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Abstract

A Bayesian nonparametric modeling framework for extreme value analysis

by

Ziwei Wang

Extreme value theory studies the tail behavior of a stochastic process, and plays a key role in

a wide range of applications. Understanding and quantifying the behavior of rare events and

the associated uncertainties is practically important for risk assessment, since such unexpected

events can result in massive losses of wealth and high cost in human life. In this dissertation,

we present a Bayesian nonparametric mixture modeling framework for the analysis of extremes

with applications in financial industry and environmental sciences. In particular, the model-

ing is built from the point process approach to analysis of extremes, under which the pairwise

observations, comprising the time of excesses and the exceedances over a high threshold, are

assumed to arise from a non-homogeneous Poisson process. To relax the time homogeneity

restriction, implicit in traditional parametric methods, a nonparametric Dirichlet process mix-

ture model is presented to provide flexibility in estimation of the joint intensity of extremes, the

marginal intensity over time, and different types of return level curves for one financial market.

This class of models is then expanded to assess the effect of systemic risk in multiple financial

markets. In this case, the process generating the extremes is modeled as a superposition of

two Poisson process. This approach provides a decomposition of the risk associated with each

individual market into two components: a systemic risk component and an idiosyncratic risk

component. Finally, we extend the point process framework to model spatio-temporal extremes

ix



from environmental processes observed at multiple spatial locations over a certain time interval.

Specifically, a spatially varying mixing distribution, assigned a spatial Dirichlet process prior,

is incorporated into the model to develop inference for spatial interpolation of risk assessment

quantities for high-level exceedances. The modeling approaches are illustrated with a number

of simulated and real data examples.
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Chapter 1

Introduction

1.1 Motivation

In the past 100 years, China has seen several severe floods caused by abnormal

weather phenomena, such as heavy rainfall and snowstorms. These natural catastrophes have

brought not only large economic losses, but also a high cost in human life. Between 1.45 to 3.7

million people died and 28.5 million people were affected by the Yangtze River floods of 1931,

which has been considered the deadliest natural disaster since 1900. More recently, when the

Yangtze suffered its worst floods in 50 years during the 1998 summer, more than 4000 people

lost their lives, around 14 million people were left homeless and 240 million people were af-

fected directly by the floods. These floods also resulted in serious economic losses; 5 million

houses were destroyed, 12 million houses were damaged and submerged, and 25 million acres

of land flooded; the total estimated loss was over $20 billion ($US) (NCDC, 1998).

Besides environmental science, stock markets have shown numerous large downward
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price movements in the last ten years. This phenomenon can be the result of major catas-

trophic events, financial crises or speculative stock market bubbles. The seven most significant

events that lead to a stock market crash from 2000 to 2011 are: the bursting of the dot-com

bubble (03/10/2000), the 09/11 terrorist attacks (09/11/2001), the stock market downturn of

2002 (09/12/2001), the bursting of the Chinese bubble (02/27/2007), the bankruptcy of Lehman

Brothers (09/16/2008), Dubai’s debt standstill (11/27/2009), and the beginning of the European

sovereign debt crisis (08/27/2010). Such extreme price movements in stock market often result

in largely unexpected, but widespread losses of wealth. For instance, the stock market decline

in 2008 caused the Great Recession and massive economic losses to the investigators, mar-

ket participants, and the entire financial industry. Therefore, monitoring such rare events and

quantifying huge losses is very important for our society.

It is well known that the actual distributions of stock market returns is typically heavy-

tailed relative to the “bell-shaped” normal distribution. Hence, an appropriately heavy-tailed

distribution would provide more accurate estimates of Value-at-Risk (VAR), a benchmark mea-

sure of portfolio risk (Smith, 2003). However, since the number of extreme observations is

usually small relative to the entire data set, we have little information of the tails. On the other

hand, the presence of the extreme values in standard statistical analysis, determined to be out-

liers, can lead to a large distortion effect on sample means and variances. For instance, estimated

regression models using the least square approach are highly sensitive to extreme observations.

Thus, when statisticians apply traditional statistical methods to describe the main part of the

distribution, they may use most of the data, but remove the extreme values. However, since the

extreme events may cause enormous loss of human life and property, it is important to under-
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stand and capture the behavior of such rare events as well as predict their future occurrance.

One way to address the above two problems is to consider statistical approaches that

focus exclusively on modeling the tail of the distributions. Extreme value analysis, a method

that focuses on investigating the behavior of rare events and the associated uncertainties, is

an important research field in risk assessment. It has been widely applied in environmental

sciences and financial industry. For instance, extreme value analysis provides a framework to

characterize the extremal behavior of the daily returns by quantifying possible losses during the

period of financial turbulences in stock market.

1.2 Outline and Contributions

Chapter 2 reviews relevant background and concepts applied throughout this disser-

tation. In the first part of Chapter 2, we provide a brief review of univariate extreme value

theory with emphasis on the point process approach, the one primarily used in this disserta-

tion. In particular, under the point process approach, the pairwise observations comprising

the time of excesses and the exceedances over a high threshold, are assumed to arise from a

non-homogeneous Poisson process (NHPP) with a non-negative and locally integrable intensity

function. The three approaches discussed in Section 2.1 are parametric methods that rely on

strong assumptions about the distribution of observations. Specifically, it is assumed that all

the samples are independent and identically distributed from a distribution F0. However, many

datasets do not satisfy these conditions. For instance, large values of observations in most finan-

cial and environmental situations often occur in clusters. In addition, some series of data points

3



are often seasonal or dependent on the price level, such as the stock index or rainfall data. In

particular, a serious limitation of the limiting form for the intensity function of extreme values,

under the traditional parametric point process approach, is that it is homogeneous over time.

This restriction will likely lead to unreasonable inferences when the occurrence of the extremal

events varies across space or time.

The main contribution of this dissertation is a novel class of models that provide

flexible inference methods under the point process setting for extreme value analysis. In par-

ticular, we focus on modeling the extremal events generated from general stochastic processes

evolving over time and possibly also over space. We develop a Bayesian nonparametric mod-

eling framework to model the occurrence of extremes with the aim of relaxing the restrictive

aspects of standard parametric methods. The Bayesian paradigm offers clear advantages for

development of such modeling, since it allows exploration of flexible hierarchical model for-

mulations and proper incorporation of full predictive uncertainty. In addition, nonparametric

mixture prior models provide a rich inference framework for functions, densities or distribu-

tions. Background on the main nonparametric mixture modeling approach utilized throughout

this dissertation is introduced in Section 2.2. Specifically, we discuss relevant definitions and

properties for the Dirichlet process prior, Dirichlet process mixture models, including related

computational strategies for posterior simulation.

In Chapter 3, we provide a flexible modeling framework for the analysis of extremes

of temporal stochastic processes using a point process approach. To achieve flexible shapes

and temporal heterogeneity for the intensity of extremes, we utilize a Bayesian nonparametric

Dirichlet process mixture model. Particular emphasis is placed on the choice of the mixture

4



kernel to ensure desirable results for the implied tail behavior of the marginal extreme value

distribution. The mixture nature of the nonparametric model enables more general inferences

than traditional parametric methods. To our knowledge, this approach provides the first attempt

to fully nonparametric modeling for extremes from a single time series, with flexible resulting

inference for the joint intensity of extremes, the marginal intensity over time, and for different

types of return level curves. The methodology is illustrated with a simulated data example and

a real data example involving returns of the Dow Jones index over a five year period.

In Chapter 4, we extend the point process framework developed in Chapter 3 to as-

sess the effect of systemic risks on multiple financial markets. The point process of extremes on

each market is modeled as a superposition of two Poisson processes, that can be interpreted as

the systemic and idiosyncratic market risk components. Dirichlet process mixture models are

used to provide flexible inference for the corresponding temporal intensities through data-driven

clustering of extreme values. We apply the model to understand the behavior of the S&P500

sector indexes between January 1st, 2000 and December, 31, 2011. As a result, our application

provides interesting insights about the relevant risks associated with different economic sec-

tors. For example, our model suggests that there are few idiosyncratic risks associated with the

consumer staples sector, whose extreme negative returns seem to be driven mostly by systemic

risks.

Chapter 5 presents an approach to modeling and risk assessment for extremes of en-

vironmental processes evolving over time and recorded at a number of spatial locations. We ex-

tend the earlier modeling framework discussed in Chapter 3 to capture the temporal heterogene-

ity for the intensity of extremes at any spatial location. In particular, we utilize a logit-normal

5



mixture model for the corresponding Poisson process density. A spatial Dirichlet process prior

for the mixing distributions completes the nonparametric spatio-temporal model formulation.

We develop inference for spatial interpolation of risk assessment quantities for high-level ex-

ceedances of the environmental process. The methodology is tested with a synthetic data exam-

ple and is further illustrated with analysis of rainfall exceedances recorded over a period of 50

years from a region in South Africa.

Finally, Chapter 6 concludes with a summary of the main contributions of this disser-

tation.
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Chapter 2

Background for Extreme Value Analysis and

Bayesian Nonparametric Models

2.1 Univariate Extreme Value Theory

Extreme value theory (EVT), which focuses on the study of the tail behavior of a

stochastic process, plays a key role in a number of fields, such as environmental sciences and

finance. The literature on extreme value analysis for independent and identically distributed

observations is well developed. One popular approach is to model blockwise maxima using the

generalized extreme value distribution (Fisher & Tippett, 1928; Gnedenko, 1943). Alternative

approaches include the well known peaks over threshold (POT) models (Pickands, 1975; Davi-

son & Smith, 1990), and the point process approach (Pickands, 1971). Under the former, the

exceedances over a given threshold are modeled using a generalized Pareto distribution. The

latter focuses on jointly modeling the exceedances and the time of their occurrence using a
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non-homogeneous Poisson process (Pickands, 1971; Smith, 1989; Coles & Tawn, 1996).

In this section we introduce the three approaches mentioned above. Our purpose

is to review the relevant background materials that will underlie the work presented in this

dissertation. For a detailed review of statistical models for univariate extremes see, for example,

Embrechts et al. (1997), Kotz & Nadarajah (2000a) and Coles (2001).

2.1.1 Block Maxima Models

As a classical approach in extreme value theory, the block maxima models focus on

modeling the blockwise maximum. Let X1, . . . ,Xr be a sequence of independent and identically

distributed random variables with common distribution function F0, and let Mr = max(X1, . . . ,Xr).

The distribution of Mr is related to F0(x) through Pr(Mr ≤ x) = {F0(x)}r. However, since the

exact distribution function F0 is usually unknown, we seek approximate families of models for

F0(x)r. Note that, if F0(x) < 1, the limit of F0(x)r converges to 0 as r→ ∞, which implies that

F0 is a degenerating function. Therefore, the limit of Mr will consequently degenerate to the

upper end point of F0. Such degeneracy can be avoided by considering a linear renormalization

(Mr−br)/ar with sequences of normalizing constants {ar > 0} and {br}.

The extreme types theorem of Fisher & Tippett (1928) and Gnedenko (1943) indicates

that if there exist sequences of constants ar > 0 and br ∈ R, such that

Pr{(Mr−br)/ar ≤ x}→ K(x) as r→ ∞, (2.1)

where K is a non-degenerate distribution function, then K belongs to one of the three families
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of the distribution:

Gumbel : K(x) = exp
{
−exp

[
−
(

x−b
a

)]}
, −∞ < x < ∞;

Fréchet : K(x) =


0, x≤ b,

exp
{
−
( x−b

a

)−α
}

, x > b;

Weibull : K(x) =


exp
{
−
[
−
( x−b

a

)]α}
, x < b,

1, x≥ b,

for some a > 0, b ∈ R, and α > 0. These three types of distributions have distinct character-

izations with regard to their tail behaviors. The Gumbel distribution is obtained when F0 has

exponential-type tails such as the normal or exponential distributions. The Fréchet distribution

arises from distributions with heavier polynomial-type tails such as the student-t or Pareto dis-

tributions. The Weibull distribution arises when F0 has finite support as is the case with the

uniform or beta distributions. The theorem implies that if the sequences of ar and br exist, then

the limit distribution of the linear transformation (Mr−br)/ar must belong to one of the three

possible extreme value distributions, that is the three distributions provide the only possible

limits for (Mr−br)/ar no matter what the underlying distribution F0 is.

A compact way to express K is to reformulate it by encompassing all three types of the

extreme value families into a single family of distribution function (Von Mises, 1954; Jekinson,

1955), known as the generalized extreme value (GEV) distribution,

K(x) = exp

{
−
[

1+ξ

(
x−µ

σ

)]−1/ξ

+

}
, (2.2)

where z+ = max(z,0), and µ,σ, and ξ are location, scale, and shape parameters, respectively.

The scale parameter σ is restricted to be positive, and µ,ξ can be arbitrary real numbers. The

9



shape parameter ξ is determined by the tail behavior of F . In particular, the case ξ > 0 corre-

sponds to the Fréchet family, ξ < 0 corresponds to the Weibull distribution, and the limit ξ→ 0

refers to the Gumbel distribution. Hence, each of the three types of distributions can be treated

as a special case of the GEV family.

Traditionally, one of the goals of extreme value theory is to estimate the so-called

return level function; see, for example, Coles (2001). The m-th year return level qm corresponds

to the level which one expects the annual maximum to be exceeded only once in every m-

year periods, or equivalently, the level with probability 1/m of being exceeded by the annual

maximum in a given year. Such quantity is defined as the 1− 1/m quantile of the annual

maximum distribution, which under the GEV model reduces to,

qm =


µ− σ

ξ

[
1−{−log(1−1/m)}−ξ

]
, ξ 6= 0,

µ−σ log{−log(1−1/m)}, ξ = 0.

(2.3)

The generalized extreme value distribution is usually fitted to blockwise maxima (for

example, daily maxima of hourly data, or monthly maxima of daily data). However, modeling

the block maximum series directly may be wasteful in practice, because it uses only the value

of blockwise maxima and ignores most of the data in each block. For instance, if we model

the annual maxima of daily rainfall, we discard the other 364 observations. Moreover, multiple

extreme events may occur within a single block rather than other blocks. Discarding these

values leads to loss of valuable information.
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2.1.2 Peaks Over Threshold Models

An alternative to the GEV approach referred as peaks over threshold (POT) approach

(Smith, 1984; Davison & Smith, 1990), consists of modeling the distribution of exceedances

over a given threshold u rather than the block maximum. In the case when observations are

i.i.d. from F0, the conditional distribution of the exceedances over a threshold u is related to F0,

Pr{X ≤ u+ y | X > u}=
F0(u+ y)
1−F0(u)

, y > u. (2.4)

Balkema & de Haan (1974) and Pickands (1975) show that for large enough threshold u, the

limit of the above conditional distribution converges in distribution to the generalized Pareto

distribution,

Pr{X ≤ u+ y | X > u}= 1−
{

1+
ξy

σ+ξ(u−µ)

}−1/ξ

+
, (2.5)

where µ ∈ R, σ > 0, and ξ ∈ R. Moreover, Pickands (1975) shows that the threshold ex-

ceedances have limiting distribution within the GPD family if and only if the underlying dis-

tribution F0 for block maxima are in the domain of attraction of GEV family, with the same

shape parameter ξ. Therefore, as in the GEV family, ξ < 0 corresponds to a bounded distribu-

tion; ξ > 0 corresponds to a heavy-tailed distribution; and ξ→ 0 corresponds to a light-tailed

distribution.

Choice of the threshold is a classical bias-variance trade-off problem. Choosing a

sufficiently high threshold will cause small sample of extreme data points. Conversely, setting

the threshold too low will cause the asymptotic result to be invalid. The threshold selection is

usually based on an extended explorative statistical analysis, see Coles (2001) and Embrechts

et al. (1997).
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2.1.3 Point Process Characterizations

The point process approach introduced by Pickands (1971) and Smith (1989) rep-

resents a third alternative to model extremes. Before providing details of the point process

approach, we take a brief detour to define the non-homogeneous Poisson process. The non-

homogeneous Poisson process, over a space A , with intensity function λ(·), which is a non-

negative and local integrable function, is defined as a counting process with independent incre-

ments that satisfies two properties. First, for any subset A ⊂ A , the number of points in set A,

N(A), satisfies

N(A)∼ Poi(Λ(A))

where Λ(A) =
R

A λ(t)dt is the expected number of points in A. Second, for any pair non-

overlapping sets A,B⊂ A , N(A) and N(B) are independent random variables. Then, the likeli-

hood function resulting from any NHPP generated point pattern {ti : i = 1, . . . ,n} ⊂ A , where

0≤ t1 < t2 < .. . < tn ≤ T , can be expressed as

L(λ(·);Data) ∝ exp
{
−

Z
A

λ(t)dt
} n

∏
i=1

λ(ti). (2.6)

Since the intensity is locally integrable, that is,
R

A λ(t)dt < ∞, for all bounded A ⊂ A , a NHPP

intensity function can be represented through a density function and a parameter that defines

the total intensity over the observation window. Specifically, λ(·) = γ f (·), where γ ≡ Λ(A) =

R
A λ(t)dt is the total integrated intensity, and f (·) is a density function on A that fully controls

the shape of the intensity function.

Consider again a sequence X1, . . . ,Xr of independent random distribution with com-

mon distribution F0. To jointly model the time and value of exceedances as a point process
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(e.g., Joe et al., 1992), that is, for regularly spaced observations, we consider the ordered

pairs {( j,X j) : j = 1, . . . ,r}, where the first entry denotes the period over which each obser-

vation is collected. If we restrict attention to those observations that fall above a given thresh-

old u, then our sample is thinned to the pairs {(Zi,Yi) : i = 1, . . . ,n}, where n ≤ r, Yi is the

value of the i-th exceedance and Zi is the time at which the i-th exceedance occurred. The

pairs {(Zi,Yi) : i = 1, . . . ,n} can be regarded as arising from a two-dimensional point process

{N(A) : A ⊂ A = {1, . . . ,r}× [u,∞)}. Pickands (1971) showed that the limiting form of this

point process as u→∞ is a bivariate non-homogeneous Poisson process with intensity function

1
σ

{
1+ξ

(
y−µ

σ

)}−1/ξ−1

+
(2.7)

where the parameters µ ∈ R, σ > 0, and ξ ∈ R. As before the value of the shape parameter ξ

controls the tail behavior of F0. Figure 2.1 shows a two-dimensional point process including the

time and the value of exceedances over a high threshold u, for the set Ay = [t, t + ∆t]× [y,∞),

y > u.

The shape parameter ξ in Equation (2.7) shares the same properties as in the GEV

and GPD family. Note that this common property implies that there are connections between

these three approaches of extreme value theory (see, Coles, 2001). For example, the GEV and

GPD distribution can both be derived from the Poisson process approach. In particular, the

probability that the blockwise maximum is less than a specified level y is equivalent to the

probability that there are no events occurring in the region Ay = [t, t + ∆t]× [y,∞). Hence, the

distribution of the blockwise maximum is given by

P(y) = Pr(max{X1, . . . ,Xr} ≤ y) = exp

{
−∆t

[
1+ξ

(
y−µ

σ

)]−1/ξ

+

}
, (2.8)
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Figure 2.1: Illustration of two-dimensional point process including times of excesses and ex-
ceedances over a specified threshold u.

which corresponds to the generalized extreme value distribution in (2.2). Similarly, we can

compute the conditional distribution of the exceedances over the threshold u as the generalized

Pareto distribution. Recall that Λ(A) =
R

A λ(t,y)dtdy, thus, for the region Ay = [t, t +∆t]× [y,∞),

Λ(Ay) = ∆t[1+ξ(y−µ)/σ]−1/ξ

+ . The conditional probability of X > u+ y given X > u is

Λ(Au+y)
Λ(Au)

=
∆t[1+ξ(u+y−µ

σ
)]−1/ξ

+

∆t[1+ξ(u−µ
σ

)]−1/ξ

+

=
{

1+
ξy

σ+ξ(u−µ)

}−1/ξ

+
,

which leads to Equation (2.5).

Statistical inference under the Poisson process approach is straightforward. We could

obtain the MLE of parameters (µ,σ,ξ) of the intensity function λ(·) by maximizing the likeli-

hood function in Equation (2.6). Alternatively, Bayesian approaches can be used by combining

the likelihood function with appropriate priors for {µ,σ,ξ}. An advantage of Bayesian methods

is that they allow us to include additional sources of information, such as expert knowledge.
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This is practically important in extreme value analysis because data is sparse. Another reason

is that regularity assumptions are not required in the Bayesian setting as heavily as in MLE

estimation. Indeed, Smith (1985) shows that the asymptotic theory of maximum likelihood es-

timation is non-regular when ξ < −0.5. Bayesian inference for this class of models, including

elicitation of informative priors from experts, is discussed in Coles & Tawn (1996).

