
UC Davis
Electrical & Computer Engineering

Title
Dynamic Graphs on the GPU

Permalink
https://escholarship.org/uc/item/48j4k7np

Authors
Awad, Muhammad A.
Ashkiani, Saman
Porumbescu, Serban D.
et al.

Publication Date
2020-05-01

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/48j4k7np
https://escholarship.org/uc/item/48j4k7np#author
https://escholarship.org
http://www.cdlib.org/

Dynamic Graphs on the GPU
Muhammad A. Awad

Dept. of Elect. & Computer
Engineering, UC Davis
Davis, California, USA

mawad@ucdavis.edu

Saman Ashkiani†
Dept. of Elect. & Computer

Engineering, UC Davis
Davis, California, USA
sashkiani@ucdavis.edu

Serban D. Porumbescu
Dept. of Elect. & Computer

Engineering, UC Davis
Davis, California, USA

sdporumbescu@ucdavis.edu

John D. Owens
Dept. of Elect. & Computer

Engineering, UC Davis
Davis, California, USA
jowens@ece.ucdavis.edu

Abstract—We present a fast dynamic graph data structure
for the GPU. Our dynamic graph structure uses one hash table
per vertex to store adjacency lists and achieves 3.4–14.8x faster
insertion rates over the state of the art across a diverse set
of large datasets, as well as deletion speedups up to 7.8x. The
data structure supports queries and dynamic updates through
both edge and vertex insertion and deletion. In addition, we
define a comprehensive evaluation strategy based on operations,
workloads, and applications that we believe better characterize
and evaluate dynamic graph data structures.

Index Terms—dynamic, graph, data structures, GPU

I. INTRODUCTION

While interest in graph analytics on GPUs has exploded in
recent years, the vast majority of this work focuses on static
graphs that never change during the graph computation. To-
day’s GPU graph analytic frameworks generally lack a GPU-
managed dynamic graph data structure that supports changes
(insertions and deletions) to the graph as well as queries
into this data structure. The key challenge is representing the
neighbors of each vertex (the “adjacency list”), where that data
structure must be flexible enough to support a wide range of
sizes and efficiently allow both queries into and changes to
this data structure.

Previous efforts to support GPU-based dynamic graph data
structures represent an adjacency list with a list-based data
structure [1, 2] or an array-based data structure that maintains
sort order [3]. Its implementation as a list/array presents a
dilemma for its designer:
• Adjacencies can be stored as an unsorted list, which is

easy to maintain. However, unsorted lists are unaccept-
ably slow for important operations on the data structure,
e.g., edge-existence queries (“does v have u as a neigh-
bor”) or insertions that do not result in duplicates, both
of which require traversing the entire list. Consequently,
with an unsorted list, many operations are O(n) in the
size of the list. This cost is prohibitive for vertices with
many neighbors, as is common in scale-free graphs.

• To eliminate this O(n) cost, the adjacencies can instead
be stored as a sorted list. These expensive operations
become O(log n) in the size of the list, but now the data
structure must maintain the list in sorted order, which
incurs a significant cost.

†Currently works at OmniSci, Inc.

From a performance standpoint, neither alternative is ac-
ceptable. Now, some graph operations can be implemented
with high performance on an unsorted list, and thus for a
subset of graph workloads, a list-based data structure may
deliver acceptable performance. But many graph operations
cannot be implemented without paying the high cost of a
full search of an unordered list or the maintenance cost of
preserving sorted order.

We believe that existing dynamic GPU graph data structures
like faimGraph [2] and Hornet [1] are suboptimal when con-
sidering real-world dynamic graph scenarios. Truly dynamic
data structures need to support continuous modifications not
only from running the algorithm (e.g., edge deletion in k-
truss), but also from a flowing stream of edge and vertex
insertions and deletions. While a reasonable first step, the
experiments presented in the faimGraph and Hornet works lack
the true dynamism we expect in real world scenarios. Their
chosen approaches both rely heavily on potentially expensive
sorting operations necessary for vertex and edge deduplication.
In general, duplicate entries lead to incorrect graph analytic
results for the many graph primitives where idempotence does
not apply (e.g., triangle counting or betweenness centrality).

We show that using a more sophisticated data structure (e.g.,
a hash table), we achieve better performance compared to
list-based techniques provided by alternative data structures
(e.g., faimGraph or Hornet). A major reason for our superior
performance is the fast query rates that hash tables offer and
their ability to ensure uniqueness while performing updates.
In contrast, list-based data structures require explicit sorting
for deduplication to maintain uniqueness. To evaluate our
data structure, we integrate it into the Gunrock GPU graph
analytics framework [4] and compare it against other dynamic
graph data structures. The resulting overall performance of
our data structure on a range of workloads and applications,
particularly on insertions, is superior to existing alternatives
and also allows reasonable tradeoffs dependent on the selected
workload.

Our contributions in this work are:
1) A high-performance hash table based dynamic graph data

structure that supports extremely high rates of insertions
and deletions (sections III and IV);

2) An evaluation strategy that defines a set of workloads to
benchmark a dynamic graph data structure (section V);
and

3) Exploring the use of a dynamic graph data structure in
applications while maintaining an updated graph (section
VI).

II. BACKGROUND AND PREVIOUS WORK

A. Background

Consider a directed weighted graph G = (V, E ,W)1, where
V , E , and W represent the vertex set, edge set, and edge
weight set respectively. For each arbitrary vertex u ∈ V ,
we represent its outgoing neighbors (adjacency list) with Au.
e = 〈u, v, w〉 ∈ E represents an edge from vertex u ∈ V to
v ∈ V with weight w.

It is common to use an adjacency matrix with |V|2 elements
to represent dense graphs. Updating an adjacency matrix is
trivial. However, if G is a sparse graph (i.e., |E| � |V|2), then
the adjacency matrix is largely empty and, in practice, requires
far too much memory for large graphs. Several alternative
sparse graph representations exist. For example, Compressed
Sparse Row (CSR), Compressed Sparse Column (CSC), and
Coordinate list (COO) all offer better memory efficiency than
the equivalent sparse adjacency matrix.

