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RESEARCH ARTICLE Open Access

RNA sequencing of transcriptomes in
human brain regions: protein-coding and
non-coding RNAs, isoforms and alleles
Amy Webb1,2 , Audrey C. Papp1, Amanda Curtis1, Leslie C. Newman1, Maciej Pietrzak1,3, Michal Seweryn3,
Samuel K. Handelman1, Grzegorz A. Rempala3, Daqing Wang4, Erica Graziosa4, Rachel F. Tyndale5, Caryn Lerman6,
John R. Kelsoe7,8, Deborah C. Mash9 and Wolfgang Sadee1,10,11,12*

Abstract

Background: We used RNA sequencing to analyze transcript profiles of ten autopsy brain regions from ten
subjects. RNA sequencing techniques were designed to detect both coding and non-coding RNA, splice isoform
composition, and allelic expression. Brain regions were selected from five subjects with a documented history of
smoking and five non-smokers. Paired-end RNA sequencing was performed on SOLiD instruments to a depth
of >40 million reads, using linearly amplified, ribosomally depleted RNA. Sequencing libraries were prepared with
both poly-dT and random hexamer primers to detect all RNA classes, including long non-coding (lncRNA), intronic
and intergenic transcripts, and transcripts lacking poly-A tails, providing additional data not previously available. The
study was designed to generate a database of the complete transcriptomes in brain region for gene network
analyses and discovery of regulatory variants.

Results: Of 20,318 protein coding and 18,080 lncRNA genes annotated from GENCODE and lncipedia, 12 thousand
protein coding and 2 thousand lncRNA transcripts were detectable at a conservative threshold. Of the aligned
reads, 52 % were exonic, 34 % intronic and 14 % intergenic. A majority of protein coding genes (65 %) was
expressed in all regions, whereas ncRNAs displayed a more restricted distribution. Profiles of RNA isoforms varied
across brain regions and subjects at multiple gene loci, with neurexin 3 (NRXN3) a prominent example. Allelic RNA
ratios deviating from unity were identified in > 400 genes, detectable in both protein-coding and non-coding
genes, indicating the presence of cis-acting regulatory variants. Mathematical modeling was used to identify RNAs
stably expressed in all brain regions (serving as potential markers for normalizing expression levels), linked to basic
cellular functions. An initial analysis of differential expression analysis between smokers and nonsmokers implicated
a number of genes, several previously associated with nicotine exposure.

Conclusions: RNA sequencing identifies distinct and consistent differences in gene expression between brain regions,
with non-coding RNA displaying greater diversity between brain regions than mRNAs. Numerous RNAs exhibit robust
allele selective expression, proving a means for discovery of cis-acting regulatory factors with potential clinical relevance.

Keywords: RNA sequencing, Brain regions, Differential expression, Allelic expression imbalance, Isoform fraction,
Non-coding RNA
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Background
The architecture and connectivity of brain regions critic-
ally influence CNS functions, including cognition, behav-
ior, decision making and emotional control. Deregulation
of dynamic CNS processes lead to psychiatric disorders,
including depression, schizophrenia, and addiction. A mir-
ror of the dynamic biological processes underlying brain
functions, RNA transcript profiles have been measured in
numerous studies, mostly with focus on protein-coding
mRNAs, using targeted analysis or cDNA hybridization
technology [1–3]. However, less than 2 % of the human
genome accounts for protein-coding transcripts, while a
large portion of the genome expresses non-coding RNAs,
implicated in multiple biological roles regulating gene ex-
pression, guiding epigenetic processes, sensing cellular
substrates, serving as catalysts or enzymes, and supporting
structural functions [4]. Moreover, a majority of disease
risk alleles implicated by genome-wide association studies
(GWAS) reside outside protein coding exons, affecting
transcription of all RNA types and RNA processing—areas
still incompletely resolved [5, 6].
Next generation sequencing of RNA profiles (RNAseq)

has opened the door for systematic exploration of the
entire transcriptome, including genetic and epigenetic
factors, and regulatory networks that often cannot be a
reconstructed from protein-coding RNAs alone [2, 7, 8].
While this technology is rapidly maturing, different tech-
nology platforms and tissue preparation procedures have
strong effects on results and interpretation [7, 9]. Recent
studies have explored the transcriptome of the human
brain, with increasing use of RNAseq, comparing brain
autopsy regions from subjects with no previous diagno-
sis of a CNS disorder with regions from subjects with
various diagnoses such as schizophrenia, alcohol de-
pendence, and chronic nicotine exposure [8, 10–15].
More detailed analyses have been done with laser micro-
dissection to minimize issues arising with RNAseq data
obtained from heterogeneous regions [15]. Where use of
heterogeneous regions cannot be avoided, computational
deconvolution of co-expression gene networks can serve
to dissect expression profiles for cellular subtypes [16].
Together, studies on CNS transcriptome profiles have
revealed a wealth of candidate genes implicated in CNS
functions and disorders.
In this study, we have measured RNAseq profiles in 10

brain regions from 10 human subjects, to generate a
database for regional expression and inter-individual
variability. Moreover, our study provides detailed data
on RNA expression profiles, reflecting all types of RNA
classes and RNA isoforms at each gene locus, supple-
menting existing studies involving human brain regions
using hybridization arrays and large-scale genotyping,
revealing multiple cis-acting quantitative expression
traits (cis-eQTLs) and SNPs associated with CpG

methylation patterns [1, 3, 13, 17, 18]. With microarrays
using probes for multiple exons per gene, cis-eQTLs
were found to be frequently associated with only some
exons in a given gene, implicating a pervasive genetic in-
fluence on splicing [3], which is often region specific
[19, 20]. However, microarray analysis is limited in de-
tecting RNA transcript isoforms, whereas deep sequen-
cing reveals the rich abundance of isoforms at each gene
locus [7, 21].
RNAseq is typically performed with poly-dT to capture

poly-adenylated RNA transcripts—these include most
protein-coding mRNAs and numerous ncRNAs, but nu-
merous RNAs do not carry a poly-A tail. To account for
the emerging functions and interactions of all RNA clas-
ses, including non-coding RNAs, we have applied RNA-
seq in a process that captures all transcripts, regardless
of polyadenylation status [7]. In this report, we focus on
long RNAs (>200 bases), owing to the available RNAseq
protocols that require a separate approach for measuring
small RNAS, such as microRNAs—these will be reported
in a subsequent study. Owing to the use of random hex-
amer primers in this study that captures non-
polyadenylated RNAs as well, we were also interested in
determining the relative abundances of the various RNA
classes, protein-coding and non-coding, across brain
regions.
Use of RNAseq enables us to measure transcript

abundance and RNA isoforms, such as splice variants,
different 3′ and 5′ UTRs, and edited RNAs [7, 21].
In addition, we have developed a quantitative ap-
proach to exploit RNAseq data for measuring allelic
RNA expression ratios, a sensitive indicator of regula-
tory variants affecting gene expression and RNA pro-
cessing [22]. To enable full analysis of allelic RNA
expression, we have also applied whole-genome SNP
chip analysis, as reported before in detecting cis-
eQTLs [3, 6, 13], facilitating allele calling in RNA
transcripts, detecting cases of RNA editing [22] and
of mono-allelic expression, and alerting to the pres-
ence of copy number variants.
Of the ten subjects in this study, five were previous

long-term smokers and 5 were non-smokers, all lacking
other diagnoses of psychiatric disorders. While the num-
ber of subjects is small for detecting nicotine-related
changes, we expected to develop leads for further study
because nicotine exerts rather robust effects on cellular
biology throughout the body [3, 23]. Our analyses were
guided by previous studies on the influence of nicotine
on brain transcriptomes, genetic effects on nicotine re-
lated genes [3, 23–25], and candidate genes associated
with smoking from multiple studies [26]. By comparing
RNA profiles in different human autopsy brain regions,
we initiate here a comprehensive study of the brain tran-
scriptome, interactive networks between RNAs, and
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genetic factors regulating expression, with nicotine ex-
posure serving as a perturbing environmental stimulus.

Methods
Postmortem human brain tissues
Brain tissue samples from five male subjects with a his-
tory of heavy cigarette smoking and five age-matched
male drug-free controls were provided by the Miami
Brain Endowment BankTM (University of Miami, Miami,
FL) following protocols approved by the research ethics
board of the University of Miami Miller School of Medi-
cine [27–32]. Brain biospecimens were banked from per-
sons at autopsy. The authorization for retention of brain
and tissues, medical records review, and informant inter-
views were approved by the University of Miami Institu-
tional Review Board (Protocol No. 19920580). Ethical
procedures including donor anonymity are assured. All
brain tissue is procured, stored, and distributed accord-
ing to applicable regulations and guidelines involving
consent, protection of human subjects and donor ano-
nymity. The genomics analyses on the de-identified aut-
opsy brain tissues were exempt from IRB approval at
OSU. Supplemental brain and blood toxicology and neu-
ropathologic evaluations were done in every case. Sub-
jects were selected from accidental or cardiac sudden
deaths with negative urine screens for all common
drugs, except nicotine, and there was no history of psy-
chiatric or medical disorders or licit or illicit drug use
prior to death. From each subject, ten brain regions were
obtained to provide a diverse set of brain regions: fron-
topolar cortex (Brodmann Area 10; BA10), Wernicke’s
area (BA22), anterior cingulate cortex (BA24), dorsolat-
eral prefrontal cortex (BA46), insular cortex, hippocam-
pus, amygdala, posterior putamen, cerebellum, and
brainstem raphe nuclei.