2.2 Bayesian Nonparametric Methods

In Bayesian statistics, a nonparametric model refers to a probability model in which

the indexing parameter is infinite-dimensional. In contrast to the traditional parametric methods

with finite number of parameters and some distributional assumptions, Bayesian nonparametric

models lead to a flexible framework for modeling complex structured data. For a detailed review

of Bayesian nonparametric modeling see, for example, Müller & Quintana (2004).

Finite mixture models (e.g. the finite Gaussian mixtures) are widely used for the in-

ference in complex datasets. However, one major limitation in this approach is that one needs

to specify the number of mixture components a priori. The Bayesian nonparametric mixture

models provide an alternative to avoid this restriction by placing a rich class of priors on the

random mixing distribution. In particular, the Dirichlet process (DP) prior (Ferguson, 1973)

is the most popular prior used in this setting. This chapter briefly reviews the Bayesian non-

parametric models implemented throughout this dissertation, with an emphasis on the Dirichlet

process.

15



2.2.1 The Dirichlet Process

The Dirichlet process (DP), originally developed by Ferguson (1973), has been widely

applied as a prior for random distributions in Bayesian nonparametric models. Formally, the DP

is defined as a stochastic process whose realizations are random probability measures on some

probability space Θ. Hence, it is a distribution on the spaces of all possible distributions.

A Dirichlet process is characterized by two parameters: a baseline measure G0, and a

positive precision parameter α. Let G and G0 be probability measures over Θ. The random prob-

ability measure G is distributed according to the Dirichlet process, denoted by G ∼ DP(α,G0)

if, for any finite and disjoint partition A1,A2, . . . ,Ak of Θ, the vector (G(A1),G(A2), . . . ,G(Ak))

is Dirichlet distributed, that is,

(G(A1), . . . ,G(Ak))∼ Dir(αG0(A1), . . . ,αG0(Ak)) (2.9)

Hence, analogously to the Gaussian process (whose marginal distributions are Gaussian), any

finite measurable partition of the Dirichlet process follows a Dirichlet distribution. The base

distribution G0 specifies the center of the Dirichlet process, in the sense that for any measurable

set A⊆Θ,

E(G(A)) = G0(A).

Moreover, the precision parameter α controls how close the realization G is to G0, as

Var(G(A)) =
G0(A)(1−G0(A))

α+1
,

larger value of α results in small variability in Dirichlet process realizations. Figure 2.2 shows

the simulated sample path from a Dirichlet process with a standard normal base distribution,

and different values of α.
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Figure 2.2: Cdf sample path from a DP(α, G0 = N(0,1)) prior, for different values of α. The
solid red line denotes the cdf of G0.

Another distinctive feature of the Dirichlet process is the conjugacy. Assuming θ1, . . . ,θn

is a sequence of independent and identically distributed random samples from G, and G ∼

DP(α,G0). Then,

G|θ1, . . . ,θn ∼ DP

(
α+n,

α

α+n
G0 +

1
α+n

n

∑
i=1

δθi

)
,

where δθ is the Dirac point mass centered at θ. Smaller value of α results in placing less weight

on the prior base distribution, whereas larger value of α leads to placing less weight on the

empirical distribution. On the other hand, as the sample size n→ ∞, the posterior process con-
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verges to the empirical distribution of the sample, which suggests that the posterior associated

with a DP prior is consistent.

Now we seek for the expression of the predictive distribution of a new observation

θn+1 given the observations θ1, . . . ,θn. Consider again θ1, . . . ,θn is a sequence of i.i.d. samples

from G, and G ∼ DP(α,G0). As in standard Bayesian methods, the predictive distribution of

θn+1 | θ1, . . . ,θn is obtained by integrating out the random distribution G, that is,

θn+1 | θ1, . . . ,θn ∼
α

α+n
G0 +

1
α+n

n

∑
i=1

δθi (2.10)

Pólya Urn Scheme

The resulting Equation (2.10) can be interpreted via a popular metaphor, known as Pólya

urn scheme, described by Blackwell & MacQueen (1973). The scheme can be visualized as

the following process. Consider an urn with α blue balls initially. Then, we randomly draw

a ball from the urn at each time. If the ball drawn is blue, we return the ball to the urn and

put a new ball with a new color to the urn; if a non-blue ball is drawn, then we return the

ball and add a new ball with the same color to the urn. Conceptually, whenever a blue ball is

drawn from the urn, it means that we sample a new cluster from the base distribution G0(·) with

the probability proportional to α. The Pólya urn scheme represents the procedure to sample

parameters from G, though G is not observable. On the other hand, the scheme also implies a

clustering property of the Dirichlet process, which implicitly partition n objects into n∗ clusters.

Let θ∗1, . . . ,θ
∗
n∗ be the distinct values of θi, i = 1, . . . ,n, and nk be the size of k-th cluster, i.e.,
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nk = |{i : θi = θ∗k}|,k = 1, . . .n∗. Then, the Equation (2.10) can be rewritten as

θn+1 | θ1, . . . ,θn ∼
α

α+n
G0 +

1
α+n

n∗

∑
k=1

nkδθ∗k

Note that the probability of drawing a non-blue color ball is proportional to the number of the

existing certain color balls in the urn. As a result, the more often a non-blue certain color is

drawn, the higher probability of being drawn again in the future.

Chinese Restaurant Process

As the n observations can be specified by n∗ distinct values, the Dirichlet process implicitly

partitions the data. The induced distribution of partitions is described by a different metaphor,

called the Chinese restaurant process. Imagine we have a Chinese restaurant with infinite set

of tables, with each table serving only one dish. Customers enter the restaurant sequentially

and choose a table to sit. The first customer arrives and sit at the first table. The second

customer arrives and decides either to join an occupied table k with probability proportional

to the number of customers at that table nk, or sit at a new table with probability proportional

to α. Here, the infinite number of tables correspond to clusters, and customers correspond to

observations. More specifically, each θi is analogous to a customer and the occupied table at

which the customer sits is equivalent to the distinct value θ∗k . When the customer sits at a new

table, he/she samples a dish from G0, otherwise, he/she sits at an occupied table and shares the

dish with other diners sitting there. Importantly, the Chinese restaurant process defines not only

a distribution over partitions, but also an exchangeable distribution over permutations. Indeed,

the probability distribution is invariant to the order in which customers are assigned to tables.
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Stick-breaking Construction

The stick-breaking construction, first proposed by Sethuraman (1994), provided an explicit

constructive definition of the Dirichlet process, and leads to an effective MCMC algorithms for

the Dirichlet process mixture models (see section 2.2.2). A key aspect of the stick-breaking

construction is that the random measure G can be shown as an infinite weighted sum of point

masses. Specifically, a realization G from DP(α,G0) has an almost sure representation of the

form,

G =
∞

∑
l=1

ωlδθl (2.11)

where {θ1,θ2, . . .} are independent and identically distributed samples from the base distribu-

tion G0.

The associate weights {ω1,ω2, . . .} are generated from the stick-breaking process,

which is ω1 = ν1, and for l > 2, ωl = νl ∏s<l(1−νs) with {ν1,ν2, . . .} another independent and

identically distributed samples from a Beta(1,α) distribution. Figure 2.3 shows the analogy of

the stick-breaking construction. Starting with a stick of a unit length, we sequentially partition

the stick into infinite pieces with associated weights. We first break the stick into a portion of

the stick with length ν1, and the remaining of the stick with length 1− ν1. Then, the length

of the second break is determined by a random weight ν2 of the remaining length (1− ν1).

We recursively break the stick using the same mechanism until the stick is broken into infinite

partitions.

Equation (2.11) shows that samples drawn from the Dirichlet process are discrete with

probability one. Moreover, the stick-breaking construction provides the basis for the definitions

of dependent random measures, i.e. dependent Dirichlet process (MacEachern, 1999, 2000).
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Figure 2.3: Stick-breaking process

2.2.2 Dirichlet Process Mixture Models

Since the random measure G is composed as a countable mixture of weighted sums,

multiple observations from G are likely to take identical values. Therefore, the Dirichlet process

is not appropriate to directly model the continuous observations. A natural alternative usage of

the Dirichlet process is as a prior over the random distribution G of mixture components, result-

ing in a Dirichlet process mixture model (Antoniak, 1974; Lo, 1984; Escobar, 1994; Escobar &

West, 1995). In particular, the Dirichlet process mixture density (or probability mass) function

can be expressed as f (·;G) =
R

k(·|θ)dG(θ), where k(·|θ) is a parametric density function in-

dexed by parameter vector θ, and G is a random mixing distribution. Due to the the discreteness

of G, the model partitions the observations into independent clusters with observations assigned
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to each cluster, assumed to be distributed according to k. In such case, the DP mixture model

allows not only clustering when the number of clusters is unknown, but also generating flexible

shapes for the mixture density function f (·;G). Therefore, the DP mixture model can be used

in the context of nonparametric mixing for applications where clustering of the observations is

practically relevant as in, e.g., density estimation, classification, and regression. Recall that for

the DP(α,G0) prior, the precision parameter α controls how close the realizations G is to G0.

In the DP mixture model, α controls the number of distinct mixture components n∗(n∗ < n)

(Antoniak, 1974; Escobar & West, 1995). For instance, for density estimation problems with

moderately large sample sizes, n, a useful approximation to the prior expectation for the number

of clusters is given by αlog{(α+n)/α}.

There are multiple computational strategies developed for model inference in the

Dirichlet process mixture models. One commonly used approach exploits the Pólya urn rep-

resentation to avoid dealing with the infinite dimensional G (Escobar & West, 1995; Bush &

MacEachern, 1996; MacEachern & Müller, 1998; Neal, 2000). In this approach, the mixing

component is updated one at a time, depending on the most recently sampled values of other

components. A drawback of this sampler is that it is difficult when the base measure G0 is not

conjugate to the kernel density k(·|θ), as the approach involves integrating over the mixing com-

ponents. Alternatively, we use the block Gibbs sampler, based on the truncated stick-breaking

representation of the DP (Ishwaran & Zarepour, 2000; Ishwaran & James, 2001). Ishwaran &

James (2001) shows that the truncation method closely approximates the infinite-dimensional

Dirichlet process by a finite mixture model with a finite truncation level N, when N is chosen

large enough. Typically, N is chosen using standard DP properties, such that (α/(α+1))N = ε,
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for small ε (Ishwaran & Zarepour, 2000). The truncated approximation of G is given by,

GN(·) =
N

∑
l=1

plδϑl (·) (2.12)

where ϑl are independent realizations from the base distribution G0, and p = {pl, l = 1, . . . ,N}

are the associated weights defined using the stick-breaking construction subject to the constraint

pN = 1−∑
N−1
l=1 pl . The joint distribution for the random weights p, given α, is defined as

f (p|α) = α
N−1 pα−1

N (1− p1)−1(1− (p1 + p2))−1× . . .× (1−
N−2

∑
l=1

pl)−1 (2.13)

which is a special case of the generalized Dirichlet distribution (Connor & Mosimann, 1969).
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Chapter 3

Nonparametric Mixture Modeling for Extreme

Value Analysis

3.1 Introduction

As we discussed in Section 2.1, the literature on univariate extreme values associated

with independent and identically distributed observations is extensive. In contrast, the literature

on modeling extremes generated from more general stochastic processes evolving over time

and/or space is less well developed. In this work, we focus on modeling the extremes of in-

homogeneous temporal processes. In particular, we consider an extension of the point process

approach discussed in Section 2.1.3 that allows for a general structure for the intensity function

of the underlying Poisson point process. More specifically, we use nonparametric mixtures of

bivariate kernels to model the intensity function associated with the times and values of the ex-

ceedances over a given threshold. A related approach was discussed in Kottas & Sansó (2007)
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where mixtures of bivariate beta kernels were used to model the intensity function of the point

process. Here, we provide a more scientifically relevant modeling framework for extremes by

considering alternative types of mixtures for the Poisson process intensity which ensure that

the marginal distributions of the underlying process belong to the Fréchet domain of attraction.

Moreover, we develop inferences for important extreme value analysis functionals, including

different types of return level functions. Our approach shares some similarities with that of

Coles et al. (1994), who extends the point process approach to allow for temporal dependence

across locations. Nonparametric mixture models have also been applied to create more flexible

models for the extremes of independent and identically distributed observations by using mix-

tures of Pareto distributions to model the exceedances over a given threshold (Tressou, 2008).

The rest of this chapter is organized as follows. In Section 3.2, we present the pro-

posed nonparametric mixture modeling approach, including discussion of details of the model

formulation, theoretical results, and definition of return level functions. Section 3.3 provides de-

tails on model implementation, including methods for prior specification, posterior simulation

and inference. In Section 3.4, we illustrate the methodology using a simulated data example and

a real data set of daily returns of the Dow Jones index over a five year period. Finally, Section

5.5 concludes with a summary and discussion of possible extensions.
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3.2 Nonparametric Point Process Modeling for Analysis of Extremes

3.2.1 Background and Motivation

The work presented in this chapter is concerned with extending the point process

approach described in Section 2.1.3 for modeling the tails of a general stochastic process {Xt :

t ∈ [0,T ]}. We denote by Ft the marginal distribution function for Xt , which is related to the

conditional distribution of the exceedances over a threshold u at time t through Pr(Xt ≤ y | Xt >

u) = {Ft(y)−Ft(u)}/{1−Ft(u)}, for y ≥ u. Moreover, recall that the pairwise observations

{( j,X j) : j = 1, . . . ,r} defined in Section 2.1.3, where the first entry denotes the period over

which each observation is collected. If we restrict attention to those observations that fall above

a given threshold u, then our sample is thinned to the pairs {(Zi,Yi) : i = 1, . . . ,n}, where Yi is

the value of the i-th exceedance and Zi is the time at which the i-th exceedance occurred. In

our approach, the pairs {(Zi,Yi) : i = 1, . . . ,n} are again treated as a realization from a non-

homogeneous Poisson process, here, on A = [0,T ]× [u,∞), with intensity function λ(t,y), so

that N(A)∼ Poi{
R

A λ(t,y)dtdy} for any measurable set A⊂ A .

We focus on modeling the intensity function of extremes to provide more flexible in-

ference than the limiting parametric intensity in Equation (2.7), which, for instance, is restricted

by time homogeneity. To this end, we formulate a mixture model for λ(t,y) by exploiting the

connection of the Poisson process intensity with a density function. We build on a modeling

approach originally developed in Kottas & Sansó (2007), which has also been applied to anal-

ysis of immunological studies (Ji et al., 2009) and neuronal data analysis (Kottas & Behseta,

2010; Kottas et al., 2012). Our objective is to develop a flexible inferential framework for ex-
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treme value analysis. Hence, in contrast to this earlier work, we seek more structured modeling

for the kernel in the mixture representation for λ(t,y) to achieve a balance between desirable

theoretical properties for the tail behavior of the marginal distribution Ft , and general inference

for key extreme value analysis functionals.

3.2.2 The Modeling Approach

To generate a flexible model for extreme value analysis under the point process ap-

proach, we aim at estimating nonparametrically the intensity function, λ(t,y), over time and

exceedance values. The key observation underlying our modeling approach is that the Poisson

process intensity function can be decomposed as λ(·) = γ f (·), where γ≡ Λ(A) =
R

A λ(t,y)dtdy

is the total intensity of exceedances, and f (·) = λ(·)/Λ(A) is a density function on A , which

fully controls the shape of the intensity function. The implicit assumption is that Λ(A) < ∞,

which can be justified by noting that the Poisson process definition implies that exp{−Λ(A)}=

Pr({Xt < u : t ∈ [0,T ]}). Hence, provided the threshold u and the underlying stochastic process

are such that Pr({Xt < u : t ∈ [0,T ]}) > 0, the previous identity implies that Λ(A) < ∞. For ex-

ample, this condition is satisfied if {Xt : t ∈ [0,T ]} is a Brownian motion; in general, continuous

sample paths would likely be needed if one seeks more specific conditions on the underlying

stochastic process such that Pr({Xt < u : t ∈ [0,T ]}) > 0 holds true.

Under this formulation for the intensity of extremes, we can express the Poisson pro-

cess likelihood function as

L(γ, f (·);{(ti,yi) : i = 1, ...,n}) ∝ exp(−γ)γn
n

∏
i=1

f (ti,yi). (3.1)
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Hence, the problem of estimating the intensity function for the point process of exceedances

can be broken down into two independent problems, namely, estimating the total intensity of

the Poisson process, and estimating the probability density associated with the distribution of

exceedances over the region A .

To generate a rich prior for the Poisson process density, we consider a nonparametric

mixture model,

f (t,y)≡ f (t,y;G) =
Z

k(t,y | θ)dG(θ), (3.2)

where k(t,y | θ) is a parametric density on A indexed by parameter vector θ, and G is a random

mixing distribution. As reviewed in Section 2.2, placing a Dirichlet process prior DP(α,G0)

on G results in a Dirichlet process mixture model for f (t,y;G). To study model properties as

well as for posterior simulation, we make use of the Dirichlet process stick-breaking definition

introduced in Section 2.2.1. This specification leads to the following mixture model for the

intensity of extremes,

λ(t,y)≡ λ(t,y;G,γ) = γ f (t,y;G) = γ

Z
k(t,y | θ)dG(θ), G | α,ψ∼ DP(α,G0), (3.3)

where ψ collects the parameters of the centering distribution G0; as discussed in Section 3.3,

the full Bayesian model involves priors for hyperparameters α and ψ.

Since the purpose of studying extreme values is often to extrapolate the tail behavior

of the distribution beyond the observed range of exceedances, and accurate extrapolation in

this setting heavily depends on properties of the tail of the density f (t,y), the choice of the

mixture kernel k(t,y | θ) is a critical aspect of the model formulation. Indeed, note that, unlike

other applications of Poisson processes to spatial modeling, in this problem the nature of the
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argument of the dimensions associated with A = [0,T ]× [u,∞) is very different. Hence, in

specifying the mixture kernel density for model (3.3), we consider a product form

k(t,y | θ)≡ k(t,y | θ1,θ2) = k1(t | θ1)k2(y | θ2), (3.4)

that is, kernel components k1 and k2 are independent before mixing. However, after mixing over

the random G, dependence is induced to the resulting mixture model f (t,y;G) for the bivariate

Poisson process density.

A key objective of our modeling approach is to remove the restriction of time homo-

geneity implied by (2.7), and thus for the intensity in the time direction, we seek as general a

specification as possible. Because of its flexibility, a (rescaled) beta distribution emerges as a

natural choice for the kernel component over time,

k1(t | θ1) =
1
T

Γ(τ)
Γ(κτ/T )Γ({1−κ/T}τ)

( t
T

)κτ/T−1(
1− t

T

){1−κ/T}τ−1
, t ∈ (0,T ) (3.5)

where θ1 = (κ,τ), κ ∈ (0,T ) is the mean of the beta distribution, and τ > 0 is a scale parameter.

The choice of kernel component k2(y | θ2) is more delicate. The previous attempt in

Kottas & Sansó (2007) to nonparametric mixture modeling for extremes under the point process

approach utilized kernels with bounded support, defined by a bivariate beta distribution, and

thus the underlying Ft was implicitly assumed to have compact support. This is restrictive for

many applications. Moreover, kernel k2 is used to capture through mixing the tail behavior

of the underlying distribution where we do not expect, for instance, multimodalities. Hence,

applying the mixture model with a beta density for k2 may lead to overfitting, which is especially

damaging for extrapolation. In contrast, the asymptotic theory for extremes suggests what the
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tail behavior is, and we can make use of that information to improve inference under the mixture

model.

Hence, we build the intensity function in the exceedances direction from a kernel

defined through a special case of the generalized Pareto distribution,

k2(y | θ2) =
1
σ

{
1+

ξ(y−u)
σ

}−1/ξ−1

, y≥ u (3.6)

such that θ2 = (σ,ξ) with σ > 0 and ξ > 0. The location parameter is set to the specified

threshold value u to ensure that the resulting mixture kernel k(t,y | θ1,θ2) has support on A .

Moreover, we focus on the ξ > 0 range for the shape parameter, which ensures that the cor-

responding marginal distributions belong to the Fréchet maximum domain of attraction, that

is, we are modeling an underlying stochastic process with heavy tailed behavior; see specific

theoretical result in Section 3.2.3. Specifically, the distribution for Xt is in the Fréchet domain

of attraction if, for sufficiently large x, Pr(Xt > x)≈Cx−ρL(x), where C and ρ are non-negative

quantities, which are constants in x, and L(x) is a slowly varying function, that is, L(x) satis-

fies limx→∞ L(sx)/L(x) = 1, for all s > 0 (Embrechts et al., 1997). The tail index parameter ρ

has a useful interpretation as a risk indicator – larger values of ρ−1 lead to larger probability

of exceeding the specified level x – and its estimation has been considered extensively in the

literature; see, for instance, the related discussion and references in Tressou (2008).