In CSR, for instance, Au is stored as an array of values
(weights) and an array of destination vertex IDs. Then all
adjacency lists (arrays of size equal to the out-degree of each
vertex du, where

∑
u∈V du = |E|) are concatenated to form

two large arrays of size |E|. A ternary array (i.e., row pointers)
marks the start and end index of each adjacency list (i.e., each
vertex’s neighbors). CSR’s representation requires O(|E|+|V|)
elements, which is considerably more memory efficient than
the O(V2) required for adjacency matrix. However, since it
is a packed data structure, it is not possible to update it (i.e.,
delete or insert a new edge or vertex) without rebuilding the
entire data structure.

In this work, we design a graph data structure that is both
memory-efficient (like CSR) and also update-friendly (like the
adjacency matrix). Suppose Au represents the adjacency list
of a particular vertex u ∈ V , where Au contains destinations
of all outbound edges connected to u. Then a dynamic graph
data structure should support the following operations:

1) Retrieving the adjacency list of vertex u: returns Au if it
exists, ⊥ otherwise.

2) Inserting a new vertex u: Insert(u), where Au is initial-
ized with all connected vertices to u.

3) Deleting a vertex u: Delete(u), where Au can no longer
be located. Au is deleted. All edges that have u as their
destination should be removed either immediately or in
a lazy fashion. After a deletion, no edge query involving
u may have a false positive result. Querying Au returns
no edges.

4) Inserting a new edge: Insert(〈u, v, w〉), where Au is first
located, then a new pair 〈v, w〉 is inserted into Au.

1In general, we would like to support arbitrary meta-data assigned to each
vertex or edge (DV and DE). Here, for the sake of clarity, we assume W
represents any sort of meta-data associated with vertices or edges.

5) Deleting an edge: Delete(〈u, v, w〉), where Au is first
located and then the pair 〈v, w〉 is deleted.2

We assume that for each vertex u ∈ V , the adjacency list
Au is stored in a data structure that supports the following
three operations:

1) SearchAu(v): search through adjacency list Au and re-
turns 〈v, w〉 if present, ⊥ otherwise.

2) InsertAu
〈v, w〉: inserts a new entry 〈v, w〉 into the adja-

cency list Au.3

3) DeleteAu
(v): delete any entries 〈v, w〉 from the adjacency

list Au.
In general we assume that all of the operations are batched

and performed in a phase-concurrent fashion (i.e., updating
the data structure does not happen concurrently with any kind
of read-only search query from the data structure).

B. Previous Work

The major challenge for an efficient dynamic graph data
structure on the GPU is the design of the adjacency list
data structure to best accommodate potential updates. Memory
management of this data structure is inherent in this challenge.
Sha et al. proposed GPMA as a GPU-friendly data structure for
dynamic graphs [3] based on the Packed Memory Array data
structure (PMA) [5]. PMA is a kind of balanced binary search
tree, where nodes are sorted arrays with some anticipated
empty gaps to support potential updates. PMA uses lower
and upper bound density thresholds for each node, and these
thresholds are used to make decisions to either copy a node
into a larger newly allocated node (high density), or properly
merge multiple nodes into a single node (low density). In
GPMA, a batch of updates is first sorted. The sorted batch is
further partitioned into several continuous parts, where each
part will only belong to a single node in the tree. Then
each node is properly updated based on its partition’s size in
three granularities of warp/block/device. Sha et al. proposed a
method to store a CSR format for a graph in a GPMA data
structure. There is little discussion of memory management.
Most of the experiments on updating the data structure are
around edge insertions, but lazy edge deletions are also briefly
discussed.

Hornet [1] divides the allocated available memory into
blocks that can store a number of edges up to a specific
power of two. Initially an adjacency list is stored inside
the smallest power-of-two memory block that can contain it.
During edge insertion, if the newly inserted edges exceed
the capacity of a memory block, the vertex adjacency list is
copied to the next smallest power-of-two memory block. For
each array of blocks, a B-Tree tracks the free and used ones.
Memory management is done on the CPU. Hornet achieves a
compact representation for an adjacency list at the expense of

2One can define more general edge deletion operations such that all
instances of 〈u, v, ·〉 are deleted regardless of their weights. This version
might be useful if we allow multiple edges from a source to a destination,
each with a different weight or meta-data.

3Duplicates are not allowed: first search for v (i.e., searchAu (v)), and
replace a previously inserted element if it exists. Otherwise, insert a new pair.

memory fragmentation. Moreover, it supports vertex insertion
(or deletion) through a series of corresponding edge insertions
(or deletions).

faimGraph [2] uses a single memory pool on the GPU
for both the data structure and the algorithm that solves a
graph problem. In contrast to Hornet, faimGraph’s memory
management is entirely on the GPU. Queues are used for
memory reclamations of pages and deleted vertex IDs. faim-
Graph maintains a mapping between vertex IDs on the GPU
and CPU. It also offers both structure-of-arrays (SoA) and
array-of-structures (AoS) representations to store edge data,
where the former is used for edges with a single property
and the latter is used for edges with multiple properties.
Memory pages configurable in size contain pointers to next
pages when the adjacency list size exceeds a single page size.
Using different GPU and CPU vertex IDs allows for flexible
memory reclamation.

Edge duplication is not allowed in either Hornet or faim-
Graph. Both take preventive measures during updates to ensure
edge uniqueness in the data structure.

We discuss and compare our results to faimGraph and
Hornet. faimGraph is the state-of-the-art dynamic graph data
structure and Hornet is a maintained graph processing library.
In terms of similarities, our work is similar to faimGraph as
our hash table is represented using fixed-size memory pages.
In other words, if the hash table consists of a single bucket,
which is true in road-network-like graphs (but not scale-
free graphs), our work and faimGraph are similar. Similar
to Hornet, addition of new vertices in our system requires
overallocation of the graph data structure capacity to avoid
reallocation, but we keep in mind that the cost of reallocation
only requires copying of adjacency-list pointers and not the
entire data structure.

