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Abstract 

Background

DNA methylation (DNAm) provides a window to characterize the impacts of environmental 

exposures and the biological aging process. Epigenetic clocks are often trained on DNAm 

using penalized regression of CpG sites, but recent evidence suggests potential benefits 

of training epigenetic predictors on principal components.

Methodology/findings

We developed a pipeline to simultaneously train three epigenetic predictors; a traditional 

CpG Clock, a PCA Clock, and a SuperLearner PCA Clock (SL PCA). We gathered pub-

licly available DNAm datasets to generate i) a novel childhood epigenetic clock, ii) a 

reconstructed Hannum adult blood clock, and iii) as a proof of concept, a predictor of poly-

brominated biphenyl exposure using the three developmental methodologies. We used cor-

relation coefficients and median absolute error to assess fit between predicted and observed 

measures, as well as agreement between duplicates. The SL PCA clocks improved fit with 

observed phenotypes relative to the PCA clocks or CpG clocks across several datasets. We 

found evidence for higher agreement between duplicate samples run on alternate DNAm 

arrays when using SL PCA clocks relative to traditional methods. Analyses examining asso-

ciations between relevant exposures and epigenetic age acceleration (EAA) produced more 

precise effect estimates when using predictions derived from SL PCA clocks.

Conclusions

We introduce a novel method for the development of DNAm-based predictors that com-

bines the improved reliability conferred by training on principal components with advanced 

ensemble-based machine learning. Coupling SuperLearner with PCA in the predictor 

development process may be especially relevant for studies with longitudinal designs 

utilizing multiple array types, as well as for the development of predictors of more complex 

phenotypic traits.
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Author summary
DNA methylation functions as a vital interface between genes and environment. A wide 
range of epigenetic predictors have harnessed DNA methylation data to address a variety 
of research questions including improving our understanding of the biological aging 
process and characterizing past exposure to environmental toxins. However, the meth-
odology used to develop most existing epigenetic predictors is subject to several limita-
tions including the influence of technical variables, batch effects, and difficulty modeling 
complex relationships between the variable of interest and DNA methylation. Here, we 
introduce a novel method for the development of epigenetic predictors that combines 
the improved reliability conferred by training on principal components with advanced 
ensemble-based machine learning. We demonstrate the potential benefits of this novel 
procedure by developing a novel childhood epigenetic clock, reconstructing the Hannum 
clock, and producing a predictor of polybrominated biphenyl exposure. This novel train-
ing methodology may be especially relevant for the development of epigenetic predictors 
of complex phenotypic traits, which often suffer from poor performance using the tradi-
tional development methodology, and for the improvement of the reliability of epigenetic 
clocks for studies with longitudinal designs utilizing multiple array types.

Introduction
DNA methylation functions as a vital interface between genes and environment, which might 
serve as a sensitive and stable indicator of past exposures [1]. Often, research on DNA methyl-
ation has focused on characterizing differentially methylated CpG sites and regions throughout 
the genome in response to environmental exposures or disease status. However, the prolifer-
ation of standardized DNA methylation microarrays has promoted the study of DNA meth-
ylation beyond the context of gene expression with the usage of DNA methylation-derived 
predictors of phenotypic traits. DNA methylation data has been used to develop several predic-
tors of phenotypic traits including age [2,3], smoking status [4], and various clinical outcomes 
[5]. In particular, Horvath’s pan-tissue clock and other epigenetic clocks highlight the utility of 
DNA methylation-based phenotypic predictors through their ability to both generate accurate 
chronological age estimates, as well as provide insights into the influence of various exposures 
on the biological aging process and subsequent risk for morbidity and mortality measures [6]. 
The introduction of Horvath’s epigenetic clock has since spawned significant research inter-
est in epigenetic aging and a myriad of epigenetic clocks have been subsequently introduced 
including gestational age predictors [7], phenotypic age predictors like PhenoAge [8] and 
GrimAge [9], and biomarkers capturing the longitudinal pace of aging [10].

Although epigenetic clocks and other DNA methylation-based phenotypic predictors vary 
widely in terms of purpose and efficacy, they often share a common development meth-
odology: elastic net regression. Elastic net regression is a form of penalized regression that 
combines LASSO and ridge regression penalties, resulting in a subset of variables from a high 
dimensional dataset that are most predictive of the outcome of interest [11]. This procedure 
results in an easily interpretable output of a small subset of CpG sites and their associated beta 
coefficients which can then be linearly combined with the observed DNA methylation values 
to generate an individual prediction.

DNA methylation is commonly measured with Illumina microarrays, for example the 
450K and EPIC microarrays, which provide highly reproducible means of characterizing 
DNA methylation across the epigenome. However, the reliability of individual CpG sites 
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can be influenced by several factors including batch effects [12], variability within individual 
sites [13], and array type differences [14,15]. This limited reliability of individual CpG sites 
can become a key issue for epigenetic clocks and other DNA methylation-derived predictors 
which often use only a small subset of CpG sites, usually ranging from a few dozen to a few 
hundred, to predict a trait. Recently, Higgins-Chen and colleagues proposed training epi-
genetic clocks on the principal components generated from CpG-level data to overcome the 
limitations of relying on individual CpG sites [16]. The PCA clocks were found to improve 
agreement between replicate samples, improve the detection of clock associations, and better 
enable the study of longitudinal trajectories of epigenetic aging compared to CpG-trained 
clocks [16]. The substantial data reduction conferred by the principal component analysis 
of DNA methylation data may also enable the implementation of more advanced machine 
learning methodology. One popular modern machine learning methodology is SuperLearner, 
which is an algorithm that uses cross-validation to evaluate the performance of multiple can-
didate algorithms and create an ensemble model consisting of a weighted combination of the 
individual candidate algorithms [17]. Given sufficient data, this process will, at worst, produce 
a model equivalent to the best performing individual model and, at best, improve upon all 
individual models by creating an optimally weighted ensemble model [17].

DNA methylation-based predictors have emerged as key biomarkers for environmen-
tal health research, and it is vital that these predictors maximize the signal-to-noise ratio 
and are capable of modeling complex exposure-response relationships. Leveraging these 
methodological advances, we developed a pipeline capable of simultaneously training DNA 
methylation-based predictors using 3 approaches integrating established methods; 1) the tra-
ditional approach based on elastic net regression of the CpG matrix, 2) elastic net regression 
of the principal component matrix, and 3) the ensemble prediction derived from running a 
SuperLearner model on the principal component matrix. We hypothesized that coupling the 
principal component training method with SuperLearner would lead to improved predictions 
compared to the CpG-based and standard PCA-based clock training methods. To test this 
hypothesis, we compare the 3 clock development methodologies with the training and testing 
of a novel childhood clock, the traditional Hannum clock, and a predictor of polybrominated 
biphenyl (PBB) exposure.