An appealing feature of the mixture model formulation in (3.3) – (3.6) is that the

model for the intensity of extremes can be interpreted as accommodating time inhomogeneities

through local adaptive fitting of generalized Pareto distributions, where the mode of the beta

kernel associated with each distinct mixture component serves to localize the effect of the gen-
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eralized Pareto kernel in time. This feature provides flexibility with respect to capturing non-

standard underlying intensity shapes as they are suggested by the data. In addition, note that if

α→ 0+, which results in a single mixture component, and if the beta kernel component is re-

duced to a uniform, we recover as a special case the parametric model for the intensity function

in (2.7) with µ = u.

Traditionally, one of the key goals of extreme value theory is to estimate the return

level function of the process, which is strongly connected to the intensity function. In the case

of non-homogeneous processes, we can define two different types of return level functions. For

a given point t0 ∈ (0,T ) and a small ε > 0, we define the ε-conditional return level curve as

given by the solution to the Equation Pr({Xt > xm : t ∈ [t0− ε, t0 + ε]}) = m−1, for different

values of m. Under the nonparametric mixture model, for any x > u,

Pr({Xt > x : t ∈ [t0− ε, t0 + ε]};G,γ) =

1− exp
[
−γ

Z
{1−K2(x | σ,ξ)}{K1 (t0 + ε | κ,τ)−K1 (t0− ε | κ,τ)}dG(κ,τ,σ,ξ)

]
, (3.7)

where K1 and K2 denote the distribution functions for the beta and generalized Pareto kernel

components, respectively. Hence, the ε-conditional return level xm at time t0 corresponds ap-

proximately to a realization of the process that would be exceeded only once in every m periods

if additional (imaginary) draws were to be taken according to the underlying Ft0 .

We can also define a marginal return level curve through the average intensity function

Λ̃([x,∞)) = T−1 R T
0

R
∞

x λ(t,y)dtdy, for x > u. Proceeding as before, we define the marginal

return level curve as the solution to Pr(X̃ > xm) = m−1, where

Pr(X̃ > x;G,γ) = 1− exp
[
−T−1

γ

Z
{1−K2(x | σ,ξ)}dG(σ,ξ)

]
, (3.8)
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and X̃ corresponds to the outcome associated with an “average” period. Hence, unlike the

conditional return level curve, which provides information about the likelihood of extremes at

a specific time point t0, the marginal return level curve provides an average over all t ∈ [0,T ].

To understand the relationship between conditional and marginal return level curves,

it is useful to compare equations (3.7) and (3.8) with the tail probability obtained by modeling

λ(t,y) using (2.7). Since in that case the intensity function is time homogeneous, the marginal

and conditional tail probabilities agree for the traditional parametric model, and correspond to

the one generated from (2.3). For non-homogeneous processes the marginal and conditional

return level curves provide important and distinct insights into the behavior of the underlying

stochastic process. While marginal return level curves can be used to assess what extremes look

like on a “normal” period, the conditional return level curves can be used to examine specific

past dates, providing insights about the behavior of the underlying process on a particularly

“good” or “bad” period.

3.2.3 Theoretical Properties

As stated in Section 3.2.2, we focus on the case of the shape parameter ξ in (3.6) is

positive, which indicates that the corresponding marginal distributions belong to the Fréchet

maximum domain of attraction. The specific theoretical result under our modeling approach is

formulated below as Theorem 1. Key to the proof of this theorem uses a result of independent

interest that relates a representation of the tail probability for the underlying process marginals

at any specific time point to the conditional Poisson process density at that time point. We

therefore state this result first as the following lemma.
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LEMMA 1. Consider a stochastic process {Xt : t ∈ [0,T ]} with right-continuous sample paths,

and the point process whose points comprise the time, t, and value, y, of exceedances of process

{Xt : t ∈ [0,T ]} above a given threshold u. Assume a non-homogeneous Poisson model for the

point process with intensity function λ(t,y) = γ f (t,y), for (t,y) ∈ [0,T ]× [u,∞), where γ =

R
A λ(t,y)dtdy. Then, for any specified time point t0,

Pr(Xt0 > x | Xt0 > u) =
Z

∞

x
f (y | t0)dy =

Z
∞

x
f (t0,y)dy/{ f (t0)}, x > u.

Proof. Consider a generic x > u, where u is the given threshold, and fix a time point t0. Using

continuity of probability measure and the right-continuity of the sample paths of the underlying

stochastic process {Xt : t ∈ [0,T ]}, we have pr(Xt0 > x) = lim∆t→0 pr({Xt > x : t ∈ [t0, t0 +∆t)}).

The same argument applies to pr(Xt0 > u) = lim∆t→0 pr({Xt > u : t ∈ [t0, t0 +∆t)}),

resulting in

Pr(Xt0 > u) = lim
∆t→0

{
1− exp

(
−

Z
∞

u

Z t0+∆t

t0
λ(t,y)dtdy

)}
(3.9)

based on the Poisson assumption for the point process of exceedances.

Next, define M0 as the number of exceedances in time interval [t0, t0 +∆t). Then, we

can write

Pr({Xt > x : t ∈ [t0, t0 +∆t)}) = ∑
m≥1

Pr({Xt > x : t ∈ [t0, t0 +∆t)}∩{M0 = m}) .

Using the Poisson process assumption, lim∆t→0(∆t)−1Pr(M0 = m) = 0, for m ≥ 2, resulting in

Pr(Xt0 > x) = lim∆t→0 Pr({Xt > x : t ∈ [t0, t0 +∆t)}∩{M0 = 1}). Based again on the Poisson
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process structure,

Pr({Xt > x : t ∈ [t0, t0 +∆t)}∩{M0 = 1})

= Pr(1 event in [t0, t0 +∆t)× [x,∞))×Pr(0 events in [t0, t0 +∆t)× [u,x))

=
{

exp
(
−

Z
∞

x

Z t0+∆t

t0
λ(t,y)dtdy

)(Z
∞

x

Z t0+∆t

t0
λ(t,y)dtdy

)}
×
{

exp
(
−

Z x

u

Z t0+∆t

t0
λ(t,y)dtdy

)}
,

and thus,

Pr(Xt0 > x) = lim
∆t→0

(Z
∞

x

Z t0+∆t

t0
λ(t,y)dtdy

)
exp
(
−

Z
∞

x

Z t0+∆t

t0
λ(t,y)dtdy

)
exp
(
−

Z x

u

Z t0+∆t

t0
λ(t,y)dtdy

)
= lim

∆t→0

Z
∞

x

Z t0+∆t

t0
λ(t,y)dtdy. (3.10)

Combining Equation (3.9) and (3.10), we obtain for any x > u,

Pr(Xt0 > x | Xt0 > u) = lim
∆t→0

pr({Xt > x : t ∈ [t0, t0 +∆t)})
pr({Xt > u : t ∈ [t0, t0 +∆t)})

=
lim∆t→0(∆t)−1 R

∞

x
R t0+∆t

t0 λ(t,y)dtdy

lim∆t→0(∆t)−1
{

1− exp
(
−

R
∞

u
R t0+∆t

t0 λ(t,y)dtdy
)} .

The limit in the numerator yields
R

∞

x λ(t0,y)dy. For the denominator, we use a first-order

Maclaurin series expansion of the function g(∆t) = exp
(
−

R
∞

u
R t0+∆t

t0 λ(t,y)dtdy
)

to obtain

g(∆t)= g(0)+(∆t)g′(0)+R2(∆t)= 1−(∆t)
R

∞

u λ(t0,y)dy+R2(∆t), where lim∆t→0(∆t)−1R2(∆t)

= 0. Hence,

lim
∆t→0

(∆t)−1
{

1− exp
(
−

Z
∞

u

Z t0+∆t

t0
λ(t,y)dtdy

)}
=

Z
∞

u
λ(t0,y)dy = γ f (t0),

and thus finally,

Pr(Xt0 > x | Xt0 > u) =
R

∞

x λ(t0,y)dy
γ f (t0)

=
γ

R
∞

x f (t0,y)dy
γ f (t0)

=
Z

∞

x
f (y | t0)dy.
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THEOREM 1. Assume a non-homogeneous Poisson process model on A = [0,T ]× [u,∞) for

the times and values of the exceedances, given a fixed threshold u, of a stochastic process

{Xt : t ∈ [0,T ]} with right-continuous sample paths. Consider the mixture model defined by

(3.3) – (3.6) for the Poisson process intensity function. Then, the marginal distributions of the

process, Pr(Xt > x), belong to the Fréchet maximum domain of attraction.

Proof. Consider a sufficiently large, generic x > u, where u is the given threshold. We seek to

prove that the marginal distributions of the underlying process satisfy Pr(Xt > x) ≈Cx−ρL(x),

where ρ is the tail index parameter and L(x) is a slowly varying function.

First, note that, since 1−Ft(u) is a positive constant in x, Pr(Xt > x) belongs to the

Fréchet maximum domain of attraction if and only if Pr(Xt > x | Xt > u) = {1−Ft(x)}/{1−

Ft(u)} does, and importantly, both distributions have the same tail index parameter. Hence, it

suffices to work with conditional distribution Pr(Xt > x | Xt > u) at a specific time point t.

To complete the proof, we employ the truncation approximation GN to the Dirichlet

process representation for mixing distribution G, which as discussed in Section 2.2.2, provides

the version of the mixture model applied to the data. Then based on Lemma 1, we obtain

Pr(Xt > x | Xt > u) =
Z

∞

x
f (y | t)dy

=
∑

N
l=1 plk1(t | κl,τl)

{
1+σ

−1
l ξl(x−u)

}−1/ξl

∑
N
l=1 plk1(t | κl,τl)

=
N

∑
l=1

ωl(Al +Blx)−1/ξl

where ωl = plk1(t|κl,τl)/{∑N
l=1 plk1(t|κl,τl)}, Al = 1−σ

−1
l ξlu, and Bl = σ

−1
l ξl . Note that

the weights ωl depend on the specified time point t, but not on level x. Next, letting ρ =
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min{ξ−1
l : l = 1, ...,N} and l∗ = argmin{ξ−1

l : l = 1, ...,N}, we can write

Pr(Xt > x | Xt > u) =
N

∑
l=1

ωl(Al +Blx)−1/ξl

= x−ρ
N

∑
l=1

ωl

(
Al

x
+Bl

)− 1
ξl

x−
1
ξl

+ρ

= x−ρL(x).

Now,

lim
x→∞

(
Al

x
+Bl

)− 1
ξl

x−
1
ξl

+ρ =


B−1/ξl

l if l = l∗

0 otherwise

and therefore limx→∞ L(sx)/L(x) = 1, for any s > 0, which completes the argument.

The practical utility of the lemma is that it enables time-dependent inference for tail

probabilities of the marginal distributions of the underlying process – which is observed only

through its exceedances above the given threshold – based on the nonparametric mixture model

for the point process density. Note that the result of Lemma 1 is not specific to the particular

modeling approach as its proof utilizes only the λ(t,y) = γ f (t,y) formulation for the Poisson

process intensity. However, the rest of the proof for Theorem 1 uses the mixture representation

for the Poisson process density and the specific mixture kernel built from (3.5) and (3.6). In fact,

the argument relies on a truncation approximation to the Dirichlet process representation, which

is also used in the posterior simulation approach; see Section 3.3.1. The assumption of right-

continuous sample paths for the underlying process is needed for the proof of the lemma. From

a theoretical point of view, this assumption is not restrictive given the availability of results on

existence of versions of stochastic processes with right-continuous sample paths.
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3.3 Implementation Details

3.3.1 MCMC Posterior Simulation

Based on the form of the Poisson process likelihood in (3.1), the marginal posterior

distribution for γ is analytically available as a Gamma distribution under a Gamma prior or the

marginal reference prior, which is given by p(γ) ∝ γ−11(γ > 0) (Kottas & Behseta, 2010). In

particular, under the latter prior, the joint posterior distribution is proper, and p(γ | Data) is

simply a Gamma(n,1) distribution.

Inference for the Poisson process density requires the computation of the posterior

distribution for the random mixing distribution G and the Dirichlet process prior hyperparame-

ters. Full posterior inference under Dirichlet process mixture models can be obtained by using

the truncated version of G,

GN(·) =
N

∑
l=1

plδζl (·),

where the ζl are independent draws from the base distribution G0 and p1, . . . , pN are the associ-

ated weights defined using a stick-breaking construction under the constraint pN = 1−∑
N−1
l=1 pl .

Introducing configuration variables L = (L1, · · · ,Ln), where Li = l if and only if the mixing pa-

rameter corresponding to observation (ti,yi) is given by ζl , the hierarchical model for the data

37



is written as:

(ti,yi) | κLi ,τLi ,σLi ,ξLi

ind.∼ k1(ti | κLi ,τLi)k2(yi | σLi ,ξLi), i = 1, . . . ,n

Li | p
ind.∼

N

∑
l=1

plδl (Li) , i = 1, . . . ,n

p | α∼ f (p | α)

ζl = (κl,τl,σl,ξl)
ind.∼ G0(ζl | ψ), l = 1, . . . ,N

where the induced prior f (p | α) for the vector of weights p = (p1, . . . , pN), given α, is given by

a generalized Dirichlet distribution as introduced in Section 2.2.2. The structure of the centering

distribution, G0, and its hyperparameters, ψ, is discussed in Section 3.3.3, where we also discuss

the prior choices for α and ψ to complete the model.

We employ a blocked Gibbs sampler to obtain samples from the full posterior distri-

bution p(σ,ξ,κ,τ,L,p,α,ψ | Data). Details of the posterior simulation algorithm are provided

next.

MCMC Details

Here, we provide the details for the simulation from the full posterior distribution of the

hierarchical model for the Poisson process density. The Markov chain Monte Carlo algorithm

applied to iteratively update model parameters according to the following steps:

• Updating Li, i = 1, . . . ,n. Each draw of Li is from a discrete distribution, ∑
N
l=1 p̃l,iδl(Li),

where the vector of revised weights, p̃l ∝ (p1k(ti,yi|ζ1), . . . , pNk(ti,yi|ζN)).

• Updating p. The full conditional of p is proportional to a generalized Dirichlet distri-

bution with parameters (M1 + 1, . . .MN−1 + 1) and (α + ∑
N
l=2 Ml, . . .α + MN) (Ishwaran
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& James, 2001), where Ml is the size of each component, defined as Ml = |{i : Li =

l}|, l = 1, . . .N. Therefore, p can be sampled using the following two steps. First, sam-

ple the latent parameter V ∗l ∼ beta(1 + Ml,α + ∑
N
r=l+1 Mr) and then let p1 = V ∗1 ; pl =

V ∗l ∏
l−1
r=1(1−V ∗r ), l = 1,2, . . . ,N−1; pN = 1−∑

N−1
l=1 (1−V ∗r ).

• Updating α. The updates for α are generic for any choice of kernel in the Dirichlet

process mixture model; details are given in Ishwaran & Zarepour (2000).

• Updating the centering distribution parameters. Based on the conditionally conjugate

priors used for bσ, bξ, and bτ (see prior specification details in Section 3.3.3), each of

the corresponding posterior full conditionals is available in closed form. In particular,

for bσ this is a Gamma distribution with shape parameter 1 + Naσ and scale parame-

ter
(
d−1

σ +∑
N
l=1 σ

−1
l

)−1
. Moreover, bξ has an inverse Gamma posterior full conditional

with shape parameter 2 + Naξ and scale parameter dξ + ∑
N
l=1 ξl . Finally, the full condi-

tional for bτ is a Gamma distribution with shape parameter 1 + Naτ and scale parameter(
d−1

τ +∑
N
l=1 τ

−1
l

)−1
.

• Updating (κl,τl,σl,ξl), for l = 1, ...,N. Let n∗ be the number of distinct clusters in vec-

tor L, and L∗1, · · ·L∗n∗ the distinct values in vector L. Then if l /∈ {L∗j : j = 1, . . . ,n∗},

(κl,τl,σl,ξl) is drawn from the centering distribution G0. If l ∈ {L∗j : j = 1, . . . ,n∗}, the

posterior full conditional for (κl,τl,σl,ξl) is given by:

p(κl| · · · ,Data) ∝ dGκ
0(κl) ∏

{i:Li=l}
k1(ti | κl,τl)

p(τl| · · · ,Data) ∝ dGτ
0(τl) ∏

{i:Li=l}
k1(ti | κl,τl)
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p(σl| · · · ,Data) ∝ dGσ
0 (σl) ∏

{i:Li=l}
k2(yi | σl,ξl)

p(ξl| · · · ,Data) ∝ dGξ

0(ξl) ∏
{i:Li=l}

k2(yi | σl,ξl)

where k1(t | κl,τl) and k2(y | σl,ξl) is given by (3.5) and (3.6), respectively, and Gκ
0 , Gτ

0,

Gσ
0 , Gξ

0 are centering distributions defined in details in Section 3.3.3. Since no direct

sampler is available for these distributions, we employ separate Gaussian random walk

Metropolis steps on appropriately transformed versions of the parameters, that is, loga-

rithmic transformations for τl , σl and ξl , and a logit transformation for κl . In all cases,

the variances of the Gaussian proposals were tuned to obtain acceptance rates of around

20% to 30%.

3.3.2 Posterior Inference

Using the posterior samples for GN ≡ {(pl,κl,τl,σl,ξl) : l = 1, ...,N}, we can obtain

full inference for the joint intensity of extremes,

λ(t,y;G,γ) = γ

N

∑
l=1

pl k1(t | κl,τl)k2(y | σl,ξl).

Besides the intensity function, we can also obtain the marginal density of exceedance times that

describes the information about when the extreme events will be more likely to happen,

f (t;G) =
N

∑
l=1

pl k1(t | κl,τl),

and for tail probabilities of the underlying process based on Lemma 1.

Similarly, approximate inferences for ε-conditional return level curves can be ob-
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tained by replacing G in Equation (3.7) with its truncation approximation GN ,

Pr(Xt > x : t ∈ [t0− ε, t0 + ε];G,γ) =

1− exp

[
−γ

N

∑
l=1

pl {1−K2(x | σl,ξl)}{K1 (t0 + ε | κl,τl)−K1 (t0− ε | κl,τl)}

]
,

and marginal return level curve in Equation (3.8) can be expressed as,

Pr(Xt > x) = 1− exp

[
−T−1

γ

N

∑
l=1

pl (1−K2(x | σl,ξl))

]
.

3.3.3 Prior Specification

We assume that the different components of the centering distribution G0 are inde-

pendent, that is,

G0(κ,τ,σ,ξ) = Gκ
0(κ)Gτ

0(τ)G
σ
0 (σ)Gξ

0(ξ).

For Gσ
0 , we use an inverse Gamma distribution with fixed shape parameter aσ = 2, which implies

infinite prior variance, and random mean parameter bσ, which is assigned an exponential prior

with mean dσ. Hence, the specific choice of dσ allows us to control the prior mean value for

σ while being relatively non-informative about this choice. For Gξ

0, we take an exponential

distribution with mean bξ; an inverse Gamma prior with shape parameter 2 and mean dξ is

placed on bξ. We suggest that the values of dσ and dξ are selected to reflect the scale of the data

under a single component of the mixture model. In particular, with a prior guess at the mean

and variance for the exceedance values, we can numerically solve for σ and ξ from the Equation

of the mean and variance of the generalized Pareto distribution. Then, we set the solutions to

dσ and dξ, which are the prior means for σ and ξ, respectively.
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Regarding the parameters of the beta kernel component, for Gκ
0 , we work with a

beta distribution, with fixed parameters, for the scaled mean κ/T . For Gτ
0, we take an inverse

Gamma distribution with shape parameter equal to 2 and mean parameter bτ to which we place

an exponential prior with mean dτ. To specify dτ and the parameters for Gκ
0 , we study the

implied prior for the marginal density of exceedance times. Based on the connection between

the parametric and nonparametric formulations for the point process model, a non-informative

specification may be built from a uniform prior mean for this marginal density. On the other

hand, for some applications we may wish to encourage priors that favor clustering of extreme

values, and this can also be achieved through appropriate specification of Gκ
0 and Gτ

0. We

provide illustrations of both scenarios with the data examples of Section 3.4.

Finally, we use a Gamma prior for α, and the reference prior, discussed in Section

3.3.1, for γ.

3.4 Illustrations

3.4.1 Simulation Study

To illustrate our modeling approach, we first consider a simulated data set where

observations were generated according to a non-linear regression model, Xt = µ(t)+Wet , with

mean function

µ(t) =−0.5+1.6(t/T )+0.5sin(−5.4+10.8(t/T ))+1.1{1+4(2(t/T )−1)2}−1.