III. OUR GPU DYNAMIC GRAPH

The key challenge in designing a dynamic graph data
structure is storing per-vertex adjacency lists. Our graph
representation uses a separate data structure for each vertex
adjacency list together with associated handles to reach those
adjacency lists as necessary to perform various operations.
The choice of the data structure used to store adjacency lists
must be based on tradeoffs between what operations the data
structure supports, the performance of individual operations,
and the requirements of the graph library for solving specific
problems. For instance, the simplest data structure choice is
to use a variable-sized list data structure per adjacency list,
with the designer either choosing to keep that list unsorted
or maintain it as a sorted list. Hornet [1] embodies this
approach. This representation is the most compact, but incurs a
large maintenance overhead when compared to other options.
Another possibility is the approach taken by faimGraph [2],
which relaxes the variable-sized list constraint and instead
breaks lists into fixed-size pages to simplify the maintenance
of the data structure. Our position is that these primitive GPU
data structures can be replaced by more sophisticated ones
such as hash tables [6] or B-Trees [7], depending on the

requirements of the problem in terms of the performance and
availability of data structure operations. In this work our goal
is to provide a high throughput of both updates and lookups,
thus we pick hash tables.

Advantages of a hash table representation: The primary
advantage of hash tables is their efficient operations (both
mutations and queries). Supporting efficient queries is an
essential requirement in a graph data structure. Not only do
graph applications perform read-only queries into graphs, but
even mutation operations typically incorporate queries. For
instance, an insertion while maintaining unique edges first
requires a query determining whether the edge exists or not,
followed by the insertion process itself (this is simply writing
the new pair into an empty location). For a list-based data
structure, performing a query operation is either O(n) (for an
unsorted list) or O(log n) (for a sorted list) in the size of the
list. For a hash table with a suitable load factor, queries are
instead O(1). In a dynamic setting, hash table performance
can decrease as the chain-length increases (i.e., load factor
increases). In practice we can maintain low-cost metrics per
vertex to determine the chain-length and periodically perform
rehashing if it exceeds a given threshold.

Fig. 1 shows a high-level representation of our graph data
structure, which is divided into two parts:

a) Vertex dictionary: We store vertices, V , in a simple
fixed-size array, indexed by vertex ID. The array size can
be increased if needed, but frequent reallocation should be
avoided to minimize the performance costs commonly associ-
ated with memory allocation. Selecting a large-enough initial
capacity based on graph problem requirements ensures good
performance during vertices insertion.

b) Adjacency lists: We use one hash table per vertex
to store its associated adjacency list Au. Given a load factor
and number of edges in an adjacency list, we calculate the
number of buckets in a hash table. Note that the load factor,
directly related to the number of buckets, provides a tradeoff
between two main operations: 1) reading a complete adjacency
list associated with a vertex and 2) performing an edge-exists
query in a vertex’s adjacency list. In practice we select a single
load factor for all hash tables (in this work, we use a load
factor of 0.7). This is not strictly necessary, but determining
an ideal load factor per-vertex (per-hash-table) a priori is
difficult. Our dynamic graph data structure can make use of
given connectivity information along with the choice of the
load factor to determine the number of necessary buckets to
allocate. This decision results in significant performance gains
by reducing memory allocation overhead. Using a dynamic
memory allocator, any hash table can dynamically allocate
additional slabs as needed (Fig. 1). If the connectivity infor-
mation for a vertex is not available, we construct a hash table
with a single bucket for this vertex.

IV. IMPLEMENTATION

Our dynamic graph data structure’s adjacency lists are
stored as hash tables. In this work, we use Slab Hash, a
dynamic hash table data structure for the GPU [6], as the basis

Vertex dictionary

u Au

Adjacency lists

v
Av

p

Apq

Aq

Au as a hash table

bucket1 bucket2 bucketn

Fig. 1: High level schematic of our graph data structure. Each
adjacency list is represented using a slab hash. The number
of base slabs per adjacency list depends on the load factor
used per adjacency list. Base slabs are statically allocated in
consecutive memory locations, while the slabs used to re-
solve collisions are allocated dynamically and reached through
pointers.

of our underlying hash tables.4 We have significantly improved
the functionality of the original slab hash in order to meet our
requirements.5 We offer two variants of our dynamic graph
data structure. One uses Slab Hash’s concurrent map, which
should be used if storing a value per edge is required. The
second variant uses Slab Hash’s new concurrent set, which
should be used if edge values are not required. Any hash table
design can be used for this underlying data structure, as long as
it is efficient in both searching (for queries) and updating the
data structure itself (for insertions and deletions). In the end,
the performance of our graph data structure directly depends
on the performance of its underlying hash tables.

We integrate our dynamic graph data structure into the
Gunrock GPU graph analytics framework [4]. In order to
take advantage of the high-performance operations Slab Hash
offers, all our operations are implemented based on the Warp
Cooperative Work Sharing (WCWS) strategy [6]. In WCWS,
each thread has an independent task assigned to it, but all
threads within a warp cooperate with each other to collectively
perform one independent task at a time. This is the right design
decision because it better matches the memory access pattern
desired by the GPU hardware (coalesced memory accesses),
and hence it provides better performance for updates. On the
downside, it requires all threads within a warp to be active.
In other words, an operation on the data structure can not be
performed within a branch where threads (in a warp) diverge
when executing it.

A. Memory Management

Our memory management is divided into two parts: 1)
vertex dictionary memory, and 2) hash table memory.

4https://github.com/owensgroup/SlabHash
5The original slab hash only provided a concurrent map data structure,

without any restrictions on duplicate keys. To name a few of our recent
additions: maintaining key-uniqueness, proper iterator access, and design and
implementation of a new concurrent set (keys only, and no values).

1) Vertex dictionary memory: Defining a graph requires
defining the graph’s vertex capacity. The vertex dictionary
stores pointers to the hash table associated with each vertex’s
adjacency list. When inserting more vertices than the vertex
dictionary’s capacity, we copy the vertex dictionary to a new
memory location after increasing its capacity. This process
only requires shallow copying of the pointers to each of the
hash tables (including pointers to the hash tables associated
with the new vertices).

