at traffic signals based on 
real-time data on traffic conditions, and can respond to unexpected or unplanned events, such as incidents, 
special events, weather, etc., since they adapt the timings based on observed traffic data.   Similarly, 
adaptive systems will improve performance over time-of-day plans when the traffic patterns have a high 
degree of variability. Finally, adaptive systems will reduce the adverse effects of offset transition, 
preemption, and transit priority. 
 
Several adaptive control algorithms have been developed in the US and overseas.  However, the practical 
implementation of adaptive control has been limited especially in California. There is a need to develop 
adaptive control algorithms, evaluate their performance through a field test, and develop a deployment 
plan for possible Statewide application. The objective of this study is to develop adaptive signal control 
strategies along arterials, evaluate their effectiveness, and develop recommendations for possible 
Statewide deployment. Specific products of the proposed research will be: 

 An adaptive control algorithm for arterial streets that explicitly addresses the California 
Department of Transportation (Caltrans) needs  

 Field testing and evaluation of the proposed algorithm in a real-world arterial 
 A deployment plan with guidelines for statewide implementation of adaptive control  

 
This report describes the work performed in the first phase of the project, under PATH Task Order 5322.  
The next section summarizes the findings from the literature review on existing adaptive signal control 
systems.  Chapter 2 presents the study methodology.  Chapter 3 describes the selected test site and the 
data collection and processing.  Chapter 4 presents the analytical procedure to develop an origin-
destination matrix from detector data for input to the simulation model.  Chapter 5 describes a plug-in 
developed for the PARAMICS model to simulate signal control strategies.  Chapter 6 summarizes the 
study findings and outlines the work to be performed in the second phase of the project under the 
continuation PATH Task Order 6322. 
 
1.2 Existing Adaptive Signal Control Systems  

A literature review was undertaken to identify the state-of-the-art adaptive control algorithms that are 
operational and implemented in real-life systems. Emphasis was placed on the latest information on 
existing algorithms through published sources and contacts with systems’ developers and users. In 
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addition to published sources1, the Transportation Research Board (TRB) Traffic Signal Systems 
Committee website includes several presentations on the characteristics of several adaptive traffic signal 
systems including system architecture, data requirements, communications requirements, local controller 
and central hardware requirements, installation operation and maintenance costs.2 
 
The characteristics of several adaptive signal control systems that have been implemented in the field are 
summarized in the Table 1.1 below: 
 

Table 1.1 Summary of Existing Adaptive Signal Control Systems 
System Installa- 

tions 
Architecture Detection Controller Communications 

SCOOT Over 200 
worldwide 

Centralized Exit loops NEMA 
(EPAC) or 
special 

Once per second for 
hold, force-off omit 
and detector data 

SCATS Over 50 
worldwide 

Hierarchical  
(plan based) 

Stop bar loops 2070 or 
special 

Strategic control 
from central and 
local tactical control 

OPAC 2 Decentralized Exit loops NEMA (with 
VS-PLUS 
firmware) and 
VME co-
processor) 

Once per cycle 

RHODES 4 Decentralized Fully actuated 
design 

2070 (with 
NextPhase 
firmware and 
VME co-
processor) 

Peer-to-peer over 
IP, event based on 
upsteam detections 

ATCS 
(Los 
Angeles) 

1 Centralized Fully actuated 
with system 
detectors for 
VOS 

2070 with 
LADOT 
firmware 

Once per second 

TUC 
(Chania, 
Greece) 

3 Central System Loops 
for VOS 

European 
 

Once per second 

UTOPIA 
(Torino, 
Italy) 

1 Distributed Fully actuated 
design 

European 
 

 

 
 
There have been many studies where different adaptive control systems have been evaluated. Most of the 
field evaluation studies that have been conducted on adaptive systems have concentrated on addressing 
the ability of these systems to provide benefits in terms of reductions in travel times, intersection delays, 
and the number of stopped vehicles.  These field evaluations have primarily used the “before” and “after” 
technique. Evaluation of SCOOT deployments has reported reduction in intersection delay in the range of 
                                                
1 Documents describing traffic control strategies and related issues are listed in the BIBLIOGRAPHY section of the 
report  
2 http://www.signalsystems.org.vt.edu/documents.html 
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0% to 53% over the previous (primarily fixed time) control. In some of these studies the signals were first 
optimized before the “before” data was collected.  
 
SCATS has been deployed in Oakland County Michigan. Reported improvements in travel times were 
7%-32% during different times of the day and compared to previous conditions which consisted only time 
based control with little to no effort in maintaining signal timings.  
 
The Federal Highway Administration (FHWA) sponsored Adaptive Control System (ACS) prototypes - 
OPAC, RHODES, and RTACL were field tested in Reston, Virginia; Seattle, Washington, and Chicago, 
Ill, respectively. In general, there were many lessons learned from these deployments. Issues related to 
installation and operation of detection systems, communications, and controllers were significant 
challenges in each of the field tests. RTACL performed below expectations. OPAC did not improve 
network conditions and in some cases delay and travel time actually increased. Simulation tests of OPAC 
using the CORSIM simulation model were consistent with the field test results. RHODES showed no 
significant difference in arterial travel times, but the cycle times were significantly reduced in Seattle. No 
delay study was conducted on RHODES. 

In general, traffic engineers perceive traffic adaptive signal control systems to be systems that will 
improve traffic signal operational performance with decreased staff workload. While this perception 
indicates the desire of traffic engineers to provide better service to the public within the tightly 
constrained budgets  that are available, the actual benefits and costs are still poorly understood and largely 
unquantified.  Most of the cited benefits are based on limited data and do not relate to the geometric, traffic 
and control characteristics of the specific project areas (23). Other factors limiting the deployment of 
adaptive systems include:  
 

 Agency capability and willingness to deploy adaptive systems 
 Concerns over actual benefits, dependencies on site specific conditions, and loss of an engineer’s 

control over the timing plans 
 Lack of understanding, including complexity of the systems as well as not knowing the difference 

between adaptive and responsive or other off-line control operations 
 Additional initial expense and maintenance costs 
 Imaturity of US systems and concern about difficulties associated with using foreign developed 

systems. 
 
FHWA in cooperation with signal controller manufactures recently developed the Adaptive Control 
Software Lite (ACS Lite) (20), with the goal of providing a “widely deployable” system that automates 
monitoring of traffic signal performance and adjustment of signal timing. The Lite designation reflects a 
focus on reducing traditionally high installation and operations costs, which have been the primary 
impediment limiting the deployment of adaptive systems in the U.S. Simulation evaluation has 
demonstrated significant benefits in the context of suboptimal settings, and “no harm done” in the context 
of signal timing that was optimized with perfect knowledge of traffic conditions. Field evaluations were 
then conducted in four sites showed that signal timing adjustments by ACS Lite provided substantial 
reductions in vehicle delay, arterial travel time, vehicle stops, and fuel consumption. 
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CHAPTER 2 
METHODOLOGY 

 
The research approach consists of theoretical development, simulation modeling, and field 
implementation and evaluation of the proposed strategies.  The primary emphasis on this project is to 
produce and field test operational adaptive control algorithms.  Emphasis therefore is given in the 
methodology to address the key issues in carrying out this project rather than describing a formulation of 
a proposed algorithm. 
 
There are several issues to be addressed in developing adaptive control algorithms including but not 
limited to control philosophy, surveillance requirements, theoretical formulation, computational 
requirements, controller hardware & software requirements, communications requirements, and interfaces 
with other systems (e.g., freeway TMCs) for integrated corridor management or other local agencies’ 
TMCs for multi-jurisdictional control. Key issues for the development and evaluation of adaptive control 
strategies are discussed in the following sections. 
 