Here, the noise terms et are independently distributed according to a Student t distribution with

3 degrees of freedom for every t, and W = 0.32. This choice implies that var{Wet} = 0.3 for
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all t. The raw dataset contains T = 10,000 observations equally spaced in the interval [0,T ];

to assemble the final data set, we retain observations that are larger than the threshold u = 2.1,

which results in n = 525 extreme observations.

We assign a Gamma prior to the precision parameter α with mean 5 and variance

2.5. Also, following the approach discussed in Section 3.3.3, we set dσ = 0.296 and dξ = 0.257.

Moreover, we set dτ = 300, and consider two prior choices for Gκ
0 . The first is a beta distribution

for κ/T with mean 0.5 and variance 1/28, whereas the second prior is based on a uniform

distribution for κ/T . The effect of these two choices on the implied prior for the marginal

density of exceedances over time is illustrated in the first two rows of Figure 3.1. The first

row plots 10 prior realizations for this marginal density, while the second row shows the prior

mean along with 95% pointwise credible intervals. Both prior specifications induce a large

degree of variability for the marginal density of exceedance times, with individual realizations

being highly multimodal. However, the first prior choice tends to favor exceedances located in

the middle of the time interval, while the second prior implies a more uniform distribution of

exceedances.

The algorithm discussed in Section 3.3.1 was used to fit our model. A total of 4,000

posterior samples were used for all inferences. These samples were obtained after thinning a

sample of 200,000 from which 40,000 iterations were discarded as burn-in period. Posterior

mean estimates of the joint intensity function λ(t,y) are presented in the third row of Figure

3.1, while the last row shows the posterior mean and 95% credible intervals for the marginal

density of exceedance times. Note that posterior inference is quite robust to the specific prior

choices.
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Figure 3.1: Simulation study. From top to bottom, 10 prior realizations of the marginal density
of exceedance times; prior mean (red line) and 95% intervals (grey bands) of the marginal den-
sity of exceedance times; posterior mean for the bivariate intensity function; and posterior mean
and 95% intervals for the marginal density of exceedance times. The left column corresponds
to the prior choice involving a beta distribution for κ/T with mean 0.5 and variance 1/28, and
the right column to the prior based on a uniform distribution for κ/T .
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In addition to providing estimates of the intensity function, we are interested in in-

vestigating the ability of the model to estimate the tails of the stochastic process, and in com-

paring its performance with the parametric model discussed in Section 2.1.3. For this purpose,

we present in Figure 3.2 the true conditional return level function corresponding to four time

points, along with posterior estimates generated under the parametric model for the intensity

function given in (2.7), as well as under the nonparametric model, using the two prior choices

discussed above. For the parametric model, we utilize a normal prior on the location parame-

ter µ with mean 3.23 and variance 10; an inverse Gamma prior on the scale parameter σ with

shape parameter 2 and mean 0.43; and an exponential prior on the shape parameter ξ with mean

0.048. The parametric model is fitted using a Gaussian random walk Metropolis algorithm that

samples jointly the three parameters on an appropriately transformed scale for each parameter.

The right column of Figure 3.2 shows that the parametric model performs poorly at

capturing the true return level curve at all four time points. Moreover, the credible intervals

are very narrow, which suggests that the parametric model dramatically underestimates the

uncertainty in situations where the process is not homogeneous in time. On the other hand,

the estimates generated by the nonparametric model are quite accurate, particularly for time

points t0 = 5100 and t0 = 6500 around which a relatively large number of exceedances are

concentrated. Again, posterior inference is robust to the two prior choices. Finally, note that the

nonparametric mixture model estimates for the marginal return level curve are almost identical

to those generated by the parametric model, involving only a minimal increase in posterior

uncertainty.
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(a) t0 = 500
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(b) t0 = 5100
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(c) t0 = 6500
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(d) t0 = 9500
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(e) Average Return Levels

Figure 3.2: Simulation study. The top four rows plot the posterior mean (red line) and 95%
intervals (grey bands), and the true 1000-observation return level (black line) at four time points.
The bottom row includes the posterior mean and 95% interval estimates of the marginal return
levels. Results are shown for the nonparametric model under the beta distribution for κ/T
with mean 0.5 and variance 1/28 (left column), the nonparametric model under the uniform
distribution for κ/T (middle column), and the parametric model (right column).
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3.4.2 Dow Jones Data

Here, we discuss the analysis of extremes of the daily returns for the Dow Jones

index between September 11, 1995 and September 7, 2000; a previous analysis of this data set

is presented in Coles (2001). Modeling the lower tail of the distribution for returns of financial

assets is critical to compute risk measures such as the Value at Risk or the Expected Shortfall.

In the sequel we work with the negative log returns of the index,

yt =−100× log
(

xt

xt−1

)
,

where xt is the closing price at day t. Note that, in this case, drops in the index correspond

to positive values of yt , while increases correspond to negative values. Figure 3.3 shows the

n = 82 values of yt above the threshold u = 1.5. The vertical dashed lines mark the dates at

which three financial crises started: the mini-crash on October 27, 1997, the Russian financial

crisis on August 17, 1998, and the bursting of the dot-com bubble on March 10, 2000. We see

that the three biggest drops in the index align well with these three financial crises, and that a

large number of exceedances concentrate around those dates.

For the analysis of this data set we used priors that are similar to the second prior

specification discussed in Section 3.4.1. Figure 3.4 shows 10 prior realizations for the marginal

density of exceedance times, as well as prior mean and 95% interval estimates for this density.

Given that the time period under study includes multiple crises around which extreme values

may cluster, a prior choice that favors multimodal exceedance time densities is arguably justi-

fied. At the same time, the corresponding prior mean is fairly close to a uniform density with

wide uncertainty bands. Hence, even though our prior favors the clustering of extreme values,
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Figure 3.3: Dow Jones data. Plot of the extreme negative log returns for the Dow Jones index
above threshold u = 1.5, from September 11, 1995 to September 7, 2000. The blue dashed
lines indicate the time points of three financial crises: the mini-crash on October 27, 1997, the
Russian financial crisis on August 17, 1998, and the bursting of the dot-com bubble on March
10, 2000, respectively.

we make no prior assumption about the location of such clusters.

Figure 3.4 includes posterior inference results for the bivariate intensity function, and

for the marginal density of exceedance times. Note that the nonparametric model captures

reasonably well the localized characteristics of the raw data and cyclical nature of the business

cycle. Interestingly, the estimates also suggest an increasing risk of extreme loses over the time

period under study. Both of these features are captured by the model even though it does not
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contain any explicit term to account for them.
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Figure 3.4: Dow Jones data. Clockwise from top left, 10 prior realizations of the marginal den-
sity of exceedance times; prior mean (red line) and 95% intervals (grey bands) of the marginal
density of exceedance times; posterior mean and 95% interval estimates for the marginal density
of exceedance times; and posterior mean of the bivariate intensity function.

Next, we report on inference for ε-conditional return level curves, obtained using

Equation (3.7) with ε = 0.5, that is, daily conditional return level curves. Based on the nonpara-

metric mixture model, the left column of Figure 3.5 shows posterior mean and 95% interval

estimates for the conditional return level curve at four specific dates, September 26, 1996, Oc-

tober 27, 1997, August 17, 1998, and July 20, 1999. Note that the posterior mean estimates of
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the return level curve at October 27, 1997 and August 17, 1998 are uniformly above the ones at

September 26, 1996 and July 20, 1999. This is consistent with the fact that the former two dates

fall within periods of financial distress, while the latter do not. In addition, we compare the

nonparametric model estimates against those generated by the parametric model; see the right

column of Figure 3.5. Since the parametric model is unable to capture the time inhomogeneity

in the data, it produces the same point estimate at all dates with much narrower posterior uncer-

tainty bands. Finally, Figure 3.6 shows posterior point and interval estimates for the marginal

return level curve under both the parametric and nonparametric models. We note that the point

estimates are similar, but the uncertainty levels associated with the nonparametric model are

higher.

Model Checking

To check the Poisson process model assumptions, in-sample goodness of fit was in-

vestigated using quantile-quantile plots. Since the marginal process of the exceedance times is

also a Poisson process, the time-rescaling theorem (see for example Daley & Vere-Jones, 2003)

is applied for checking the Poisson process assumption in the time direction. More specifically,

if {ti : i = 1, . . . ,n} is a realization from the non-homogeneous Poisson process with cumula-

tive intensity Λ(t), then the transformed point process {Λ(ti) : i = 1, . . .n} is a homogeneous

Poisson process with unit intensity. Hence, if the Poisson process assumption is correct, the

transformed inter-arrival times z1, . . . ,zn, defined as zi = 1− exp{−[Λ(ti;GN)−Λ(ti−1;GN)]}

(with the convention Λ(0;GN) = 0) are independent uniform random variables on [0,1].

On the other hand, to check the Poisson process assumption in both directions, we
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Figure 3.5: Dow Jones data. The posterior mean (red line) and 95% interval estimates (grey
bands) of the 1000-day conditional return level curves at four different dates under the nonpara-
metric model (left column) and the parametric model (right column).
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Figure 3.6: Dow Jones data. The posterior mean (red line) and 95% interval estimates (grey
bands) of the marginal 1000-day return level curve under the nonparametric model (left panel)
and the parametric model (right panel).

studied the conditional distribution for exceedances given time. Specifically, the conditional

cumulative distribution function F(y|t;GN) =
R y

u f (s | t;GN)ds is available at any specific point

(t,y). Hence, if the Poisson process assumption holds, the random variables ui = F(yi | ti;GN),

for i = 1, . . . ,n, are uniformly distributed in the unit interval (Taddy & Kottas, 2012).

The left panel of Figure 3.7 shows the quantile-quantile plot for the transformed inter-

arrival times against the quantiles of a uniform distribution, and the right panel of Figure 3.7

shows the conditional distribution quantile-quantile plot. The quantile-quantile plots are esti-

mated from each MCMC posterior sample, and the posterior mean is shown in red and 95%

credible intervals are shown in blue. These results do not indicate any drastic deviations from

the Poisson process assumptions
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Figure 3.7: Dow Jones data. Posterior quantile-quantile plots (posterior mean and 95% credible
intervals) for 1− exp{−[Λ(ti;GN)−Λ(ti−1;GN)]} (left panel), and for

R yi
u f (s | ti;GN)ds (right

panel), respectively.

Sensitivity Analysis

To assess prior sensitivity for the nonparametric model, Figures 3.8 and 3.9 provide

inference results under three different prior choices for the parameters of the beta distribution

for Gκ
0 , for the exponential prior, with mean dτ, for the mean parameter bτ of the inverse-

Gamma distribution for Gτ
0, and for the parameters of the gamma prior for α. Specifically, the

left column of Figures 3.8 and 3.9 corresponds to the first prior specification with a uniform

distribution for κ/T , dτ = 40, and E(α) = 5, var(α) = 2.5; the middle column to the second

prior choice using a beta distribution for κ/T with E(κ/T ) = 0.5 and var(κ/T ) = 1/28, dτ =

300, and E(α) = 5, var(α) = 2.5; and the right column to the third prior choice involving a

uniform distribution for κ/T , dτ = 2, and E(α) = 1, var(α) = 1. As in earlier examples, Figure

3.8 shows prior realizations for the marginal density of exceedance times, and prior mean and
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interval estimates for this density. The first prior favors unimodal densities and results in a

slightly U-shaped prior mean density. Although the second prior, which is the same as the

first prior considered in Section 3.4.1, encourages multimodal density realizations, it yields

a unimodal prior mean density. Finally, the third prior is chosen to strongly favor U-shaped

density realizations, including a U-shaped prior mean density with a relatively low level of

uncertainty associated with it; clearly, this is a prior choice that would not be recommended for

this particular problem.

Figure 3.8 plots posterior estimates for the intensity function and for the density of

exceedance times. The estimates under the first two priors show features that are similar to those

we obtained under the original prior. The estimates under the third prior, which strongly sup-

ports the absence of localized features, capture the increasing trend in risk, but not the clustering

of extremes. Figure 3.9 presents inference for the daily conditional return level curves at the

same time points we considered above, along with estimates of the marginal return level curve.

Again, posterior inference under the first two priors is similar to that obtained under the original

prior. However, results under the third prior differ, particularly in terms of the uncertainties that

the model attaches to the posterior mean estimates.

3.5 Discussion

We have presented a Bayesian nonparametric model for the analysis of extremes un-

der a generalization of the point process approach. Our model is built to relax the time ho-

mogeneity restriction through flexible mixture modeling for the intensity function of extremes.
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Figure 3.8: Prior sensitivity analysis results for the Dow Jones data; see Section 3.4.2 for details
about the three priors corresponding to the columns of the figure. From top to bottom, 10
prior realizations for the marginal density of exceedance times; prior mean (red line) and 95%
interval estimates (grey bands) of the marginal density of exceedance times; posterior mean of
the bivariate intensity function; and posterior mean and 95% interval estimates of the marginal
density of exceedance times.
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(b) October 27, 1997
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(d) July 20, 1999
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Figure 3.9: Prior sensitivity analysis results for the Dow Jones data; see Section 3.4.2 for details
about the three priors corresponding to the columns of the figure. The top four rows include the
posterior mean (red line) and 95% interval estimates (grey bands) of the 1000-day conditional
return level curves at four different dates. The bottom row plots the corresponding estimates for
the 1000-day marginal return level curve.
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Particular emphasis has been placed on the mixture model formulation for this intensity function

to obtain desirable properties for the tail behavior of the underlying process whose extremes are

recorded. Our empirical results suggest that the model is quite robust to the choice of priors

when sample sizes are moderately large, as in our simulation study, but might be affected by

strongly informative priors when sample sizes are relatively small, as in the Dow Jones data

application. As a general strategy we suggest the use of priors similar to the ones discussed in

Section 3.4.2, which allow for clustering of extreme values when such a feature is suspected in

the data.

The starting point of the mixture model formulation is the product kernel specification

in (3.4), motivated by the different nature of the arguments that comprise the support of the

bivariate Poisson process. A consequence of this specification is that the implied tail index

parameter does not depend on time; see the proof of Theorem 1. From a practical point of

view, this is arguably not a serious limitation, since the typically small number of exceedances

will likely not suffice to inform temporally dependent tail index indicators. Nevertheless, this

methodological extension can be developed through choice of an appropriate bivariate mixture

kernel k(t,y | θ). For instance, a possible modification of the form in (3.4) involves the same

beta kernel component for k1(t) with a conditional Pareto distribution for k2(y | t) defined by

extending the shape parameter ξ in (3.6) to a parametric function ξ(t). Then, the same argument

as in the proof of Theorem 1 yields a temporally dependent tail index indicator. In particular,

the choice ξ(t) = exp(β0 + β1t), with Dirichlet process mixing on the real-valued parameters

β0 and β1, leads to a mixture model that includes the model of Section 3.2.2 as a special case.
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Chapter 4

Nonparametric Modeling for Systemic Risk

Assessment in Correlated Financial Markets

4.1 Introduction

One important lesson learned from the financial crisis of 2007 and 2008 is that the be-

havior of markets during periods of distress can dramatically deviate from their behavior during

periods of calm. In particular, the financial crises showed that novel techniques are required to

understand how information spreads across financial markets during times of upheaval.

This chapter focuses on extending the point process framework developed in Chapter

3 to simultaneously model risks in multiple financial markets. The model we discuss provides a

decomposition of the risk associated with each of the individual markets into two components:

a systemic risk component, whose features are shared by all markets, and an idiosyncratic risk

component, which is specific to each sector. To motivate this type of decomposition, consider
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the returns associated with the ten sectors making up the S&P500 index (see also Section 4.4).

Figure 4.1 presents the most extreme negative log returns on all of the ten sectors between

January 1, 2000 and December 31, 2011. It is clear from the figure that all sectors present an in-

creased frequency of extreme values around periods of distress, such as the so-called “dot com”

bubble burst in March of 2000 and the climax of the financial crises in September 2008. How-

ever, it is also clear that certain features are particular to specific sectors, such as the increased

number of extreme returns in the energy sector in 2004 and 2005.

The decomposition achieved by our model is similar in spirit to the ideas underlying

the traditional Capital Asset Pricing (CAP) model (Treynor, 1961, 1962; French, 2003). In the

CAP model, linear regression is used to relate the returns of an individual security to those

of the market, also allowing for a decomposition of risks into a systemic and an idiosyncratic

component. However, and unlike the CAP model, our model focuses on patterns associated

with extreme values of the index, and uses a nonparametric methodology that does not assume

(implicitly or explicitly) that returns arise from a Gaussian distribution. Furthermore, our model

is dynamic in nature, allowing for the structure of the different risks to evolve over time.

Variations of the CAP model that focus on extreme returns have been discussed in

Barnes & Hughes (2002), Allen et al. (2009) and Chang et al. (2011), among others. These

papers use quantile regression instead of ordinary linear regression to relate the returns of indi-

vidual securities to those of the market. The approach we pursue here is completely different

as it does not involve regression analysis. Instead, we model the returns that exceed a given

threshold as a non-homogeneous Poisson process with unknown intensity function, which is

assigned a flexible prior based on Dirichlet process mixture models. Hence, our model can be
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Telecommunications Services, n=245
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Figure 4.1: Negative log returns above 2% for four sectors of the S&P500 index (consumer
staples, energy, financials and information technology). Vertical dotted lines identify events of
significance to the markets, such as the bursting of the .com bubble (03/10/2000), the 09/11 ter-
rorist attacks (09/11/2001), the stock market downturn of 2002 (09/12/2001), the bursting of the
Chinese bubble (02/27/2007), the bankruptcy of Lehman Brothers (09/16/2008), Dubai’s debt
standstill (11/27/2009) and the beginning of the European sovereign debt crisis (08/27/2010).
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conceptualized as an example of a Cox process (Cox, 1955).

The rest of this chapter is organized as follows: Section 4.2 provides a detailed de-

scription of our modeling approach and discusses its main properties. Section 4.3 presents a

description of our proposed computational approach along with a careful discussion on sub-

jective prior elicitation. Section 4.4 illustrates the model using a detailed case study focusing

on the S&P500 index. Finally, Section 4.5 discusses some limitations of the model and the

possibilities for further extensions and applications.

4.2 Modeling Approach

As in Section 3.4.2, we focus on the negative log returns of a group of J related but

distinct markets, which are defined as

yi, j =−100× log
(

xi, j

xi−1, j

)
,

where xi, j is the value of market j = 1, . . . ,J at time i = 1, . . . ,T . Note that large positive values

of yi, j indicate a large drop in the price index associated with market j, so for risk management

purpose we are interested in large values of yi, j. Hence, for a given threshold u, focus attention

on the collections of times {t j,k : k = 1, . . . ,n j, j = 1, . . . ,J}, where t j,k is the date associated

with the appearance of the k-th negative log return in sector j that is larger than u.

Our methodology relies on the point process approach to extreme value analysis de-

veloped in Pickands (1971) and Smith (1990). More specifically, for each market j, we regard

the collection of times {t j,k : k = 1, . . . ,n j} at which exceedances occur as a realization from

a point process N j(t) defined on [0,T ]. In turn, each N j(t) is constructed as the superposition
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of two independent, non-homogeneous Poisson processes. The first such process accounts for

systemic risk and has a cumulative intensity function Λ∗0 that is common to all markets, while

the second is associated with the idiosyncratic risk and has a cumulative intensity function Λ∗j

that is specific to each market. Because of properties of superpositions of Poisson processes,

this assumption implies that each N j(t) is also a non-homogeneous Poisson process with cumu-

lative intensity Λ j(t) = Λ∗0(t)+ Λ∗j(t), and intensity function λ j(t) = λ∗0(t)+ λ∗j(t), where λ∗0

and λ∗j are the Poisson process intensities associated with Λ∗0 and Λ∗j , respectively.

The modelling approach for the Λ∗j builds from the direct connection of a non-homogeneous

Poisson process cumulative intensity/intensity function with a distribution/density function.

Specifically, for j = 0,1, ...,J, we can write Λ∗j(t) = γ∗jF
∗
j (t), where γ∗j ≡ Λ∗j(T ) =

R T
0 λ∗j(t)dt (<

∞) is the rate parameter controlling the total number of exceedances and F∗j (t) = Λ∗j(t)/Λ∗j(T )

is a distribution function on [0,T ] that controls how the exceedances are distributed over time.

Hence, the sector-specific cumulative intensity function Λ j can be written as

Λ j(t) = γ jFj(t) = {γ∗0 + γ
∗
j}

{
γ∗0

γ∗0 + γ∗j
F∗0 (t)+

γ∗j
γ∗0 + γ∗j

F∗j (t)

}
.