RNA preparation
Frozen brain tissue was homogenized in Trizol (Invitro-
gen/Life Technologies, Carlsbad, CA), and then phase
separated with chloroform. The RNA containing aque-
ous layer was diluted in binding buffer and applied to
Qiagen (Venlo, Limburg, Netherlands) or Denville
(South Plainfield, NJ) RNA isolation columns. The
bound RNA was DNAse treated and eluted according to
kit procedures. RNA concentration was measured using
Qubit (Invitrogen/Life Technologies, Carlsbad, CA), and
integrity assessed by Bioanalyzer (Agilent, Santa Clara,
CA). Samples with RIN numbers >6 were used for
analysis.

cDNA synthesis
Fifty nanograms of total RNA was converted to cDNA
and isothermally amplified using the NuGen Ovation
RNA-Seq kit procedures (NuGen, San Carlos, CA).

NuGEN’s proprietary SPIA technology is an elegant
method for robust isothermal amplification of nucleic
acids. Primer design strategies enable selective depletion
of ribosomal RNA while amplifying all remaining coding
and non-coding trancripts regardless of polyadenylation
status. The resulting double stranded cDNA can be
made into NGS libraries in a streamlined workflow
bypassing any sequence enrichment procedure, leading
to improved efficiency, throughput and data quality.
Typically, 50 ng of input total RNA yielded 3–6 micro-
grams of double stranded cDNA. Ribosomal RNA was
reduced to 3–5 % by the NuGen process. The yield of
cDNA produced by isothermal amplification typically
eliminates the need for additional PCR cycles, thus
greatly reducing PCR duplicates in the final libraries.

Library preparation
The NuGen brain cDNA was sheared to approximately
150 bp fragments using the Covaris S (Woburn, MA).
After shearing, fragments were recovered by centrifuging
over an YM-30 spin filter (Amicon, Merck Millipore, Bil-
lerica, MA). Fragments greater than 100 bp were
retained and eluted from the membrane, with ~ 90 % re-
covery. Bar-coded paired-end SOLiD sequencing librar-
ies were prepared using either SOLiD (Applied
Biosystems/Life Technologies, Carlsbad, CA) or NEB
(New England Biolab, Ipswich, MA) DNA library prepar-
ation kits. The cDNA was end repaired, and then bar-
coded SOLiD DNA sequencing adaptors were ligated to
1 microgram of input cDNA according to kit instruc-
tions. Ligated library product was size selected using a
Pippin gel electrophoresis system (Sage Biosciences,
Beverly, MA). The prepared library was enriched for cor-
rectly adapted product using 5–8 cycles of PCR. Library
PCR product was analyzed for appropriate size distribu-
tion with the Bioanalyzer, and quantitated using qPCR
with the library adaptors on an Applied Biosystems 7500
Real-Time instrument. To confirm RNAseq measured
expression, qRTPCR based expression was calculated as
ΔΔCt with three invariable genes (AGO1, SPEN,
SRSF11) averaged for baseline normalization.

Emulsion PCR, enrichment, slide preparation
To prepare libraries for sequencing on the SOLiD 4 or
SOLiD 5500XL, the SOLiD EZ Beader System (Applied
Biosystems/Life Technologies, Carlsbad, CA) was used
for emulsion PCR and templated bead enrichment.
Enriched beads were chemically bound to treated SOLiD
flow cells, then sequenced using the SOLiD (sequencing
by ligation) pairedend sequencing process. Some sets of
RNA samples were prepared for sequencing on a SOLiD
Wildfire instrument (Life Technologies, Carlsbad, CA),
eliminating the need for emulsion PCR and library bead
enrichment. Barcoded SOLiD libraries were prepared as
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before, and then Wildfire adapters were ligated to the
SOLiD libraries. Calibrated concentrations of these
Wildfire libraries were pipetted into the Wildfire flow-
chip. On-slide isothermal template walking produced de-
fined, single insert colonies of appropriate size and
density for SOLiD Wildfire paired end sequencing.

Sequencing experimental design
Our goal was to sequence RNA from 10 brain regions in
10 subjects, at sufficient depth to detect a wide range of
transcript expression, including non-coding RNA’s. The
scope of the project required multiple sequencing runs.
To account for sequencing batch effects, the sequencing
runs were designed to optimize comparisons both be-
tween samples, and between regions. To facilitate these
comparisons, nine of the brain regions from one subject
were barcoded, combined, and sequenced together in
the same run. The tenth brain region (BA46) from every
subject was separately barcoded, and these barcoded
samples from all ten subjects were sequenced together
in one run. Of the 11 total runs, 8 were processed with
Wildfire technology, and 2 runs were sequenced for the
forward reads only. Several sets were replicated to ac-
count for changes in sequencing technology and to in-
crease read coverage (Average Pearson correlation of
libraries within a set across any replicates: MB52 = 0.70,
MB160 = 0.94, MB147 = 0.98, MB100 = 0.85, MB11 =
0.86).

Data processing
Sequence Alignments. RNAseq data were aligned to a
modified version of the Genome Reference Consortium
human genome build 37 (hg19, Feb. 2009) containing
IUPAC ambiguous nucleotide characters for each anno-
tated SNP in dbSNP 135 with alignment performed
using SOLiD LifeScope™ Genomic Analysis Software
v2.5.1 (Life Technologies Carlsbad, CA). Gene features
were annotated using a combination of GENCODE v18
[33] annotation plus non-identical transcripts annotated
by lncipedia v2.1 [34]. The combination of these annota-
tions provides a richer set of coding and non-coding
transcript types. The bedtools suite [35] was used to
generate non-overlapping exonic, intronic, and inter-
genic annotation. The exonic regions for each transcript
were merged and subtracted from the whole gene length
to extract intronic regions. Whole genes were subtracted
from the genome to identify intergenic regions. With
these regional annotation sets, bedtools coverage was
used to generate a count for each region and the propor-
tion of coverage.

Gene expression
Cufflinks v2.1.1 [36] was implemented to estimate gene
specific abundances. Expression level is reported as

FPKM (Fragments Per Kilobase per Million reads) which
normalizes the number of reads within a gene by the
number of fragments per kilobase of exon and million
mapped reads for a given sample. Expression measure-
ments were quantified strictly based on GENCODE v18
[33] gene annotation combined with the additional tran-
scripts present only in the lncipedia non-coding RNA
database [34]. The combination of these two annotation
sets allowed for the consideration of a wide variety of
protein coding and non-coding transcripts. Multi-read
correction was applied to improve the expression esti-
mates when considering multimapped reads. Whole
gene expression measurements were based on the sum
of the expression of all exons of all annotated isoforms
at a gene locus.

Entropy based analysis of stably expressed RNAs
Comparing results from multiple RNAseq runs requires
means for normalization, accounting for batch effects
and sample-to-sample variability. Stably expressed genes
can serve to account for these confounding effects.
Genes with stable expression across brain regions and
subjects were identified as possible reference RNAs for
normalizing expression levels of other RNAs using the
following information-theoretic approach. First we
searched for well-expressed genes (>3 FPKM) with a flat
expression profile over the set of all available brain re-
gions. Second, we have looked for stably expressed gene
in each regions separately, taking the expression vector
of each gene over the available individuals. For both
genes with stable expression across all regions and genes
with stable expression within a regions, we have treated
every expression vector as a trial for a multinomial dis-
tribution, using Shannon entropy function as a measure
of uniformity. For any probability distribution, entropy is
always positive and attains its maximum (over the space
of all discrete distributions with given support) on the
uniform distribution [37]. Third, we have searched for
well-expressed genes with reproducible expression pat-
terns over the available individuals. We make our pre-
dictions more robust to inter-individual variability by
using the following re-sampling-based procedure: we
select m random subsets of k individuals (taking
k = 2,3,…,9 and m between 10 and 50 dependent on the
choice of k) and compared the selected k expression vec-
tors (of a single gene over the available tissues). To com-
pare expression vectors we have used the approach
proposed by Rempala and Seweryn [38] and quantified
the overlap between the k columns in a contingency
table by calculating the I-index. The I-index is an over-
lap measure as a function of the mutual information; it
is always positive and attains its maximum (which equals
1) if any of the columns in a contingency table are
linearly dependent. We have selected the genes with

Webb et al. BMC Genomics  (2015) 16:990 Page 4 of 16



reproducible expression patterns by comparing the mini-
mum observed I-index over all selected sub-samples.

Compilation of nicotine related genes
Genes related to nicotine exposure and addiction were
gathered from several online sources. 1196 genes with
expression differences related to smoking, nicotine, and
tobacco were selected from the Expression Atlas (ebi.a-
c.uk) [39]; 60 genes with SNPs associated with smoking,
smoking cessation, and tobacco use disorder were identi-
fied from GWAS and NCBI databases by PheGenI
(ncbi.nlm.nih.gov/gap/phegeni) [40]; 40 genes with con-
nections to nicotine and tobacco use were listed in
PharmGKB [41]. Liu et al. proposed a list of 587 genes
relating to nicotine, with a prioritized set of 220 genes
[26]. A study by Tyndale et al. identified 58 genes relat-
ing to smoking cessation [42]. Of these a total of 1789
unique genes were mapped to GENCODE gene
annotation.

Differential RNA expression and interpretation
The read count per gene for analysis was generated by
featureCounts from the subread package [43]. The pri-
mary alignment for each read was used in counting. Dif-
ferential expression analysis was performed by edgeR
[44] and RUVseq [45]. RUVseq used internally identified
200 ‘invariable’ genes to reduce variability between sam-
ples and estimated a term for edgeR’s glm analysis. Dif-
ferential expression was performed pairwise between
regions and between smokers and nonsmokers within a
region. To be included in analysis between regions, a
gene needed >10 reads in >8 samples. To be included in
analysis between smokers and nonsmokers, we required
a gene to have an expression of ≥ 2 counts per million
(reads per gene divided by million aligned reads) in all
subjects included in a comparison. GO term enrichment
was performed with the ToppFun application of the
ToppGene [46] suite to identify molecular and biological
processes over-represented in the gene list. Custom
pathways were built with Ingenuity Pathway Analysis
(IPA®, QIAGEN Redwood City, www.qiagen.com/in-
genuity) to find connections between RNA molecules
and smoking/nicotine.