2) Adjacency list hash table memory management: Con-
structing a hash table requires choosing and allocating a
number of buckets (base slabs) that are required for insertion
processes. The initial number of buckets for a vertex u is
d|Au|/(lf × Bc)e, where lf is the load factor and Bc, the
bucket capacity per slab, is either 15 or 30 for Slab Hash
map or set, respectively. During insertion, if a bucket’s slab
becomes full (capacity achieved), Slab Hash dynamically
allocates a new slab for that bucket that is singly linked
to the tail of the list; a dynamic memory allocator handles
these dynamic allocations [6]. Only when we perform vertex
deletion (essentially this deletes an entire hash table) do we
free this dynamically allocated memory (Section IV-D2).

Our graph data structure handles the memory allocation
required for the initial buckets by statically allocating all the
memory required for the initial buckets in bulk. This is more
desirable than requiring each hash table to independently allo-
cate a small number of buckets with different cudaMalloc
calls. We initialize a vertex’s hash table with its initial number
of buckets, the memory address for its first bucket, and the
number of neighbors (to zero). In cases where the number of
neighbors is not defined, we allocate a single bucket.

B. Query operations

To iterate over a vertex’s adjacency list, we provide a vertex
adjacency list iterator. For a given vertex, the iterator loops
over all of the hash table buckets associated with the vertex
as well as additional slabs used to resolve hash collisions. The
iterator loads one slab at a time and moves from one slab to
the next using a next operator.

We also provide an edgeExist query that checks if the
destination v of a given pair 〈u, v〉 exists in the hash table
associated with u. edgeExist simply performs a search
query [6] in u’s hash table.

C. Edge operations

We interpret edge operations (insertion and deletion) as
modifications to the source vertex’s adjacency list. As dis-
cussed in Sec. III, we use a hash table to represent each
vertex’s adjacency list. We discuss this in more depth below
in the context of a directed graph. In an undirected graph, in-
serting (or deleting) an edge between a source and destination
is similar but also requires an operation on the edge in the
other direction. Our semantics for edge operations follows the
semantics for hash table operations, which we discuss below.

1) Edge insertion: Algorithm 1 shows high-level pseu-
docode for an edge insertion. We assume that each thread
has a single edge to insert. Initially, in Line 3, we ensure no
self-edges are allowed. A work queue is constructed within
a warp (Line 4) through a ballot instruction on all threads’
remaining tasks. All threads locate the next task to perform
(through finding the first set bit in the work queue as in
Line 5) and then get the corresponding source vertex of the
chosen task (through a shuffle instruction as in Line 6). Since
multiple edges within a warp might share the same source
vertex (Lines 7 and 8), all these insertions are grouped together
to be performed in one single coalesced call to the hash table
associated with the source vertex. We implemented and used
a new slab-hash replace operation to ensure key-uniqueness
in the hash table (i.e., unique destination vertices). In this
operation, if a key (a destination vertex) already exists in the
hash table, it will be replaced with the most recent value.
Otherwise, a new key-value pair is added to the hash table.
If the batch of edges contains the same unique edge but with
different weights, only the most recent edge and its weight will
be stored in the graph. The replace operation returns a boolean
value indicating whether a new key (i.e., an edge) was added to
the hash table or the key previously existed and was hence just
replaced. We use this returned boolean variable to maintain
an exact number of edges per vertex (population count on all
successful additions within a warp in Line 10). The thread
whose task was just completed, as well as all threads that
shared the same source vertex (i.e., the coalesced insertion
group), mark themselves as completed (Line 11). We repeat
this procedure until the work queue is completely empty, i.e.,
no more edges remain to be inserted.

2) Edge deletion: Edge deletion is similar to edge insertion
with two major differences: 1) instead of using the replace
operation in Algorithm 1, we use the delete operation; 2)
the delete operation also returns a boolean variable as to
whether the key already existed. This boolean variable is
used to decrement the number of edges that belongs to the
adjacency list of the vertex. Note that in order to maintain
uniqueness within the slab hash (due to how insertion/replace
operations are designed and implemented), deleted edges (i.e.,
keys) are only marked as deleted (i.e., by replacing a key
with a tombstone) and not explicitly removed. Tombstones
are disregarded in edge insertion (as if that particular location
is not empty). Tombstones can later be completely flushed
out of the data structure, if required. Together, these design
decisions ensure that empty locations can only exist at the
end of each bucket’s list in the slab hash. Moreover, not
overwriting tombstones results in faster insertion rates (since
new edges are only added to the end of the bucket’s linked
list). This comes at the expense of having unused memory
locations. A different approach would be to break down the
insertion process into two stages: 1) traversing the bucket’s
linked list to ensure uniqueness, then 2) for unique keys, a
follow-up insertion that overwrites tombstones. We use the
former approach during insertions, but the latter could be used
to optimize for memory usage on the expense of decreased

insertion throughput.

D. Vertex Operations

1) Vertex insertion: We define a vertex insertion operation
as the operation of inserting edges connected to a vertex that
has an empty adjacency list. As discussed earlier, if the new
vertex count exceeds the capacity of the vertex dictionary, we
first extend the vertex dictionary. Once the vertex is entered
into the dictionary, we then insert all attached edges using
Algorithm 1.

2) Vertex deletion: Algorithm 2 summarizes this process
for an undirected graph. Each warp deletes one vertex at a
time. Because each vertex in a multi-vertex deletion operation
may have a different number of edges, a straightforward
implementation would suffer from load imbalance. We address
this imbalance with a simple technique. We maintain a queue
of deleted vertices with an atomic counter (Line 4). A single
thread inside the warp acquires a new vertex from the queue
(Line 3). The new vertex queue location is broadcast for
all threads in the warp (Line 6). The vertex-deletion kernel
only exits after deleting all the required vertices (Line 8).
A warp reads the vertex index (Line 10) and requests an
edge iterator over the all the slabs associated with the vertex
(Line 11). Using the iterator, we loop over all of the vertex
destinations and delete the vertex from their adjacency lists
(Line 16). Additionally, all dynamically allocated memory
(i.e., memory used to resolve collisions) is freed and reclaimed
by the memory allocator (Line 19). Finally, the count of edges
connected to the vertex is set to zero (Line 22). Statically
allocated memory is not reclaimed. For a directed graph, the
only requirement is to free the memory. To clean up, we end
with a follow-up lookup and delete all of the deleted vertices
in all of the hash tables.