Our construction implies that the market-specific exceedance rate, γ j, is simply the sum of

the systemic and idiosyncratic rates, while the market-specific distribution function, Fj, can be

written as a mixture of the systemic and idiosyncratic distribution functions. The corresponding

weight, ε j = γ∗0/(γ∗0 + γ∗j), represents the proportion of exceedances in market j that are asso-

ciated with the systemic component. In addition, note that values of ε j close to 1 (which are

associated with γ∗0� γ∗j) imply a stronger association in the pattern of extremes.

Because the processes generating the exceedances were assumed to be Poisson pro-
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cesses, computing the probability that at most r exceedances will be observed in market j on a

period [t0, t0 +∆] is simply

r

∑
i=0

{
ϒ j(t0,∆)

}i exp
{
−ϒ j(t0,∆)

}
i!

,

where ϒ j(t0,∆) = Λ j(t0 + ∆)−Λ j(t0). These exceedance probabilities are easier to interpret

than the intensity functions through which the model is defined. For example, the probability

that no exceedances are observed in market j between t0 and t0 +∆ is simply

exp
{
− [Λ j(t0 +∆)−Λ j(t0)]

}
=

exp{− [Λ∗0(t0 +∆)−Λ
∗
0(t0)]}× exp

{
−
[
Λ
∗
j(t0 +∆)−Λ

∗
j(t0)

]}
,

where the first term in the right-hand expression corresponds to the probability of no exceedance

due to the systemic component and the second term corresponds to the probability of no ex-

ceedance due to the idiosyncratic component. Hence, our model implies a multiplicative risk

structure.

4.2.1 Modeling the Intensity Functions

In order to generate a flexible model that can capture changes in the pattern of ex-

treme events over time, we model the densities f ∗0 , f ∗1 , . . . , f ∗J associated with the systemic and

idiosyncratic distribution F∗0 ,F∗1 , . . . ,F∗J using Dirichlet process mixture models. In particular,

we let

f ∗j (t)≡ f ∗j (t;G∗j ,τ) =
Z

k(y | µ j,τ)dG∗j(µ j), j = 0,1, . . . ,J,
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where the function k(y | µ,τ) is a kernel indexed by the finite dimensional parameters µ and τ,

while G∗j is a random mixing distribution that follows a Dirichlet process prior,

G∗j(·) =
∞

∑
l=1

ω j,lδµ̃ j,l (·), j = 0,1, . . . ,J,

where δa(·) denotes the degenerate measure at a, the atoms µ̃ j,1, µ̃ j,2, . . . form a sequence of

independent random variables identically distributed according to the baseline measure H, and

ω j,l denotes the corresponding weights arise through a stick-breaking construction.

Because in our application the support for the point process is a compact set, a natural

choice for the kernel k(t | µ,τ) is the rescaled beta density,

1
T

Γ(τ)
Γ(µτ/T )Γ({1−µ/T}τ)

( t
T

)µτ/T−1(
1− t

T

){1−µ/T}τ−1
I[0,T ](t) (4.1)

where µ∈ [0,T ] is a location parameter and τ∈ (0,∞) can be interpreted as a bandwidth parame-

ter. Because the Dirichlet process mixtures allow for an infinite number of mixture components,

the model has full support on the space of absolutely continuous distribution on [0,T ] as long

as the baseline measure H and the prior on the bandwidth are selected to provide full support

on the domain of the parameters of the rescaled beta kernel. The precision parameter α controls

the relative weight of the components, with smaller values of α favoring mixtures where a small

number of components received very large weights. On the other hand, the baseline measure H

controls the location of the mixture components.

Besides a prior on the densities f ∗0 , f ∗1 , . . . , f ∗J , full prior specification for the intensity

functions Λ1(t), . . . ,ΛJ(t) requires priors for the rate parameters γ∗0,γ
∗
1, . . . ,γ

∗
1. In the case of the

rate associated with the systemic component, γ∗0, a natural choice is a Gamma distribution with

shape parameter aγ∗0
and rate parameter bγ∗0

. For the idiosyncratic component, we use slightly
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more general zero-inflated gamma prior with density,

p(γ∗j | π) = (1−π)δ0(γ∗j)+πGamma(γ∗j | aγ∗j
,bγ∗j

) j ≥ 1.

Note that the case γ∗j = 0 corresponds to ε j = 1, i.e., all exceedances in market j are driven

by systemic risks. Hence, this zero inflated prior allows us to formally test for the presence of

idiosyncratic risks. In the sequel we refer to this test as the idiocyncracy test.

It is worthwhile to mention that the representation of the sector-specific Fj as a mix-

ture of a systemic and an idiosyncratic component is reminiscent of the models for dependent

random measures discussed in Müller et al. (2004) and Kolossiatis et al. (2011). However, in

spite of this connection, the motivation for our modeling approach is quite different. Indeed,

while the original motivation in Müller et al. (2004) and Kolossiatis et al. (2011) is to construct

dependent random measure, our construction follows from the assumption that the point process

associated with the presence of extreme values can be constructed as a superposition of Poisson

processes.

4.2.2 Hierarchical Priors

The model is completed by eliciting hyperpriors for all model parameters. For the

baseline measure H, we note that the parameter µ in Equation (4.1) is constrained to the [0,T ]

interval. Hence, a natural choice for H is another rescaled Beta distribution with density

h(µ) =
1
T

Γ(aµ +bµ)
Γ(aµ)Γ(bµ)

( µ
T

)aµ−1(
1− µ

T

)bµ−1

The remaining priors are selected for computational convenience. In particular, a

gamma prior with shape parameter aα and rate parameter bα is assigned to the precision param-
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eter α, leading to a conditionally conjugate model. Similarly, the mixing probability π is given

a Beta(aπ,bπ) prior, again leading to conditionally conjugate model. Finally, the bandwidth

parameter τ is assigned inverse Gamma distributions with shape aτ and scale bτ. Details on

informative hyperparameter elicitation are discussed in Section 4.3.2.

4.3 Computation and Prior Elicitation

4.3.1 Markov Chain Monte Carlo Algorithms

The likelihood function associated with the non-homogeneous Poisson process giving

rise to the exceedances in sector j is simply

exp
{
−γ j
}

γ
n j
j

n j

∏
k=1

f j(t j,k)

Hence, the joint posterior distribution for our model reduces to

p({γ∗j},{v j,l},{µ̃ j,l},τ,{α j},π | Data) ∝

J

∏
j=1

exp
{
−(γ∗0 + γ

∗
j)
}

(γ∗0 + γ
∗
j)

n j

×
J

∏
j=1

n j

∏
k=1

(
γ∗0

γ∗0 + γ∗j

∞

∑
l=1

ω0,lψ
(
t j,k | µ̃0,l,τ

)
+

γ∗j
γ∗0 + γ∗j

∞

∑
l=1

ω j,lψ
(
t j,k | µ̃ j,l,τ

))

× p(π)p(τ)p(γ∗0)
J

∏
j=1

p(γ∗j | π)
J

∏
j=0

∞

∏
l=1

p(µ̃ j,l)p(v j,l | α j)
J

∏
j=0

p(α j) (4.2)

Since this posterior distribution is computational intractable, we resort to a Markov

chain Monte Carlo algorithm (Robert & Casella, 2005) for approximate, simulation-based in-

ference. Given initial values for the different parameters, the algorithm proceeds by iteratively

updating blocks of parameters by sampling from their full conditional posterior distribution.

After an appropriate burn-in period, the algorithm produces a dependent sample that is approx-
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imately distributed according to (4.2). The ergodic theorem ensures that posterior summaries

of interest such as posterior means or posterior quantiles can be estimated using these posterior

samples.

To sample from the posterior distribution associated with the nonparametric compo-

nent of the model, we resort to a blocked Gibbs sampler (Ishwaran & James, 2001). Hence, for

computational purposes, we replace the nonparametric mixing distributions G∗0,G
∗
1, . . . ,G

∗
J with

finite-dimensional approximations GN
0 ,GN

1 , . . . ,GN
J where

GN
j (·) =

N

∑
l=1

p j,lδµ?
j,l
(·)

where, as before, µ?
j,l are i.i.d. samples from baseline measure H for j = 0, . . . ,J and the weights

p j,l = u j,l ∏s<l(1− u j,s), where u j,l ∼ Beta(1,α j) for l = 1, . . . ,N− 1, but u j,N = 1 to ensure

that the weights sum to 1.

Furthermore, we expand the model by introducing indicator variables L j,k ∈ {1,2, . . . ,N}

and r j,k ∈ {0, j} such that Pr(L j,k = l | {u j,l}) = u j,l ∏s<l{1− u j,s} and Pr(r j,k = 0 | γ∗0,γ∗j) =

1− Pr(r j,k = j | γ∗0,γ∗j) = γ∗0/(γ∗0 + γ∗j) independently for every j = 1, . . . ,J and k = 1, . . . ,n j.

In addition to the aforementioned indicator variables associated with the mixture representa-

tion of the intensity functions, we also introduce a set of binary indicators ξ1, . . . ,ξJ such that

Pr(ξ j = 0 | π) = 1−π. Note that inferences on Pr(ξ j = 0 | Data) provide an operational mech-

anism to implement the idiosyncrasy test we discussed at the end of Section 4.2.1.

After these indicator variables have been introduced, the MCMC algorithm iterates

through the following general steps:

(a) Jointly update each pair (r j,k,L j,k) independently by sampling from a multinomial distri-
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bution.

(b) Update each stick-breaking weight u j,l by sampling from an appropriate Beta distribution.

(c) Update each µ?
j,l using a random walk Metropolis-Hasting algorithm with symmetric

logit-normal proposal distributions.

(d) Update γ∗0 from a Gamma distribution.

(e) Jointly update each pair (ξ j,γ
∗
j) by first sampling ξ j from a Bernoulli distribution and

then either setting γ∗j = 0 if ξ j = 0 or sampling γ∗j from a Gamma distribution if ξ j = 1.

(f) Update τ using a random walk Metropolis-Hasting algorithm with symmetric log-normal

proposal distributions.

(g) Update π by sampling from Beta distribution.

MCMC Details

Here, we provide the details for posterior simulation from the proposed DP mixture model

for the non-homogeneous Poisson process densitie. Simulation is based on the blocked Gibbs

sampler, including Metropolis-Hastings steps for some of the parameters. In particular, the

MCMC algorithm iteratively updates model parameters through the following steps:

• Each pair (r j,k,L j,k) for j = 1, . . . ,J and k = 1, . . . ,n j is conditionally independent a pos-

teriori and can be updated jointly from a multinomial distribution with

Pr(r j,k = 0,L j,k = l | · · · ,Data) ∝ γ
∗
0

[
u0,l ∏

s<l
{1−u0,s}

]
ψ(t j,k | µ?

0,l,τ),
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and

Pr(r j,k = j,L j,k = l | · · · ,Data) ∝ γ
∗
j

[
u j,l ∏

s<l
{1−u j,s}

]
ψ(t j,k | µ?

j,l,τ),

for l = 1, . . . ,N.

• The update for the stick-breaking ratios {v j,l} follows the standard recipe described in

Ishwaran & James (2001). In particular, these parameters are conditionally independent

and their posterior full conditional distribution reduces to

v j,l | · · · ,Data∼ Beta

(
1+M j,l,α j +

N

∑
r=l+1

M j,r

)
,

where M j,l = ∑
J
k=1 ∑

nk
i=1 I(Lk,i=l,rk,i= j).

• The full conditional distribution for the atoms µ?
r,l with r = 0, . . . ,J and l = 1, . . . ,N is

given by

p(µ?
r,l | · · · ,Data) ∝ h(µ?

r,l) ∏
{( j,k):L j,k=l,r j,k=r}

ψ(t j,k | µ?
r,l,τ).

Hence, if {( j,k) : L j,k = l,r j,k = r}= /0, µ?
r,l can be updated by simply sampling from the

baseline measure H. Otherwise, since this full conditional does not correspond to any

known distribution, we update µ?
r,l using a random walk Metropolis-Hasting algorithm

with symmetric logit-normal proposal distribution where new values µ?(p)
r,l are generated

according to

logit
{

µ?(p)
r,l

}
| µ?(c)

r,l ∼ N
(

logit
{

µ?(c)
r,l

}
,κ2

µ

)
,

where logit
{

µ?(c)
r,l

}
is the current value of the chain and κ2

µ is a tuning parameter chosen

so that the average acceptance rate is between 30% and 40%.
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• Since the prior for γ∗0 is conditionally conjugate, we update this parameter by sampling

from

γ
∗
0 | · · · ,Data∼ Gamma

(
aγ∗0

+
J

∑
j=1

m j,bγ∗0
+ J

)

where m j = ∑
n j
k=1 I(r j,k=0) denotes the number of observed exceedances in market j that

are associated with the systemic component.

• For j = 1, . . . ,J, the pairs (ξ j,γ
∗
j) are conditional independent from each other and can be

updated by first updating ξ j so that ξ j = 1 if m j < n j or

ξ j | · · · ,Data∼


δ1 m j < n j

Ber

 π

{
bγ∗j

/(1+bγ∗j
)
}a

γ∗j

1−π+π

{
bγ∗j

/(1+bγ∗j
)
}a

γ∗j

 m j = n j

As before, m j = ∑
n j
k=1 I(r j,k=0) denotes the number of observed exceedances in market

j that are associated with the systemic component. Once ξ j has been updated, γ∗j is

updated by setting γ∗j = 0 if ξ j = 0 or by sampling γ∗j from a Gamma distribution with

shape parameter aγ∗j
+n j−m j and rate parameter 1+bγ∗j

if ξ j = 1.

• The full conditional posterior for τ is

p(τ | · · · ,Data) ∝ p(τ)
J

∏
j=1

n j

∏
k=1

ψ(t j,k | µ?
r j,k,L j,k

,τ).

Since no direct sampler is available from this distribution, we update τ using a random

walk Metropolis-Hasting algorithm with symmetric log-normal proposals,

log
{

τ
(p)
}
| τ(c) ∼ N

(
log
{

τ
(c)
}

,κ2
τ

)
where κ2

τ is again a tuning parameter.
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• Because the prior on π is conditionally conjugate, the posterior full conditional for π is a

beta distribution,

π | · · · ,Data∼ Beta

(
J−

J

∑
j=1

ξ j +aπ,
J

∑
j=1

ξ j +bπ

)
.

• The precision parameters α0,α1, . . . ,αJ can be updated independently using the algorithm

described in Escobar & West (1995).

4.3.2 Hyperparameter Elicitation

The hyperparameters associated with our nonparametric model can be selected using

historical and/or expert information that is typically available for most liquid financial markets.

We recommend that this elicitation process be complemented with a careful sensitivity analysis

over a reasonable range of prior beliefs.

Consider first the parameters γ∗0,γ
∗
1, . . . ,γ

∗
10, which control the total number of ex-

ceedances observed in each market and the relative distribution of these exceedances between

the systemic and idiosyncratic component of the model. Because of their role in the model,

we can elicit a value for the expected number of extremes in a given sector j (which corre-

sponds to E{γ∗0 + γ∗j}) by assuming that returns in the sector are normally distributed, so that

E{γ∗0 + γ∗j} ≈ T Φ({u− ζ j}/κ j), where Φ denotes the cumulative distribution function for the

standard normal distribution and ζ j and κ j are rough estimates of the mean and standard de-

viation of returns for market j. The values of ζ j and κ j can be obtained from historical data

or expert knowledge. For simplicity, it can be assumed that ζ j and κ j are the same for every

market, leading to a model where sectors are exchangeable, but this is not required. Similarly,
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we can exploit the interpretation of γ∗0/(γ∗0 + γ∗j) as the proportion of exceedances arising from

the systemic component to elicit expert information about the most likely value of such rate,

as well as a high probability range for its value. This same information can be used to provide

informative priors for 1−π, the prior probability that the risk in a given market is entirely driven

by the systemic component.

Consider now eliciting the hyperparameters associated with the density function f ∗0

and f ∗1 , . . . , f ∗J . A common feature of extreme returns in financial time series is that they tend

to cluster over time (e.g., Mandelbrot, 1963). Hence, the prior for the precision parameter

α0,α1, . . . ,αJ (which, as mentioned in Section 4.2, controls the number of components in the

mixture) should favor a multimodal distribution. A rough value for the number of components

(which can be used to select the prior mean of α j) can be elicited from a rough estimate of the

frequency at which distress periods arise in market j. Similarly, the value for the bandwidth pa-

rameter τ can be elicited from prior information about the length of distress periods. Finally, in

the absence of prior information about the time at which distress periods occur, we recommend

that H be selected so that the prior mean for f ∗0 and f ∗1 , . . . , f ∗J is close to uniform.

4.4 An Application to the Returns of the S&P500 Sectors

The Standard & Poor’s 500, or S&P500 index, is a commonly watched stock market

index in the U.S. The S&P500 is constructed as a market-value weighted average of the prices

of the common stock of 500 publicly traded companies. Standard & Poor’s, which publishes the

index, selects the companies included in the S&P500 index to be representative of the industries
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in the U.S. economy. These companies are commonly grouped into ten economic sectors (con-

sumer discretionary, consumer staples, energy, financials, health care, industrials, materials,

information technology, telecommunication services and utilities), with the largest (consumer

discretionary) including 81 companies and the smallest (telecommunication services) including

only 8. In addition to the overall S&P500 index, Standard & Poor’s publishes separate indexes

for each of these sectors. The behavior of these sector-specific indexes is of independent in-

terest; for example, the performance of the industrial component of the S&P500 is sometimes

used by analysts as a leading indicator of future economic growth. More generally, it is clear

that different sectors react differently to the same economic shocks.

The data analyzed in this section corresponds to the negative log returns above 2%

on each of the ten sectors that make up the S&P500 index between January 1, 2000 and

December 31, 2011. Prices for the individual indexes were obtained from Bloomberg finan-

cial services; the corresponding tickers are S5COND, S5CONS, S5ENRS, S5FINL, S5HLTH,

S5INDU, S5MATR, S5INFT, S5TELS, S5UTIL. All inferences reported in this section are

based on 3,000 quasi-independent samples obtained after a burn in period of 20,000 iterations

and thinning of the original chain every 50 iterations. Convergence of the MCMC algorithm

was monitored using trace plots as well as the R statistic discussed in Gelman & Rubin (1992).

In particular, we ran four independent chains started from overdispersed initial values and com-

pared between and within chain variability in the value of the log likelihood function and some

of the hyperparameters in the model. No lack of convergence was evident from these diagnos-

tics. The algorithm was implemented in C/C++ and total execution time was approximately 16

hours on a MacBook laptop with a 2 GHz Intel Core 2 Duo processor and 2GB of memory.
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Following the approach described in Section 4.3.2, we chose the hyperparameters for

γ∗0 and γ∗j so that aγ∗0
= 7.32, bγ∗0

= 0.06, aγ∗0
= 1.32, and bγ∗0

= 0.06. These values were chosen

on the basis of a 0 mean return with 18% annualized volatility for the S&P500, along with

the prior beliefs that on average 85% of the observed exceedances, and with .99 probability at

least 50% of them, arise from the systemic component of the model. These numbers reflect our

prior belief that the systemic component of the risk will explain a majority of the exceedances

observed in the data. This is further emphasized by our choice for the hyperparameters for π,

which are selected as aπ = 0.5 and bπ = 2. This choice implies that E{π} = 0.2 and places a

high probability on values of π close to zero. Finally, the prior for the bandwidth parameter τ

was selected so that aτ = 5 and bτ = 2,400 (which implies that E{τ}= 400). For the precision

parameter α we choose aα = 4 and bα = 1/3 (so that E{α}= 12, leading to highly multimodal

intensity functions a priori), and the parameters for the baseline measure aµ = 1 and bµ = 1. In

all cases the posterior distributions for all hyperparameters appear to be concentrated relative

to the corresponding prior distributions. In addition, we note that moderate changes in these

assumptions (e.g., assuming that on average only 50% of the exceedances come from the sys-

temic component, or a 2% positive annualized return for the S&P500 with a 25% annualized

volatility, or a uniform prior on π) lead to essentially equivalent posterior inferences for the

intensity functions. The only inferences that are somewhat affected by moderate changes in the

hyperparameters are those associated with the idiosyncrasy test discussed in Section 4.2 (for

further details on the sensitivity analysis see Section 4.4.2).