SNP calling and allele specific expression
Genotyping was performed on Illumina GeneChip on
genomic DNA for each of the 10 subjects. To over-
come a bias in alignment of short reads, where the
reference allele reads are preferentially aligned over
reads with the variant allele, we used a genomic refer-
ence containing IUPAC codes for SNPs in dbSNP.
This approach limits consideration to known SNPs,
but equalizes the alignment rate of reads containing
known variants. Default settings of samtools mpileup

[47] were applied to each RNA library individually to
make SNP calls only for heterozygous SNP locations
identified by GeneChip. Gene bins were created for
all annotated genes from the combined GENCODE
and lncipedia annotation, taken as 1 Kb upstream and
1 Kb downstream of each annotated gene (recogniz-
ing that regulatory variants can be much more dis-
tant). Overlapping genes containing exactly the same
SNPs will have the same AEI fold change value. For
the analysis of allelic mRNA expression differences,
SNPs were assigned to bins and could belong to mul-
tiple bins in the case of overlapping regions. A set of
filters was applied to reduce the number of false posi-
tives arising from noise of the RNAseq data, guided
by earlier quantitative estimates [24]. We retained
SNPs belonging to at least one bin and having an
assigned rs number based on dbSNP build 135, and
filtered for a combined read coverage of 10 reads
(reference allele count plus variant allele count). For
the second level of filtering, we require a SNP to be
called in 3 or more regions of the same subjects. Out
of these, we selected genes that had two or more
SNPs called within a sample from a tissue, to obtain
at least two independent allelic ratio measurements
for any given RNA. To meet this condition, we re-
quired the distance between SNPs in a gene to be
greater than the length of a single read (>50 bases).
For each gene, we calculated the average allelic ratio
and read depth of coverage. RNAs with likely allelic
expression imbalance greater than 2, regardless of in-
dividual SNP differences, were required to have an al-
lelic ratio greater than twofold at the lower bound of
the 95 % confidence interval. For a list of the highest
confidence SNPs, we further filtered by an average
read depth per SNP of 30 reads.

RNA isoform analysis
Cufflinks v2.2.1 [36] was implemented to estimate iso-
form specific abundances using cuffquant to quantify ex-
pression, and cuffnorm to normalize the expression
levels for RefSeq annotated isoforms downloaded from
the UCSC genome browser in refFlat format. RefSeq was
used for isoform quantitation because of its simplicity in
transcript annotation compared to GENCODE. Isoform
fraction is calculated as the expression of a single iso-
form divided by the sum of expression of isoforms
assigned to a gene. Genes were considered when hav-
ing ≥ 5 FPKM in at least 40 libraries. To detect genes
generating different isoform patterns in different brain
regions we sorted genes with multiple isoform by the
number of tissues with an isoform average outside the
99 % confidence interval generated from all samples.
This provided a simple measure of how much individual
regions deviated from the average.
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Results
Sequence read distribution across genomic regions
Brain tissues were divided into 11 sequencing sets, with
10 sets including 9 regions for a single subject and 1 set
including 9 subjects for one region. Replicate sets corre-
lated well so the sequence reads were merged (Pearson
correlation between replicate sets, reported as average
across libraries within a set: MB52 = 0.70, MB160 = 0.94,
MB147 = 0.98, MB100 = 0.85, MB11 = 0.86). Additional
file 1: Table S1 provides complete sequencing and map-
ping information. After alignment with Lifescope, 60–
80 % of forward reads and 40-70 % for reverse reads
were aligned to genomic sequence. Separating aligned
sequences by exonic, intronic, and intergenic regions
yields estimates of read number generated from each re-
gion illustrated in Fig. 1. On average, 52, 34, and 14 % of
reads aligned to exonic, intronic, and intergenic regions,
respectively. These read counts are independent of the
length of a gene locus or region. 15 % of reads aligned to
the mitochondrial chromosome, and 2 % aligned to the
three major ribosomal transcripts (18S, 28S, and 5.8S;
reduced over 95 % with the NuGen kit). To account for
length of genomic regions, we estimated RPKM (reads
per kilobase per million total reads of a sample) per re-
gion by dividing total reads per genomic region by the
total genomic length (kb) of each region annotated by
GENCODE and lncipedia including both coding and
non-coding RNAs, yielding an average expression of 4.2
RPKM, 0.2 RPKM, and 0.1 RPKM in exonic, intronic,

and intergenic regions, respectively. By the same criteria,
mitochondrial genes are highly expressed.

Identification of genes with consistent expression across
regions and samples
We first identified RNAs stably expressed across
multiple tissues and subjects. These genes are useful
as “normalizing” genes to facilitate comparison
between samples. Mathematical modeling served to
characterize global transcript expression patterns.
Shannon entropy-based analysis was used to identify
the RNAs that were similarly expressed across all
brain regions in any individual, and those stably
expressed in all regions in all 10 individuals (Additional
file 1: Table S2). Additional file 2: Figure S1 shows the
average expression of all invariable genes in the 4 GTEx
brain regions that overlap the current survey confirming
the expectation that these genes have a small range of ex-
pression across different brain regions. GO term analysis
indicates that these “stable” and “invariable” genes are in-
volved in various biological processes, such as, chro-
matin modification, (BAZ1B, CHD2 and MECP2);
mRNA processing (SRRM1, RBM25, CPSF7) and
neuronal cell adhesion (CDK5R1, NLGN2, ASTN1).
We propose that any of these genes could serve to
normalize expression profiles, and used the genes to
remove unwanted variation during differential ex-
pression analysis.
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Fig. 1 Read alignment across genomic regions. Presents the percentage of aligned reads falling within genomic regions of different types–exonic,
intronic, and intergenic as annotated by GENCODE and lncipedia; any reads aligning to the mitochondrial chromosome; and ribosomal reads filtered
by during alignment (18S, 28S, and 5.8S only)
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Region-selective expression of RNA classes
To test how RNA transcripts tend to be expressed across
region types, we generated counts of the number of
times an RNA is detectable across the 10 regions and
stratified this by transcript-type based on GENCODE-
lncipedia annotations. Detection within a region was de-
fined as expression greater than 2 FPKM in two or more
subjects. This arbitrary cutoff serves as an example to
assess relative expression selectivity for various RNA
classes, leaving out relevant transcripts with low expres-
sion. The relative contributions of reads aligned to pro-
tein coding, lncRNA, pseudogenes, and processed
transcripts to regional expression patterns is shown in
Fig. 2. The mRNAs represent by far the largest group of
these relatively robustly expressed genes (10,680),
followed by lncRNAs (838). lncRNAs include transcripts
labeled as lincRNA, antisense, sense intronic, sense over-
lapping, and those added from lncipedia. Among the
protein coding mRNAs, the majority is widely expressed,
whereas other transcripts, in particular the lncRNAs,
display a more selective expression pattern, possibly sug-
gesting distinct functions of a relatively small set of non-
coding RNAs required in various brain regions.
To explore the number of detectable RNA transcript

types across the brain, we calculated the average expres-
sion of each gene across all subjects. For further analysis,
we created bins of expression levels ranging from 2
FPKM to 5000 FPKM (Fig. 3), leaving out RNAs with
low expression levels (<2 FPKM). Read counts attribut-
able to non-coding transcripts are generally lower than
read counts aligned to protein coding transcripts. Half of
expressed protein-coding RNAs are detectable with > 5

FPKM, whereas for lncRNA only 35 % of expressed RNAs
are detectable at the 5 FPKM level. Hence, only a small
number of ncRNAs displays robust expression, but these
could be instrumental in defining specific functions across
brain regions.

Differential RNA expression across brain regions and
subjects
RNAs with divergent expression patterns between brain
regions and subjects likely reflect dynamic processes. To
be included in analysis, we used RUVseq suggested filter-
ing requiring >10 reads in >8 samples (at least half of all
samples included in a comparison). FDR correction was
made only for genes included in the analysis. In region
to region comparisons, 8 to 10 subjects were included
per category. We performed differential gene expression
analysis with edgeR together with RUVseq in order to
use invariant genes to reduce unwanted variation.
Table 1 shows the number of RNAs significantly

(FDR ≤ 0.05) differentially expressed between every com-
bination of region pairs. This analysis revealed relative
similarities between regions - BA10, BA22, BA24, and
insula (0–342 differentially expressed (DE) genes); amyg-
dala and hippocampus (250 DE genes); and putamen,
cerebellum, and raphae nucleus (0–402 DE genes). Tran-
scriptional differences between four pairs of brain re-
gions showing highest dissimilarities of expression
profiles are illustrated in Additional file 3: Figure S2.
Complete list of DE genes for each pair of brain regions
is shown in Additional file 1: Table S3. The majority of
DE genes stratified by RNA type are protein coding,
while 20 % come from non-coding RNAs (including
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Fig. 2 Brain region specificity of RNA classes. Presented is the percentage of different RNA types, as annotated in GENCODE/lncipedia, detectable
across brain regions. Detectability is defined as FPKM > 2 in 2+ samples. This includes 10,680 protein coding genes, 242 pseudogenes, and 945
noncoding. A higher percentage of protein coding RNAs are detectable across all 10 regions compared to non-coding RNAs and pseudogenes
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lncRNA, lincRNA, antisense, processed transcripts, etc.)
and 9.5 % from pseudogenes. This result reflects the
more robust expression of numerous protein coding
RNAs but highlights the potential importance of a small
set of non-coding RNAs in the difference between brain
regions.