2.1 Development of Adaptive Control Strategies  

The approach for developing an adaptive control algorithm is to select the most promising control 
strategy from the existing strategies identified in the literature and design and implement new functions 
and features that are required to meet the needs and requirements of  the selected test sites that are 
representative of major arterials (including freeway-arterial corridors).  Some key considerations include: 
 
Control philosophy: The common assumption is that adaptive control continually changes the signal 
settings to match the measured (or predicted) traffic patterns in the network.  However, this approach may 
not be beneficial on congested conditions because it may create spillbacks upstream from the critical 
intersection(s).  Furthermore, coordination with adjacent metered ramps or congested off-ramps may 
necessitate overriding the blind adaptation to traffic patterns at the arterial.  It is critical to understand the 
difference between “control” and “adapt” and design an algorithm that satisfies the objectives and 
constraints for the specific project area. 
 
Compatibility with Caltrans & local agencies signal control practices: The development of improved 
control algorithms should take into consideration the existing operation of signal systems on California 
State highways and local major arterials.  Most of the signals are equipped with 170 or 2070 signal 
controllers and stopline detection. Algorithms that are designed to operate with such hardware framework 
would be easier to implement than algorithms which require customized controllers or detection location 
(i.e., not compatible with the California MUTCD guidelines, for example Table 4D-101). 
 
Surveillance requirements: The effectiveness of adaptive control depends on the availability and 
accuracy of the data on traffic conditions, i.e., size, shape and speed of traffic platoons approaching the 
intersection. The cost of installation and maintenance of conventional surveillance systems (loop 
detectors) is very high, particularly for systems that require multiple detection points upstream, which 
make the widespread deployment of such systems very difficult.   We will investigate the potential of new 
detector technologies and how they can work with the adaptive algorithms.   
 
2.2 Evaluation of the Proposed Adaptive Control Strategies 

The objective of the evaluation is to quantify the benefits of the adaptive control.  It is important to 
differentiate between the benefits of the proposed control (with new hardware and software) against both  
a) the existing system with existing signal settings and b) existing system with optimal signal settings to 
estimate the true benefits of adaptive control (24).  Figure 2.1 illustrates the proposed methodology. 
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Figure 2.1 Measuring the Benefits of Adaptive Signal Control 

 
 Comparison  of (a) vs. (b) provides the benefits due to the optimal operation of the system with 

existing hardware and control strategy (e.g., TOD plans)  
 Comparison of (a) vs. (c) provides the total benefits due to adaptive control from existing 

conditions 
 Comparison of (b) vs. (c) provides the true benefits of adaptive control 

  
The measures of effectiveness (MOEs) for the evaluation of the alternative strategies include travel times, 
delays and number of stops on arterial links and cross-streets. System measures may include VMT (veh-
miles traveled), VHT (veh-hrs traveled), and cycle failures.  Energy and environmental measures may 
include excess fuel consumption, and vehicle emissions (CO, HC and NOx).  These environmental 
measures are usually derived from the primary performance measures of travel times, delays and stops.   
 
It is also important to consider the traffic impacts of the proposed strategy(ies) on each system 
component.  For example, it is well known that signal coordination improves traffic performance on the 
arterial through links at the expense of cross-streets.  Therefore, the evaluation plan will analyze the 
performance measures separately on  

 arterial through links  
o travel time (speed) 
o delay  
o number of stops (% vehicles stopped) 

 cross-streets  
o queue length 
o delay  

 total system   
o VMT  
o VHT 
o cycle failures 
o fuel consumption 
o emissions  
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2.3 Simulation Modeling  
 
The performance of the existing and proposed control strategies will be first evaluated through 
simulation. Simulation provides several attractive attributes including the ability to evaluate system 
performance under a wide variety of traffic conditions. Simulation allows to vary many system 
characteristics including volumes, turning proportions, saturation flow rates (such as might change due to 
weather conditions), and events such as lane closures, preemptions, etc. However, it is important to 
realize that simulation generally does not support testing of operational issues such as detector errors.  
This can be approximated by testing the performance of the algorithm with less than ideal detector data, 
but still we cannot analyze the effects of random data losses.  There are several important considerations 
in the evaluation of control strategies through simulation: 
 
Model selection  

A number of simulation tools are available to model signal operations on arterials and networks.  Existing 
models can be classified into macroscopic and microscopic. Macroscopic models consider the average 
rates of flow in the network and use analytical relationships to model traffic flow.  Microscopic models in 
contrast, simulate the movement and interactions of individual vehicles. Microsimulation has been 
selected for this project because the signal control strategies being considered often react to single vehicle 
events. For example, actuated signal operation monitors the advance detectors and may extend the green 
time if a vehicle is registered by an active approach detector. Such effects are difficult to reproduce in 
macroscopic simulation.  
 
Among the various microscopic models available, PARAMICS was selected as the main tool for 
modeling control strategies because it has been used in a number of Caltrans sponsored projects, and of 
the research team's familiarity with its Application Programming Interface (API).  The CORSIM model 
(10) also will be used in the study because it can directly model the RHODES and ACS Lite control 
strategies. 
 
PARAMICS is a suite of simulation tools developed by Quadstone (19).  PARAMICS Modeller is the 
core network building tool. It enables the user to display a map of the selected test site and overlay and 
edit the nodes and links that constitute the network model. All of the supply side elements of the network, 
including traffic signals, lanes, priority and permission rules, are defined in Modeller. PARAMICS 
Processor is a batch execution tool. It allows the user to define a sequence of simulation runs and execute 
them at a much faster speed than with Modeller. PARAMICS Programmer is the API; it consists of a set 
of C-based functions that provide access to many of the internal variables of the PARAMICS model, and 
it is used to code signal control algorithms. 
 
Calibration of baseline conditions 

The first step in the simulation modeling of strategies is to calibrate the simulation model against field 
measurements to ensure that the simulation model replicates field conditions. Model calibration is a 
complex process given the numerous parameters in the microscopic simulation models.   The model 
calibration will be carried out according to the guidelines developed by FHWA (8), which consist of the 
following three steps: a) calibration for capacity, b) route choice calibration, and c) overall system 
performance calibration.    
 
Coding of the signal control strategies  

The existing and proposed signal control algorithms will be coded in the simulation model.  This is 
generally a complex process because it requires developing an interface through hardware in the loop or a 
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plug-in between the simulator and the control software.  Chapter 5 of the report describes the plug-in 
developed in the project to simulate a number of control strategies utilizing the PARAMICS model API.  
 
Comparison of alternatives 

This process involves comparisons of the model predicted MOEs under each control scenario to 
determine if statistically significant improvements are obtained.  This in turn requires that several 
replications of the simulation need to be performed for each scenario and the results statistically analyzed.  
The number of replications depends on the conditions to be simulated and the performance measures to be 
analyzed.  For example, the stochastic variability in the model results is much higher for link delays under 
heavy traffic volumes as opposed to system travel times under low volume conditions.  
 
2.4 Field Testing  

Field testing of the proposed algorithm on the selected sites involves the following steps; 
 

a) “Before” data collection on the selected performance measures 
b) Field implementation of the proposed algorithm 
c) “After” data collection on the selected performance measures 

 
The methodology for field data collection will depend on the characteristics of the test site and the 
surveillance system capabilities.  For example on systems equipped with cameras at the intersection, we 
can process the image to obtain estimates of delays and queue lengths through image processing.   
Floating cars equipped with GPS units may be also utilized to obtain estimates of arterial link travel 
times, delays and stops. The duration of the field tests will provide sufficient data to determine if 
statistically significant improvements have been obtained. At a minimum one week of “before” and 
“after” field data will be collected. This estimate will be revised as appropriate based on the sample 
measurements of the MOEs. We will carefully monitor the traffic and other operating conditions 
throughout the field experiment to ensure that the measurements are not masked by external factors. 
 