Estimates of the overall intensities λ1(t), . . . ,λ10(t) associated with each of the ten

components of the S&P500 index can be seen in Figure 4.2. The last two panels also provide
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Figure 4.2: Posterior mean of the overall intensity associated with the different components of
the S&P500 index, along with posterior pointwise credible intervals. The headers on each panel
include the number exceedances observed in each sector over the 12 year period under study.
The last two figures in the bottom line present realizations from the prior distribution on the
intensity function (central panel) along with the mean prior intensity function and prior 95%
pointwise credible intervals (right panel).
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summaries of the prior distribution over intensities that are induced by the prior choices dis-

cussed before. By comparing some of those estimates to the raw data presented in Figure 4.1, it

becomes clear that the model faithfully reproduces the main features of the data. Furthermore,

the uncertainty associated with these estimates is relatively low.

Next, Figures 4.3 and 4.4 show estimates of the densities f ∗0 and f ∗1 , . . . , f ∗10 associated

with the systemic and idiosyncratic risk intensities. In addition, Figure 4.5 presents the poste-

rior distribution for ε1, . . . ,ε10, the proportion of the risk attributable to the systemic component

in each of the ten sectors. Note that in half the sectors (consumer discretionary, consumer

staples, health care, industrials and utilities) the proportion of extremes associated with the sys-

temic component is at least 80%, while for the rest (energy, financials, information technology,

telecommunications and materials) the proportion is between 40% and 60%. In addition, note

that the density for the systemic risk shows peaks that coincide, or shortly follow, important

stock market events. On the other hand, the behavior of the idiosyncratic risk varies drastically

with the economic sector and, in most cases, can be explained by factors that are clearly sector-

specific. For example, the energy and utilities sectors present big increases in idiosyncratic risk

during 2005, a period that corresponded to sharp increases in oil prices but that was otherwise

relatively calm. On the other hand, the idiosyncratic risk associated with the financial sector

increases dramatically after the summer of 2007. An oversized idiosyncratic risk for this sector

after 2007 is clearly reasonable as financials were the main driver of the recent crises. Simi-

larly, the idiosyncratic risks associated with the information technology and telecommunication

services sectors are particularly elevated between 2000 and 2002, a period that included the

bursting of the so-called dot-com bubble. Finally, note that the idiosyncratic risk associated
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Figure 4.3: The left panel shows the posterior mean of the density associated with systemic risk
component of the S&P500 index, including posterior pointwise credible intervals. The central
panel shows realizations from the prior density function, while the right panel shows the mean
prior density function and prior 95% pointwise credible intervals.

with consumer staples is almost negligible over the whole period under study, with our idiosyn-

crasy test suggesting that there is moderate evidence for the absence of idiosyncratic risk in

this sector of the S&P500 index. This is reasonable, as the consumer staples sector includes

companies that produce and trade basic necessities whose consumption might be affected by

general market trends but have otherwise little sensitivity to intrinsic risk factors. Figure 4.6

shows the histograms of the posterior distribution of the hyperparameters α0, α j, and τ with the

prior densities provided in red. We observed moderate to sufficient learning for τ and precision

parameter in sectors having a larger proportion of extremes associated with the idiosyncratic

component. As expected, there was less learning for precision parameter in other sectors with

relatively small number of extremes associated with the idiosyncratic component. Posterior

densities for these parameters is shown to concentrate around the corresponding prior densities.

77



Consumer Discretionary, n=229

20
00

−
01

−
04

20
01

−
03

−
14

20
02

−
05

−
29

20
03

−
08

−
06

20
04

−
10

−
14

20
05

−
12

−
21

20
07

−
03

−
06

20
08

−
05

−
13

20
09

−
07

−
22

20
10

−
09

−
29

20
11

−
12

−
06

0.
00

0
0.

00
1

0.
00

2
0.

00
3

0.
00

4
0.

00
5

Consumer Staples, n=85

20
00

−
01

−
04

20
01

−
03

−
14

20
02

−
05

−
29

20
03

−
08

−
06

20
04

−
10

−
14

20
05

−
12

−
21

20
07

−
03

−
06

20
08

−
05

−
13

20
09

−
07

−
22

20
10

−
09

−
29

20
11

−
12

−
06

0.
00

0
0.

00
1

0.
00

2
0.

00
3

0.
00

4
0.

00
5

Energy, n=305

20
00

−
01

−
04

20
01

−
03

−
14

20
02

−
05

−
29

20
03

−
08

−
06

20
04

−
10

−
14

20
05

−
12

−
21

20
07

−
03

−
06

20
08

−
05

−
13

20
09

−
07

−
22

20
10

−
09

−
29

20
11

−
12

−
06

0.
00

0
0.

00
1

0.
00

2
0.

00
3

0.
00

4
0.

00
5

Financials, n=321

20
00

−
01

−
04

20
01

−
03

−
14

20
02

−
05

−
29

20
03

−
08

−
06

20
04

−
10

−
14

20
05

−
12

−
21

20
07

−
03

−
06

20
08

−
05

−
13

20
09

−
07

−
22

20
10

−
09

−
29

20
11

−
12

−
06

0.
00

0
0.

00
1

0.
00

2
0.

00
3

0.
00

4
0.

00
5

Health Care, n=144

20
00

−
01

−
04

20
01

−
03

−
14

20
02

−
05

−
29

20
03

−
08

−
06

20
04

−
10

−
14

20
05

−
12

−
21

20
07

−
03

−
06

20
08

−
05

−
13

20
09

−
07

−
22

20
10

−
09

−
29

20
11

−
12

−
06

0.
00

0
0.

00
1

0.
00

2
0.

00
3

0.
00

4
0.

00
5

Industrials, n=228

20
00

−
01

−
04

20
01

−
03

−
14

20
02

−
05

−
29

20
03

−
08

−
06

20
04

−
10

−
14

20
05

−
12

−
21

20
07

−
03

−
06

20
08

−
05

−
13

20
09

−
07

−
22

20
10

−
09

−
29

20
11

−
12

−
06

0.
00

0
0.

00
1

0.
00

2
0.

00
3

0.
00

4
0.

00
5

Materials, n=289

20
00

−
01

−
04

20
01

−
03

−
14

20
02

−
05

−
29

20
03

−
08

−
06

20
04

−
10

−
14

20
05

−
12

−
21

20
07

−
03

−
06

20
08

−
05

−
13

20
09

−
07

−
22

20
10

−
09

−
29

20
11

−
12

−
06

0.
00

0
0.

00
1

0.
00

2
0.

00
3

0.
00

4
0.

00
5

Information Technology, n=387

20
00

−
01

−
04

20
01

−
03

−
14

20
02

−
05

−
29

20
03

−
08

−
06

20
04

−
10

−
14

20
05

−
12

−
21

20
07

−
03

−
06

20
08

−
05

−
13

20
09

−
07

−
22

20
10

−
09

−
29

20
11

−
12

−
06

0.
00

0
0.

00
1

0.
00

2
0.

00
3

0.
00

4
0.

00
5

Telecommunications Services, n=245

20
00

−
01

−
04

20
01

−
03

−
14

20
02

−
05

−
29

20
03

−
08

−
06

20
04

−
10

−
14

20
05

−
12

−
21

20
07

−
03

−
06

20
08

−
05

−
13

20
09

−
07

−
22

20
10

−
09

−
29

20
11

−
12

−
06

0.
00

0
0.

00
1

0.
00

2
0.

00
3

0.
00

4
0.

00
5

Utilities, n=183

20
00

−
01

−
04

20
01

−
03

−
14

20
02

−
05

−
29

20
03

−
08

−
06

20
04

−
10

−
14

20
05

−
12

−
21

20
07

−
03

−
06

20
08

−
05

−
13

20
09

−
07

−
22

20
10

−
09

−
29

20
11

−
12

−
06

0.
00

0
0.

00
1

0.
00

2
0.

00
3

0.
00

4
0.

00
5

Figure 4.4: Posterior mean of the densities associated with the different components of the
S&P500 index, along with posterior pointwise credible intervals.
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Figure 4.5: Posterior distribution for the overall proportion of risk attributable to the systemic
component on each of the ten components of the S&P500 index.

79



Consumer Discretionary

0 10 20 30 40

0.
00

0.
05

0.
10

0.
15

0.
20

Consumer Staples

0 10 20 30 40

0.
00

0.
05

0.
10

0.
15

0.
20

Energy

0 10 20 30 40

0.
00

0.
05

0.
10

0.
15

0.
20

Financials

0 10 20 30 40

0.
00

0.
05

0.
10

0.
15

0.
20

Health Care

0 10 20 30 40

0.
00

0.
05

0.
10

0.
15

0.
20

Industrials

0 10 20 30 40

0.
00

0.
05

0.
10

0.
15

0.
20

Materials

0 10 20 30 40

0.
00

0.
05

0.
10

0.
15

0.
20

Information Technology

0 10 20 30 40

0.
00

0.
05

0.
10

0.
15

0.
20

Telecommunications Services

0 10 20 30 40

0.
00

0.
05

0.
10

0.
15

0.
20

Utilities

0 10 20 30 40

0.
00

0.
05

0.
10

0.
15

0.
20

Systemic Component

0 10 20 30 40

0.
00

0.
05

0.
10

0.
15

0.
20

Histogram of τ

0 500 1000 1500

0.
00

0
0.

00
1

0.
00

2
0.

00
3

Figure 4.6: Posterior distribution of the precision parameter α j in market j, α0, and bandwidth
parameter τ. Prior densities are provided in red line.
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As we discussed in Section 4.2, we can alternatively quantify the level of risk through

the probability of observing at least one exceedance during a given period of time. Figure 4.7

shows the posterior distributions for the odds ratio of the probability of at least one exceedance

in the month starting two weeks after the bankruptcy of Lehman Brothers versus the probability

of at least one exceedance in the month ending two weeks before the bankruptcy for four dif-

ferent sectors. Note that all sectors show an increase in risk after Lehman Brothers bankruptcy.

However the increase in risk is lower for financials than it is for all the sectors (the estimated

posterior probabilities are 1.000, 0.913 and 0.977 for consumer staples, energy and information

technology, respectively). Indeed, note that the systemic risk increases after the bankruptcy of

Lehman Brothers but the idiosyncratic risk associated with financials actually decreases (as does

the one for energy, although to a lesser degree), while the idiosyncratic risks associated with in-

formation technology and consumer staples increased. The increase in risk in the information

technology and consumer staples sectors can be explained by the fact that one of the main ef-

fects of Lehman’s bankruptcy was a collapse in the short term corporate debt market. Hence,

although the bankruptcy of Lehman Brothers actually reduced the uncertainty in the financial

sector of the economy, it cause real damage to companies in other sectors that are extremely

dependent on short term debt. Note that companies that are part of the S&P500 energy sector

are typically not reliant in short term funding, hence the limited impact of Lehman’s bankruptcy

in their idiosyncratic risk.

81



Consumer Staples

0.98 1.00 1.02 1.04 1.06 1.08 1.10 1.12

0

10

20

30

40

50

60

70

Systemic Component

0.98 1.00 1.02 1.04 1.06 1.08 1.10 1.12

0

10

20

30

40

50

60

70

Idiosyncratic Component

0 1 2 3 4

0

1

2

3

4

Energy

0.98 1.00 1.02 1.04 1.06 1.08 1.10 1.12

0

10

20

30

40

50

60

70

Systemic Component

0.98 1.00 1.02 1.04 1.06 1.08 1.10 1.12

0

10

20

30

40

50

60

70

Idiosyncratic Component

0 1 2 3 4

0

1

2

3

4

Financials

0.98 1.00 1.02 1.04 1.06 1.08 1.10 1.12

0

10

20

30

40

50

60

70

Systemic Component

0.98 1.00 1.02 1.04 1.06 1.08 1.10 1.12

0

10

20

30

40

50

60

70

Idiosyncratic Component

0 1 2 3 4

0

1

2

3

4

Information Technology

0.98 1.00 1.02 1.04 1.06 1.08 1.10 1.12

0

10

20

30

40

50

60

70

Systemic Component

0.98 1.00 1.02 1.04 1.06 1.08 1.10 1.12

0

10

20

30

40

50

60

70

Idiosyncratic Component

0 1 2 3 4

0

1

2

3

4

Figure 4.7: Posterior distributions for the odds ratio of the probability of at least one exceedance
in the month starting two weeks after the bankruptcy of Lehman Brothers against the probabil-
ity of at least one exceedance in the month ending two weeks before the bankruptcy for four
different sectors. The vertical line corresponds to the mean of the posterior distribution.
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4.4.1 Model Validation

The model was validated in this dataset using two different approaches. First, an

out-of-sample cross validation exercise was conducted, with cross-validation datasets being

constructed by randomly selecting 20% of the observations from each sector to be used as

hold-out data. The remaining 80% of the data was used to fit our nonparametric model and

generate nominal 90% highest posterior densities (HPD) intervals for new exceedances. The

true coverage of these HPD intervals is then evaluated on the held-out data. Figure 4.8 presents

examples of cross-validation samples and the corresponding intensities for ten sectors.

We repeated the process described above for 10 different cross-validation datasets,

with the results being presented in Figure 4.9. As expected, there is variability in the coverage

rates depending on the sector and the specific cross-validation dataset. However, the results

suggest that for the most part the real coverage rates are in line with the nominal coverage,

which suggest that the model does not under or overfit.

In addition to the cross-validation exercise described above, in-sample goodness of

fit was investigated using quantile-quantile plots for the posterior distribution of inter-event

times. More specifically, we use the similar strategy discussed in Section 3.4.2 to check the

Poisson process assumption in time direction. Figure 4.10 presents quantile-quantile plots of

expected value of these transformed inter-arrival times, E{zk | Data} for k = 1, . . . ,n j, against

the quantiles of a uniform distribution for each of the ten S&P500 sectors. For the most part

the residuals follow a straight diagonal line. However, there is some evidence of poor fit for a

couple of sectors. In particular, note that for consumer staples our model tends to systemati-
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Figure 4.8: Examples of cross-validation datasets and the density estimates associated with
them. The dots in the horizontal axis correspond to the held-out samples.
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Figure 4.9: Results from the cross validation exercise to investigate the coverage rate of highest
posterior density intervals associated with our nonparametric model.
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cally predict somewhat shorter inter-arrival periods than those that would be expected under the

Poisson model. Similar, but less dramatic biases can also be seen for information technology

and financials.

4.4.2 Sensitivity Analysis

We carried out a comprehensive sensitivity analysis to assess the effect of prior distri-

butions on posterior inferences. First, we considered three alternative sets of hyperparameters

for the bandwidth parameter τ, including a InvGamma(5,4000), a InvGamma(10,7200) and a

InvGamma(2,500) priors. The hyperparameters were selected to represent a range of situations

where the prior mean is both larger and smaller than the one used for our previous analysis, as

well as different levels of concentration. Posterior inferences were mostly unaffected under any

of these scenarios.

Next, we considered four alternative prior specifications for the concentration pa-

rameters α0, . . . ,α10, including a Gamma(4,1/3), a Gamma(10,2), a Gamma(2,2/5), and a

Gamma(3,3). These hyperparameter choices imply prior expected values for α j of 12, 5, 5 and

1, respectively. Inferences for the intensity function were mostly unchanged under these prior

distributions. However, inferences for individual hyperparameters were somewhat affected. In

particular, smaller values for E{α j} naturally lead to somewhat smaller posterior means for the

α js, but also to larger posterior values for τ and an increase in the posterior mean for some of the

ε js (for example, for consumer staples we have Pr(ε2 = 1 |Data) = 0.71 under the Gamma(3,3)

prior). On the other hand, changes in the prior dispersion of α j had no discernible effect on the

individual posterior distributions of the hyperparameters, as long as the prior mean was the
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Figure 4.10: Quantile-quantile plot of expected value of transformed inter-arrival times against
the quantiles of a uniform distribution for each of the ten S&P500 sectors. The red dots corre-
sponds to the posterior mean of the expected value of transformed inter-arrival times.
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same.

To asses the effect of the baseline measure H on posterior inferences, we considered

an alternative rescaled beta distribution with aµ = bµ = 3. This prior tends to favor the localiza-

tion of distress periods towards the middle of the time series. This alternative baseline measure

leads to somewhat smoother estimates for the density functions f1, . . . , f10, and to more uni-

modal estimates for the idiosyncratic densities f ∗1 , . . . , f ∗10. In addition, the posterior means for

α and τ tend to be slightly lower under this baseline measure.

We also considered an alternative specification for the priors on γ∗0 and γ∗1, . . . ,γ
∗
10

where we assume that the number of extreme events in each sector is consistent with a 2%

positive annualized return and a 25% annualized volatility for the S&P500, while only 50% of

the exceedances come from the systemic component and Pr(0.2 < γ∗0/(γ∗0 + γ∗j) < 0.8) = 0.99.

This leads to aγ∗0
= 7.65, bγ∗0

= 0.65, aγ∗j
= 7.65 and bγ∗j

= 0.65 for j ≥ 1. As before, these

new priors have very little impact on the inference of the intensity functions. However, the

inferences on the weights ε1, . . . ,ε10 are significantly affected. In particular, the idiosyncrasy

test now provides very strong evidence that shocks in consumer staples are driven exclusively

by the systemic component (Pr(ε2 = 1 | Data) ≈ 1), while for the other sectors we have very

strong evidence for the presence of idiosyncratic components (Pr(ε j = 1 | Data) = 0 for all

j = 1,3,4, . . . ,10).

Finally, we investigated the effect on posterior inferences of alternative prior distri-

butions on π. In addition to the original Beta(1/2,2) prior (which favors the hypotheses that

most the exceedances are generated by the systemic component of the model), we considered a

uniform and a Beta(1/2,1/2) prior for π. While the Beta(1/2,1/2) had a negligible effect on
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posterior inferences, the use of a uniform prior lead again to an increase in the posterior mean

for some of the ε js (for example, Pr(ε2 = 1 | Data) = 0.76).

Posterior probabilities for all hyperparameters appear to be more concentrated relative

to the prior distribution.

4.5 Discussion

We have discussed and illustrated a novel class of model for simultaneous risk as-

sessment in multiple financial markets. Our approaches models the process of exceedances as

a superposition of two stochastic processes. The use of a superposition is specially appealing if

markets share similar products. This is the situation, for example, when modeling the returns

from multiple mutual funds or exchange-traded funds. In that case, the interpretation of a sys-

temic component is straightforward, as it simply reflects the fact that these different products

invest in some of the same securities. However, the idea is justifiable in a much more general

setting. Indeed, the systemic component can be interpreted as representing global shocks that

affect markets simultaneously.

Another interesting application of the model described here in the world of finance is

to reduced-form credit risk models, which also use Cox processes to model credit default events

(for example, see Lando, 1998). Extending our model to jointly estimate default probabilities

over multiple sectors would be relatively straightforward.

The approach discussed in this paper focuses on modeling the frequency of extreme

values and pays no attention to the size of losses (except in that they are greater than the thresh-
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old u). Introducing the size of the losses by modeling a bivariate Poisson process (along the

lines discussed in Chapter 3) is conceptually a relatively straightforward extension that will

also be considered elsewhere.
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Chapter 5

Nonparametric Spatial Modeling for Extreme

Values from Environmental Processes

5.1 Introduction

Extreme value analysis plays a key role for a number of problems in the environmental

sciences. Extreme natural phenomena, such as severe droughts, unusually low temperatures

or torrential rains, are rare but catastrophic events, which can result in large economic losses

and high cost in human life. Therefore, risk analysis to quantify the uncertainty associated

with such extreme events is both scientifically relevant and practically important for effective

environmental policy making.

In extreme value analysis for environmental problems interest lies in very large or

very small values of variables associated with a physical process, which is typically recorded

over both time and space. Statistical inference and prediction for rare events is complicated
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by the fact that observations corresponding to the center of the distribution, which are the most

abundant, carry little information about the tails. This implies particular challenges for the study

of dynamical variations of the process under study. For instance, rainfall records could show

a steady average behavior over time, while the amount of rainfall of the largest storms may be

increasing. Capturing also spatial dependence for processes observed at a number of monitoring

stations adds to the challenge for modeling and inference.

The literature on extreme value analysis for independent and identically distributed

observations is fairly well developed; see details in Section 2.1. However, there is a relatively

smaller collection of modeling methods for extremes from stochastic processes evolving over

time and space, although this is an active research area in the more recent literature. The

Bayesian paradigm offers clear advantages in this setting, since it allows exploration of flex-

ible hierarchical model formulations and proper incorporation of full predictive uncertainty.