Differential RNA expression between smokers and non-
smokers
We again performed differential gene expression analysis
with edgeR which uses a Poisson model. With an ana-
lysis performed for each brain region, we searched for
genes differentially expressed between smokers and non-
smokers. For differential expression analysis, we

considered only RNAs with CPM (counts per million
total reads) > 2 in every tissue sample used in a compari-
son. For any given comparison, this left 8000 to 14,000
genes for analysis. In all tissues except BA46 and raphae
nuclei (one subject missing for each), 5 smokers and 5
nonsmokers were included. BA46 from one smoker dis-
played a highly variable expression profile but analysis
with RUVseq was able to reduce the variability seen in
this sample allowing for its inclusion. Under these ex-
perimental conditions, we did not expect to detect many
transcriptome-wide significant differences, and therefore,
also relied on previously identified candidate genes. As a
result of the small sample size and tendency for batch
effects, most regions had few to no genes with
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Fig. 3 Number of detectable RNAs at different FPKM cutoffs. The average number of detectable protein coding and non-coding RNAs is shown
at different expression cutoff levels. This illustrates the working pool of RNAs available depending of expression cutoff

Table 1 Differentially expression between tissues

BA22 BA24 BA46 Insula Amygdala Hippocampus Post. putamen Cerebellum Raphae

4 11 872 114 1281 1612 1801 4315 2876 BA10

43 62 119 1761 1895 1891 3577 2791 BA22

106 0 1123 1655 2252 4778 3548 BA24

342 1114 1794 1193 2828 2176 BA46

521 1322 1820 4415 3155 Insula

251 797 3606 2256 Amygdala

827 3206 1714 Hippocampus

0 402 Post. putamen

51 Cerebellum

The number of genes are listed found to be differentially expressed (FDR ≤ 0.05) between pairwise tissue comparisons. FDR correction was made for genes
included in analysis based on detectability
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transcriptome-wide significance at either level, while 56
genes were identified as differentially expressed in BA46
with FDR ≤ 0.1, including several non-coding genes
(RP11-294 K24.4, LINC00617, AC144521.1) and pseudo-
genes (RP11-768G7.1, GJA1P1). An additional 39 genes
in BA22, 2 genes in the insula, and one gene in the
raphae nucleus were significant with FDR ≤ 0.1
(see Additional file 1: Table S3 for all genes and
FDR levels). Focusing on known nicotine related
genes in BA46, 14 genes were significantly different
with FDR ≤ 0.1, and 7 of these retained significance
at FDR ≤ 0.05. In BA22, 6 out of 39 genes with
FDR ≤ 0.1 were nicotine related. In raphae nuclei, a
single significant gene was nicotine related (SEMA3C
FDR = 0.05). All genes with FDR ≤ 0.1 are listed in
Additional file 1: Table S4 and nicotine related genes
are marked with an asterisk. Functional enrichment
analysis with toppgene targeting genes relating BA46
to smoking found 13 genes related to “response to
abiotic stimulus” (GO:0009628, FDR B&H = 4E-3),
such as: VEGFA, HIF3a, TP53BP2 and IGFBP7, 10

genes relating to “behavior” (GO:0007610, FDR B&H =
8e-3), such as: CIART, GPR37 and PTN; 11 genes related
to transmembrane transport (GO:0055085 FDR B&H =
3E-2) including: ATP13A4, ATP1A2, SLC1A2 and SLC1A2
(Table 2).

Pathway analysis of RNAs with differential expression
between smokers and non-smokers
To understand how the differentially expressed genes
from BA46 relate to smoking and nicotine, we built a
custom pathway with the Ingenuity Pathway Analysis
(IPA) package. Differentially expressed genes were added
to a custom pathway, together with the terms “nicotine,”
“smoking,” and all smoking related molecules. Connec-
tions were made between differentially expressed genes
and the additional molecules using default IPA options.
A prominent pathway in this analysis focuses on
VEGFA, with genes more than two links from VEGFA
removed (Additional file 4: Figure S3). Differentially
expressed RNAs involved in this pathway, highlighted in
green, were all higher in non-smoker tissues (BA46).

Table 2 Enriched GO terms for differentially expressed smoking related genes in BA46

Gene Gene information GO term

APOLD1 Apolipoprotein L domain containing 1 Response to abiotic stimulus

ATP13A4 ATPase type 13A4 Transmembrane transport

ATP1A2 ATPase, Na+/K+ transporting, alpha 2 polypeptide Behavior / response to abiotic stimulus / transmembrane transport

CIART Circadian associated repressor of transcription Behavior

GJA1 Gap junction protein, alpha 1, 43 kDa Behavior / response to abiotic stimulus / transmembrane transport

GPR37 G protein-coupled receptor 37 (endothelin receptor type B-like) Behavior

HIF3A Hypoxia inducible factor 3, alpha subunit Response to abiotic stimulus

IGFBP7 Insulin-like growth factor binding protein 7 Response to abiotic stimulus

MLC1 Megalencephalic leukoencephalopathy with subcortical cysts 1 Response to abiotic stimulus / transmembrane transport

PLOD2 Procollagen-lysine, 2-oxoglutarate 5-dioxygenase 2 Response to abiotic stimulus

PREX2 Phosphatidylinositol-3,4,5-trisphosphate-dependent Rac
exchange factor 2

Behavior

PTN Pleiotrophin Behavior

S1PR1 Sphingosine-1-phosphate receptor 1 Behavior

SDC2 Syndecan 2 Response to abiotic stimulus

SDC4 Syndecan 4 Response to abiotic stimulus

SLC14A1 Urea transporter,Kidd blood group Transmembrane transport

SLC1A2 Glial high affinity glutamate transporter Behavior / response to abiotic stimulus / transmembrane transport

SLC1A3 Glial high affinity glutamate transporter Behavior / response to abiotic stimulus / transmembrane transport

SLC4A4 Sodium bicarbonate cotransporter Transmembrane transport

SLC5A11 Sodium/inositol cotransporter Transmembrane transport

SLC7A11 Anionic amino acid transporter light chain, xc- system Transmembrane transport

SLCO1C1 Solute carrier organic anion transporter Transmembrane transport

TP53BP2 Tumor protein p53 binding protein 2 Response to abiotic stimulus

VEGFA Vascular endothelial growth factor A Behavior / response to abiotic stimulus

Two GO terms were enriched from genes with significant (FDR ≤ 0.1) differential expression between smokers and nonsmokers in BA46
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Analysis of RNA isoform expression across brain regions
A majority of genes generate multiple RNA isoforms
that often differ between tissues. To detect characteristic
differences in brain region-selective expression, we
ranked genes yielding isoform ratios with largest vari-
ability between regions (averages outside the expected
99 % confidence interval). Table 3 lists genes with the
highest scores, while Fig. 4 highlights neurexin-3
(encoded by NRXN3) as an example. A complete record
can be found in Additional file 1: Table S5 of the
average isoform fraction of all genes considered
across brain regions. The non-coding versions have
at least one unique exon that does not overlap
with coding versions of NRXN3. Alignment to
these isoform-specific exons direct analysis of the

expression levels. The raphae nuclei, cerebellum, and
posterior putamen tend to express mostly the short
NRXN3 transcript dup5 isoform while other tissues
express mostly full length NRXN3 dup0. The short
isoform dup5 lacks a large portion of the 5′ end and
likely supports different functions, annotated as non-
coding RNA lacking known coding potential. The
non-coding versions have at least one unique exon
that does not overlap with coding versions of NRXN3.
Alignment to these isoform-specific exons direct ana-
lysis of the expression levels.
Quantification of expression is sensitive to the read

assignment method applied, such as the one used by
Cufflinks, to distribute reads to expressed regions
of isoforms over the whole gene. While Cufflinks

Table 3 Genes with the most isoform variation between brain regions

Ranking Gene Isoform ranking score Gencode ID RNA type

1 GATS 9.0 ENSG00000160844.6 Protein

2 NRXN3 9.0 ENSG00000021645.13 Protein

3 R3HDM1 9.0 ENSG00000048991.12 Protein

4 RTN4 9.0 ENSG00000115310.13 Protein

5 BRWD1 8.7 ENSG00000185658.9 Protein

6 MLIP 8.7 ENSG00000146147.10 Protein

7 PART1 8.7 ENSG00000152931.7 Noncoding

8 PIK3R1 8.5 ENSG00000145675.10 Protein

9 POLR1D 8.5 ENSG00000186184.11 Protein

10 PVRL3 8.3 ENSG00000177707.6 Protein

11 SEPT8 8.3 ENSG00000164402.9 Protein

12 CEP85L 8.0 ENSG00000111860.9 Protein

13 DLG2 8.0 ENSG00000150672.12 Protein

14 ELMO1 8.0 ENSG00000155849.11 Protein

15 INPP5F 8.0 ENSG00000198825.7 Protein

16 MAGI1 8.0 ENSG00000151276.18 Protein

17 SYNPO 8.0 ENSG00000171992.8 Protein

18 WDR47 8.0 ENSG00000085433.11 Protein

19 KALRN 7.8 ENSG00000160145.10 Protein

20 GAS7 7.7 ENSG00000007237.13 Protein

21 GPM6B 7.7 ENSG00000046653.10 Protein

22 ANTXR1 7.5 ENSG00000169604.15 Protein

23 ATP5S 7.5 ENSG00000125375.10 Protein

24 DGKG 7.5 ENSG00000058866.10 Protein

25 DYNC1I2 7.5 ENSG00000077380.11 Protein

26 NTRK2 7.5 ENSG00000148053.11 Protein

27 PTER 7.5 ENSG00000165983.10 Protein

28 SLC29A2 7.5 ENSG00000174669.7 Protein

29 WNK1 7.5 ENSG00000060237.12 Protein

The top scoring genes are listed with variable isoform usage among brain regions. Order determined by comparing the average expression of each tissue to the
average expression across all tissues and individuals. Genes with more tissue variation rank higher
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probabilistically assign reads to isoforms and is widely
accepted as an accurate expression quantification
method, one could focus on local differences, i.e., what
exons are being included or excluded, and consider a
custom set of isoforms based on expression within the
working dataset. One option within cufflinks is to quan-
tify the expression within the dataset and generate a
gene annotation file based on that data; however, this ap-
proach can merge genes that should be kept separate.
To test whether the results change when using only well
expressed isoforms for quantification, we reran cufflinks
with NRXN3_dup0 and NRXN3_dup5 as the only two
isoforms for NRXN3. For those tissues with a high per-
centage of the full length NRXN3, 13 % of isoforms are
expressed as dup5 from an alternative start site generat-
ing a shorter NRXN3 RNA. For the raphae nuclei and
cerebellum, this percentage goes up to 65 %. When lim-
iting the gene annotation set to dup5 and dup0 isoforms,
most reads originally assigned to minor isoforms and
dup4 were assigned to dup5, changing the isoform frac-
tions marginally.