Results

Childhood clock
Three novel childhood clocks applicable to cord blood, buccal samples, and peripheral blood 
samples in children ranging from birth to 21 years of age were developed using each of the 
clock development methods with a collection of 859 publicly available datasets. On the training 
dataset, the PCA clock resulted in an improvement in correlation and median absolute error 
(MAE) with chronological age (Corr. = 0.962, MAE = 0.663) compared to the CpG clock (Corr. 
= 0.943, MAE = 0.815), and the SL PCA clock achieved the highest correlation and lowest 
MAE (Corr. = 0.965, MAE = 0.660) (Fig 1A–C). As our primary testing dataset, we harnessed 
976 DNA methylation measures obtained from children ranging from birth to 14 years of age 
from the CHAMACOS cohort, obtained from the 450K array at birth and age 9 years and the 
EPIC array at age 7 and 14 years. The implementation of the PCA clock (Corr. = 0.952, MAE 
= 0.470) resulted in a small decrease in correlation and decrease in MAE relative to the CpG 
clock (Corr. = 0.962, MAE = 0.544) (Fig 1D–F). The SL PCA clock then modestly improved the 
correlation to chronological age relative to the PCA clock (Corr. = 0.954, MAE = 0.500). Boot-
strapping also indicated that the CpG clock significantly outperformed the PCA clock (95% CI: 
0.005 – 0.014) and SL PCA clock (95% CI: 0.003 – 0.012) in terms of correlation, the SL PCA 
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Fig 1.  Childhood clock primary summary. Correlation coefficients and median absolute error (MAE) to chronological age for each childhood clock 
development method for the childhood training data for the traditional CpG clock (a), the PCA clock (b), and the SL PCA clock (c), CHAMACOS testing 
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clock outperformed the standard PCA clock (95% CI: 0.001 – 0.002) in terms of correlation, 
while the MAE did not significantly differ between any of the predictors. Furthermore, when 
comparing the novel childhood clocks to several commonly used external epigenetic clocks, 
the Horvath and PC Horvath outperformed the childhood clocks in terms of correlation, while 
the novel childhood clocks outperformed each of the external clocks in terms of MAE by a 
large margin (Table B in S1 Text). In addition to the primary DNAm array measurements in 
the CHAMACOS cohort, a subset of 193 participants possessed replicate measurements run on 
the alternate array, totaling to 108 cord blood and 85 samples at 14 years of age having DNAm 
measures on both 450K and EPIC arrays, allowing for the evaluation of array-based differences 
in age predictions. All three clocks produced relatively high agreement between replicates run 
on alternate arrays, with the SL PCA clock achieving the highest correlation and lowest MAE 
(Corr. = 0.998, MAE = 0.108) (Fig 1G–I). Bootstrapping also indicated that the SL PCA clock 
significantly outperformed the PCA clock in terms of correlation (95% CI: 2.13e-05 - 2.62e-
04), while none of the other differences in correlation or MAE were significant. Additionally, 
the SL PCA predictor achieved the lowest MAE for comparisons between replicate samples in 
comparison to the external epigenetic clocks as well (Table B in S1 Text).

We additionally examined the three clocks in the CHAMACOS dataset considering cord 
blood and childhood blood samples separately. The PCA clock (Corr. = 0.342, MAE = 0.095) 
and SL PCA clock (Corr. = 0.339, MAE = 0.105) display substantially higher correlation and 
lower MAE with gestational age at birth compared to the CpG clock (Corr. = 0.135, MAE = 
0.248) (Fig A in S1 Text). Low correlation with gestational age at birth also appeared with the 
age predictions derived from the Horvath panTissue clock (Corr. = 0.108, MAE = 1.445) and 
PC Horvath clock (Corr. = 0.212, MAE = 1.746) despite their training samples containing 
cord blood samples. (Table B in S1 Text) When considering the childhood sample, the CpG 
clock displayed the highest correlation with age (Corr. = 0.756, MAE = 1.444), with the PCA 
clock (Corr. = 0.691, MAE = 1.345) and SL PCA clock (Corr. = 0.702, MAE = 1.388) both dis-
playing lower MAE compared to the CpG clock (Fig A in S1 Text). The slight drop in correla-
tion with the PCA clock is also partially counteracted with the SL PCA clock.

The CHAMACOS cohort dataset also provides the opportunity to test the three clocks in 
a longitudinal analysis involving exposures previously shown to be associated with epigenetic 
age acceleration in children, namely prenatal phthalate exposure. All three clocks produced 
similar effect estimates for the associations between prenatal phthalate exposure and cell-
adjusted epigenetic age acceleration throughout childhood in the GEE models (Fig B in  
S1 Text). However, the average width of the 95% confidence intervals tended to decrease with 
the PCA clock and the SL PCA clocks, with the SL PCA clock producing the narrowest aver-
age 95% confidence intervals, indicating higher precision of the estimates derived from PCA 
and SL PCA clocks (Fig C in S1 Text). Additionally, the external epigenetic clocks exhibited 
markedly wider confidence intervals compared to the novel childhood clocks (Figs D–E in  
S1 Text).

Lastly, we tested the childhood clocks on a sample of 127 children ranging from 4 days old 
to 17 years old, consisting of 43 Multisystem Inflammatory Syndrome in Children patients, 
15 COVID-19 cases, and 69 healthy controls. The implementation of the PCA clock (Corr. = 
0.892, MAE = 1.875) resulted in a slight drop in correlation and increase in MAE relative to 
the CpG clock (Corr. = 0.914, MAE = 1.122) (Fig A in S1 Text). The SL PCA clock (Corr. = 
0.895, MAE = 1.861) then improved both the correlation and MAE relative to the standard 

data (d–f), and agreement between alternate array replicates in CHAMACOS (g–i). Training data color corresponds to GEO dataset. The 1:1 line is shown in 
black.

https://doi.org/10.1371/journal.pcbi.1012768.g001

https://doi.org/10.1371/journal.pcbi.1012768.g001
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PCA clock. Bootstrapping also indicated that the CpG clock significantly outperformed the 
PCA clock (95% CI: 0.001 – 0.044) and the SL PCA clock outperformed the standard PCA 
clock (95% CI: 0.002 – 0.004) in terms of correlation, while the CpG clock significantly 
outperformed the PCA clock (95% CI: -1.043 - -0.389) and SL PCA clock (95% CI: -1.031 - 
-0.377) in terms of MAE. Additionally, each of the childhood clocks outperformed the exter-
nal clocks in terms of MAE by a large margin in the GSE193879 sample, while the PC Horvath 
clock achieved the highest correlation. (Table B in S1 Text).