Algorithm 1 Graph edge insertion algorithm.
1: procedure INSERTEDGES(GpuGraph graph, Edges edges)
2: thread edge ← edges[threadIdx]
3: to insert ← thread edge.src != thread edge.dst
4: while work queue ← ballot(to insert) do
5: current lane ← find first set bit(work queue)
6: current src ← shuffle(thread edge.src, current lane)
7: same src ← thread edge.src == current src
8: success ← graph[current src].replace(thread edge, same src & to insert)
9: added count ← popc(ballot(success))

10: graph[current src].incrementEdgesCount(added count)
11: if same src & to insert then
12: to insert ← false
13: end if
14: end while
15: end procedure

V. EVALUATION STRATEGY

Our community has not yet defined consistent standards
for evaluating a dynamic graph data structure. In part this is
because of the very recent development of these data structures
as a topic for study. As a result, we lack a broad set of appli-
cations or workloads that require dynamic data structures. We
believe the evaluation we present below improves on previous
work by identifying and characterizing a set of operations,
workloads, and applications that together encompass the wide

Algorithm 2 Graph vertex deletion algorithm.
1: procedure DELETEVERTICES(GpuGraph graph, Vertices vertices, Count count,

Queue queue)
2: while true do
3: if laneId == 0 then
4: queueId ← atomicAdd(queue, 1)
5: end if
6: queueId ← shuffle(queueId, 0)
7: if queueId ≥ count then
8: return
9: end if

10: warp vertex ← vertices[queueId]
11: vertex edges it ← GpuGraph::EdgeIterator(warp vertex)
12: while vertex edges it.next() do
13: lane dst ← vertex edges it.getDst(laneId)
14: for lane in lanes do
15: current dst ← shuffle(lane dst, lane)
16: graph[current dst].delete(warp vertex)
17: end for
18: if vertex edges it.current() is not base slab then
19: free(vertex edges it.getAddress())
20: end if
21: end while
22: graph[warp vertex].setEdgesCount(0)
23: end while
24: end procedure

range of use cases that will be addressed with dynamic graph
data structures.

We believe a comprehensive evaluation requires three com-
ponents:
Operations Dynamic data structures support particular oper-

ations, e.g., edge and vertex deletion and insertion. We
enumerate these operations and measure their throughput.

Workloads Because dynamic graph data structures on the
GPU are not yet in significant use, applications that use
them are few. However, we present a set of workloads—
common patterns of how we will use the data structure—
that we believe will underlie future applications in this
area.

Applications Finally, prior work has identified particular ap-
plications on which they evaluate their data structure. We
evaluate our work on these specific applications as well.

A. Low-Level Operations on a Dynamic Graph Data Structure

We begin with measuring throughput for the important low-
level operations on our data structure:

1) Edge Insertion and Deletion: Starting from a static
graph stored in a dynamic data structure, we measure the
throughput of edge insertion and deletion operations for differ-
ent batch sizes. Edges are inserted or deleted between existing
vertices in the graph. Duplicate edges are allowed within a
batch and across the batch and the graph. The graph data
structure only maintains unique edges.

2) Vertex Insertion and Deletion: Similar to edge insertion
and deletion, we start from a static graph and measure the
throughput of inserting and deleting vertices in different batch
sizes.

B. Workloads on a Dynamic Graph Data Structure

To evaluate a dynamic graph data structure we propose
the following different set of workloads. Each one of these
workloads targets a different scenario, not specific to any

particular application, that we expect to be a pattern that can
be used in real-world applications.

1) Static Workloads / Bulk-build: We start by comparing
our dynamic graph data structure to other alternatives in a
static setting. Specifically, we evaluate the performance of
building a static graph. We assume that the number of edges
per vertex and the number of vertices is known a priori.

Given a static graph, we measure the time required for
building the graph in bulk and compare this with previous
work. We assume that the input is given in a COO format
(i.e., a list of edges each defined by source vertex, destination
vertex, and edge value).

2) Dynamic Workloads / Incremental Build: Starting with
an empty graph, we incrementally build a graph using different
batch sizes. In general, to avoid memory reallocation we
assume that a suitable vertex capacity (i.e., maximum number
of vertices) is known.

C. Applications with a Dynamic Graph Data Structure

We again emphasize that the existing set of graph appli-
cations that use dynamic data structures is small. We thus
primarily evaluate work on the applications developed in and
described by previous work where possible. For the static
application case, we use static triangle counting to evaluate
and compare our dynamic graph data structure performance
to static CSR [4] and the two dynamic graph representa-
tions [1, 2]. In the dynamic application case, we evaluate
based on a dynamic triangle counting application that performs
triangle counting after each batch insertion. Note that in this
work we only focus on the performance of the dynamic graph
data structure. Optimizing a static or dynamic graph algorithm
(e.g., triangle counting) is beyond the scope of this paper.

VI. RESULTS

We evaluate and compare our dynamic graph data structure
to Hornet6 and faimGraph7. faimGraph is the state of the art
in dynamic GPU graph data structures. Hornet is an actively
maintained GPU data structure for sparse graphs and matrices.
In our tests, faimGraph’s page size is configured to be 128
bytes to match our slab page size. Our tests do not require
that either faimGraph or Hornet maintain a sorted adjacency
list. All of our measured performance timings for all libraries
only include the time to perform the operation and do not
include the time required to transfer memory between CPU
and GPU. We perform our benchmarking using the datasets
shown in Table I on an NVIDIA TITAN V (Volta) GPU with
12 GB DRAM and an Intel Xeon CPU E5-2637.