SNP calling and allele-selective RNA expression, or allelic
expression imbalance (AEI)
Several filters were employed to select SNPs contribut-
ing to a measure of allelic expression imbalance across a
gene. Requiring a 95 % confidence level as the lower
bound to the AEI ratio of SNPs within a gene for a given
subject/region, an average of 24 RNAs displayed a robust
signature of possible allelic expression imbalance (AEI)
per region, with ~1600 genes represented across all
regions and subjects (1.4 K protein coding, 177 non-
coding, 22 pseudogenes). These results point to the
presence of frequent regulatory variants affecting the

expression of all RNA classes. Additional file 5: Figure
S4 shows a scatter-plot of the average magnitude of the
allelic RNA ratio compared to the average read depth
for SNPs contained in the gene (with a twofold allelic
RNA ratio above the 95 % CI as the cutoff ). Genes with
more extreme imbalanced ratios tend to have lower read
depth, which decreases precision of measuring allele
specific expression. On the basis of this graph, we chose
an arbitrary read cutoff of 30 reads per SNP for the pur-
pose of the present analysis.
With a stringent read filter of 30 reads per SNP

and twofold AEI ratio, we detect 443 genes with
likely AEI in any region such as Huntington’s
Disease-associated: ELMO1, NTRK2, WNK1 and asso-
ciated with Schizophrenia: NTRK2, PIK3R1 and
RTN4. Table 4 contains the top 20 genes with AEI
detected in any sample, sorted by magnitude of AEI
ratios and by brain region. A complete listing is
found in Additional file 1: Table S5. Most of these
genes have detectable AEI in 1 tissue in 1 sample as
detection of AEI depends on expression level. At the
stringent 30 read filter, 6 genes were detected with
AEI in more than one subject of the same brain re-
gions, a finding likely associated with high minor al-
lele frequency of a regulatory variants. Table 5 shows
these 6 genes and results from eQTL and GWAS da-
tabases. Of these 6 genes, LPAR1, PSD3, and GNAS
are associated with brain-related phenotypes (alcohol-
ism, memory, and brain waves), and LPAR1, PSD3,
GNAS, and SRPK2 with eQTLs annotated in GTex or
PheGenI in any human tissue (brain regions are not
well represented in GTEx). It is apparent that these
genes carry frequent regulatory variants with robust
effects on RNA expression levels. We are currently
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Fig. 4 NRXN3 isoform representation across brain region. NRXN3 was found to be a gene with extreme differences in isoform representation. The
top panel shows 5 isoforms annotated by RefSeq and the middle panel focuses on the difference between the major isoforms (Dup0 and Dup5).
The bottom panel shows the representation of all isoforms as a fraction of the whole gene expression, combining Dup1 and Dup2 into “minor
isoforms”. Dup0 is the major isoform in all Broadmann’s areas, insula, amygdala, and hippocampus. Dup5 is the major isoform in cerebellum and
raphae nuclei. Samples from the posterior putamen are mixed
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developing mathematical and statistical methodologies
for examining the landscape of allelic expression ratio
to extract instances of less robust AEI.

Gene expression confirmation
RNA-seq values of selected genes were orthogonally
verified using Taq-Man qRT-PCR gene expression mea-
surements. Real-time PCR was used to evaluate expres-
sion levels of three of the invariable genes applied to
normalize the sequencing reads (AGO1, SPEN, SRSF11
each expressed at different FPKM levels) and also to re-

evaluate the expression profiles of three nicotine related
genes with variable expression (HIF3A, SLC1A3,
NRXN3). Expression levels were measured by qRT PCR
in all available brain regions of each sample. Using a log
transformation, the overall pearson correlation of these
measurements was 0.92. See Additional file 6: Figure S5
for a scatterplot of the comparison.

Data sharing
The data supporting the results of this article are available
in the GEO repository (accession ID: GSE68559 link:

Table 4 Top 20 AEI per tissue

Amygdala BA10 BA22 BA24 BA46 Cerebellum Hippocampus Insula Post.
putamen

Raphae
nucleus

1 SNHG14 BCAP29 C7orf41 ATP6V1G2 SLC8A1 ERV3-1 RP11-785H5.1 CD24P4 CCT5 GSTA4

2 STON2 LMO7 ZNF91 ATP6V1G2-DDX39B RCAN2 RP11-862 L9.3 RP11-785H5.2 TTTY14 lnc-SNURF-3 NDRG3

3 lnc-SNURF-3 NHP2L1 NHP2L1 SYNJ1 SPTBN1 CTD-2353 F22.1 DNAJA4 PILRB SNHG14 RALGAPB

4 AFTPH NUDT5 ZNF391 TXN2 LPHN3 NMNAT2 PDE1A AC005592.2 PDXP RBM26

5 UBE3A RAB21 NGEF PRPF8 FAM212B GPRIN3 LANCL2 FGF1 SH3BP1 GPRIN3

6 PEG3 UBE3A SENP2 FAM120A PSD3 CHN1 DCP2 MAP1LC3B SPP1 SOGA1

7 ZIM2 IL6ST LRRC6 NHP2L1 AHSA1 SEPT3 C9orf72 POLR3F ZEB1 NALCN

8 RP11-
746 M1.1

UFM1 LPAR1 YWHAB SERINC1 UBR3 USP47 RPL21P3 PYGB FUT9

9 CELSR2 PDGFRA RPS20 TAOK1 ANKS1B GAS7 KIAA1549 CCDC103 YWHAG RIMS2

10 AP1S1 ZEB1 ENO4 POMP LINGO1 PLK2 NEFL FAM187A PBX3 NHP2L1

11 NHP2L1 NEO1 KIAA1598 RP11-269G24.3 ANK2 EPB41L1 PRRC2C GFAP MANBAL NMNAT2

12 OPA1 TAF2 NECAB2 TANC2 AL391357.1 NEDD4L STARD13 ARHGAP32 SV2B SEPT3

13 WDFY3 AL391152.1 FAM107A IGFBP5 DDOST MAP2 CROCCP3 PCM1 SETD6 PPP3CA

14 MEF2A CNGB3 CYFIP1 PPFIBP1 PINK1 YWHAG EPHA7 PDE8B KIF5C USP24

15 LHFPL3 CPNE3 ARHGAP32 SPHKAP PINK1-AS lnc-GALNT2-1 AC010127.3 NRXN3 ECHS1 RP11
-981G7.1

16 RPS6KA2 ATF6 SCP2 MYO5A CTSB AL691479.1 SCN1A EIF2AK4 QKI GAS7

17 CDC14B NAV2-AS1 ANKS1B GAS7 FMN2 CASC7 C1orf226 PRDM2 FAM13C MAPK9

18 PRICKLE2 TNS3 PPP1R12B PRKCB DST MBP RP11
-565P22.6

WDR41 ACIN1 RP11
-463C8.4

19 RP11-129B22.1 ADNP2 SLC6A1 RP11-862 L9.3 – NCL AJAP1 ARCN1 FDFT1 ZNF91

20 ARHGAP32 EXOC5 APBA1 PCDH9 – MAP1A SRPK2 TPM1 MOCS1 APOL2

After restricting the list of genes with AEI to those with >30 reads per SNP averaged across gene, the list for each region is sorted by average AEI fold-change

Table 5 Genes with AEI in 2 samples in a region

Region Gene AEI ratio Avg ± S.D. Avg SNPs per gene per sample GTex eQTL PheGenI eQTL PheGenI association

BA10 AKAP12 3.7 ± 0.6 6

BA22 LPAR1 3.3 ± 0.7 3 Whole blood Brain cerebellum Alcoholism

BA46 PSD3 3.4 ± 0.7 2 Brain pons Memory

Cerebellum GNAS 2.8 ± 0.4 2 Liver, lymphoblastoid Brain waves

Hippocampus SRPK2 3.6 ± 0.7 2 Whole blood, esophagus Lymphoblastoid

Raphaenucleus PDE4DIP 3.4 ± 0.8 3

Genes with allelic expression imbalance in 2 subjects in the same brain region after stringent filtering of 30 reads of coverage. Listed is the average and standard
deviation of the AEI fold change for each gene and the average number of SNPs contributing to the AEI signal for each gene per sample. Genes were checked
against public databases for eQTLs and SNP associations
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http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?token=
kvaxwogwdxgjvwx&acc=GSE68559).

Discussion
We present here the results for RNAseq analyses in ten
human brain regions from ten subjects, five with a his-
tory of smoking and five controls. Owing to the prepar-
ation of sequencing libraries with both poly-dT and
random hexamer primers, all RNA classes are detected,
thereby, providing additional detail not available in pre-
vious studies of brain transcriptomes, such as transcript
isoforms, non-coding RNAs, and allelic ratios as indica-
tors of regulatory variants. A first analysis of differential
gene expression between smokers and non-smokers was
guided by previous results, as the number of subjects is
limited for an independent analysis.