Hannum clock
We next sought out to compare the three clock development methodologies using the original 
Hannum clock (GSE40279) training dataset of 656 adult samples, creating a Hannum CpG 
clock which roughly approximates the original Hannum clock, a Hannum PCA clock, and a 
Hannum SL PCA clock. In the training dataset, the implementation of the PCA clock (Corr. 
= 0.952, MAE = 3.325) resulted in a drop in correlation and increase in MAE relative to the 
CpG clock (Corr. = 0.970, MAE = 2.572), which was then reversed with the SL PCA clock 
(Corr. = 0.983, MAE = 2.255) to produce the highest correlation and lowest MAE (Fig 2A–C). 
We tested the Hannum clocks on the GSE84727 dataset consisting of 665 schizophrenia cases 
and controls ranging in age from 18.3 to 80.7 years old. The PCA clock (Corr. = 0.932, MAE 
= 5.064) and SL PCA clock (Corr. = 0.946, MAE = 5.121) both resulted in decreased correla-
tion and increased the MAE relative to the CpG clock (Corr. = 0.972, MAE = 3.240), with the 
SL PCA clock improving the correlation relative to the PCA clock (Fig 2D–F). Bootstrapping 
also indicated that the CpG clock significantly outperformed the PCA clock (95% CI: 0.032 
– 0.047) and SL PCA clock (95% CI: 0.020 – 0.031) in terms of correlation, the SL PCA clock 
outperformed the standard PCA clock (95% CI: 0.011 – 0.017) in terms of correlation, and the 
MAE for the CpG clock was significantly lower than the PCA clock (95% CI: -2.230 – -1.499) 
and the SL PCA clock (95% CI: -2.239 – -1.494). We further compared performance of the 
three adult clocks to several commonly used epigenetic clocks in the GSE84727 dataset. The 
CpG clock and SL PCA clock both outperformed each external clock in terms of correlation, 
while the CpG clock featured the lowest observed MAE. (Table B in S1 Text) Similar to our 
findings with the CpG and PC Hannum clocks, the PC Horvath clock exhibited modestly 
decreased correlation and increased MAE relative to the standard Horvath clock. This testing 
dataset further allowed for testing the association between schizophrenia case status and 
epigenetic age acceleration. The PCA clock (Beta = 1.14, SE = 0.23, p = 9.7e-07) and SL PCA 
clock (Beta = 0.97, SE = 0.22, p = 1.2e-05) both produced more significant effect estimates 
compared to the CpG clock (Beta = 0.51, SE = 0.20, p = 0.012), with the SL PCA clock produc-
ing an effect estimate with a smaller standard error compared to the PCA clock. These find-
ings suggest that, despite the decreased correlation and increased MAE with chronological age 
observed with the PCA and SL PCA clocks within this testing dataset, these clocks may still be 
capturing relevant inter-individual differences in biological aging, consistent with the noise 
reduction hypothesis. The PhenoAge (Beta = 1.70, SE = 0.41, p = 4.1e-05), PC PhenoAge (Beta 
= 2.27, SE = 0.35, p = 1.3e-10), and PC GrimAge clocks (Beta = 3.33, SE = 0.29, p <2e-16) all 
produced higher magnitude effect estimates compared to the three versions of the Hannum 
clock, which is not surprising given that each of these clocks were trained to predict specific 
aspects of biological aging. However, each of the three adult clocks produced lower standard 
errors compared to the external clocks.

We next used the GSE55763 testing dataset consisting of 11 duplicate samples to charac-
terize the reliability of the three versions of the Hannum clock. The CpG clock (Corr. = 0.989, 
MAE = 1.250) displayed substantially higher MAE compared to both the PCA clock  
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(Corr. = 0.997, MAE = 0.285) and the SL PCA clock (Corr. = 0.997, MAE = 0.422), with the 
PCA clock achieving the lowest MAE and highest correlation. The PC and SL PCA clocks per-
formed similarly well to the external PC-based clocks, with the PC Horvath and PC GrimAge 
clocks achieving the lowest MAE among the external clocks and only the PC GrimAge and PC 
PhenoAge clocks achieving higher correlations than the SL PCA clock. (Table B in S1 Text) 
Finally, we used the GSE174422 testing dataset consisting of 128 duplicate samples from the 

Fig 2.  Adult clock primary summary. Correlation coefficients and median absolute error (MAE) to chronological age for each Hannum clock development method 
for the Hannum training data for the traditional CpG clock (a), the PCA clock (b), and the SL PCA clock (c), with the 1:1 line is shown in black. Correlation coefficients 
and MAE for the GSE84727 testing data (d–f) with color corresponding to schizophrenia case status, with red indicating schizophrenia case status and blue indicating a 
control.

https://doi.org/10.1371/journal.pcbi.1012768.g002

https://doi.org/10.1371/journal.pcbi.1012768.g002
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Sister’s Study to test the reliability of the three versions of the Hannum clock. For both sets 
of replicates, the PCA clock (Corr.1 = 0.816, MAE1 = 3.585) (Corr.2 = 0.820, MAE2 = 3.642) 
and SL PCA clock (Corr.1 = 0.833, MAE1 = 3.660) (Corr.2 = 0.835, MAE2 = 3.725) reduced 
the correlation and increased the MAE compared to the CpG clock (Corr.1 = 0.920, MAE1 = 
2.605) (Corr.2 = 0.917, MAE2 = 2.583), with the SL PCA clock improving the correlation rela-
tive to the standard PCA clock (Fig F in S1 Text). All clocks produce relatively high agreement 
between duplicates, with the CpG clock (Corr. = 0.983, MAE = 0.902) achieving the lowest 
MAE and the PCA clock (Corr. = 0.985, MAE = 0.999) achieving the highest correlation  
(Fig F in S1 Text). Bootstrapping also indicated that the PCA clock significantly outperformed 
the SL PCA clock in terms of correlation between duplicates (95% CI: -0.006 – -0.001), while 
none of the other differences in correlation or MAE were significant. All three versions  
of the Hannum clock also outperformed the Horvath and PhenoAge clocks within this con-
text, performed similarly well to the PC Horvath and PC PhenoAge clocks in terms of correla-
tion, while the PC PhenoAge and PC GrimAge clocks achieved the lowest MAE  
(Table B in S1 Text).