We will also compare the field results against the simulation results.  Comparison of simulation and field 
test results are often difficult and misleading since simulation studies are generally conducted under well 
controlled conditions where performance measures are not collected until the system has reach a “steady 
state”. It is not possible to fully control field test conditions so the performance measures may be 
collected during periods of transition or when random events may be occurring on the network.  However, 
field testing is the only true test of performance, but it should be recognized that field testing may not 
always produce findings that truly measure the capabilities of an adaptive system.  
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CHAPTER 3 
THE TEST SITE 

 
3.1 Test Site Selection  

This research will field test proposed adaptive control algorithms on a real-world arterial.  It is therefore 
important that suitable test sites are selected for the evaluation of the proposed algorithms.  Criteria for 
test site selection include: 
 

 Traffic volumes and patterns:  The selected site should have both heavy traffic volumes and 
highly variable traffic patterns.  There are no significant benefits from adaptive control if the 
arterial volumes follow a predictable traffic pattern throughout the day.  Furthermore, if the traffic 
volumes are well below capacity then the variability in traffic patterns can be accommodated with 
conventional fixed-time or actuated control. 

 Proximity to freeway:  Location of the test arterial close to freeway that is part of a freeway-
arterial corridor will permit development and testing of algorithms for integrated corridor control  

 Existing signal system capabilities:  signal hardware and software and communications that allow 
central or decentralized monitoring of the signal system and remote implementation of changes in 
signal settings.  

 Data availability:  Existing data on intersection geometrics, traffic volumes and patterns, and 
existing signal settings are required for the development and evaluation of the proposed 
algorithms through simulation.   Also, existing data on traffic performance including travel times, 
delays and queue lengths 

 Cooperation with Caltrans & local agency staff: Staff in charge of the system operation and 
maintenance willing to participate in the study, review the proposed algorithms and provide 
cooperation and support throughout the field test  

 
The following sites were investigated based on discussions with Caltrans and local agencies’ operations 
staff:  

1) San Pablo Avenue (State Highway 123):  San Pablo is located in the San Francisco bay 
Area and it is a parallel route to I-80 freeway.  It is part of the East Bay Smart Corridor. 

2) State Highway 17 and Bascom Avenue:  This is part of the Silicon Valley Smart Corridor 
in San Jose. 

3) Orange County Test Bed: There are several freeway-arterial corridors in the cities of 
Irvine and Anaheim 

4) Pacific Coast Highway (PCH) in Southern California  
 
The test site selected for the study is a stretch of the PCH running through the city of Lomita in Southern 
California (Figure 3.1). This stretch runs East-West, is relatively straight and flat, and contains 11 almost 
evenly spaced intersections, 7 of which are signalized. All of the signalized intersections are operated by 
2070 controllers, most of them have protected left turns. The key considerations in choosing this site were 
its hardware (2070 controllers coordinated by a field master), variability of traffic volumes, and 
availability of data. The test site is equipped with approach and stopline detectors at every signalized 
intersection. The measurements from these detectors can be remotely accessed via the Caltrans CTNET 
system.  
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Figure 3.1 The Selected Test Site (Pacific Coast Highway, Lomita, CA) 

 
 

3.2  Data Collection and Processing  

Information on intersection geometrics, limited manual turning movement counts and signal settings 
(controller cards) were made available by Mr. Jorge Fuentes of Caltrans District 7.  The research team 
made two field visits to the site to observe operating conditions and to gather supplemental data.  

Traffic demands are defined in the PARAMICS model with a time-varying origin-destination (OD) table. 
To obtain an OD table for the study section, first we obtain detector data using CTNET and then we 
developed a procedure to estimate the OD table from the detector data (described in Chapter 4).  
 
CTNET (2) is a map-based software developed by Caltrans. It is intended to facilitate the remote 
management, monitoring, and analysis of signal status and traffic sensor data at signalized intersections. 
CTNET uses Windows sockets and is based on the server/client paradigm. A server application resides on 
a computer in the Caltrans offices. It relays information from the field master controller to the various 
client programs requesting that information. The client side program receives signal and detector 
information once per second and displays it on a map. The transmitted information includes:  

• Cabinet alarm state (preemption and flash).  
• Phase (reds, yellows, greens, and PEDs).  
• Phase calls (vehicle and PEDs).  
• Detector presence.  
• Volume and occupancy data (see Figure 3.2).  

 

 

Figure 3.2  Test Site: Raw and Filtered Traffic Volumes 

CTNET was used to collect 70 weekdays of data between March 2nd and June 29th 2006. The volume and 
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occupancy data were saved in a Microsoft Access database.  Each day contained 15-minute flows for each 
of the 37 mid-block detectors. These Access tables were converted to Excel spreadsheet form with the aid 
of the AutoIt scripting tool (12), a free software that can be used to automate a number of repetitive tasks.  

The Excel tables were then loaded into the Matlab software and ranked according to the total flow 
accumulated over 24 hours. Several days were seen to have anomalously low total flows, due presumably 
to incidents or faulty detectors. About one third of the days were discarded on the basis of low volumes or 
too few samples (See Figure 3.3). From the remaining two thirds we selected the median day for the 
volumes to input into the PARAMICS model to simulate existing conditions (See Figure 3.4).  

 
Figure 3.3 Test Site: Data Samples 

 

 
Figure 3.4  Distribution of Average Volumes 
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CHAPTER 4 
ORIGIN-DESTINATION MATRIX ESTIMATION 

 
Traffic demands are defined in the PARAMICS simulation model with a time varying origin-destination 
(OD) matrix.  This Chapter describes the procedure developed in this study to obtain the OD matrix from 
detector measurements at the study site3. 
  
4.1 Introduction 
 
Most simulation models, both macroscopic and microscopic, require an OD matrix to define the traffic 
demand patterns on the study network. However, few simulation software include a procedure for 
estimating it. The traffic engineer in need of an OD matrix is often confronted with the decision of either 
using a simulation model that provides OD estimation, such as PARAMICS or implementing one of the 
algorithms found in the academic literature. Regarding the latter option there is a large number of 
techniques from which to choose, with varying degrees of sophistication and computational requirements. 
Most of these employ mathematical programming methods to find the OD matrix. The problem in most 
cases can be expressed as follows:  

minimize J(OD, additional data) 
such that the measured flows are reproduced, and individual OD flows are non-negative 

The additional data in the objective function is often a target OD matrix, assumed available from previous 
studies. The problem thus formulated is to find the matrix with non-negative elements which is closest to 
the target matrix, while reproducing the measurements. Several distance functions J have been 
considered, including maximum entropy (29), quadratic functions (3), and absolute value norms (21). The 
method of generalized least squares, applied to OD estimation by Cascetta in (3), has received particular 
attention due to its versatility and numerical robustness. Bell (1) later improved the method by enforcing 
non-negativity constraints. Another related line of research has developed algorithms which take explicit 
account of the stochastic nature of the problem (16, 17, 26).  
 
The approaches mentioned thus far assume that the routing of traffic is known beforehand from a pro-
portional assignment matrix. However several authors have noted that the two problems, OD estimation 
and traffic assignment, may be interrelated when the network is congested. In this situation, a user equi-
librium assumption on the distribution of traffic is more appropriate (28,30).  

A more recent development has been the use of time-series data for the estimation of either static or time-
varying OD matrices. Cremer and Keller (6) first used sequences of traffic counts to estimate OD 
information for a single complex intersection. Nihan and Davis (18) then generalized the approach by 
noting that it falls within a larger family of parameter estimation techniques. Li and De Moor (14) 
improved upon the accuracy of (31) and (25). These works are of relevance to the present approach 
because they apply only to a strictly defined network configuration. An important improvement was 
provided by Li and De Moor in (15) when they allowed for some of the boundary flows to be 
unmeasured. Another interesting and promising line of research has been the use of automatic vehicle 
identification techniques for gathering partial vehicle trajectories (7, 13,31).  