Abundance and distribution of protein coding and non-
coding RNAs
With both random hexamer and poly-dT priming, we
covered all RNAs at least 200 bases long, regardless of
poly-adenylation status. Wide-ranging transcription
from a considerable portion of the genome has led to
the discovery of tens of thousands of non-coding RNAs
with diverse functions. Our results in human brain re-
gions illustrate the robust expression of a large number
of protein coding mRNAs compared to non-coding
RNAs, even though only 1.2 % of the genome consists of
coding exons. More protein coding genes are expressed
across all 10 regions than non-coding RNAs and pseu-
dogenes. This finding suggests lncRNA, pseudogenes,
and processed transcripts are more region-specific than
protein coding transcripts and could support distinct
functions critical to specific tissues. Preliminary analysis
not reported here shows that gene networks derived
from the RNA expression patterns may be strengthened
with the inclusion of non-coding RNAs with ncRNAs
serving as relays in protein-coding RNA networks but
further work is needed (unpublished results). The brain
region RNAseq data provided here appear to be useful
for network analyses and defining potential functions of
ncRNAs.

Transcriptome analysis of brain regions from smokers
and controls
Our study was designed to complement previous tran-
scriptome analyses, and to serve as a starting point for
extended analysis of a larger cohort, or to study the iso-
form expression profiles of known candidate genes. The
identification of differentially expressed genes, either
from tissue to tissue comparisons or from smoker vs
nonsmoker, highlights the effect of sequencing batch on
gene expression, as a confounding factor. Regions from
BA46 were sequenced in the same run and are best

suited for comparisons within the region between
smokers and nonsmokers. Conversely, the other nine re-
gions were sequenced in one run for each subject separ-
ately, leading to a batch effects between regions.
Without added normalization, these nine regions are
best suited for tissue to tissue comparisons as they have
the same batch biases. Here we have extracted those
genes with similar expression across all regions, and in
addition those that are invariant between subjects,
employing a Shannon entropy-driven analysis. We
propose that these genes can serve broadly as genes for
normalization of RNAseq data acquired from heteroge-
neous tissues such as brain. Using these invariable genes
with RUVseq to remove unwanted variation, we were
able to overcome batch effects leading to enhanced dif-
ference between BA46 and other tissues, and yielding
differential gene counts expected from biological similar-
ity between brain regions.
A number of genes were differentially expressed be-

tween smokers and non-smokers, detectable mostly in
brain region BA46, including WIF1, CX3CR1, and
APOLD1. Using Ingenuity pathway analysis with nico-
tine as the central theme, several of the differentially
expressed RNAs were found to connect directly or in-
directly to VEGFA, which in turn connects to smok-
ing pathways through VCAM1 and DRD2. VEGF is a
growth factor involved in angiogenesis, vasculogenesis,
and endothelial cell growth (UniProtKB/Swiss-Prot),
while previous studies report various associations with
nicotine and smoking. Cigarette smoke was found to
reduce VEGF levels in human umbilical vein endothe-
lial cells [48], whereas two other studies failed to de-
tect a correlation between VEGF plasma levels and
smoking status [49, 50]. Smoking was further associ-
ated with VEGF receptor expression [49] and abnor-
mal endothelial function [50]. Moreover, VEGF may
have a protective role in ischemia and stroke [51, 52],
potentially counteracting the deleterious effects of
smoking. Neuroprotective effects of VEGF under is-
chemia had been demonstrated in rat neurons [51].
Further studies are needed to follow up on the role
of differentially expressed genes in smokers versus
non-smokers.

Differential expression of RNA isoforms across brain
regions
Our RNAseq database is well suited to detect RNA iso-
forms that occur at nearly all gene loci. Here we have fo-
cused on an analysis of genes yielding isoforms with
distinct distribution patterns between brain regions. We
use neurexin-3, encoded by NRXN3, as one example of
substantial differences between tissues. Whole gene expres-
sion of NRXN3 in brain regions was robust, ranging from
20 to 43 FPKM. Raphae nuclei and cerebellum expressed
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more NRXN3_dup5 isoform while other tissues express
higher amounts of NRXN3_dup0 full length mRNA. Sam-
ples from the posterior putamen show a mixture of either
more dup5 or more dup0 isoforms, likely due to differences
in cellular heterogeneity or genetic factors. Both isoforms
are labeled as “noncoding” by RefSeq and “nonsense medi-
ated decay” by ensembl suggesting it may play a role in re-
ducing erroneous gene expression. As neither isoform is
thought to express a protein, one must take isoform distri-
bution across brain regions into account in biological stud-
ies to avoid erroneous conclusions. Looking at the exons
unique to the dup0 and dup5 isoforms, not present in any
coding version, it appears that both isoforms are robustly
and differentially expressed between brain regions into
RNA. Moreover, we identified AEI for NRXN3 RNA in
three tissues —insula, amygdala, and BA46 (each for a dif-
ferent sample), while no eQTLs are listed for NRXN3 in
GTEx; this may result from averaging all isoforms to yield a
composite mRNA level. Our results can lead to the identifi-
cation of regulatory variants in NRXN3.
Comparing average whole gene expression of NRXN3

for 4 brain regions (amygdala, BA24, cerebellum and
hippocampus) present in both our data set and in the
Genotype-Tissue Expression (GTEx) project, yielded a
strong correlation with r = 0.92. In both datasets,
NRXN3 is expressed in higher amounts in the cerebel-
lum compared to other regions. For a direct comparison
between the OSU and GTEx NRXN3 isoform expres-
sion, we adopted the transcript profile annotated in
GTEx. In our dataset, the three most prominent iso-
forms were ENST00000428277.2, ENST00000555387.1,
and ENST00000554738.1, while in the GTEx brain re-
gions, ENST00000428277.2 accounts for approximately
80 % of NRXN3 mRNA compared to ~30 % in the OSU
brains. This difference is likely due to library preparation
and poly-A selection employed by GTEx. If we focus on
the latter two isoforms, the ratio of these two isoforms
favors ENST00000554738.1 in both GTEx and OSU in
the cerebellum and favors ENST00000555387.1 in the
other 3 overlapping regions. ENST00000554738.1 corre-
sponds to NRXN3_dup5, and ENST00000555387.1 cor-
responds to NRXN3_dup0 confirming the results shown
in Additional file 7: Figure S6.

Allelic RNA expression
Using strict filtering criteria, we identified a group of genes
with allelic expression imbalance in any sample from differ-
ent brain regions. The stringent filters used here detect only
the most striking signals of allelic expression imbalance.
The combination of these parameters with large scale geno-
typing with GeneChip of the gDNA provides strong evi-
dence a variant is truly heterozygous and that a finding of
allelic RNA expression imbalance (AEI) is justified. This ap-
proach yielded a list of genes likely to be under regulatory

influence where one copy of the gene is preferentially
expressed. Given that only ten subjects were analyzed, the
minor allele frequency of any regulatory variant can vary
substantially over a broad range. However, this range is
much narrower when 2 of 10 subjects display AEI for any
given gene, implying a mean allele frequency of ~10 %. We
detect 6 genes with AEI in more than one subject, indicat-
ing that a frequent regulatory variant is present with sub-
stantial effect on expression (Table 4). Four of these genes
had been previously identified as containing eQTLs, i.e.,
variants that are associated with mRNA expression in vari-
ous tissues, providing independent confirmation that these
genes are under regulatory influence in other tissues. Three
genes were found to be associated with clinical phenotypes
in GWAS studies (Table 4). LPAR1 encodes a receptor for
lysophosphatidic acid and has been associated with alcohol-
ism (rs509276, located upstream of LPAR1; p = 2.5e-5 in
Collaborative Study on the Genetics of Alcoholism COGA
[53]). PSD3 (encoding Pleckstrin and SEC7 domains-
containing protein 3) is a cancer risk gene that has been
associated with memory functions (rs901732, intronic,
p = 3.7e-8; rs1386687, intronic, p = 7.9e-6; Framingham
Heart Study [54]). Lastly, GNAS (encoding the Gsα subunit
of stimulatory G proteins) is a critical signaling molecule in
the activation of adenylyl cyclase and has been associated
with numerous disorders and phenotypes (see OMIM). A
detailed analysis of all cases of AEI is ongoing.

Conclusions
RNA sequencing identifies distinct and consistent differ-
ences in gene expression between brain regions. Non-
coding RNAs are also differentially expressed between brain
regions and may play a role in regulation of gene expression
and functional differentiation of the different brain areas.
Smoking affects coding and non-coding transcript expres-
sion in BA46 in a number of genes related to nicotine ex-
posure. The purpose of this report was to provide an
overview of the data source created by sequencing 10 brain
regions of 10 subjects. We present here patterns of expres-
sion of various types of RNA, differential expression be-
tween tissues, differences in the expression of RNA
isoforms, and detection of allelic expression analysis identi-
fying genes under regulatory genetic influence.

Additional files

Additional file 1: Table S1. Sequencing and mapping statistics. Listed
are the sequencing details and mapping statistics for the presented data.
Sequencing sets varied in the number of lanes per run, sequencing
technology, and inclusion of paired reads. For sets with replicate runs,
the number of lanes for each run and the sequencer technology are
separated by slashes. Some replicate runs were generated under different
sequencing conditions (SOLiD5500 technology vs wildfire technology)
and this is indicated when appropriate. Table S2. Normalizing genes
identified by mathematical modeling. 2a Top 200 invariable genes. Lists
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top 20 genes found to be constant across subjects and tissues. 2b Top
200 stable genes. Lists top 20 genes found to be constant across
subjects, but different between tissues. Table S3. Differentially expressed
genes between brain regions. Lists all significantly (FDR ≤ 0.05)
differentially expressed genes between any two brain regions identified
by RUVseq after removing unwanted variation using invariable genes.
Table S4. Genes differentially expressed between smokers and
nonsmokers. Lists the genes found to be differentially expressed between
smokers and nonsmokers (FDR ≤ 0.1). Genes previously implicated in
nicotine or smoking are marked with an asterisk. Table S5. Isoform
fraction across brain regions. Lists the average isoform fraction across
brain regions for genes passing expression level filters. Genes were
considered when having ≥ 5 FPKM in at least 40 libraries. To detect
genes generating different isoform patterns in different brain regions we
sorted genes with multiple isoform by the number of tissues with an
isoform average outside the 99 % confidence interval generated from all
samples providing a simple measure of how much individual regions
deviated from the average. Table S6. Genes with AEI. Lists the genes
identified with potential allelic expression imbalance. Genes were
required to have 2+ SNPs and an average coverage of 30 reads for those
SNPs. (DOCX 99 kb)