PBB predictor
As proof of principal for biomarker development of more complex exposures, we then utilized 
the GSE116339 dataset consisting of 673 adults from the Michigan PBB registry to develop a 
predictor of serum polybrominated biphenyl (PBB) exposure. We randomly split the dataset 
into a training sample of 505 individuals and a testing sample of 168 individuals. Within the 
training dataset, the CpG predictor (Corr. = 0.804, MAE = 0.622) achieved the highest correla-
tion and lowest MAE, with the SL PCA predictor (Corr. = 0.631, MAE = 0.725) improving 
both the correlation and MAE relative to the PCA predictor (Corr. = 0.482, MAE = 0.766)  
(Fig 3A–C). Within the testing dataset, the PCA predictor (Corr. = 0.325, MAE = 0.730) 
resulted in decreased correlation and decreased MAE relative to the CpG predictor (Corr. = 
0.372, MAE = 0.736) with the SL PCA predictor (Corr. = 0.335, MAE = 0.672) improving the 
correlation relative to the PCA predictor and achieving the lowest overall MAE (Fig 3D–F). 
Bootstrapping also indicated that none of the differences in correlation or MAE between the 
three predictors differed significantly.

To examine the robustness of these findings against differential training/testing data splits, 
we repeated the training process with 10 random training/testing data splits, then averaged 
correlation and MAE measures across all 10 permutations. Across the training datasets, the 
CpG predictor exhibited the highest average correlation and lowest average MAE (Corr. = 
0.819, MAE = 0.606), with the SL PCA predictor (Corr. = 0.623, MAE = 0.691) improving 
both the average correlation and MAE relative to the PCA predictor (Corr. = 0.559, MAE = 
0.718). Across the testing datasets, the CpG predictor exhibited the highest average correlation 
(Corr. = 0.422, MAE = 0.764). Both the PCA predictor (Corr. = 0.335, MAE = 0.758) and SL 
PCA predictor (Corr. = 0.322, MAE = 0.757) exhibited lower average MAE compared to the 
CpG predictor, with the SL PCA predictor achieving the lowest average MAE.

Discussion
We developed a bioinformatic pipeline capable of efficiently training DNA methylation-
derived predictors of phenotypic traits using three methodologies: a CpG-based predictor 
based on elastic net regression of a CpG matrix, a PCA-based predictor based on elastic net 
regression of a principal component matrix calculated from a CpG matrix, and a Super-
Learner ensemble predictor based on the principal component matrix. We then tested the 
utility of predictors derived from each of the three methods with the development of a novel 
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childhood epigenetic clock, a revisiting of the Hannum epigenetic clock, and the development 
of a novel predictor of PBB exposure. We found evidence that the SL PCA predictor devel-
opment approach could help to maintain the noise reduction benefits conferred by training 
predictors on principal components, while allowing for the incorporation of more advanced 
machine learning algorithms to further improve prediction performance.

Although epigenetic clocks are a valuable biomarker for understanding the determinants of 
biological aging in human populations, technical noise surrounding epigenetic age predictions 
remains a pivotal issue [16]. Epigenetic clocks have traditionally been trained on individual 

Fig 3.  Correlation coefficients and median absolute error (MAE) to observed log-transformed PBB concentrations for the training data with the traditional CpG 
predictor (a), the PCA predictor (b), and the SL PCA predictor (c), and the testing data (d–f). The 1:1 line is shown in black.

https://doi.org/10.1371/journal.pcbi.1012768.g003

https://doi.org/10.1371/journal.pcbi.1012768.g003
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CpG sites, the reliability of which can be influenced by several factors including batch effects 
[12], variability within individual sites [13], and array type differences [14,15]. Several strat-
egies have been proposed to improve the reliability of epigenetic clocks, including increasing 
training sample data size [18], a noise barometer approach [19], and stability selection of 
CpG sites [20]. Recently, Higgins-Chen and colleagues proposed an alternative approach 
of training epigenetic clocks on the principal components generated from CpG-level data 
to overcome the limitations of relying on individual CpG sites [16]. They found that PCA-
trained clocks increased agreement between replicate samples and improved ability to detect 
clock associations. This improved reliability is likely due to the separation of noise from age-
related signals and the pooling of information from a large number of CpG sites as a result of 
applying principal component analysis. Building upon the improved reliability conferred by 
training predictors on principal components and substantial data reduction provided by the 
principal component analysis of DNA methylation data, we developed an efficient pipeline 
for the creation of ensemble epigenetic predictors using SuperLearner, an algorithm that 
uses cross validation to evaluate the performance of multiple preselected candidate learning 
models and create an ensemble model consisting of an optimally weighted combination of 
the individual candidate models [17]. The primary advantage of utilizing SuperLearner in the 
context of training epigenetic predictors is the ability to include models that allow for nonlin-
ear relationships, interactions between features, and penalized regression models with various 
penalty terms, rather than relying on a single model. SuperLearner then uses cross-validation 
to assess the performance of each included algorithm, then creating an optimally weighted 
combination to generate a final prediction. The SuperLearner methodology represents a real-
istic scenario where investigators may suggest the use of alternate algorithms or algorithms 
with modified parameters, while providing a principled way to evaluate the performance of 
various input algorithms. Previously, SuperLearner has been sparingly applied to epigenetic 
predictor development, with only one study constructing a sperm epigenetic clock using a 
subset of age-associated CpG sites [21].

We developed a novel childhood clock applicable to children from birth to 21 years of age 
on samples derived from cord blood, peripheral blood, and buccal cells using each of the three 
development methodologies. These three sample types represent the most common biologi-
cal samples gathered in pediatric studies, so this clock provides a valuable child multi-tissue 
aging marker. Second generation epigenetic clocks, like GrimAge and PhenoAge, have largely 
focused on adult populations. Understanding the determinants and consequences of epigen-
etic aging in pediatric populations is becoming increasingly important, so it is vital to have 
highly reliable epigenetic clocks applicable across the entire pediatric age range in common 
tissue types used in pediatric populations [22].