Aside from the academic approaches, the other alternative is to use a simulation model such as 
PARAMICS which includes an OD estimation module. The network coding effort notwithstanding, this 

                                                
3 This Chapter was originally published in “A simple procedure for estimating origin-destination matrices for 
arterial corridors”, by Gomez and Skabardonis, paper 08-1750, presented at the 87th Annual Meeting of the 
Transportation Research Board, Washington DC, January 2008. 
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approach is attractive because it allows the user to observe the resulting dynamic response of the network. 
These observations can then be used to adjust the parameters of the estimation algorithm, in an iterative 
process that may be manual or automated. The general approach adopted by the PARAMICS OD 
estimator combines an optimization based OD estimator with the microscopic network simulator, which 
includes a dynamic traffic assignment procedure. At every iteration, the user is allowed to adjust the 
confidence weights assigned to each detector measurement (link or turning flows). These weights in turn 
influence the distance from the measured values that the estimated values may take.  
 
There is in principle no reason why any of the estimation techniques mentioned above could not be 
included in an iterative procedure. However it would be difficult for a model user to adjust the parameters 
of the estimator, since the relation between the inputs and the dynamic behavior is usually complicated. 
For example, it may not be clear how the entries in the target OD matrix should be adjusted in order to, 
say, shorten the queue in a particular left-turn pocket. In PARAMICS on the other hand, the user is 
allowed to adjust not only the target OD matrix, but also target turning and link flows. To shorten the 
queue, the user would simply increase the target turning flow exiting the queue without increasing the 
entering target flow. More generally, any adjustment to an aggregate quantity can be achieved through 
adjustments to the turning flows.  
 
4.2 Proposed O-D Estimation Procedure 

We present a mathematical program with a complete set of consistent turning flows, which are computed 
previously from the measurements. Because these flows are consistent, they can be imposed strictly upon 
the OD matrix search. Moreover the target OD matrix, which has traditionally been assumed available 
from surveys, is no longer needed. To compute the turning flows we describe a framework consisting of 
several steps. In the first step, the mid-block detector measurements are extended to the intersections. 
Then the boundary flows on each intersection are used to compute the total number of vehicles entering 
and exiting the main arterial in either direction. Third, the turning flows are computed from these values, 
and finally the OD matrix is found with an optimal search. This step-by-step approach is intended to split 
the larger problem into manageable parts, and thus allow for several levels of verification of the results.  

We
 
focus on a specific network topology, consisting of a single two-way arterial, intersected by a number 

of cross streets. The intersections may have three or four legs, as illustrated in Figure 4.1, and they may or 
may not be signalized. We will assume that at least some of the intersections (usually the signalized ones) 
are equipped with approach detectors located some distance upstream of the intersection, on both sides of 
the arterial. The measurements from these detectors constitute the primary source of data. Any additional 
counts or measurements, such as cross-street flows or queue length estimates, are considered as 
supplemental information that can be used to tune the estimation parameters. As a matter of notation, we 
will assume that the arterial runs in the East-West direction, while the cross streets run North-South. The 
method is static, so the time index is omitted. The flow measurements are assumed aggregated over a 
sufficiently long period of time for the static assumption to hold.  

The proposed procedure has four consecutive stages. Each stage is described in terms of its input and 
output data, and equations are suggested to relate the two. However, these equations are not expected to 
apply to all situations. They are one alternative derived from a set of assumptions. Another set of 
assumptions, perhaps better suited for a particular scenario, may lead to better equations. Our primary 
goal is to demonstrate a practical division of the OD estimation problem into smaller parts, where each 
part maybe solved either by making some assumptions or with additional information.  
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4.2.1 Stage 1: Data completion and extrapolation 

This first stage gathers all of the data preprocessing steps. These steps may include data selection, data 
completion, and aggregation over lanes. The term ‘data selection' refers to the often difficult task of 
choosing a data set with which to start the OD estimation procedure. This data set will preferably consist 
of measurements gathered on a single `normal' day, but it may often be necessary to work with a 
composite data set, constructed from many different days. The selected data set may contain gaps in time, 
caused perhaps by brief communication failures, or space, due to missing or malfunctioning loops. These 
can be repaired with data reconstruction techniques such as those described in (4). 

 

 

Figure 4.1 Measured Arterial Flows 

 
The input to stage 2 is the flow entering and leaving each intersection along the arterial. The flows 
entering the arterial maybe measured, but the leaving flows are usually not. These maybe assumed equal 
to the flow entering the next downstream intersection as long as there is no intermediate source or sink, 
such as an unmeasured intersection or a large parking lot. This is illustrated in Figure 4.1, where 
W2,out=W1,in and E1,out=E2,in. In the case that there is a significant source or sink, any supplemental 
information about its intensity should be considered in the computation of the exiting flows. Lacking 
additional information, the intervening unmeasured traffic sources must be considered as making no net 
contribution to the flow on the arterial. This is also shown in Figure 4.1 where W4,out, W3,in, and W3,out 
are all set equal to W2,in.  
 
4.2.2 Stage 2: Joining and leaving flows 

Next we estimate the flow entering and exiting the arterial at each intersection, in each direction. Each 
intersection i is assigned an intersection weight ni with larger intersection weights corresponding to larger 
cross street flows. The ends of the arterial are also assigned weights n0 and nN+1, where N is the number of 
intersections in the network (Figure 4.2).  
 

 
 

Figure 4.2 Numbering of Intersection Weights--Joining and Leaving Flows 
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The likelihood that a vehicle traveling along the arterial will turn at intersection i is defined as the ratio of 
the flow entering the intersection to the right and left turning flow. These likelihoods, computed for each 
intersection in the westbound and eastbound directions, are:  
 

 
The notation is defined in Figure 5.2. We estimate the likelihoods αi,w and αi,E by taking the ratio of ni to 
the sum of all downstream weights (i.e. all possible destinations).  
 

 
The second terms in the max {} are needed to ensure positivity of the flows Wi,join and Ei,join. The 
intersection weight ηi can be interpreted as a measure of the attractiveness of the intersection. The 
proportion of vehicles that turn equals the attractiveness of that intersection relative to the attractiveness 
of all downstream destinations.  
 
The equations in the remainder of the paper apply equally to all intersections, so we will omit the 
intersection index in the presentation. Given the measured entering and leaving flows, Eqs. (4) and (5) 
express the conservation of vehicles on the arterial.  
 
                                                  Win – Wleave  + Wjoin - Wout  =  0             (4) 
                                          Ein – Eleave  + Ejoin - Eout  =  0                                             (5) 
 
Combining the above, the leaving and joining flows are given by:  

Wleave = αWWin    (6) 

Eleave  = αE Ein    (7) 

Wjoin = Wout− (1 − αW)Win  (8) 

Ejoin  = Eout − (1 − αE)Ein   (9) 
 

The task of this stage is to select the intersection weights ηi. The total number of parameters to tune is 
N+2, where as the number of degrees of freedom is 2N (Wleave and Eleave for each intersection). With the 
given assumptions we have therefore reduced the size of the problem from 2N variables per time slice to 
N+2 constant (but potentially time dependent) weights. This was achieved by imposing a strict 
relationship between the eastbound and westbound turning likelihoods. It should be noted that the 
estimated turning rates at each intersection depend on the weights of other intersections. Thus, the tuning 
of one intersection weight is not independent of the others. Also, the assumption of intersection weights, 
although very flexible, may not apply to some intersections. That is, their westbound and eastbound 

(1) 

(2) 

(3) 
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turning rates may not be related in the manner implied by Eqs. (2) and (3). In this case it is possible to 
assign independent weights to the eastbound and westbound directions.  