Additional file 2: Figure S1 Average expression of invariable genes in
4 GTEx brains. Shows the variation of 200 invariable genes expressed in 4
GTEx brain regions. (PDF 189 kb)

Additional file 3: Figure S2 Visualization of the results of differential
expression analysis for four pairs of brain regions with highest differences
in gene expression. log fold-change (x-axis) and corresponding –log FDR
(y-axis) are shown for each gene. Genes differentially expressed (FDR <
0.05) are marked in red and top five DE genes for each pair are indicated.
(TIF 915 kb)

Additional file 4: Figure S3 Pathway relating VEGF and other
differentially expressed genes to smoking. Displays a pathway generated
by Ingenuity Pathway Analysis using genes differentially expressed
between smokers and nonsmokers in BA46 that connect to smoking and
smoking related molecules. Differentially expressed genes are highlighted
in green and smoking related molecules are outlined in purple. (PDF 80
kb)

Additional file 5: Figure S4 Plot of AEI ratio versus read depth
across SNP. Displays the average magnitude of the allelic expression
fold-change of a gene for a particular sample/region compared to the
average read depth for SNPs in the gene. SNPs with low coverage tend
to have more extreme AEI. (PDF 211 kb)

Additional file 6: Figure S5 Confirmation of expression levels by
qRTPCR. qRTPCR was performed to correlate the FPKM of 3 invariably
expressed (AGO1, SPEN, SRSF11) and 3 nicotine candidate genes
(HIF3A, SLC1A3, NRXN3) for nearly all 100 samples. qRTPCR was
quantified using the ΔΔct method and using the average of the three
invariable genes for normalization. Across brain regions, we can correlate
the RTPCR measured expression with the RNAseq measured expression.
After a log transformation, the overall Pearson correlation is 0.92. (PDF
173 kb)

Additional file 7: Figure S6 Comparison of NRXN3 isoform
representation between OSU and GTEx brains. The ratio of the blue and
orange isoforms favors ENST00000554738.1 in both GTEx and OSU in the
cerebellum and favors ENST00000555387.1 in the other 3 overlapping
regions. ENST00000554738.1 corresponds to NRXN3_dup5, and
ENST00000555387.1 corresponds to NRXN3_dup0. The protein coding
version ENST00000428277.2 is highly represented in GTEx brains likely
due to poly-A selection. (PDF 176 kb)

Abbreviations
AEI: Allelic expression imbalance; BA: Broadmann area; CNS: Central nervous
system; CPM: Counts per million; eQTL: Expression quantitative trait loci;
FDR: False discovery rate; FPKM: Fragments Per Kilobase per Million reads;
GO: Gene ontology; GTEx: Genotype-tissue expression project; GWAS:
Genome-wide association study; IPA: Ingenuity pathway analysis;
IUPAC: International Union of Pure and Applied Chemistry ambiguity codes
for SNPs; lincRNA: Long intergenic noncoding RNA; lncRNA: Long noncoding

RNA; ncRNA: Non-coding RNA; OMIM: Online Mendelian inheritance in man;
PCR: Polymerase chain reaction; RPKM: Reads Per Kilobase per Million reads;
SNP: Single nucleotide polymorphism.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
AW carried out bioinformatics data analysis and drafted manuscript. AP, AC,
and LN prepared the samples and performed sequencing. MS, SH, and GR
performed mathematical modeling. AW, MP, WS, AP, AC, DW, and EG
participated in generating analysis plan and interpreting results. DM
provided access to tissue samples. WS, AP, DM, CL, RT, JK conceived and
designed the study and helped to draft the manuscript. All authors read and
approved the final manuscript.

Acknowledgements
This study is supported in part by the NIH National Institute of General
Medical Sciences, Pharmacogenomics Research Network (PGRN) grant U01
GM092655 (WS), the RNA Sequencing Project (GM61390), and grant
#DA06227 (DCM).

Author details
1Center for Pharmacogenomics, College of Medicine, The Ohio State
University, Columbus, OH 43210, USA. 2Department of Biomedical
Informatics, College of Medicine, The Ohio State University, Columbus, OH
43210, USA. 3Division of Biostatistics, College of Public Health, and
Mathematical Biosciences Institute, The Ohio State University, Columbus, OH,
USA. 4Thermo Fisher Scientific, South San Francisco, CA 94080, USA. 5Center
for Addiction and Mental Health and Departments of Psychiatry and
Pharmacology & Toxicology, University of Toronto, Toronto, Ontario, Canada.
6Department of Psychiatry, Annenberg School for Communication, and
Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA.
7Department of Psychiatry, Laboratory of Psychiatric Genomics, University of
California, San Diego, USA. 8VA San Diego Healthcare System, La Jolla, San
Diego, CA, USA. 9Department of Neurology, Miller School of Medicine,
University of Miami, Miami, FL 33136, USA. 10Departments of Pharmacology,
College of Medicine; Colleges of Pharmacy and Environmental Health
Sciences, The Ohio State University, Columbus, OH, USA. 11Departments of
Psychiatry, College of Medicine; Colleges of Pharmacy and Environmental
Health Sciences, The Ohio State University, Columbus, OH, USA.
12Departments of Human Genetics/Internal Medicine, College of Medicine;
Colleges of Pharmacy and Environmental Health Sciences, The Ohio State
University, 5078 Graves Hall, 333 W. 10th Avenue, Columbus, OH 43210, USA.

Received: 20 February 2015 Accepted: 12 November 2015

References
1. Colantuoni C, Lipska BK, Ye T, Hyde TM, Tao R, Leek JT, et al. Temporal

dynamics and genetic control of transcription in the human prefrontal
cortex. Nature. 2011;478(7370):519–23.

2. Miller JA, Ding SL, Sunkin SM, Smith KA, Ng L, Szafer A, et al. Transcriptional
landscape of the prenatal human brain. Nature. 2014;508(7495):199–206.

3. Ramasamy A, Trabzuni D, Guelfi S, Varghese V, Smith C, Walker R, et al.
Genetic variability in the regulation of gene expression in ten regions of the
human brain. Nat Neurosci. 2014;17(10):1418–28.

4. Guennewig B, Cooper AA. The central role of noncoding RNA in the brain.
Int Rev Neurobiol. 2014;116:153–94.

5. Sadee W, Hartmann K, Seweryn M, Pietrzak M, Handelman SK, Rempala GA.
Missing heritability of common diseases and treatments outside the
protein-coding exome. Hum Genet. 2014;133(10):1199–215.

6. Pandey AK, Williams RW. Genetics of gene expression in CNS. Int Rev
Neurobiol. 2014;116:195–231.

7. Webb A, Papp AC, Sanford JC, Huang K, Parvin JD, Sadee W. Expression of
mRNA transcripts encoding membrane transporters detected with whole
transcriptome sequencing of human brain and liver. Pharmacogenet
Genomics. 2013;23(5):269–78.

8. Solga AC, Pong WW, Walker J, Wylie T, Magrini V, Apicelli AJ, et al.
RNA-sequencing reveals oligodendrocyte and neuronal transcripts in
microglia relevant to central nervous system disease. Glia. 2014;63(4):531–48.

Webb et al. BMC Genomics  (2015) 16:990 Page 15 of 16

dx.doi.org/10.1186/s12864-015-2207-8
dx.doi.org/10.1186/s12864-015-2207-8
dx.doi.org/10.1186/s12864-015-2207-8
dx.doi.org/10.1186/s12864-015-2207-8
dx.doi.org/10.1186/s12864-015-2207-8
dx.doi.org/10.1186/s12864-015-2207-8


9. Li S, Tighe SW, Nicolet CM, Grove D, Levy S, Farmerie W, et al.
Multi-platform assessment of transcriptome profiling using RNA-seq in
the ABRF next-generation sequencing study. Nat Biotechnol. 2014;32(9)
:915–25.

10. Hagihara H, Ohira K, Takao K, Miyakawa T. Transcriptomic evidence for
immaturity of the prefrontal cortex in patients with schizophrenia. Mol
Brain. 2014;7:41.

11. Zhang H, Wang F, Xu H, Liu Y, Liu J, Zhao H, et al. Differentially co-expressed
genes in postmortem prefrontal cortex of individuals with alcohol use
disorders: influence on alcohol metabolism-related pathways. Hum Genet.
2014;133(11):1383–94.

12. Zhou Z, Enoch MA, Goldman D. Gene expression in the addicted brain. Int
Rev Neurobiol. 2014;116:251–73.

13. McCarthy MJ, Liang S, Spadoni AD, Kelsoe JR, Simmons AN. Whole brain
expression of bipolar disorder associated genes: structural and genetic
analyses. PLoS One. 2014;9(6):e100204.

14. Farris SP, Mayfield RD. RNA-Seq reveals novel transcriptional reorganization
in human alcoholic brain. Int Rev Neurobiol. 2014;116:275–300.

15. Akula N, Barb J, Jiang X, Wendland JR, Choi KH, Sen SK, et al. RNA-
sequencing of the brain transcriptome implicates dysregulation of
neuroplasticity, circadian rhythms and GTPase binding in bipolar disorder.
Mol Psychiatry. 2014;19(11):1179–85.

16. Grange P, Bohland JW, Okaty BW, Sugino K, Bokil H, Nelson SB, et al.
Cell-type-based model explaining coexpression patterns of genes in the
brain. Proc Natl Acad Sci U S A. 2014;111(14):5397–402.

17. Gibbs JR, van der Brug MP, Hernandez DG, Traynor BJ, Nalls MA, Lai SL, et al.
Abundant quantitative trait loci exist for DNA methylation and gene
expression in human brain. PLoS Genet. 2010;6(5):e1000952.