We found that both the PCA Clock and SL PCA Clock improved agreement between rep-
licates run on 450K and EPIC arrays in the CHAMACOS cohort compared to both the CpG 
Clock and several external epigenetic clocks. Although different versions of DNAm arrays 
have high overall agreement, individual CpG sites may be prone to substantial array-based 
differences in methylation [14,15]. CpG-based predictors rely on a relatively small number 
of CpG sites, whereas PCA and SL PCA predictors utilize a large scale pattern spread across a 
larger number of CpG sites, potentially limiting the influence of array-based differences. This 
higher agreement in predictions between replicate samples run on different arrays is becom-
ing increasingly important for ongoing cohort studies making use of DNAm data obtained 
from various arrays. Furthermore, when applied to cord blood samples, we found that both 
the PCA Clock and SL PCA Clock exhibited substantially higher correlations with gestational 
age at birth compared to the CpG Clock and each external epigenetic clock. The low applica-
bility of CpG-derived multi-tissue clocks in cord blood may hinder the ability to do analysis of 
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epigenetic aging in cord blood samples using these measures. When applied to a longitudinal 
analysis of prenatal phthalate exposure, all three clocks exhibited similar effect estimates but 
with varying levels of precision, with the SL PCA Clock achieving the narrowest average con-
fidence interval width. This improved precision under the same sample size when using the SL 
PCA Clock may be especially relevant for studies with limited power due to small sample size 
or technical variance.

We additionally revisited the original Hannum epigenetic clock, creating three adult 
clocks to compare the different developmental methods. The Hannum clock was among 
the first epigenetic clocks and continues to be routinely used to examine the impacts of 
exposures on biological aging [3,6]. As with some of the childhood clock testing datasets, we 
found a reoccurring trend of the PCA Clocks decreasing correlation and increasing MAE 
compared the CpG Clocks, with the implementation of the SL PCA Clocks then improving 
correlation and/or MAE compared the standard PCA Clocks. Interestingly, despite fre-
quently observing lower correlation and higher MAE with chronological age with the PCA 
and SL PCA Clocks, we still found high reliability of epigenetic age predictions between 
duplicate samples and improved ability to detect relevant biological associations. We 
observed stronger positive estimates for the association between schizophrenia case status 
and epigenetic age acceleration with the PCA and SL PCA clocks relative to the traditional 
CpG clock. Schizophrenia case status has previously been found to be associated with 
epigenetic age acceleration, with stronger associations observed when using second gener-
ation epigenetic clocks [23]. These results may indicate that training epigenetic clocks on 
principal components, rather than individual CpG sites, may result in an improved signal-
to-noise ratio.

Lastly, we developed a novel predictor of polybrominated biphenyl (PBB) expo-
sure, finding the lowest MAE in the testing dataset with the SL PCA predictor. A long-
standing hypothesis is that DNA methylation functions as a vital interface between genes 
and environment, serving as a sensitive and stable indicator of past exposures [1]. Several 
studies have developed DNAm-derived predictors of other phenotypic traits includ-
ing plasma protein levels [9], smoking status [4], and various clinical outcomes [5], all 
utilizing a similar methodology revolving around elastic net regression of a CpG matrix. 
In addition to the potential noise reduction benefits of training predictors on principal 
components, the data reduction conferred by this step enables the use of more advanced 
machine learning methodologies to the predictor development process, allowing for 
the incorporation of nonlinear relationships and interaction terms. It is important to 
note that the correlations for our PBB predictor ranged from 0.33 to 0.37 in the testing 
datasets. However, this may have important implications for the development of future 
DNAm-based predictors of phenotypic traits, which tend to exhibit more complex rela-
tionships with DNA methylation and often suffer from relatively low correlations. For 
example, the correlations between observed biomarker levels and GrimAge component 
DNAm-based surrogate biomarker predictions ranged from 0.35 to 0.66 in the reported 
testing datasets, indicating room for improvement in the development of similar predic-
tors [9].

Our findings subject to a few relevant limitations. First, both the PCA and SL PCA clock 
development processes represent a non-trivial increase in computational requirements 
compared to the traditional CpG-based clock development, both for the training and test-
ing components. However, we argue that the noise-reduction provided by the PCA- and 
SL PCA-based methods may outweigh this increased computational burden and advances 
in modern computing readily enable these increased computational requirements. Train-
ing epigenetic predictors on principal components also limits the interpretability of the 



PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012768  February 6, 2025 12 / 20

PLOS Computational Biology A SuperLearner-based pipeline for the development of DNA methylation-derived predictors

individual CpG sites contributing to the predictions. CpG-based clocks consist of a small 
number of CpG sites, and it is common to characterize the locations of these sites to deter-
mine what genes and biological pathways are represented. The principal component-based 
methods sacrifice some of this simplicity by pooling larger patterns spread across a large 
number of CpG sites. However, if the goal is biomarker development, the biological 
interpretation of component CpG sites becomes less relevant. Further interpretation of 
the input principal components is still possible through characterization of the load-
ings assigned to CpG sites if desired. The implementation of SuperLearner and the final 
ensemble prediction then adds another layer of complexity. However, the SuperLearner 
ensemble predictor can be intuitively explained as a combination of individual predictions 
obtained from various algorithms. Additionally, since our goal was to provide a tractable 
computational pipeline using SuperLearner specifically, we did not systematically compare 
our SuperLearner-based method other established ensemble machine learning approaches 
such as gradient boosting or random forests. Relatedly, SuperLearner provides the ability 
to consider a wide variety of learners, variable screening methods, and tuning of model 
hyperparameters, and our work only considered a fraction of all available algorithms. 
Future work can take advantage of the provided pipeline to examine the influence of each 
of these parameters on the epigenetic predictor development process. Finally, the dif-
ferences in the performance of predictions derived from each of the three development 
methods often only represented incremental changes. However, in the analyses presented 
here, we found evidence for stronger effect estimates with narrower confidence inter-
vals when using epigenetic age acceleration measures derived from the PCA and SL PCA 
clocks, despite the incremental differences in the predictions, suggesting the capture of 
more biologically relevant signals. Furthermore, any small improvements in the precision 
of DNAm-based predictions are likely to have a beneficial impact considering the small 
sample sizes typically found in epigenetic studies. The benefits of the PCA and SL PCA 
training procedures may also be most prominent in longitudinal settings and datasets 
containing DNA methylation measurements obtained from multiple arrays, a scenario that 
is likely to arise in ongoing cohort studies.

Our study also features several key strengths. We were able to compare the CpG, PCA, 
and SL PCA methods for developing DNAm-derived predictors of phenotypic traits across a 
wide range of testing scenarios in three distinct contexts: the development of a novel child-
hood epigenetic clock, revisiting of the traditional Hannum epigenetic clock, and a predictor 
of environmental PBB exposure. The novel childhood epigenetic clock may aid in the study 
of epigenetic aging in pediatric populations across commonly collected tissue types, with 
benefits that may be especially relevant for longitudinal cohorts containing DNA methylation 
measures of multiple tissue types and array types. Finally, we provide the code underlying 
the pipeline presented in this study to allow researchers to efficiently develop and compare 
DNAm-derived predictors of phenotypic traits using all three of the CpG, PCA, and SL PCA 
based methods in additional contexts.