The main theme of Bayesian modeling approaches has been to extend in a hierarchical fash-

ion the parametric distributions used in extreme value analysis. In particular, the observed

block maxima or threshold exceedances are typically assumed to arise conditionally indepen-

dent from the generalized extreme value or generalized Pareto distribution, respectively, with

temporally and spatially dependent parameters. Common approaches to introduce the spatio-

temporal dependence to the parameters include dynamic linear models (Huerta & Sansó, 2007)

and Gaussian processes (Cooley et al., 2007; Sang & Gelfand, 2009). The approach in Sang

& Gelfand (2010) fits within the same framework, but relaxes the conditional independence

assumption in the first stage of the hierarchical model. Alternatively, one may consider max-

stable processes (Smith, 1990; Schlather, 2002; Reich & Shaby, 2012), which provide another
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natural generalization of the generalized extreme value distribution. Although this approach is

appealing from a theoretical perspective, likelihood-based inference for max-stable processes

is difficult, since in most cases no closed-form expression for the likelihood is available when

more than two or three locations are involved. Hence, most inference procedures for max-stable

processes employ composite likelihoods (Padoan et al., 2010; Genton et al., 2011), which are

unappealing from a Bayesian perspective. In addition, there are other more recent contributions

include copula-based semiparametric methods (Fuentes et al., 2012).

In this chapter, we build on the Bayesian nonparametric modeling framework devel-

oped in Chapter 3, where a mixture model for the non-homogeneous Poisson process intensity

has been developed to overcome the restrictive aspects of the standard parametric form, most

notably, the homogeneity for the intensity of exceedance times. Here, we focus on the time

dimension under the bivariate NHPP approach and study the practically important methodolog-

ical extension on spatial modeling for the exceedance time intensities. Our objective is to retain

inferential flexibility for the temporal intensity while incorporating nonparametric spatial de-

pendence into the modeling. To this end, we represent the NHPP density at each site through

a mixture of logit-normal kernels, and use a spatial Dirichlet process for the mixing distribu-

tions to drive the nonparametric (non-Gaussian and non-stationary) spatial dependence. A prior

probability model for the spatial surface of total exceedance intensities completes the model

specification. We develop methods for Markov chain Monte Carlo posterior simulation, and for

spatial interpolation of risk assessment quantities for high-level exceedances.

Our illustrative data analysis involves rainfall exceedances, using data from the Cape

Floristic Region located in the southwestern coastline of South Africa. The times of exceedances
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are based on daily precipitation records from monitoring stations across South Africa between

year 1950 to 1999. However, the proposed methodology is generally applicable to modeling

and spatial prediction of threshold exceedances from different types of environmental variables.

The outline of this chapter is as follows. In Section 5.2, we develop the spatial non-

parametric modeling approach, including the detailed nonparametric spatial model formulation

for extremes from environmental time series. In Section 5.3, we discuss the implementation de-

tails regarding posterior simulation and inference. Section 5.4 illustrates the methodology using

a simulated data example and the rainfall data. Finally, Section 5.5 concludes with a summary.

5.2 Modeling Approach

The nonparametric mixture modeling framework outlined in Chapter 3.2.2 combines

the appealing features of the point process approach to extreme value analysis with the inferen-

tial power of Bayesian nonparametric prior models. To our knowledge, the approach proposed

in Chapter 3 provides the first attempt to fully nonparametric modeling for extremes from a sin-

gle time series, with flexible resulting inference for the joint intensity of extremes, the marginal

intensity over time, and for different types of return level curves.

Here, we study more general spatio-temporal data structures involving threshold ex-

ceedances from environmental processes observed at multiple spatial locations over a certain

time interval (which, again, without loss of generality is transformed to [0,1]). More specif-

ically, let S ⊂ R2 be the geographic region under study, and sobs = (s1, . . . ,sm) the m distinct

locations in S where the process is observed. Hence, the full data set comprises {(ti(s j),Yi(s j)) :
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i = 1, ...,n j; j = 1, ...,m}, where n j ≡ ns j is the number of threshold exceedances at location s j,

ti(s j) is the time at which the i-th exceedance occurred at location s j, and Yi(s j) is the value of

that exceedance. For such problems, it is of interest to explore spatial modeling extensions for

the NHPP intensity of extremes while retaining the flexibility of a fully nonparametric inference

framework. However, this is a non-trivial extension and, in this chapter, we take the first step in

this direction by focusing on the time dimension under the point process approach.

We therefore consider only the times of threshold exceedances {ti(s j) : i = 1, ...,n j}

from each observed spatial location s j ∈ S , for j = 1, ...,m. Following the definition of the

bivariate NHPP assumed under the general approach, for any generic location s ∈ S , the point

pattern {ti(s) : i = 1, ...,ns} is a realization from a temporal NHPP on [0,1]. The correspond-

ing temporal intensity function at location s is denoted by λs(t), where this is the appropriate

marginal of the bivariate NHPP intensity λs(t,y). Here, we seek to develop a nonparametric

prior model for {λs(t) : t ∈ [0,1]; s ∈ S}, that is, for a collection of temporal NHPP intensities

evolving over (continuous) space. The key inferential objectives are twofold: to allow general

time-inhomogeneous shapes for the intensity of threshold exceedances at each specific spatial

location; and to enable flexible inference for these spatially varying temporal intensities and

for implied risk assessment functionals. The implicit assumption is that of a smooth evolu-

tion of the intensities across space, although the proposed model for the spatial dependence is

nonparametric relaxing both of the customary assumptions of Gaussianity and stationarity.

Regarding the choice of threshold u, we view its specification as a component of

scientific or policy making considerations for the particular problem at hand. Hence, for any

substantive application of the methodology, the threshold would be chosen in consultation with
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the domain experts. The threshold value can be site-specific, and this is how we envision the

model to be applied in general settings. Since the examples of Section 5.4 involve a small

geographic region, we work with a constant threshold value across space for our illustrative

data analyses, and without loss of generality, retain the non-spatially varying notation for the

threshold.

5.2.1 Mixture Modeling for the Temporal Intensity of Threshold Exceedances

To build the prior model for {λs(t) : t ∈ [0,1]; s ∈ S}, we follow the similar strategy

discussed in Section 3.2.2. In particular, for any spatial location s ∈ S , we utilize the decom-

position of the intensity function into the total intensity γs and the NHPP density function fs(t)

on [0,1], such that λs(t) = γs fs(t). Here, γs =
R 1

0 λs(t)dt, where γs < ∞ based on the NHPP

definition that imposes local integrability for the intensity function. Now, for any observed

point pattern {ti(s) : i = 1, ...,ns} of exceedance times at location s, the NHPP likelihood can be

written as

L(λs(·))≡ L(γs, fs(·)) ∝ exp(−γs)γns
s

ns

∏
i=1

fs(ti(s)). (5.1)

The full likelihood requires an extension of (5.1) to include the data from all locations, but

this expression highlights the practical utility of the (γs, fs(·)) representation for the NHPP

intensity. Namely, it allows us to build the model for the spatially varying intensities through

a nonparametric prior model for spatially dependent densities. A prior model for the spatial

surface {γs : s ∈ S} will also be needed, but owing to the factorization in (5.1), the estimation

of its parameters proceeds independently of the model for the NHPP densities.

We propose a mixture model formulation for the spatially varying NHPP densities,
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fs(t) ≡ f (t;Gs) =
R

k(t | θ)dGs(θ), for t ∈ [0,1] and s ∈ S . Here, k(t | θ) is the parametric

kernel density supported by the unit interval, and Gs is the random mixing distribution indexed

by spatial location s. To meet our inferential goals, we need an appropriate kernel density that

enables general, possibly multimodal shapes for the mixture density at any location, as well

as a nonparametric prior model for the (uncountable) collection of mixing distributions GS =

{Gs : s ∈ S} that allows flexible inference for spatial interpolation of the intensity of extremes.

Regarding the mixture kernel, the Beta distribution used in previous chapters is a nat-

ural choice given the range of shapes the Beta density achieves, and the fact that it is directly

bounded to [0,1]. However, the lack of a conditionally conjugate distribution for the parame-

ters of the Beta density makes implementation of posterior simulation challenging even when

modeling a single density with a nonparametric mixture of Beta densities. This challenge is

exacerbated in terms of both modeling and implementation of inference in our context which

involves a collection of spatially related densities. Hence, we work with a more convenient

modeling platform based on a logit-normal kernel,

k(t | θ,τ2) = (2πτ
2)−1/2t−1(1− t)−1 exp

{
−
[

log
(

t
1− t

)
−θ

]2

/2τ
2

}
, t ∈ [0,1]. (5.2)

Note that this density arises through the logistic transformation, t = exp(z)/(1 + exp(z)), of a

N(θ,τ2) density for z. As discussed below, this provides a significant advantage in the formu-

lation of the nonparametric prior model for GS and in MCMC posterior simulation, since we

can work with a (spatially dependent) mixture of normals for the logit-transformed exceedance

times. The potential drawback of the logit-normal kernel is that it is susceptible to boundary ef-

fects due to the logit transformation, logit(t) = log(t/(1− t)), and the normal distribution tails.
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However, in practice, the nonparametric mixture structure allows robust inference under both

kernel choices provided the data do not maintain high intensity at the edges of the observation

window; see, e.g., the empirical comparison in Taddy & Kottas (2012).

Now, for any spatial location s ∈ S , the proposed mixture model for the density of

threshold exceedance times is expressed as

fs(t)≡ f (t;Gs,τ
2) =

Z
k(t | θ,τ2)dGs(θ), t ∈ [0,1] (5.3)

where k(t | θ,τ2) is given by (5.2). Therefore, the NHPP density is modeled with a semi-

parametric mixture based on nonparametric mixing with respect to only the location parameter

of the logit-normal kernel. This mixture model formulation strikes a good balance between

model flexibility and computational feasibility. Location mixtures of logit-normals can capture

non-standard density shapes, including skewness or multimodality; however, this may come at

the expense of a larger number of mixture components than what would be needed under the

model that includes mixing also with respect to the scale parameter of the logit-normal ker-

nel. Although it is possible to extend the spatial nonparametric model to include location-scale

mixing, this more general representation requires a more complex prior for GS and more com-

plicated methods for posterior simulation. The scale parameter τ2 of the kernel can be viewed

as a bandwidth parameter, which is estimated from the data based on an inverse Gamma prior.

5.2.2 The Spatial Nonparametric Prior Model

To build the spatial dependence in the prior model for the threshold exceedance time

densities, { f (t;Gs,τ
2) : s ∈ S}, we use the spatial DP prior (Gelfand et al., 2005) for the col-
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lection of corresponding mixing distributions GS = {Gs : s ∈ S}. The spatial DP defines a

nonparametric prior for the distribution of random fields, and it can thus be used to develop

semiparametric models for spatial or spatio-temporal data by replacing customary Gaussian

process (GP) specifications for spatial random effects distributions. Central to its development

is the DP prior constructive definition. According to this definition, if G∼DP(α,G0), G admits

an almost sure representation of the form ∑
∞
l=1 wlδϑl ; see details in Section 2.2.1. Under the

standard model setting with DP priors, the ϑl are either scalar or vector valued, and thus G0 is

supported by a possibly multivariate, albeit finite dimensional, Euclidean space.

To model nonparametrically the distribution of a random field over region S ⊂ R2,

G0 is extended to a parametric stochastic process G0,S over the region of interest, a natural

choice for which is a GP (possibly after transformation of the spatial random effects parame-

ters). Hence, the (almost sure) representation for spatial DP prior realizations becomes

GS =
∞

∑
l=1

wlδϑl,S

where the ϑl,S = {ϑl(s) : s ∈ S} are independent realizations from G0,S . We take a GP for

G0,S with constant mean function ζ, constant variance η2, and isotropic exponential correlation

function, that is, Corr(ϑl(s),ϑl(s′) | ρ) = exp(−ρ||s− s′||), where ρ > 0 is the range parameter.

As discussed in Section 5.3.1, the full Bayesian model is completed with priors for the precision

parameter α and for the GP hyperparameters, φ = (ζ,η2,ρ).

Therefore, the spatial DP prior model involves a countable mixture of GP realizations

with weights defined through stick-breaking as in the standard DP prior. Consequently, for any

finite set of spatial locations (s1, ...,sr), the spatial DP prior induces a DP prior for the finite
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collection of mixing distributions (Gs1 , ...,Gsr); the centering distribution of this DP prior is the

r-dimensional normal induced by the GP used for G0,S . This is a key property of the spatial

DP prior with respect to both simulation-based model fitting and predictive inference for spatial

interpolation. Spatial DPs provide an illustration of dependent DPs (MacEachern, 2000) in

that they yield a stochastic process of random distributions, one at each location in S . These

distributions are dependent but such that, at each index value, the distribution is a univariate DP.

Hence, for any location s ∈ S , the spatial DP prior yields a location DP mixture of

logit-normals following the formulation in (5.3). The DP mixture model interpretation is also

valid for any finite collection of locations, with the additional structure of spatial dependence

induced to the threshold exceedance time densities by the spatial dependence in the mixing dis-

tributions. It is important to note that the spatial DP generates non-stationary spatial surface

realizations with non-Gaussian finite dimensional distributions, even when the centering GP

is isotropic. Moreover, if Gs and Gs′ denote the marginal distributions at generic locations s

and s′, then the continuity of the ϑl,S (implied by the exponential correlation function of G0,S )

yields that, as the distance between s and s′ gets smaller, the difference between Gs and Gs′ gets

smaller. Formally, for any ε > 0, lim||s−s′||→0 Pr(L(Gs,Gs′) < ε) = 1, where L is the Lévy dis-

tance (MacEachern, 2000; Gelfand et al., 2005); see Guindani & Gelfand (2006) for a detailed

study of smoothness properties for spatial DP realizations. Hence, the level of dependence

between Gs and Gs′ , and thus between f (t;Gs,τ
2) and f (t;Gs′ ,τ

2), is driven by the distance

between the spatial locations. The practical implication is that in predictive inference for spa-

tial interpolation, we learn more from locations s′ nearby s than from more distant locations, a

desirable property for densities that are expected to evolve relatively smoothly across space.
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5.2.3 The Spatial Model for the Total Intensity of Threshold Exceedances

To complete the model specification for the spatially dependent intensity functions,

we turn to a spatial probability model for the total intensity surface. Here, we work with a GP-

based hierarchical specification, using a GP prior for the log-intensity surface {β(s) = log(γs) :

s ∈ S}. The first stage arises from the NHPP assumption, namely, the observed exceedance

counts are assumed Poisson distributed,

n j | β j
ind.∼ Poisson(exp(β j)) j = 1, . . . ,m,

where β j = log(γs j). The GP prior for {β(s) : s ∈ S} is assumed to have constant mean λ,

constant variance κ2, and power exponential correlation function exp(−ψ||s− s′||a) for fixed

a ∈ [1,2]. Finally, we place a normal prior N(mλ,S2
λ
) on λ, an inverse gamma prior IG(aκ2 ,bκ2)

(with mean bκ2/(aκ2−1) provided aκ2 > 1) on κ2, and a uniform prior Unif(0,bψ) on ψ. MCMC

posterior simulation, as well as specification of the hyperpriors for λ, κ2 and ψ, is discussed in

Section 5.3.2.

We note that the exceedance counts will typically take small to moderate values. If

the particular application involves also a small number of spatial locations (as for the data

sets considered in Section 5.4), the relatively simple model specification discussed above is

arguably a suitable choice. For problems involving data from a large number of locations and/or

where physical information is available, more structured GP mean functions or non-stationary

covariance functions can be entertained. The fact that the prior model for the total intensities is

specified independently of that for the NHPP densities is an asset in this respect.
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5.3 Posterior Simulation and Inference

5.3.1 Hierarchical Model Formulation

Inference for the intensity of extremes across space requires posterior simulation for:

the random mixing distribution Gs over a number of spatial locations s, including interpolation

at new locations; the spatial DP prior hyperparameters; and the parameters of the GP-based

spatial model for the total intensity of exceedances.

In general, nonparametric Bayesian inference for related distributions (indexed by

time, space, or covariate values) requires some form of replication, although imbalance in the

replicate responses can be handled. In the absence of replication, posterior simulation can

be overly sensitive to the prior specification and predictive inference at new index points will

inevitably fall back exclusively to the prior. In our context, the replication is provided by the set

of threshold exceedance times, {ti(s j) : i = 1, ...,n j}, at each observed site s j, j = 1, ...,m.

However, in contrast to earlier applications of dependent nonparametric prior models

to geostatistics problems, our observations are random times arising as the events of the un-

derlying NHPP at each site. This aspect of the data structure creates a challenge in matching

the observed times to form response vectors across sites. An option is to discretize the time

interval under study into time units specified such that at most one exceedance time is included

in each time unit from each location; the default choice would be the unit at which the data is

recorded, e.g., a day for daily rainfall records. We can then construct time-ordered response

vectors, of dimension between 1 and m, that include an entry for all sites for which there was an

exceedance at the specific time unit. For the hierarchical data model, the k-th response vector is
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assigned a vector of mixing parameters, θk(sobs) = (θk(s1), ...,θk(sm)), where the θk(sobs) arise

conditionally independent from the DP prior induced by the spatial DP at the vector of observed

locations sobs. This hierarchical model formulation is along the lines in Gelfand et al. (2005)

and Kottas et al. (2008) for independent and temporally dependent replicates, respectively.

Our data examples involve small exceedance counts over the time period of interest;

with daily records over 50 years, the realized n j range roughly between 15 to 250. Hence,

constructing the replicates as discussed above results in response vectors with a very small

number of entries relative to m. We are thus working with data structures where replication

is present, but there is essentially only a single observation at any location. Here, we apply

the spatial DP model under this scenario, where the i-th observation at the j-th location, ti(s j),

is assigned a vector of mixing parameters, θi j(sobs) = (θi j(s1), ...,θi j(sm)), from which only

θi j(s j) is used in the hierarchical model representation. A similar approach to implementing

a dependent DP prior model for time series problems can be found in Rodriguez & ter Horst

(2008).

More specifically, let zi j = logit(ti(s j)), for i = 1, ...,n j; j = 1, ...,m, be the logit-

transformed observations. Then, the hierarchical model for the data can be expressed as

zi j | θi j(sobs),τ2 ind.∼ N(θi j(s j),τ2), i = 1, ...,n j; j = 1, ...,m

θi j(sobs) | Gsobs

i.i.d.∼ Gsobs , i = 1, ...,n j; j = 1, ...,m

where Gsobs | α,φ ∼ DP(α,G0,sobs), that is, the DP prior induced by the spatial DP. There-

fore, G0,sobs is an m-variate normal distribution with mean vector ζ1m and covariance matrix

Σ = η2R(ρ), with R j j′(ρ) = exp(−ρ||s j − s j′ ||), for j, j′ = 1, ...,m. Here, 1m denotes an m-

dimensional vector with all its elements equal to 1.
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We use blocked Gibbs sampling for MCMC posterior simulation. The approach is

based on a truncation approximation to the DP prior for Gsobs defined through GN
sobs

= ∑
N
l=1 plδϑl(sobs),

where the ϑl(sobs)= (ϑl(s1), ...,ϑl(sm)) are independent realizations from G0,sobs , and the weights

p = {pl : l = 1, ...,N} are defined using the DP stick-breaking construction subject to the con-

straint pN = 1−∑
N−1
l=1 pl . The truncation level N can be chosen to any desired level of accuracy,

using standard DP properties (e.g., Ishwaran & Zarepour, 2000). Then, the model can be fit to

the data without the need to impute the mixing parameter vectors θi j(sobs). To this end, we intro-

duce configuration variables L = {Li j : i = 1, ...,n j; j = 1, ...,m}, where Li j = l, for l = 1, ...,N,

if and only if θi j(sobs) = ϑl(sobs). Hence, the hierarchical model for the data becomes

zi j | {ϑl(sobs)},Li j,τ
2 ind.∼ N(ϑLi j(s j),τ2), i = 1, ...,n j; j = 1, ...,m

Li j | p
i.i.d.∼ ∑

N
l=1 plδl(Li j) i = 1, ...,n j; j = 1, ...,m

(5.4)

where ϑl(sobs) | φ
i.i.d.∼ G0,sobs , for l = 1, ...,N, and the prior for p, given α, is given by a gen-

eralized Dirichlet distribution (Ishwaran & James, 2001). The hierarchical model is completed

with hyperpriors for the spatial DP parameters: a gamma prior for α, a normal prior N(mζ,S2
ζ
)

for ζ, an inverse gamma prior IG(aη2 ,bη2) for η2, and a uniform prior Unif(0,bρ) for ρ. The

prior specification of these parameters follows the approach in Gelfand et al. (2005), in partic-

ular, bρ is chosen using the range interpretation of the GP correlation parameter ρ; see details

in Section 5.3.4. We also provide details of MCMC posterior simulation for model (5.4) in the

next section.
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5.3.2 Markov Chain Monte Carlo Posterior Simulation

In this section, we provide the details for MCMC posterior simulation from the spatial

DP model for the NHPP densities as well as the GP model for the total NHPP intensity surface.

Regarding the former, simulation from the posterior distribution of model (5.4) is

based on the blocked Gibbs sampler, including Metropolis-Hastings steps. In particular, the

MCMC algorithm iteratively updates model parameters according to the following steps.