The selection of intersection weights may be based on vehicle counts on the cross street, or, if a 
simulation model is available, on cross street queue lengths. Lacking any additional measurements from 
the cross streets, a simple classification into groups such as `small', `medium', and `large', with 
corresponding weights of, for example,1, 2, and 3, maybe suitable. This is demonstrated in the example of 
Section 4.3.  

4.2.3 Stage 3: Turning movements  

Once the overall level of cross street flow has been set, the next task is to fix the turning ratios. This is 
done by disaggregating the joining and leaving flows into north, south, east, and westbound portions. The 
notation is shown in Figure 4.3. The four left turning flows are directly tuned with four turning 
coefficients:  

NW = φn Wjoin     (10)  

SE = φs Ejoin     (11) 

WS = φwWleave     (12) 

EN = φeEleave     (13) 
 

 
Figure 4.3 Turning Flows 

 
Where φn, φs, φw, and φe range between 0 and 1. Lacking any additional information, all of these 
parameters should be set to the default value of 0.5. The right-turning flows are then computed directly  
from flow conservation equations:  
 

SW = Wjoin − NW = (1 − φn) Wjoin  (14) 

NE = Ejoin − SE = (1 − φs) Ejoin  (15) 

WN = Wleave − WS = (1 − φw) Wleave  (16) 

ES = Eleave  − EN = (1 − φe) Eleave  (17) 
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Two additional parameters, γn and γs, are used to set the level of continuing flow on the cross streets: 

 

Finally, continuing flows on the arterial are determined by αW and αE, which were fixed in stage 2.  

 

The equations so far described can be gathered into a single matrix equation for each intersection:  

M = AU  

where U=[Win,Wout,Ein,Eout]
T 

, M=[WN,WW,WS,SW,SS,SE,EN,EE,ES,NE,NN,NW]
T 

and  

 

 
 

We have defined seven tunable parameters for each intersection (η, φn, φs, φw, φe, γn, γs). These were 
assumed constant, since the general approach is static. However, different values of the parameters may 
be used for the morning versus the evening period, or even for every time slice. The numerical example of 
Section 4.3 describes an η that changes every 15 minutes.  
 
The turning coefficients for three-legged (T) intersections are fixed to 0 or 1, according to Table 4.1. The 
only tunable parameter for these intersections is the intersection weight.  

 
Table 4.1  Fixed Parameters for T Intersections 

 

(18) 

(19) 

(20) 

(21) 

(23) 

(22) 
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4.2.4 Stage 4: OD matrix computation  

The OD matrix is found by solving an optimization problem. Each turning flow calculated in the previous 
stage (12 for every 4-branch intersection and 6 for every 3-branch intersection) enters the problem in a 
separate equality constraint. Hence the total number of equality constraints is at most 12I, where I is the 
number of intersections, whereas the number of OD pairs is (2I+2)(2I+1). The problem is therefore 
underspecified for all values of I>1.  

It is important to note that the aggregate behavior of the network has been completely fixed by 
prescribing the turning flows. That is, all OD matrices in the feasible set have the same aggregate 
behavior, since the flows entering and exiting every link (and therefore the aggregate link densities) are 
the same. Any of the feasible OD matrices will therefore suffice, as long as we are only interested in 
matching aggregate quantities such as the total travel time.  

In this context the choice of objective function is not very important. Some popular alternatives found in 
the literature include maximum entropy, minimum additional information, and least squares. In the 
numerical example we minimize the variance among the OD flows, defined in Eq.(24).  

The optimization problem is stated in Eqs. (24)-(27). Barring U-turns, each OD pair has only a single 
connecting route. We can therefore define for each intersection m 

 
[1...I ] and turning flow n

 
[1...12] a 

set Umn of nodes that are upstream and a set Dmn of nodes that are downstream of that flow. The sum of 
all OD pairs Tij where i

 
Umn and j Dmn must then equal the turning flow fmn calculated in the third 

stage (Eq.(26)). Also, each of the OD flows must be non-negative (Eq. (27)).  

 
4.3 Application on the Selected Test Site   

The OD estimation procedure was tested on the selected study section, a stretch of the Pacific Coast 
Highway in Lomita, California (Figure 3.1). This site includes a total of 11 intersections, seven of which 
are signalized (Table 4.2). Narbonne Avenue is the only cross street equipped with approach detectors.  
 
Seventy week-days of loop detector data between March and June of 2006 were gathered. Each day 
contained 15-minute flows for each of the 37 mid-block detectors. The days were ranked according to the 
total flow accumulated over 24 hours. Many of the days were seen to have anomalously low total flows, 
due presumably to accidents or faulty detectors. About one third of the days were discarded on this basis. 
From the remaining two thirds we selected the median day (April 19th, 2006) for the experiment. In 
addition to the loop data, we made two field visits to gather supplemental information. During these visits 
we observed traffic at each intersection for about 20 minutes during the afternoon peak period. We 
recorded approximate queue lengths on the arterial and cross streets, and made visual estimates of the 
turning coefficients described in Section 4.2.2. These observed turning coefficients provided a starting 
point for tuning the estimator.  

(24) 

(25) 

(26) 

(27) 
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The estimation algorithm was coded in the Matlab software and a microscopic model of the site was 
constructed in PARAMICS. The PARAMICS model was used to test candidate OD matrices and compare 
the simulated queue lengths with the field observations. Traffic signals control strategies in PARAMICS 
were simulated using the plug-in described in Chapter 5 of the report.   
 

Table 4.2: Cross Streets and Tuned Parameter Values 

 
 
Table 4.2 lists the tuned parameter values. The weights for the ends of the arterial were set to η0=η12=6. 
Of the 61 tunable parameters (8 four-branch intersections + 3 three-branch intersection + 2 end weights), 
32 were left at their default value, 3 of the parameters for Narbonne Ave. were calculated, while the 
remaining 26 were tuned by trial-and-error, with the aid of the microscopic simulator. Observing the 
progress of the microscopic model we were able to identify intersections where excessive queues formed 
and adjust the relevant turning flows without affecting the rest of the simulation. This is generally not 
possible with OD estimation techniques that do not directly tune the turning flows.  
 
Narbonne Ave. (Index=5 in Table 4.2) was the only intersection where additional measurements on the 
cross street were available. The total northbound and southbound flows approaching the intersection on 
Narbonne during time interval k are denoted and . Using these measurements we were able to 
explicitly compute a time varying intersection weight (η(k)) and joining parameters (φn and φs) such that 
the computed flows matched the measured flows:  
 

 

Replacing the terms on the left with their expressions from Sections 5.1.2 and 5.1.3, and also fixing 
 

we find by adding Eqs.(28) and Eqs.(29) that η(k ) is a root of the following quadratic polynomial:  

 

where: 

   (28) 
(29) 

(30) 
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The resulting time-varying intersection weight is shown in Figure 4.4.  By requiring that the Eqs. (28) and 
Eqs. (29) hold separately, we find the following expression for φn(k) and φs(k):  

 
 

However, instead of allowing φn and φs to change in time, we take these parameters to be constants equal 
to the mean of the values obtained with Eq. (36). The values thus computed are φn=0.51and φs=0.49, 
practically identical to the default values.  

Figure 4.4 shows the measured flows on the PCH approaching the Narbonne intersection. Observe that 
during the middle part of the day, between approximately 9:00am and 3:00pm, both Wout and Eout are 
larger than Win and Ein, so there are more vehicles joining the PCH from Narbonne than leaving it during 
these hours. This is reflected in the result of the second stage, shown in Figure 4.5, where both Wjoin and 
Ejoin are larger than Wleave and Eleave between 9:00am and 3:00pm. The plots on the right side of Figure 4.5 
compare the flow measured on Narbonne Avenue. With the estimated flows, the two lines in these plots 
would coincide perfectly had we allowed φn and φs to vary with time.  