Methods

Ethics statement
The University of California, Berkeley Committee for the Protection of Human Subjects 
approved all study activities for the CHAMACOS cohort. Written, informed consent was 
obtained from all participating mothers at all study visits, child verbal assent was obtained 
starting at age 7 years, child written assent was obtained starting at age 12 years, and child 
written consent was obtained at age 18 years. Expanded information on working with 
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CHAMACOS cohort data is available on the Center for Environmental Research and Com-
munity Health website (https://cerch.berkeley.edu/investigators) [24].

Epigenetic predictor development pipeline
We developed a pipeline to simultaneously train three epigenetic predictors from the same DNA 
methylation dataset; i) a CpG predictor, ii) a PCA predictor, and iii) a SuperLearner PCA predic-
tor. A schematic representation of the overall training procedure is provided in Fig G in S1 Text.

CpG predictor construction.  A cross-validated elastic net regression model with 10 folds is 
trained on the DNA methylation beta matrix to predict the phenotypic variable of interest (e.g., 
chronological age or an environmental exposure) using the R package biglasso [25]. The beta 
coefficient matrix from selected probes is then saved and defines the CpG Predictor. Generating 
predictions from the CpG Predictor is accomplished by calculating a simple linear combination 
of the beta coefficients with selected DNA methylation values in the testing dataset.

PCA predictor construction.  The principal component clock construction follows the 
procedure set forth by Higgins-Chen et al. [16]. Briefly, principal component analysis is 
performed on the DNA methylation beta matrix using the R prcomp function, forming a 
principal component matrix with as many principal components as samples in the training 
dataset. Low-variance principal components are trimmed, then a cross-validated elastic 
net regression model with 10 folds is trained on the principal component matrix to predict 
the phenotypic variable of interest using the cv.glmnet R function. Beta coefficients for 
nonzero principal components identified in the elastic net regression and instructions for 
projecting the DNA methylation beta matrix onto the principal component matrix are saved 
and presented as the PCA Predictor. Generating predictions from the PCA Predictor is 
accomplished by projecting testing data onto the principal components using the centering 
from the original training data, followed by calculating the linear combination of the beta 
coefficients with the principal component values in the testing dataset.

SuperLearner PCA predictor construction.  First, principal component analysis is 
performed on the DNA methylation beta matrix using the R prcomp function. The full 
principal component matrix is then used as the X-value input for a SuperLearner model 
with 10-fold cross-validation using the SuperLearner R package [26]. SuperLearner is an 
algorithm that uses cross-validation to compare the performance of multiple input models 
and generate an ensemble predictor formed as the optimal weighted combination of the input 
algorithms. Input algorithms can include elastic net regression, ridge regression, LASSO 
regression, random forest, as well as several other more data-adaptive algorithms and screening 
algorithms. Algorithm library specification should be tailored to the specific research question 
at hand and characteristics of the training datasets, and an informative guide to specifying 
a SuperLearner is provided by Phillips et al. [27]. The instructions for projecting the DNA 
methylation beta matrix onto the principal component matrix and the SuperLearner model 
are saved and presented as the SL PCA Predictor. Generating predictions from the SL PCA 
Predictor is accomplished by projecting testing data onto the principal components from 
the original training data, using the predicted principal components as inputs for prediction 
functions for each of the included SuperLearner algorithms, then generating an ensemble 
prediction as the optimal weighted combination of these individual predictions based on the 
original training data. All SuperLearner libraries used to train each of the predictors, as well as 
the final weights given to each algorithm, in this study are presented in the Table A in  
S1 Text. Generally, we found that including several penalized regression algorithms with varying 
combinations of lasso and ridge penalties were sufficient for predictions of chronological age, 
while predictors of more complex traits, such as environmental exposures benefited from the 
inclusion of more complex algorithms like generalized additive models and polynomial splines.

https://cerch.berkeley.edu/investigators
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DNA methylation and phenotypic data used to construct all predictors, as well as most 
testing datasets, is publicly available on the Gene Expression Omnibus (GEO), with the corre-
sponding GEO accession numbers specified in Table 1 [28].

Childhood clock.  Three novel epigenetic clocks were trained to predict chronological age 
in children using the three predictor development methods. All training data was obtained 
from the GEO under accession numbers GSE32149 [29], GSE80283 [30], GSE79056 [31], 
GSE80261 [32], GSE50759 [33], GSE36054 [34], GSE62924 [35], and GSE73103 [36]. The 
training dataset consisted of 859 samples of cord blood, child blood, and buccal cells obtained 
from children ranging from birth to 21 years of age, all measured with the 450K array. Each 
dataset was trimmed to 290207 CpG sites present across all training datasets, the primary 
CHAMACOS testing datasets, and still present on the EPIC/EPICv2 array manifests. To reflect 
variability in gestational age at birth, gestational age in cord blood samples was converted to 
age in years using the formula: AgeYears = 0 – ((39 – GA)/52.1429). A gestational age at birth 
of 39 weeks was used as a base age of 0. Age in years for all training samples was transformed 
using the formula: AgeTransformed = log(Age + 1) – log(21 + 1), based on the age transformation 
applied to pediatric samples for the training of the Horvath panTissue clock [2]. Full details of 
each training and testing dataset used are provided in Table 1. Training model and predictor 
specifications are provided in Table A in S1 Text. The resultant three clocks are referred to as i) 
the Childhood CpG clock, ii) the Childhood PCA clock, and iii) the Childhood SL PCA clock.

Several datasets were used to test the three childhood clocks. Firstly, 982 DNA methyla-
tion measurements derived from cord blood and child blood from 449 unique CHAMACOS 
birth cohort participants ranging in age from birth to 15.1 years old were used to test the three 
clocks in a longitudinal setting consisting of samples consisting of multiple DNA methylation 
arrays and DNA sources [14,37,38]. The 450K array was used to measure DNAm in cord 

Table 1.  Characteristics of each included training and testing dataset.