A. Operations

1) Batched Edge Insertion: We perform a batched edge
insertion (Sec. V-A1) for different batch sizes and measure
the average throughput for all the given datasets. faimGraph
only supports batch updates of sizes less than 1M. Table II

6https://github.com/hornet-gt/hornet/tree/a5c754d9616f54404a7b2a15c11143d52a346ab9
7https://bitbucket.org/mwinter92/faimgraph

TABLE I: Datasets

Dataset Vertices Edges Degree

Min. Max. Avg. σ

luxembourg osm 114K 239K 1 6 2.1 0.41
germany osm 11.5M 24.7M 1 13 2.1 0.51

road usa 23.9M 57.71M 1 9 2.4 0.85
delaunay n23 8.4M 50.3M 3 28 6.0 1.33
delaunay n20 1M 6.3M 3 23 6.0 1.33

rgg n 2 20 s0 1M 13.8M 0 36 13.1 3.62
rgg n 2 24 s0 16.8M 265.1M 0 40 16.0 3.99

coAuthorsDBLP 299K 1.9M 1 336 6.4 9.80
ldoor 952K 45.5M 27 76 47.7 11.97

soc-LiveJournal1 4.8M 85.7M 0 20K 17.2 50.65
soc-orkut 3M 212.7M 1 27K 70.9 139.72

hollywood-2009 1.1M 112.8M 0 11K 98.9 271.70

TABLE II: Mean edge insertion rates (in MEdge/s) for differ-
ent batch sizes.

Batch size Hornet faimGraph Ours

216 33.67 92.47 501.33
217 44.71 133.97 513.56
218 51.43 157.15 591.06
219 70.81 188.98 641.25
220 83.54 — 664.52
221 97.41 — 658.09
222 110.89 — 646.01

compares our edge insertion throughput to Hornet and faim-
Graph. Our speedup ranges between 5.8–14.8x compared to
Hornet and 3.4–5.4x compared to faimGraph.

2) Batched Edge Deletion: Similar to batched edge inser-
tion, we run a batched edge deletion. Table III shows the result
of this benchmark. This is where Hornet performance becomes
competitive with ours. Deletion is a simple process and does
not require cross-duplicate checking between the graph and
the input batch. Note that for small datasets, the true number
of deleted edges (i.e., unique edges within the batch) is much
lower than the number of randomly generated edges, hence
resulting in less work in general. Our performance is as fast
as Hornet for a large batch size and almost 7x faster for a
smaller batch size of 216. Our deletion rates are between 3.6–
7.8x faster than faimGraph’s.

TABLE III: Mean edge deletion rates (in MEdge/s) for differ-
ent batch sizes.

Batch size Hornet faimGraph Ours

216 91.73 111.71 640.63
217 159.69 112.96 886.92
218 259.31 171.75 947.60
219 377.79 257.66 939.98
220 537.73 — 988.85
221 739.82 — 1,007.16
222 1,024.87 — 1,015.47

TABLE IV: Mean vertex deletion throughput (in MVertex/s)
for different batch sizes.

Batch size faimGraph Ours

216 0.44 5.35
217 0.71 9.23
218 1.12 12.66
219 1.62 19.21
220 2.96 26.49

3) Vertex Deletion: Beginning with an undirected graph,
we delete a batch of vertices and measure the throughput
of vertex deletion. Table IV shows the throughput for dif-
ferent batch sizes averaged over four datasets: soc-orkut, soc-
LiveJournal1, delaunay n23, and germany osm. Our vertex
deletion throughput is between 8.9–12.2x faster than faim-
Graph (Hornet does not implement vertex deletion). Both we
and faimGraph delete vertices from neighbor adjacency lists
and free the memory used to store the vertex adjacency list,
but faimGraph implements one operation that we do not: it
places the deleted vertex into a vertex queue and can thus
reuse identifiers of deleted vertices during subsequent vertex
insertions. This allows faimGraph to be more memory efficient
compared to our approach. It would be straightforward to
implement the same strategy with our data structure but we
have not yet done so. If we compare only delete and free
operations common to both data structures, our speedup is
8.5–11.56x over faimGraph. As with query operations, the
dominant factor in vertex-deletion performance is looking up
a deleted vertex in its neighbors’ adjacency lists; this is faster
in a hash table than in a list.

B. Workloads

1) Bulk Build: We perform the bulk build benchmark from
Sec. V-B1. Bulk build is simply inserting all edges from
a graph into the graph data structure in one single batch.
We implemented the bulk build functionality in Hornet only.
Table V shows the time required to bulk build the datasets.
For two datasets—rgg n 2 24 s0 and soc-orkut—Hornet runs
out of memory. We believe that this is due to the memory
overhead of sorting and duplicate checking. Our dynamic
graph data structure is 2–30x faster. Note that for a large
dataset, hollywood-2009, 45% of Hornet’s insertion time is
spent in duplication checking alone, which is the same time
as our entire build.

2) Incremental Build: In this benchmark we begin with an
empty graph and incrementally insert edges (Sec. V-B2). The
goal is to test and measure the edge throughput when building
a graph data structure given a known bound on the number of
vertices a priori, but an unknown number of edges. For our
dynamic graph data structure, this means that each hash table
is given only one bucket (i.e., a single linked list). Note that
in this experiment our data structure is similar to faimGraph,
but differs from Hornet in our use of a linked list of pages
versus a single block containing the adjacency list. For our

TABLE V: Bulk build elapsed time (ms).

Dataset Hornet Ours

luxembourg osm 5.562 0.184
germany osm 330.311 12.407

road usa 644.308 27.910
delaunay n23 273.532 19.590
delaunay n20 37.68 2.494

rgg n 2 20 s0 37.084 5.053
rgg n 2 24 s0 — 0.697

coAuthorsDBLP 11.672 0.835
ldoor 46.486 15.936

soc-LiveJournal1 179.879 26.176
soc-orkut — 39.907

hollywood-2009 90.705 42.387

TABLE VI: Incremental build mean edge insertion rates (in
MEdge/s) for different batch sizes.

Batch size Hornet Ours

220 164.44 841.31
221 176.96 945.64
222 184.75 993.82

hash table based graph data structure, this represents the worst-
case scenario.

Table VI shows the average throughput for building
graphs with a similar number of edges (ldoor, delaunay n23,
road usa, soc-LiveJournal1) using different batch sizes. We
implemented incremental build in Hornet only. On average
our data structure is 5x faster than Hornet. For the two low-
variance graph datasets (delaunay n23 and road usa), our
speedups are between 15–25x. We believe that the main reason
for our performance advantage is that Hornet maintains its
adjacency list in a single fixed-size block. When an added
edge exceeds the size of the block, the entire adjacency list
must be copied to an existing or newly allocated empty block
of the appropriate size. In contrast, our linked lists avoid
copying and simply allocate new pages to accommodate new
edges as needed. With Hornet, copying into larger-sized blocks
is expected to happen more often for low-variance datasets.
For high-variance datasets, Hornet’s doubling adjacency list
strategy becomes more efficient because the need for copying
to new blocks decreases. We see speedups of 1.6–2.5x for
the ldoor dataset, but for the soc-LiveJournal1 dataset our
throughput is 0.92x slower.