With regard to the optimization problem, several preprocessing steps were found to improve the perfor-
mance of the solver. First, the problem contains several unused OD pairs which should be removed. 
These include diagonal elements in the OD matrix and OD pairs for which we expect zero flow. For 
example, in the Lomita network we do not expect any vehicles departing from the southern source on 
Walnut St. to use Bland St., since continuing on Walnut is clearly a better option. This is enforced in the 
example by eliminating the OD pair connecting Walnut South to Bland St. Second, some of the turning 
flows, which appear on the right hand side of Eq. (26), may be negligibly small. Because these flows 
represent the sum of a list of non-negative OD flows, it can be concluded that each of the OD flows are 
also very small and can therefore be discarded. Finally, there may be some OD pairs whose flow is given 
directly by a turning flow. This is the case for the WN and WS flows at the Walnut intersection. Making 
these simplifications, the size of the problem was reduced from 441 variables with 112 equality 
constraints to 222 variables with 50 equality constraints.  
 
 

(31) 

(32) 

(33) 

(35) 

(34) 

(36) 
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Figure 4.4 Narbonne Avenue: Arterial Flows (vph) and Intersection Weight 

 
 

 
Figure 4.5  Narbonne Avenue: Estimated Flows (vph)
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CHAPTER 5 
PARAMICS PLUG-IN FOR SIGNAL CONTROL 

 
In this Chapter we describe a plug-in we developed for the PARAMICS model to explicitly simulate a 
number of signal control strategies including actuated signal control and traffic responsive control.4  
 
The plug-in implements many of the strategies developed by the Urban Traffic Control System (UTCS) 
program (11,27).  The UTCS strategies are classified into three generations, the first generation consisting 
of methods for selecting timing plans developed offline from a stored library. The second and third 
generations automatically generate new timing plans based on measured data.  The strategies included in 
the first generation UTCS are pretimed (time-of-day), traffic responsive, and critical intersection control. 
These were first tested in downtown Washington D.C. in early 1970’s and they have since become 
standard features in many NEMA and 170 type controllers. Some of the basic strategies included in the 
new plug-in were previously implemented in PARAMICS by researchers at the University of California 
at Irvine under a previous PATH study (9). Our plug-in can be thought of as extending the existing 
simulation APIs to include complex adaptive strategies such as RHODES and TUC. 
 
Figure 5.1 shows a typical layout for an eight phase four-legged signalized intersection.  Three-legged 
intersections are also supported. The eight through and left-turn phases are numbered according to the 
NEMA convention. Each of these can be equipped with a set of approach detectors, and/or a set of 
stopline detectors. It is assumed that the single-lane loop detector model of PARAMICS is used.  

 

Figure 5.1  Typical Signalized Intersection Layout  
                                                
4 This Chapter was originally published in “A PARAMICS Plugin for Actuated Signal Control and First Generation 
UTCS”, by G. Gomes and A., Skabardonis, PATH Working paper, UCB-ITS-PWP-2006-8, July 2006. 
 



 22 

The function of the approach detector in vehicle actuated control is to extend the green time and to count 
vehicles for calculating the initial green time. Approach detection is used in traffic responsive control to 
generate the traffic patterns, while in critical intersection control it is used to compute green demands. 
These detectors are typically located about 200 feet upstream from the intersection stopline.  
 
Stopline detectors are usually placed at or within a few feet upstream of the intersection stopline, and are 
used in actuated signal control to place calls for service on particular phases. Related to the placement of 
stopline detectors, we have noticed a behavior in PARAMICS that can cause the plug-in to fail. Namely, 
vehicles wishing to turn left at an intersection which are unable to change lanes into the dedicated left-
turn lane before reaching the stopline, will often change lanes from a standstill and move laterally onto 
the stopline detector. These vehicles, because they do not trigger the PARAMICS detector in the normal 
way, do not place a call for service. They also prevent other vehicles from going over the detector. The 
left turn phase is therefore always skipped, and an unboundedly long queue can form. To avoid this 
problem, we recommend placing the stopline detectors in the model a bit farther upstream.  
 
The main input file for the plug-in is param_main.txt. This file provides geometric, output, and high level 
control information for the simulation. An example input file is provided in Figure 5.2.  Each line in the 
file begins with a case-sensitive token, followed by information separated by blank spaces or tab 
characters. Comments can be inserted using the percentage symbol (%).  
 
The first line in the file determines the control strategy. The accepted values for the controller token are: 
 
TOD      …. time-of-day 
ASC      …. actuated signal control 
ASC      …. traffic responsive control 
ASC      …. traffic responsive with critical intersection control 
 
The output period token defines the aggregation period for the loop detector output file in seconds. This 
value does not affect the controller behavior in any way. If omitted, the output file will not be generated.  

Traffic responsive and critical intersection control use smoothed measurements, as opposed to raw 
detector measurements. The smoothed data is generated with a first-order filter:  

 
 
where the superscripts and r indicate smoothed and raw variables. Raw measurements are 1-minute 
average values. τ is a filter parameter related to the time constant Tc (defined as the time to reduce the 
filter error by 63%) by ,where Δ t is the simulation step size. The time constant Tc is defined 
by the user in seconds with the time constant token.  
 
The rest of the file describes the signalized intersections. Each intersection begins with the node token, 
followed by the ID number for the PARAMICS network node. This number is the “node name” in 
PARAMICS Modeller. Although PARAMICS allows character strings for its node name, this plug-in 
requires a positive integer-valued node name. Also, the plug-in overrides all signal timing and priority 
settings defined in PARAMICS.  
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Figure 5.2 PARAMICS Plug-In Main Input File (param_main.txt) 

 

The phase 2 nodes and phase 4 nodes tokens are used to orient the NEMA numbering scheme with 
respect to the intersection. The two numbers following phase 2 nodes and phase 4 nodes are respectively 
the from and to nodes for phases φ2 and φ4. To illustrate, the nodes from the sample input file are shown 
in Figure 5.1. For three-legged intersections, the from and to node for either phase 2 nodes or phase 4 
nodes should be set to -1.  
 
The protected and permissive tokens define the basic signaling features of the intersection. They are 
followed by a sequence of eight 0/1 values corresponding to the eight vehicle phases. Protected phases are 
those that are directly controlled by the traffic signal. Permissive phases are left turns that are allowed to 
proceed without an exclusive left turn phase (green arrow) when the opposing through phase has the 
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right-of-way. For example, setting φ1 to permissive means that vehicles in that phase are allowed to turn 
left during the green interval of φ2. Only left-turn phases can be made permissive.  
 
Loop detectors are assigned to phases using the det token. The syntax for this line is:  

 
The detector names are those defined in PARAMICS Modeller. Phases are not required to have stopline 
or approach detectors. Furthermore, a single detector maybe associated with more than one phase.  

Aggregated raw measurements from each of the loop detectors listed in param_main.txt are exported to 
output_loop.txt. This file contains a matrix with 7 columns and a row for every detector and aggregation 
interval. The column headers are given in Table 5.1 below. 

    Table 5.1  Column Headers for output_loop.txt 

 

The program also produces a log file called output_log.txt, which collects error and warning messages 
generated during the simulation. Cycle lengths and green times are exported to output_controldata.txt. 
The column headers for this file are given in Table 5.2   

 

Table 5.2  Column Headers for output_control.txt 
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5.1 Signal Timing Plans and Time-of-Day Control (TOD)  

Under TOD control, every intersection operates according to a predefined plan with fixed cycle length, 
green times (splits), offsets and phase sequences. PARAMICS offers an interface for creating preset 
plans, however we provide another here which is used by the traffic responsive controller described in 
section 5.4. The input file for TOD control is param_tod.txt (Figure 5.3). A set of plans is defined, each 
identified by an integer following the plan token. The todstart and todplan tokens are used to set the times 
for switching between plans. For example, the sample input file will tell the controller to switch from 
plan1 to plan2 at t = 300 seconds, and back to plan1 at t = 400 seconds. 
 