18. Hernandez DG, Nalls MA, Moore M, Chong S, Dillman A, Trabzuni D, et al.
Integration of GWAS SNPs and tissue specific expression profiling reveal
discrete eQTLs for human traits in blood and brain. Neurobiol Dis. 2012;
47(1):20–8.

19. Zhang Y, Bertolino A, Fazio L, Blasi G, Rampino A, Romano R, et al.
Polymorphisms in human dopamine D2 receptor gene affect gene
expression, splicing, and neuronal activity during working memory. Proc
Natl Acad Sci U S A. 2007;104(51):20552–7.

20. Heinzen EL, Ge D, Cronin KD, Maia JM, Shianna KV, Gabriel WN, et al.
Tissue-specific genetic control of splicing: implications for the study of
complex traits. PLoS Biol. 2008;6(12):e1.

21. Azad AK, Sadee W, Schlesinger LS. Innate immune gene polymorphisms in
tuberculosis. Infect Immun. 2012;80(10):3343–59.

22. Smith RM, Alachkar H, Papp AC, Wang D, Mash DC, Wang JC, et al.
Nicotinic alpha5 receptor subunit mRNA expression is associated with
distant 5′ upstream polymorphisms. Eur J Hum Genet. 2011;19(1):76–83.

23. Henley BM, Williams BA, Srinivasan R, Cohen BN, Xiao C, Mackey ED, et al.
Transcriptional regulation by nicotine in dopaminergic neurons. Biochem
Pharmacol. 2013;86(8):1074–83.

24. Smith RM, Webb A, Papp AC, Newman LC, Handelman SK, Suhy A, et al.
Whole transcriptome RNA-Seq allelic expression in human brain. BMC
Genomics. 2013;14:571.

25. Ferguson CS, Miksys S, Palmour RM, Tyndale RF. Ethanol self-administration
and nicotine treatment induce brain levels of CYP2B6 and CYP2E1 in
African green monkeys. Neuropharmacology. 2013;72:74–81.

26. Liu X, Liu M, Li X, Zhang L, Fan R, Wang J. Prioritizing genes related to
nicotine addiction via a multi-source-based approach. Mol Neurobiol. 2015;
52(1):442–55.

27. Humphries CE, Kohli MA, Nathanson L, Whitehead P, Beecham G, Martin
E, et al. Integrated whole transcriptome and DNA methylation analysis
identifies gene networks specific to late-onset alzheimer’s disease.
J Alzheimers Dis. 2015;44(3):977–87.

28. Enoch MA, Rosser AA, Zhou Z, Mash DC, Yuan Q, Goldman D. Expression of
glutamatergic genes in healthy humans across 16 brain regions; altered
expression in the hippocampus after chronic exposure to alcohol or
cocaine. Genes Brain Behav. 2014;13(8):758–68.

29. Sullivan D, Pinsonneault JK, Papp AC, Zhu H, Lemeshow S, Mash DC, et al.
Dopamine transporter DAT and receptor DRD2 variants affect risk of lethal
cocaine abuse: a gene-gene-environment interaction. Transl Psychiatry.
2013;3:e222.

30. Mash DC, ffrench-Mullen J, Adi N, Qin Y, Buck A, Pablo J. Gene expression in
human hippocampus from cocaine abusers identifies genes which regulate
extracellular matrix remodeling. PLoS One. 2007;2(11):e1187.

31. Stephens BG, Jentzen JM, Karch S, Wetli CV, Mash DC. National Association
of Medical Examiners position paper on the certification of cocaine-related
deaths. Am J Forensic Med Pathol. 2004;25(1):11–3.

32. Mash DC, Pablo J, Ouyang Q, Hearn WL, Izenwasser S. Dopamine transport
function is elevated in cocaine users. J Neurochem. 2002;81(2):292–300.

33. Harrow J, Frankish A, Gonzalez JM, Tapanari E, Diekhans M, Kokocinski
F, et al. GENCODE: the reference human genome annotation for The
ENCODE Project. Genome Res. 2012;22(9):1760–74.

34. Volders PJ, Helsens K, Wang X, Menten B, Martens L, Gevaert K, et al.
LNCipedia: a database for annotated human lncRNA transcript sequences
and structures. Nucleic Acids Res. 2013;41(Database issue):D246–51.

35. Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing
genomic features. Bioinformatics. 2010;26(6):841–2.

36. Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren MJ, et al.
Transcript assembly and quantification by RNA-Seq reveals unannotated
transcripts and isoform switching during cell differentiation. Nat Biotechnol.
2010;28(5):511–5.

37. Cover TM, Thomas JA. Elements of information theory. 2nd ed. Hoboken:
Wiley-Interscience; 2006.

38. Rempala GA, Seweryn M. Methods for diversity and overlap analysis in T-cell
receptor populations. J Math Biol. 2013;67(6–7):1339–68.

39. Petryszak R, Burdett T, Fiorelli B, Fonseca NA, Gonzalez-Porta M,
Hastings E, et al. Expression Atlas update–a database of gene and
transcript expression from microarray- and sequencing-based functional
genomics experiments. Nucleic Acids Res. 2014;42(Database issue)
:D926–32.

40. Ramos EM, Hoffman D, Junkins HA, Maglott D, Phan L, Sherry ST, et al.
Phenotype-Genotype Integrator; PheGenI: synthesizing genome-wide
association study; GWAS data with existing genomic resources. Eur J Hum
Genet. 2014;22(1):144–7.

41. Whirl-Carrillo M, McDonagh EM, Hebert JM, Gong L, Sangkuhl K, Thorn CF,
et al. Pharmacogenomics knowledge for personalized medicine. Clin
Pharmacol Ther. 2012;92(4):414–7.

42. Conti DV, Lee W, Li D, Liu J, Van Den Berg D, Thomas PD, et al.
Pharmacogenetics of Nicotine Addiction and Treatment Consortium:
Nicotinic acetylcholine receptor beta2 subunit gene implicated in a
systems-based candidate gene study of smoking cessation. Hum Mol
Genet. 2008;17(18):2834–48.

43. Liao Y, Smyth GK, Shi W. featureCounts: an efficient general purpose
program for assigning sequence reads to genomic features. Bioinformatics.
2014;30(7):923–30.

44. Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for
differential expression analysis of digital gene expression data.
Bioinformatics. 2010;26(1):139–40.

45. Risso D, Ngai J, Speed T, Dudoit S. Normalization of RNA-seq data using factor
analysis of control genes or samples. Nat Biotechnol. 2014;32(9):896–902.

46. Chen J, Bardes EE, Aronow BJ, Jegga AG. ToppGene Suite for gene list
enrichment analysis and candidate gene prioritization. Nucleic Acids Res. 2009;
37(Web Server issue):W305–11.

47. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. 1000 Genome
Project Data Processing Subgroup: The Sequence Alignment/Map format and
SAMtools. Bioinformatics. 2009;25(16):2078–9.

48. Michaud SE, Dussault S, Groleau J, Haddad P, Rivard A. Cigarette smoke exposure
impairs VEGF-induced endothelial cell migration: role of NO and reactive oxygen
species. J Mol Cell Cardiol. 2006;41(2):275–84.

49. Belgore FM, Lip GY, Blann AD. Vascular endothelial growth factor and its receptor,
Flt-1, in smokers and non-smokers. Br J Biomed Sci. 2000;57(3):207–13.

50. Schmidt-Lucke C, Belgore F, Reinhold D, Ansorge S, Klein HU, Schmidt-Lucke
JA, et al. Soluble vascular endothelial growth factor, soluble VEGF receptor Flt-1
and endothelial function in healthy smokers. Int J Cardiol. 2005;100(2):207–12.

51. Sun Y, Jin K, Xie L, Childs J, Mao XO, Logvinova A, et al. VEGF-induced
neuroprotection, neurogenesis, and angiogenesis after focal cerebral ischemia.
J Clin Invest. 2003;111(12):1843–51.

52. Sun FY, Guo X. Molecular and cellular mechanisms of neuroprotection by
vascular endothelial growth factor. J Neurosci Res. 2005;79(1–2):180–4.

53. Edenberg HJ. The collaborative study on the genetics of alcoholism: an
update. Alcohol Res Health. 2002;26(3):214–8.

54. Seshadri S, DeStefano AL, Au R, Massaro JM, Beiser AS, Kelly-Hayes M, et al.
Genetic correlates of brain aging on MRI and cognitive test measures: a
genome-wide association and linkage analysis in the Framingham Study.
BMC Med Genet. 2007;8 Suppl 1:S15.

Webb et al. BMC Genomics  (2015) 16:990 Page 16 of 16


	Abstract
	Background
	Results
	Conclusions

	Background
	Methods
	Postmortem human brain tissues
	RNA preparation
	cDNA synthesis
	Library preparation
	Emulsion PCR, enrichment, slide preparation
	Sequencing experimental design
	Data processing
	Gene expression
	Entropy based analysis of stably expressed RNAs
	Compilation of nicotine related genes
	Differential RNA expression and interpretation
	SNP calling and allele specific expression
	RNA isoform analysis

	Results
	Sequence read distribution across genomic regions
	Identification of genes with consistent expression across regions and samples
	Region-selective expression of RNA classes
	Differential RNA expression across brain regions and subjects
	Differential RNA expression between smokers and non-smokers
	Pathway analysis of RNAs with differential expression between smokers and non-smokers
	Analysis of RNA isoform expression across brain regions
	SNP calling and allele-selective RNA expression, or allelic expression imbalance (AEI)
	Gene expression confirmation
	Data sharing

	Discussion
	Abundance and distribution of protein coding and non-coding RNAs
	Transcriptome analysis of brain regions from smokers and controls
	Differential expression of RNA isoforms across brain regions
	Allelic RNA expression

	Conclusions
	Additional files
	Abbreviations
	Competing interests
	Authors’ contributions
	Acknowledgements
	Author details
	References