C. Applications

We pick triangle counting as a simple application to explore
the interaction between a dynamic data structure and solving
a graph problem. Our goal here is not to provide an optimal
solution to the dynamic triangle counting problem; rather, we
would like to explore the performance of triangle counting’s
main query operation, intersect. The intersect operation in-
puts two adjacency lists and counts the number of edges in
common. If the adjacency list is stored as a list, to perform
an intersect operation efficiently, the list must be sorted. The

TABLE VII: Static triangle counting time in ms.

Dataset Hornet faimGraph Ours

luxembourg osm 0.57 1.01 0.31
germany osm 26.31 16.61 29.69

road usa 51.57 39.19 66.20
delaunay n23 25.74 21.14 56.38
delaunay n20 3.35 2.92 6.43

rgg n 2 20 s0 6.42 7.35 23.24
rgg n 2 24 s0 154.75 165.86 493.6

coAuthorsDBLP 1.20 4.75 6.98
ldoor 22.09 48.04 222.07

soc-LiveJournal1 482.98 705.71 1526
soc-orkut 3832 8986 6758

hollywood-2009 9784 57311 11060

hash-based data structure we present here does not have this
constraint. We thus compare the cost of maintaining the sorted
list-based data structures used by Hornet and faimGraph with
our approach.

1) Static: In this experiment, we compare dynamic graph
data structures to solve the static graph problem of triangle
counting. Since triangle counting only requires maintaining
the destinations of edges and not their values, we use the
set variant of the dynamic graph data structure. The Hornet
and faimGraph data structures require sorted adjacency lists to
efficiently compute set intersections. Table VII shows the time
required to perform triangle counting on different datasets.
On most datasets, our dynamic data structure performs worse
than either Hornet or faimGraph, because their intersection
operation between two sorted lists is efficient. They find the
starting location of one list in the other and then (serially)
walk to the end of the lists, accumulating the number of
matches. While this exhibits little parallelism, it is cheaper
and faster than a hash-table-based solution. In our hash table
representation, we perform an edgeExist query for all
edges.

Note, the sort in the list-based data structures is not free,
and is not counted in the results above. Table VIII summarizes
sort cost on these datasets. Hornet does not provide a GPU
sort for their data structure, so we substitute CUB’s segmented
sort by key [8]. Interestingly, faimGraph’s sorting is faster than
CUB’s when the maximum vertex degree of the graph is small,
but for a large maximum vertex degree, faimGraph’s sort is
much slower than CUB’s. These results raise the question of
the overhead of maintaining a sorted Hornet or faimGraph
data structure in order to perform a dynamic application that
requires a sorted list, such as triangle counting. We further
investigate this in the following section.

2) Dynamic: For this experiment we pick two datasets,
one with a small largest-vertex degree (road usa) and one
with a large largest-vertex degree (hollywood-2009). We per-
form triangle counting after incrementally inserting edges five
times. This scenario was not previously implemented in either
Hornet or faimGraph; we implemented it for Hornet only.
Table IX shows the result of this experiment. For road usa, our
implementation offers a 1.8x speedup over Hornet’s, largely

TABLE VIII: CSR-sort (with CUB) and faimGraph-sort time
in ms. Sort time is in general comparable to (and often consid-
erably larger than) the time for triangle counting (Table VII).

Dataset Sort CSR Sort faimGraph

luxembourg osm 58.13 0.07
germany osm 5260 4.84

road usa 10875 12.65
delaunay n23 3854 18.98
delaunay n20 503.29 2.48

rgg n 2 20 s0 496.85 8.62
rgg n 2 24 s0 7753 178.37

coAuthorsDBLP 136.89 7.36
ldoor 442.15 175.12

soc-LiveJournal1 2226 20428
soc-orkut 1404 41833

hollywood-2009 540.30 8504

TABLE IX: Cumulative time required to perform triangle
counting and inserting a batch of size 222 into the graph.

Iter. Ours Hornet
Insert TC Total Insert TC Total Speedup

road usa
1 65.5 64.1 51.6 116.0 1.81
2 14.8 135.8 129.5 214.1 110.2 235.1 1.82
3 29.7 201.7 195.0 438.4 174.6 356.4 1.83
4 44.5 267.5 260.5 652.6 243.8 476.2 1.83
5 59.4 333.2 325.8 855.7 319.7 597.8 1.83

hollywood-2009
1 11151 11151 9893 9893 0.89
2 12.4 22539 22551 73.4 19982 20056 0.89
3 24.9 33921 33946 149.0 30174 30323 0.89
4 37.3 45297 45335 229.3 40552 40781 0.90
5 49.8 56724 56774 313.0 51090 51403 0.91

due to our faster insertion. For hollywood-2009, although
our insertion performance is around 6x faster than Hornet,
Hornet’s faster triangle counting is still fast enough to cover
the cost of maintaining sorted adjacency lists. We are 0.9x
slower than Hornet on this dataset.

D. Effect of the load factor on our graph data structure

To measure the effect of load factor on our hash table, we
perform two experiments. Fig. 2 shows our first experiment
where we manipulate the chain length of our hash tables by
building a graph with the suitable average degree and load
factor. As we expect, the insertion throughput of our data
structure drops as the chain length increases. On the other
hand, the memory utilization increases. This is due to the
fact that buckets are now more full. Moreover, the amount of
memory used decreases as the average chain length increases.
This is due to the fact that fewer buckets are now needed.
Fig. 3 shows our second experiment. Similar to the first one,
we explore the query performance as the average chain length
increases (we use static triangle counting to provide the query
workload). The results show the optimal average chain length
for our hash table, which is around 0.7.