Data Use Data
Source

DNA
Source

N Age Range
(years)

Description

Childhood Clock
Training GSE32149 Child Blood 14 3.5-17.5 Subset of healthy control peripheral blood [29]
Training GSE80283 Child Blood 183 -0.3--0.1 Dried blood spots taken for newborn screening [30]
Training GSE79056 Cord Blood 36 -0.3-0.4 Cord blood samples from the Nashville Birth Cohort [31]
Training GSE80261 Buccal 216 5 - 18 Buccal samples of FASD cases and controls [32]
Training GSE50759 Buccal 41 1-21 Buccal samples from controls [33]
Training GSE36054 Child Blood 134 1-16.9 Healthy children [34]
Training GSE62924 Cord Blood 38 -0.1-0.04 Cord blood samples from the Biomarkers of Arsenic cohort [35]
Training GSE73103 Child Blood 197 14.0-21.0 Healthy adolescent peripheral blood [36]
Testing CHAMACOS Cord/Child Blood 976 -0.1-15.1 CHAMACOS samples at 0, 7, 9, and 14 year timepoints [14,37,38]
Testing CHAMACOS Cord/Child Blood 386 -0.1-14.3 Duplicate samples measured with both 450K/EPIC [14]
Testing GSE193879 Child Blood 127 0.1-17.0 COVID-19 cases and controls [39]
Hannum Clock
Training GSE40279 Peripheral Blood 656 19-101 Original Hannum Clock training dataset [3]
Testing GSE55763 Peripheral Blood 22 43.0-74.6 Small subset of 11 duplicate pairs [40]
Testing GSE84727 Peripheral Blood 665 18.3-80.7 Schizophrenia cases and controls [41]
Testing GSE174422 Peripheral Blood 256 36.6-75.1 128 duplicate pairs from the Sister Study [42]
PBB Predictor
Training GSE116339 Peripheral Blood 505 23.0-88.5 Participants of the Michigan PBB registry (training split) [43]
Testing GSE116339 Peripheral Blood 168 31.3-82.9 Participants of the Michigan PBB registry (testing split) [43]

https://doi.org/10.1371/journal.pcbi.1012768.t001

https://doi.org/10.1371/journal.pcbi.1012768.t001
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blood at birth (n=372) and peripheral blood in the 9-year timepoint (n=240), and the EPIC 
array was used to measure DNAm in peripheral blood at the 7-year (n=183) and 14-year 
timepoints (n=187). Three samples from the birth timepoint and three samples from child-
hood timepoints were removed from analysis due to presenting as severe outliers across each 
of the three childhood clocks and the Horvath panTissue clock, resulting in a final sample size 
of 976. Second, an additional sample of 193 participants from the CHAMACOS birth cohort 
sample had duplicate DNA methylation measures obtained from the alternate array available 
to compare agreement of predictions between arrays [14]. At birth, 108 samples had matching 
450K and EPIC measurements, and, at 14 years, 85 samples had matching 450K and EPIC 
measurements. Third, the GSE193879 public dataset was accessed from GEO, consisting of 
EPIC methylation measurements from 127 pediatric COVID-19 cases and controls ranging 
from 4 days old to 17 years old [39].

Hannum clock recreation.  The original dataset used to train the Hannum clock was 
obtained from GEO using accession number GSE40279, consisting of 656 adult whole blood 
samples ranging in age from 19 to 101 years old [3]. Three versions of the Hannum epigenetic 
clock were trained to predict chronological age using the development pipeline; the Hannum 
CpG clock, the Hannum PCA clock, and the Hannum SL PCA clock. The original Hannum 
clock additionally considered patient gender, BMI, diabetes status, ethnicity, and batch in 
their training models, however, because not all of these covariates were publicly available, our 
reconstructed Hannum clocks only considered DNA methylation for the training process. 
Each dataset was trimmed to 348546 CpG sites present in the Hannum training dataset 
and primary testing datasets. Several datasets were used to compare the Hannum clocks. 
First, the GSE55763 dataset consisting of duplicate DNA methylation measures from 11 
adult participants was used to characterize agreement between duplicates [40]. Second, the 
GSE84727 dataset consisting of 665 DNA methylation measures from whole blood samples 
from schizophrenia cases and controls was used to characterize fit between chronological age, 
as well as ability to detect biologically-relevant associations [41]. Third, the GSE174422 dataset 
consisting of 256 DNA methylation measures from whole blood of 128 duplicate pairs from 
the Sister Study was used to characterize agreement between duplicates [42].

Polybrominated biphenyl (PBB) exposure predictor.  The GSE116339 dataset, consisting 
of 673 adults from the Michigan PBB registry with EPIC DNA methylation data and log-
transformed total PBB measures available, was used to train three continuous predictors of 
log-transformed PBB exposure [43]. The total PBB measure was calculated as a summary 
measure of four individual PBB congeners: PBB-153, PBB-101, PBB-77, and PBB-180, 
measured in serum. Details on the Michigan PBB registry and PBB measures is detailed in 
Curtis et al. 2019 [43]. The dataset was randomly split into 505 training samples and 168 
testing samples and trimmed to 348629 CpG sites present on both the PBB dataset and the 
450K array. To examine the potential influence of differential training/testing data splits, we 
repeated this training process with 10 random training/testing data splits, calculated summary 
statistics for each permutation, and averaged correlation and MAE across all 10 permutations.

All final predictors generated for this study are accessible on Dryad (https://doi.
org/10.5061/dryad.p8cz8w9z3) [44]. For reference on the relative time requirements for train-
ing each predictor, the training process on our local computer (32GB RAM) for the childhood 
clock requires approximately 8.6 minutes (split up as ~57 seconds for CpG clock training, 
~413 seconds for PCA, ~1 second for PCA clock training, and ~46 seconds for SL PCA clock 
training), training of the Hannum clock requires approximately 6.9 minutes (~59 seconds 
for CpG clock training, ~312 seconds for PCA, ~1 second for PCA clock training, and ~41 
seconds for SL PCA clock training), and training of the PBB predictor requires approximately 
4.7 minutes (~53 seconds for CpG clock training, ~190 seconds for PCA, ~1 second for PCA 

https://doi.org/10.5061/dryad.p8cz8w9z3
https://doi.org/10.5061/dryad.p8cz8w9z3
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clock training, and ~38 seconds for SL PCA clock training). In all cases, PCA is the rate limit-
ing step, however, PCA is only run once in order to train both the PCA and SL PCA clock.

Statistical analysis
Person’s correlation coefficients and median absolute error (MAE) were calculated to char-
acterize associations between epigenetic age and chronological age, as well as for agreement 
between duplicate samples. (Table 2) Furthermore, we used bootstrapping to assess differences 
in the fit for the predictions generated from each of the methods by resampling predictions 
with replacement, computing Pearson correlation coefficients and MAE between chronolog-
ical age and predictions for each of the predictors, calculating the difference in correlation 
coefficients between each of the three methods, repeating the process with 10,000 iterations, 
and calculating the 95% confidence interval (CI) for the differences in correlation and MAE 
across all iterations.