 
Figure 5.3 Input File for Time-of-Day Control (param_tod.txt) 

 
Traffic signal controllers do not change timing plans instantaneously. This would result in truncated green 
and red intervals, which would be dangerous for drivers and pedestrians. Instead, they transition in a 
gradual manner, with small adjustments to each consecutive cycle. Different controller manufacturers 
employ different signal transition procedures. This plug-in does not attempt to reproduce those 



 26 

procedures, but instead inserts a delay between the decision to change plans and the realization of the 
change. A nominal delay value is defined by the user with transdelay. This nominal value is rounded up to 
an integer multiple of the current cycle length. In the example, plan1 will actually be in effect from t = 0 
to t = 390 = 300 + one plan1 cycle. Plan2 will then be activated from t = 390 to t = 520 = 400 + two plan2 
cycles.  

Each network plan consists of a number of intersection-specific plans, which contain stage sequences and 
corresponding green, yellow, and red clearance times. It is left to the user to ensure that the phases 
combined in each stage are compatible. The start time for the intersection plan is shifted with respect to 
the master clock by offset seconds. The master clock rotates with cycle length cycle length in seconds. As 
in param_main.txt, each signalized intersection is identified by node. The sequence of stages is set with 
the stage token. The syntax for this line is:  

stage [phase ID] [phase ID] [green sec] [yellow sec] [red clear sec] 
 
In the case that a stage involves only one phase, the second phase ID should be set to zero. The sum of the 
green, yellow, and red clearance times for each intersection must not exceed the cycle length. All signals 
are set to red during the time remaining after the end of the last stage. Actual traffic controllers usually 
give this time to the major through movements. To mimic this behavior, it is recommended that an 
additional stage be added to fill in any leftover time.  
 

5.2 Actuated Signal Control (ASC)  

The plug-in implements a fully actuated eight-phase dual-ring traffic controller. Under actuated control 
each intersection operates locally, with no communication to adjacent intersections. The controller 
architecture has two levels: an upper level represented by a dual-ring controller (section 5.2.1) and a 
lower level that executes the individual phases (section 5.2.2).  

5.2.1 The dual-ring controller  

The objective of the dual-ring controller is to maintain safe conditions by allowing only compatible 
vehicle movements to enter the intersection at any time. Compatible movements or phases are those that 
a) belong to different rings, and b) are on the same side of the barriers (see Figure 5.4). Phases on the 
opposite sides of a barrier are in conflict, and therefore cannot be combined. For example, the only 
compatible options for φ2 in Figure 5.4 are φ5 and φ6.  

 

 
Figure 5.4 Dual-Ring Controller 
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The controller advances by initiating phases and, upon termination, selecting the next one to execute. The 
upcoming phase is found by searching the ring for the next protected phase which has either registered a 
vehicle presence or has been designated as a recall phase. Unprotected phases are always skipped. A 
recall phase cannot be skipped, even if no vehicle is registered by its stopline detectors. Recalls are 
typically applied to the through phases of major streets. They are also often used on cross streets lacking 
stopline detection. If no vehicle is registered on a non-recall phase, that phase maybe skipped.  
 
Left turns can be either leading or lagging, depending on their position in the ring with respect to the 
opposing through phase. All of the left-turn phases in Figure 5.4 are leading. Phase φ1 is made a lagging 
left turn by swapping its position with φ2.  

All of these features are included in the plug-in. The main task of updating the active phases is 
implemented in two steps. First, whenever one of the two active phases terminates, the next service able 
phase in the ring is found with the NextPhase() function. This function is passed an active or inactive 
phase, and returns the next protected phase with a vehicle call or are call status. It returns the input phase 
if it is still active. It also returns the input phase if none of the other three phases in its ring require 
service. The pair of phases found with NextPhase() may not be compatible. The second step is to find the 
number of barriers crossed in each ring in the transition from the current phase to the NextPhase(). This 
number—0, 1, or 2—may not be the same for both rings. The following logic is then applied to adjust the 
selected pair of phases so that they remain compatible:  

 
 
5.3.2 Interval timing  

The execution of a signal phase is illustrated in Figure 5.5.  The dual-ring controller initiates the phase at 
“START”. This point is synchronized with the transition from green to yellow of the previous phase 
(“END”). The initial wait period is equal in length to the yellow and red clearance intervals of the 
previous phase. Thus, the transition from wait to green is simultaneous with the transition from red 
clearance to idle of the outgoing phase. The green interval is divided into two portions: the initial green 
interval and the extension interval. The duration of the initial green interval is calculated based on the 
maximum number of vehicles registered by the approach loops during the preceding red interval. Each 
detected vehicle increases the green period by add per vehicle. The result is limited by min green and max 
initial:  
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Figure 5.5  Interval Timing 

 
During the green interval, vehicles detected by an approach loop are given extension seconds of green 
time to move through the intersection, without exceeding the maximum green duration of maxgreen. The 
green interval ends when the maximum green time is reached (max out), or when the time gap between 
consecutive vehicle actuations exceeds the largest permitted gap (gap out).The permitted gap is a function 
of time, as plotted in Figure 5.6.  It starts at the maxgap value and begins to decrease after a vehicle is 
detected on a conflicting phase. The gap is reduced according to the controller parameters “reduce gap 
by” and “reduce every”, until it reaches its minimum value, mingap. The yellow and red clearance 
intervals have fixed durations of yellow time and red clearance time.  

The parameters involved in the ASC algorithm are entered by the user in param_asc.txt. A sample input 
file is shown in Figure 5.7. The recall token is used to set the recall status of the phases to on (1) or off 
(0). Entries in the lag left line indicate whether left turns are lagging (0) or leading (1). The remaining 
parameters are defined in seconds.  

 

 

Figure 5.6 Permitted Gap Function 
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Figure 5.7 Input File for Actuated Signal Control (param_asc.txt) 
 

5.3 Traffic Responsive Control (TRSP) 

The two coordinated modes included in the first generation UTCS are time-of-day and traffic responsive 
control (TSRP). TOD is often sufficient for systems with predictable traffic volumes; TRSP is preferred if 
there are significant day-to-day fluctuations in demand. This is because TRSP can automatically respond 
to variations by selecting an appropriate signal timing plan for the measured traffic conditions.  
 
Under TRSP control, flow and occupancy measurements from system loops are used to calculate a 
characteristic `vpko' (volume plus K occupancy) value for each loop l:  

 
Here, vol

s
(l) and occ

s
(l) are the smoothed volume and occupancy measurements for system loop l, and K 

is a system constant. The current state of the network is represented by the array of all vpko(l) values. 
System loops are typically the approach loops on the main arterial. 

The controller also stores a number of signal timing plans with associated vpko signatures. The signature 
for the p-th plan consists of vpko values for each of the system loops vpko(p,l). The controller selects a 
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timing plan from its library by comparing the stored signatures to the measured traffic signature, and 
finding the best match in terms of a weighted 1-norm: 

 
W(l) are loop-specific weighting factors. The plan with the smallest Δ(p) value is considered the best 
option for the current traffic condition. A transition to this plan will be initiated if the Δ(p) for the 
currently active plan is larger than a prescribed threshold. As with TOD control, the transition process is 
approximated with a user-defined delay interval.  