VII. CONCLUSION AND FUTURE WORK

Our dynamic GPU graph data structure uses hash tables
to represent per-vertex adjacency lists. This representation
suits operations that require fast insertion, deletion, and edge
lookups, and is superior in performance to previous work that
focuses on list data structures for adjacency lists.

In regards to future work, we note that other data structures
can be used to represent adjacency lists. For instance, a B-
Tree [7] provides a different set of operations as well as main-
taining a sorted adjacency list, an optimization that is useful
in certain graph algorithms. We also note that supporting hash
tables with varying slab sizes may better suit load balancing in
scale-free graphs where vertex degrees vary over several orders
of magnitude. This would complicate the update procedure at
the expense of providing better scalability in graph processing.
Moreover, it would require a more complicated dynamic
memory allocator design (compared to SlabAlloc used in slab
hash [6]) that can support variable-sized memory allocations
efficiently.

Although we only discussed phase-concurrent updates and
queries in this work, both the slab hash and the B-Tree provide
concurrent queries and updates. These concurrent operations
can be exposed to a dynamic graph algorithm. The key
challenge here is to carefully consider the semantics of these
operations. For instance, a graph problem might need to lock
a graph node to ensure a consistent view of the adjacency list
for the different query and update operations.

ACKNOWLEDGMENTS

This material is based upon work supported by the National
Science Foundation under Grant No. CCF-1637442, Grant
No. OAC-1740333, and Grant No. CCF-1629657; by DARPA
under Grant No. FA8650-18-2-7835; by an Adobe Data Sci-
ence Research Award; and by NVIDIA with their funding of
an NVIDIA AI Lab at UC Davis. Any opinions, findings, and
conclusions or recommendations expressed in this material are
those of the authors and do not necessarily reflect the views
of the National Science Foundation. This material is based on
research sponsored by Air Force Research Lab (AFRL) and
the Defense Advanced Research Projects Agency (DARPA)
under agreement number FA8650-18-2-7835 and by the U.S.
Government under the DARPA SDH program. The views and
conclusions contained in this document are those of the authors
and should not be interpreted as representing the official
policies, either expressed or implied, of the U.S. Government.
The U.S. Government is authorized to reproduce and distribute
reprints for Governmental purposes notwithstanding any copy-
right notation thereon.

Thank you to Martı́n Farach-Colton, Yuechao Pan, Muham-
mad Osama, and Kerry A. Seitz for thoughtful advice and
comments on this work.

REFERENCES

[1] F. Busato, O. Green, N. Bombieri, and D. A. Bader, “Hor-
net: An efficient data structure for dynamic sparse graphs
and matrices on GPUs,” in 2018 IEEE High Performance

R
a
te

 (
M

E
d

g
e
/s

)

Average chain length

0 1 2 3 4 5
500

1000

1500

2000

2500

3000
15M
30M
45M
60M
75M

90M
105M
120M
135M

(a) Insertion Rate
M

e
m

o
ry

 U
ti

li
z
a
ti

o
n

Average chain length

0.5 1.5 2.5 3.5 4.5
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

15M
30M
45M
60M
75M

90M
105M
120M
135M

(b) Memory Utilization

M
e
m

o
ry

 (
M

B
s
)

Average chain length

0 1 2 3 4 5
0

512

1024

1536

2048

2560

3072
15M
30M
45M
60M
75M

90M
105M
120M
135M

(c) Memory Usage

Fig. 2: For different directed RMAT graphs with 220 vertices but different average degree (different number of edges), we
build the graph using different load factors. (a) The insertion throughput drops by a factor of 2.5 if the hash tables have, on
average, chains of length 5. On the other hand, the memory utilization increases (b) and the memory usage decreases (c) as
the average chain-length increases.

Ti
m

e
 (

s)

Average chain length

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0

50

100

150

200

250

300
15M
30M
45M
60M
75M

90M
105M
120M
135M

Fig. 3: Static triangle counting performance for different undi-
rected RMAT graphs with 220 vertices, but different average
degree using hash tables with different load factors. Our data
structure achieves its optimal performance when the load
factor is around 0.7.

Extreme Computing Conference, ser. HPEC 2018, Sep.
2018.

[2] M. Winter, D. Mlakar, R. Zayer, H.-P. Seidel, and
M. Steinberger, “faimGraph: High performance manage-
ment of fully-dynamic graphs under tight memory con-
straints on the GPU,” in Proceedings of the International
Conference for High Performance Computing, Network-
ing, Storage, and Analysis, ser. SC ’18, Nov. 2018, pp.
60:1–60:13.

[3] M. Sha, Y. Li, B. He, and K.-L. Tan, “Accelerating

dynamic graph analytics on GPUs,” Proceedings of the
VLDB Endowment, vol. 11, no. 1, pp. 107–120, Sep. 2017.

[4] Y. Wang, Y. Pan, A. Davidson, Y. Wu, C. Yang, L. Wang,
M. Osama, C. Yuan, W. Liu, A. T. Riffel, and J. D. Owens,
“Gunrock: GPU graph analytics,” ACM Transactions on
Parallel Computing, vol. 4, no. 1, pp. 3:1–3:49, Aug. 2017.

[5] M. A. Bender and H. Hu, “An adaptive packed-memory
array,” in Proceedings of the Twenty-Fifth ACM SIGMOD-
SIGACT-SIGART Symposium on Principles of Database
Systems, ser. PODS ’06, Jun. 2006, pp. 20–29.

[6] S. Ashkiani, M. Farach-Colton, and J. D. Owens, “A dy-
namic hash table for the GPU,” in Proceedings of the 31st
IEEE International Parallel and Distributed Processing
Symposium, ser. IPDPS 2018, May 2018, pp. 419–429.

[7] M. A. Awad, S. Ashkiani, R. Johnson, M. Farach-Colton,
and J. D. Owens, “Engineering a high-performance GPU
B-tree,” in Proceedings of the 24th ACM SIGPLAN Sym-
posium on Principles and Practice of Parallel Program-
ming, ser. PPoPP 2019, Feb. 2019, pp. 145–157.

[8] D. Merrill, “CUDA UnBound (CUB) library,” 2015, https:
//nvlabs.github.io/cub/.