Furthermore, to benchmark the performance of our predictors, we calculated 5 commonly 
used epigenetic clocks (Horvath pan-Tissue, PC Horvath, PhenoAge, PC PhenoAge, and PC 
GrimAge) using the R methscore function with fast imputation and normalization set to true 
[45]. We include the PC GrimAge clock to compare the applicability of our clocks to several 
type of analysis, however, we note that the PC GrimAge predictor includes chronological age 
as a predictor, limiting the ability to directly evaluate its performance as a predictor of chrono-
logical age. Additional analyses were conducted to test the applicability of the childhood 
clocks towards a longitudinal analysis in the CHAMACOS cohort. Building off of a previous 
cross-sectional analysis within the CHAMACOS cohort [46], generalized estimating equations 
(GEE) were used to model the associations between log2 transformed pregnancy-averaged 
measures of phthalate metabolite exposure and cell-adjusted epigenetic age acceleration mea-
sures, further adjusted for maternal poverty category (at or below poverty, poverty - 200%, 
>200% poverty), parity (0, 1, 2+), maternal age (continuous), maternal smoking (yes or no), 

Table 2.  Correlation coefficients and median absolute error (MAE) for all analyses.

CpG Predictor PCA Predictor SL PCA Predictor

Dataset Corr. MAE Corr. MAE Corr. MAE
Childhood Clock
Childhood Training Sample 0.943 0.815 0.962 0.663 0.965 0.660
CHAMACOS Full Sample 0.962 0.544 0.952 0.470 0.954 0.500
CHAMACOS Cord Blood 0.135 0.248 0.342 0.095 0.339 0.105
CHAMACOS Childhood 0.756 1.444 0.691 1.345 0.702 1.388

CHAMACOS Duplicates* 0.997 0.110 0.998 0.111 0.998 0.108

GSE193879 Testing Sample 0.914 1.122 0.892 1.875 0.895 1.861
Hannum Clock
Hannum Training Sample 0.970 2.572 0.952 3.325 0.983 2.255
GSE84727 Schizophrenia Testing Sample 0.972 3.240 0.932 5.064 0.946 5.121

GSE55763 Duplicates* 0.989 1.250 0.997 0.285 0.997 0.422

GSE174422 Duplicates* 0.983 0.902 0.985 0.999 0.981 1.108

PBB Predictor
Training Sample 0.804 0.622 0.482 0.766 0.631 0.725
Testing Sample 0.372 0.736 0.325 0.730 0.335 0.672

Correlation and MAE calculated against observed chronological age for most samples, and between predictions from replicate measures for duplicate samples denoted 
with a “*”.

https://doi.org/10.1371/journal.pcbi.1012768.t002
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and maternal BMI (continuous). Cell-adjusted epigenetic age acceleration measures were cal-
culated by extracting the residuals from a regression of each childhood epigenetic age estimate 
on chronological age, further adjusted for cell proportions (CD8T, CD4T, NK, Granulocyte, 
Monocyte, and B cell) calculated using the EpiDISH method [47]. GEE models were run using 
a subset of 112 participants with DNA methylation data available at all four timepoints. Both 
overall models further adjusted for child sex and sex-stratified models were run. Additional 
details on the phthalate, DNA methylation, and covariate measurement ascertainment are 
provided in Khodasevich et al 2023 [46].

For testing of the associations between schizophrenia case status and epigenetic age accel-
eration, epigenetic age acceleration measures were calculated as the residuals from a regres-
sion of each epigenetic age estimate on chronological age. General linear regression models 
were then run with each clock’s epigenetic age acceleration measure as the outcome and 
schizophrenia case status as the exposure, further adjusted for patient sex.

Supporting information
S1 Text.   Table A. Training model specifications for each predictor. Specifications denote the 
SuperLearner library used for training, the number of low variance principal components 
that were trimmed prior to training, training dataset size, and age transformation. Details 
on number of CpGs and PCs selected in the CpG and PCA predictors respectively, as well as 
weights given to each algorithm for the SL PCA predictor are provided. SL.glmnetXX param-
eters refer to glmnet models run with the alpha parameter set to 0.XX. Table B. Correlation 
coefficients and median absolute error (MAE) for the Horvath, PC Horvath, PhenoAge, PC 
PhenoAge, and PC GrimAge clock for each of the chronological age testing datasets. Correla-
tion and MAE calculated against observed chronological age for most samples, and between 
predictions from replicate measures for duplicate samples denoted with a “*”. Fig A. Addi-
tional childhood clock testing. Correlations and median absolute error (MAE) of each clock’s 
epigenetic age prediction in cord blood with actual gestational age at birth (a–c) and with age 
in childhood (d–f) in the CHAMACOS cohort. Correlation coefficients and median abso-
lute error (MAE) to chronological age for each childhood clock development method for the 
GSE193879 testing data (g–i). The 1:1 line is shown in black. Fig B. CHAMACOS longitudinal 
testing model summaries. Beta coefficients and 95% confidence intervals from the generalized 
estimating equation models for associations between pregnancy-average phthalate measures 
and cell-adjusted epigenetic age acceleration. Overall models and sex-stratified models are 
presented. Fig C. CHAMACOS longitudinal testing. Box plots displaying the distribution of 
95% confidence interval widths derived from the three clocks from the generalized estimating 
equation models for associations between pregnancy-average phthalate measures and cell-
adjusted epigenetic age acceleration. Fig D. CHAMACOS longitudinal testing model summa-
ries for the external epigenetic clocks. Beta coefficients and 95% confidence intervals from the 
generalized estimating equation models for associations between pregnancy-average phthalate 
measures and cell-adjusted epigenetic age acceleration. Overall models and sex-stratified 
models are presented. Fig E. Boxplots displaying the distribution of 95% confidence interval 
widths derived from the external epigenetic clocks from the generalized estimating equation 
models for associations between pregnancy-average phthalate measures and cell-adjusted 
epigenetic age acceleration. Fig F. Correlation coefficients and median absolute error (MAE) 
to chronological age for each Hannum clock development method for the GSE174422 Sister 
Study testing data. Each set of duplicate samples are presented separately in (a–c) and (d–f). 
The agreement between duplicate samples is shown in (g–i). The 1:1 line is shown in black. 
Fig G. Schematic detailing the overall flow for the SL PCA training pipeline.
(DOCX)
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