Figure 5.8 shows the plug-in input file for TRSP control. The traffic responsive calculation is performed 
every update time seconds. kweight is the value of K. The system loops and their respective weighting 
factors W(l) are listed with the det token. The timing plans are given in param_tod.txt. The characteristic 
signatures for each of these plans are defined using plan and sig. The syntax for the sig line is: 

sig [loop name] [signature flow [vph]] [signature occupancy (0,1)]  

 

Figure 5.8 Input File for Traffic Responsive Control (param_trsp.txt) 
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5.4 Critical Intersection Control (CIC)  

Critical intersection control is a feature of many implementations of the UTCS software which 
complements the TRSP strategy. This feature enables the controller to respond more quickly to short-term 
variations in demand, while preserving coordination on the major street, by automatically adjusting the 
green times of critical intersections based on local measurements. CIC requires that all of the approaches 
to the critical intersections be equipped with approach loops.  

CIC calculates the total green demand for all phases in a critical intersection using volume and occupancy 
measurements from the approach loops. This amount is reduced by the minimum green duration to obtain 
the excess green demand for each stage. The actual green times are then calculated by distributing the 
available excess green time among all the stages, in proportion to their excess green demand.  

The plug-in provides two options for computing the green demands. The first is used by Los Angeles 
Department of Transportation ATSAC system (25): 

 

 

gd(l) is the green demand measured by approach loop l. A, B, C, and D are user-defined coefficients. 
vol

s
(l) and occ

s
(l) are smoothed volumes and occupancies. The second is the standard UTCS formula 

appearing in the Traffic Control Systems Handbook (9):  

 

K1, K2, and K3 are user-defined coefficients. The excess green demand for the stage gde(s) is calculated 
as the largest of the green demands for the associated approach loops, reduced by the minimum green 
interval, and limited below by zero:  

 
The actual green times g(s) are found by apportioning the available excess green time Ge to the stages:  

 
The parameters used by CIC are defined in param_cic.txt. A sample input file is shown in Figure 5.9. 
Update cycles defines the CIC update period as an integer multiple of the cycle length. The green demand 
formula is selected by setting gdfunction to ATSAC or UTCS. The coefficients in the green demand 
function are defined with gdcoef using the following format:  
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Critical lists the node numbers for the critical intersections. Min green is an optional input, which can be 
used to redefine the minimum green time used by CIC. If set to zero, the minimum green time will be that 
of param_tod.txt. Otherwise min green(s) will be set to the largest of the entries for the phases combined 
in stage s. The cycle length, offset, yellow time, and red clear time are taken from param_tod.txt.  

    

   Figure 5.9 Input File for Critical Intersection Control (param_cic.txt) 

 
5.5   Extensions—Adaptive Signal Control  

This section of the report focuses on some of the architectural aspects of the plugin that allow it to be 
connected to external ``black box'' control algorithms, such as RHODES and TUC. This architecture was 
designed to mimic the basic operation of a 170-type controller and its interaction with external control 
algorithms via force-off, hold, and omit messages. 
 
Figure 5.10 is a schematic representation of the program structure assigned to each signalized 
intersection. The central component is the signal manager. The signal manager coordinates and passes 
information among the peripheral objects, which are the lights, the detectors, and the controller. The 
figure shows the information that is passed between the signal manager and each of the peripheral objects. 
An external signal control algorithm such as RHODES (whether isolated or coordinated), appears to the 
signal manager as a controller that translates detector and signal states ("all info" in the figure) into 
transition and flush requests. Transition requests are hold, force-off, and omit for each of the 8 phases. 
The controller can also request to flush or reset any of the vehicle counts maintained by the signal 
manager. The transition requests made by the controller are put through a series of consistency and safety 
checks (e.g. dual ring conditions, minimum green times) and either discarded or passed along to the lights 
as transition commands. The lights or phases in turn communicate their status to the signal manager, 
which decides based on detector information, controller requests, and signal states, which phases should 
be terminated. 
 
This architecture captures the basic behavior of real 170-type controllers. Therefore, any control 
algorithm that is designed to operate using standard hold, force-off, and omit messages (such as 
RHODES) can be easily connected to the plugin and simulated in Paramics. In the case of RHODES, the 
connection was made using the Windows socket mechanism. In the case of TUC, we were provided by 
the developers with source code. 
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Figure 5.10 Plugin Architecture 
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CHAPTER 6 
CONCLUSIONS 

 
The scope of the project is to identify and select the most promising of existing adaptive control 
algorithms, develop improved algorithm(s) as appropriate, conduct field operational tests on real-world 
arterial corridors, and develop recommendations for deployment of adaptive control.  The report describes 
the work performed in the first phase of the project (PATH Task Order 5322).   
 

 A test site was chosen for evaluation of adaptive signal control strategies. The selected test site is 
a section of the Pacific Coast Highway running through the city of Lomita, managed by Caltrans 
District 7. It includes seven signalized intersections.  Over seventy days of loop detector data 
were collected for this site using the CTNet software.  Additional data on geometrics and signal 
settings were collected from Caltrans staff and field visits to the site. 

 
 A methodology was devised for synthesizing a time-varying OD matrix from the loop detector 

data.  The calibrated OD matrix was input to the PARAMICS model to simulate existing 
operating conditions at the test site. 

 
 A signal control plug-in was written to model control strategies with PARAMICS. It simulates 

non-adaptive strategies such as pretimed, isolated actuated, coordinated actuated, traffic 
responsive, and critical intersection control, as well as adaptive strategies such as RHODES and 
TUC. The plug-in is not limited to Lomita, it can be applied to any PARAMICS network. 

 
Research in the second phase of the project (PATH Task Order 6322) includes the following tasks:  
 

 Evaluation of the selected existing and proposed adaptive control algorithms through simulation. 
The adaptive strategies to be tested will include the RHODES and TUC strategy, plus the ACS 
Lite strategy (subject to the availability of the source code). Sensitivity analyses will be also 
performed by changing model input data (e.g., traffic volumes) and parameters (e.g., saturation 
flows) to test the performance of the proposed algorithm under a wide range of operating 
conditions. The best adaptive control algorithm will then be selected for field testing based on the 
analysis of the simulation results.  

 Selection of the most promising adaptive control algorithms. Design and develop new functions 
and features to enhance the selected adaptive control algorithm(s).  The end product of this Task 
will be detailed documentation and software code of the proposed algorithms.  

 
 Development of a test plan for field implementation. The test plan will specify the hardware and 

software requirements and level of effort required for field implementation of the adaptive 
algorithm.  The test plan will also specify the duration of the field experiment, the method of data 
collection, the duration of the field experiment, and the analysis of the results.  

 
 Development of guidelines for deployment of adaptive control based on the findings from the 

simulation results.  The issues to be addressed in the deployment plan include the system 
performance, costs (installation, operations and maintenance), system reliability, and integration 
with other traffic management systems.  We also provide an assessment on how well the 
proposed adaptive system adapts to changing traffic conditions, and how well they, if not stand-
alone system, coexist with standard time-of-day signal control systems.   
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It is expected that baseline simulations of the existing adaptive control strategies will be completed by 
March 31, 2009. The testing of alternative strategies though simulation will be performed in April and 
May 2009.  The final report for Phase 2 of the study (TO 6322) will be completed in June of 2009 and 
will include the following:  
 

• Findings from the testing of the alternative strategies through simulation  
• A detailed test plan for field implementation and testing of the most promising strategy selected 

based on the simulation results. The test plan will address data collection requirements and 
sources (e.g., CTNET or ATCS), hardware & software requirements,  performance measures and 
duration of  “before” and “after” studies 

• Development of guidelines for deployment of adaptive systems based on the simulation results  
 

Phase 3 of the study consists of field testing of the most promising strategy on the Lomita Avenue test 
site.  It is expected to begin in the Fall of 2009, subject to the approval of the research proposal.   
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