• Updating Li j, i = 1, . . . ,n j; j = 1, . . . ,m. Each Li j is drawn from a discrete distribution on

{1, ...,N} with probabilities proportional to plk(zi j|ϑl(s j),τ2), for l = 1, . . . ,N.

• Updating α and p. The draws for these parameters are generic for any choice of kernel in

the DP mixture model; details are given in Ishwaran & Zarepour (2000).

• Updating ϑl(sobs), l = 1, . . . ,N. Let n∗ be the number of distinct components in vector L,

and L∗ = {L∗k : k = 1, . . . ,n∗} the set of distinct elements. If l /∈L∗, then ϑl(sobs) is drawn

from the normal centering distribution G0,sobs . If l ∈ L∗, the posterior full conditional

for ϑl(sobs) is proportional to Nm(ϑl(sobs) | ζ1m,Σ)∏{(i, j):Li j=l}N(zi j | ϑl(s j),τ2), a form

which results in an m-variate normal distribution.

• Updating the centering GP parameters. The full conditional for ζ can be derived as a

normal distribution with mean
(

n∗1′mΣ−11m +S−2
ζ

)−1(
1′mΣ−1

∑
n∗
k=1 ϑL∗k (sobs)+mζS−2

ζ

)
and variance

(
n∗1′mΣ−11m +S−2

ζ

)−1
. Given their high posterior correlation, we update η2

and ρ as a block with a joint random walk Metropolis-Hasting step based on a bivariate

normal proposal distribution (on the log scale for η2 and the logit scale for ρ/bρ). To
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achieve good mixing, we estimate the proposal covariance matrix from the output of an

initial chain based on separate updates for η2 and ρ, using a Metropolis-Hasting step

for ρ and sampling η2 from its full conditional which is available as an inverse Gamma

distribution.

• Updating τ2. The posterior full conditional for τ2 is an inverse Gamma distribution with

shape parameter aτ2 +0.5∑
m
j=1 n j and scale parameter bτ2 +0.5∑

m
j=1 ∑

n j
i=1(zi j−ϑLi j(s j))2.

Turning to the model of Section 5.2.3 for the total intensity surface, the MCMC pos-

terior sampling steps are as follows.

• Updating β j, j = 1, . . . ,m. The posterior full conditional for each β j is proportional to

exp(n jβ j− exp(β j))p(β j | {βr : r 6= j}), where p(β j | {βr : r 6= j}) denotes the normal

distribution for β j, conditional on {βr : r 6= j}, implied by the GP prior for {β(s) : s ∈ S}.

Hence, β j can updated using slice sampling (as in Example 4 of Damien et al., 1999).

• Updating the GP prior parameters. The GP mean parameter λ is sampled from its nor-

mal posterior full conditional distribution, whereas (κ2,ψ) are updated jointly with a

Metropolis-Hasting step designed similarly to the one for (η2,ρ) discussed above.

Convergence of the MCMC algorithms was assessed by visually inspecting the trace

plots associated with various parameters of interest, as well as by computing standard diagnostic

criteria. For instance, for the spatial DP model hyperparameters, the R statistic values (Gelman

& Rubin, 1992) were below 1.1 after 40,000 iterations. All inferences reported in Section 5.4

are based on 3,000 posterior samples obtained after discarding the first 50,000 iterations and
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thinning the remaining 150,000 every 50 observations. Both MCMC algorithms were imple-

mented in the C programming language. The code for the spatial DP mixture model executed at

a rate of 1,500 iterations per minute on a MacBook laptop with a 2 GHz Intel Core 2 Duo and

2 GB of memory.

5.3.3 Posterior Inference for Risk Assessment

The resulting posterior samples from MCMC algorithms can be used to extend the

inference to spatial interpolation based on a set of M new locations, snew = (s̃1, . . . , s̃M). Spatial

interpolation for the total intensity surface {γs : s ∈ S} proceeds through standard GP predictive

computing based on the implied conditional normal distribution for (β(s̃1), ...,β(s̃M)) given

(β(s1), ...,β(sm)). In Section 5.4, we illustrate with posterior mean estimates for the {γs : s ∈ S}

surface.

GP predictive calculations are also central for spatial interpolation of the NHPP densi-

ties, in conjunction with the spatial DP structure for the set of mixing distributions that includes

the new sites. Specifically, under the DP truncation approximation,

GN
(sobs,snew) =

N

∑
l=1

plδ(ϑl(sobs),ϑl(snew)),

where now the (ϑl(sobs),ϑl(snew)) arise independent from an (m + M)-variate normal distri-

bution with mean vector ζ1m+M and covariance matrix with structure that extends the one in

G0,sobs . Hence, having obtained posterior samples for the ϑl(sobs) (and p), the additional sam-

pling needed to complete the posterior realizations for GN
(sobs,snew) is from M-variate conditional

normal distributions to impute ϑl(snew) given ϑl(sobs), for l = 1, ...,N.
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With posterior samples for the mixing distribution available at any desired set of sites,

we can report different types of risk assessment inference. For any (observed or new) site

s, point estimates for the density or intensity of exceedance times can be obtained along with

corresponding uncertainty bands. This inference is immediate from the definition of the mixture

model for the NHPP density function,

f (t;GN
s ,τ2) =

N

∑
l=1

plk
(
t | ϑl(s),τ2) ,

or intensity function,

λ(t;GN
s ,τ2) = γs

N

∑
l=1

plk
(
t | ϑl(s),τ2) .

Using the NHPP definition, we can compute risk surface estimates defined through

the probability of a specific number of threshold exceedances within any time interval of in-

terest. For both data examples of Section 5.4, we illustrate with the probability of at least one

exceedance in a given month across a number of years. Letting (t1, t2) denote the time interval

of interest (e.g., a specific month), the risk surface probability of at least one exceedance is

given by

1− exp
(
−γs

Z t2

t1
f (t;GN

s ,τ2)dt
)

= 1− exp

{
−γs

N

∑
l=1

pl

(Z t2

t1
k(t | ϑl(s),τ2)dt

)}
,

with each integral term readily computed through a difference of two normal cdf values. Our

illustration represents an admittedly narrow example of risk assessment, since inference for the

risk surface probability is not accompanied by impact analysis and/or vulnerability evaluation.

The results presented here are merely meant to demonstrate the capacity of the nonparametric

modeling approach for flexible inference which can potentially be placed in the context of a
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broader analysis for problems that involve additional information for more general risk assess-

ment.

5.3.4 Prior Specification

We follow an approach along the lines in Gelfand et al. (2005) to specify the priors

for the hyperparameters of the spatial DP model. In general, we center the normal prior for

ζ at 0, and set the shape parameter of inverse gamma priors to small values that yield large

(possibly infinite) prior variance. Then, working with a single component of the spatial DP

mixture model, the marginal variance for the response on the logit scale can be decomposed

into a sum of three terms involving the prior mean of τ2, the prior mean of η2, and the prior

variance of ζ. Hence, with a rough guess at the range of the logit-transformed exceedance times,

we can complete the prior specification for ζ, η2 and τ2. To specify the Unif(0,bρ) prior for

ρ, we use the range of dependence interpretation of this parameter for the centering GP of the

spatial DP prior. In particular, under the exponential correlation function, 3/ρ is the distance

between sites that yields correlation 0.05. The range of dependence is usually assumed to be a

fraction of the maximum interpoint distance (say, dmax) over the geographic region under study.

Hence, since 3/bρ < 3/ρ, we specify bρ such that 3/bρ = cdmax, for c≤ 1; c = 1 was used as a

conservative choice for the data examples of Section 5.4. Finally, the role α plays in controlling

the number of distinct mixture components (as discussed in Section 2.2.1) can be used to guide

the choice of its exponential prior.

A similar prior choice strategy can be used for the GP-based model for the total in-

tensity surface. The approach is the same for the correlation parameter ψ. Here, the marginal
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mean and variance for the site-specific exceedance counts can be expressed in terms of the λ

and κ2 parameters, using the first two moments of the lognormal distribution (induced for γs by

the GP prior model). Hence, the prior means for these parameters are specified through proxies

for the center and range of the number of exceedances across the region.

5.4 Data Illustrations

5.4.1 Synthetic Data Example

Our first illustration involves simulated data based on the same region and 25 ob-

served sites (Figure 5.1), time interval (years 1950 – 1999), and time unit (days) as the real

data discussed in Section 5.4.2. The times of exceedances at each site were generated using

a two-state, time-inhomogeneous Markov chain, with spatial structure introduced by making

the transition probabilities spatially dependent. Specifically, let νt(s) be an indicator variable

such that νt(s) = 1 if an exceedance occurs at time t and location s. Then, the data is simulated

according to

Pr(νt(s) = 1 | νt−1(s) = k) = Φ(µk,t(s)), k ∈ {0,1},

for t = 1, . . . ,T = 18,262, and a given ν0(s), whereµ0,t(s)

µ1,t(s)

=

0.25sin(4πtT−1)

0.25cos(4πtT−1)

+

ε0(s)

ε1(s)

 .

Here, {εk(s) : s ∈ S}, for k = 0,1, are independent realizations from an isotropic GP with

mean −2.7, variance 1, and correlation function exp{−0.2||s− s′||}. The number of realized

exceedances across the 25 sites ranges between 14 and 224. The true probability of no ex-
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Figure 5.1: Geographic map of the southwest coastline area subregion of the Cape Floristic
Region in South Africa. The map shows the 25 spatial locations (s1, ...,s25) which comprise the
observed set of sites for the data examples of Section 5.4, and the 5 new sites (s̃1, ..., s̃5) used
for prediction of the exceedance times density.

ceedances at site s during time period (t0 + 1, . . . , t0 + R) can be expressed conditional on the

state at time t0, in particular, when νt0(s) = 0, it is given by ∏
t0+R
t=t0+1{1−Φ(µ0,t(s))}, whereas if

νt0(s) = 1, it is obtained as {1−Φ(µ1,t(s)}∏
t0+R
t=t0+2{1−Φ(µ0,t(s))}.

Note that the synthetic data generating mechanism is completely unrelated to our sta-

tistical model. Hence, this simulation example is used to illustrate the flexibility of the nonpara-

metric mixture model to reconstruct risk surfaces from general stochastic processes. In addition,
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the simulation is intended to demonstrate that, despite its flexibility, the nonparametric mixture

model does not overfit the data. Indeed, although our statistical model can potentially capture

non-stationary and non-separable behavior, the underlying data generating process is stationary

and separable.

We follow the strategy discussed in the Section 5.3.4 to specify the model hyperpriors.

Regarding the spatial DP parameters, we place a normal prior on ζ with mean 0 and variance

10, an InvGamma(3,12) prior on η2, and a Unif(0,2.34) prior on ρ. An exponential prior

with mean 3 is assigned to the spatial DP precision parameter α. For the GP-based model for

the total intensity surface, we assign a normal prior to λ with mean 3.74 and variance 10, an

InvGamma(2,0.52) prior to κ2, and a Unif(0,2.34) prior to ψ. Finally, the scale parameter τ2

of the logit-normal kernel is assigned an InvGamma(3,3) prior. We observed significant prior-

to-posterior learning for all the spatial DP hyperparameters, and for τ2. As expected, given the

nature of the observables for the total intensity surface model and the small number of spatial

locations, there was less learning for parameters λ, κ2 and ψ; nevertheless, posterior densities

for these parameters were noticeably concentrated relative to the corresponding prior densities.

Figure 5.2 shows an image plot of the true surface for the number of exceedances,

computed from simulated data over a grid of sites, along with the model-based point estimate

(posterior mean) for the total intensity surface. Note that, even though the data generating pro-

cess does not imply that the exceedance counts at a given location follow a Poisson distribution,

our model provides reasonable estimates capturing the underlying spatial heterogeneity.

Figure 5.3 presents posterior mean estimates for the risk surface probability of at least

one exceedance in the month of June in three given years (year 1954, 1964, and 1974). These
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Figure 5.2: Synthetic data example. Image plot of the true surface for the number of ex-
ceedances (left panel) and the posterior mean of {γs : s ∈ S} (right panel).

maps illustrate the ability of the model to capture both temporal or spatial heterogeneity. The

point estimates generated by the model tend to be smoother than the true surfaces, but capture

very well the patterns implied by the underlying stochastic process.

To supplement the graphical comparison results with a quantitative measure of model

assessment, we report on the coverage of 95% (equal-tail) credible intervals. Based on a grid

of 601 spatial locations (including the 25 observed sites), the proportion of 95% credible inter-

vals for the site-specific probability of at least one exceedance that contain the corresponding

true value is: 96.3% for June 1954, 93.3% for June 1964, and 94.3% for June 1974. A po-

tential concern for complex Bayesian nonparametric models is that they may overfit the data

with undesirable implications in prediction. In this respect, the results above are encouraging,
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(a) June 1954

18.6 18.8 19.0 19.2 19.4 19.6

−3
4.

4
−3

4.
2

−3
4.

0
−3

3.
8

−3
3.

6
−3

3.
4

longitude

la
tit

ud
e

18.6 18.8 19.0 19.2 19.4 19.6

−3
4.

4
−3

4.
2

−3
4.

0
−3

3.
8

−3
3.

6
−3

3.
4

longitude

la
tit

ud
e

(b) June 1964

18.6 18.8 19.0 19.2 19.4 19.6

−3
4.

4
−3

4.
2

−3
4.

0
−3

3.
8

−3
3.

6
−3

3.
4

longitude

la
tit

ud
e

18.6 18.8 19.0 19.2 19.4 19.6

−3
4.

4
−3

4.
2

−3
4.

0
−3

3.
8

−3
3.

6
−3

3.
4

longitude

la
tit

ud
e

(c) June 1974

Figure 5.3: Synthetic data example. True surface (left panels) and posterior mean estimate
(right panels) for the probability of at least one exceedance in the month of June for year 1954,
1964, and 1974 (from top to bottom).
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since the data arise from a stochastic mechanism with simpler structure than what the spatial

nonparametric mixture model can accommodate.

5.4.2 Rainfall Precipitation Data

Here, we present an illustration with rainfall exceedances from data collected in the

Cape Floristic Region in South Africa. The Cape Floristic Region is located in the southwestern

coastline of South Africa covering roughly 90,000 km2. Although it is the smallest of the six

recognized floral kingdoms in the world, it has the highest diversity, density and endemism of

the flora species. The Cape Floristic Region has a semi-mediterranean climate pattern. In the

west of the region, around Cape town and Paarl, the climate is characterized by hot dry summers

and cool wet winters. Moving to the east, rainfall tends to be uniformly distributed over the

year. Because the entire region lies between the southwestern ocean and the northeastern L-

shaped mountain system, known as Cape Fold Mountains, the precipitation varies significantly.

Specifically, rainfall ranges from 300 – 500 millimeters in the lowlands and 1,000 – 3,300

millimeters in the mountain areas. A previous analysis of annual rainfall maxima at 1,078 grid

cells over the entire region is presented in Sang & Gelfand (2009). The raw data consists of the

daily grid-aggregated precipitation, obtained via certain interpolation techniques (Hewitson &

Crane, 2005), based on records at monitoring stations across South Africa between 1950 and

1999.

For an illustrative data example, and considering the topography of the region and

the climate pattern discussed above, we work with a subregion of the Cape Floristic Region.

In particular, we select 25 sites (s1, ...,s25 in Figure 5.1) from the southwest coastline area
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including the city of Cape Town and vicinity; the longitude and latitude of the specific subregion

range from (18.5,19.6) and (−33.4,−34.4), respectively. Moreover, in the interest of cross-

validation for spatial prediction, we consider 5 additional sites where data is available, but not

used in fitting the model; these sites are denoted by s̃1, ..., s̃5 in Figure 5.1. To assemble the final

data set with the times of exceedances at each site, we set the threshold to u = 350 millimeters.

The range for the number of exceedances across the 25 observed sites is from 14 to 241.

Given that the region and time interval are the same with the simulated data set, there

are similarities in the hyperpriors of the spatial DP model for the NHPP density and of the GP

model for the total intensity surface. In particular, we place a normal prior on ζ with mean 0 and

variance 10, an InvGamma(3,12) prior on η2, a Unif(0,2.34) prior on ρ, and an exponential

prior with mean 3 on α. Moreover, we assign a normal prior to λ with mean 3.95 and variance

10, an InvGamma(2,0.6) prior to κ2, and a Unif(0,2.34) prior to ψ. Finally, τ2 is assigned an

InvGamma(3,3) prior. Regarding prior-to-posterior learning for the model hyperparameters,

results were consistent with the ones for the synthetic data discussed in Section 5.4.1.

The posterior mean and 95% uncertainty bands for the exceedance times density at

the 25 monitoring sites are plotted in the top 5 rows of Figure 5.4, while the bottom row shows

the predicted density at the five new sites shown in Figure 5.1. (Note that the bottom row

panels include the histograms of the observed exceedance times, although data at these 5 sites

were not used in the model fitting.) In general, the nonparametric mixture model captures well

the heterogeneity of the rainfall exceedance times across space. For the observed sites, the

estimates become more accurate with larger number of realized exceedances. Nonparametric

spatial interpolation is illustrated with the estimates at the new sites, where predictive inference
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Figure 5.4: Precipitation data. Posterior mean (red solid line) and 95% interval estimates (blue
dashed lines) of the exceedance time density functions at the 25 observed sites (top 5 rows)
and at 5 new sites (bottom row). Each panel indicates the corresponding exceedance count and
shows a histogram of the observed exceedance times.
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is more accurate when interpolating at locations that have a number of monitoring sites nearby;

for example, contrast the estimates at sites s̃4 and s̃5.

The posterior mean estimate for the total rainfall exceedance intensity across the re-

gion is shown in Figure 5.5 (right panel); as a point of reference, the left panel of Figure 5.5

includes the image plot of the realized number of exceedances at the 25 monitoring sites. The

model estimates a larger intensity of extremes in the central part of the region relative to the

northwestern and southeastern parts.

18.6 18.8 19.0 19.2 19.4 19.6

−
3
4
.4

−
3
4
.2

−
3
4
.0

−
3
3
.8

−
3
3
.6

−
3
3
.4

longitude

la
ti
tu

d
e

18.6 18.8 19.0 19.2 19.4 19.6

−
3
4
.4

−
3
4
.2

−
3
4
.0

−
3
3
.8

−
3
3
.6

−
3
3
.4

longitude

la
ti
tu

d
e

Figure 5.5: Precipitation data. Image plot of the observed number of exceedances at the 25
monitoring sites (left panel) and the posterior mean estimate of {γs : s ∈ S} (right panel).

Finally, we report inference for the risk surface probability of at least one exceedance

in a particular month at different years. Recall that the climate pattern in the studied region

is mediterranean with cool wet winters. Hence, we focus on months when large rainfall is to

be expected, and in particular, we choose the month of June. Figure 5.6, 5.7, and 5.8 plot the
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Figure 5.6: Precipitation data. Posterior mean estimate for the risk surface probability of at least
one exceedance in the month of June for the year 1950−1965.
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Figure 5.7: Precipitation data. Posterior mean estimate for the risk surface probability of at least
one exceedance in the month of June for the year 1966−1981.
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Figure 5.8: Precipitation data. Posterior mean estimate for the risk surface probability of at least
one exceedance in the month of June for the year 1982−1999.
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posterior mean estimates at all fifty years. The nonparametric mixture model estimates spatially

varying risk surfaces with both intensity and shapes changing across years. The overall pattern

reveals higher probabilities of at least one exceedance over June in the center of the studied

region, with idiosyncratic features in certain years, for instance, the second mode more clearly

seen in June of the years from 1954 to 1956 and again in June of the years from 1992 to 1994.

5.5 Summary

We have developed a Bayesian nonparametric model for the analysis of extremes

from environmental variables observed over time and across a number of monitoring sites. The

methodology builds on the point process approach to extreme value analysis through a non-

parametric mixture model for the spatially varying intensities. The modeling approach allows

general time-inhomogeneous shapes for the intensity of threshold exceedances at each specific

site, as well as nonparametric spatial interpolation for practically important risk assessment

functionals. A posterior simulation algorithm to implement such inference has been designed.

The model has been tested with a simulated data set and applied to rainfall exceedances recorded

over a time period of 50 years from a subregion of the Cape Floristic Region in South Africa.

Our data examples included a small number of sites because of the relatively small

size of the geographic region under study. Moreover, the intention was to demonstrate the

capacity of the spatial nonparametric mixture model to provide useful inference results under

moderate sample sizes. For extreme value analysis applications, the number of observations

from each site will typically be small to moderate. However, one can envision practically im-
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portant scenarios that involve a large number of observed sites (at least, in the thousands). For

such cases, standard posterior simulation methods are not practical for implementation of the

spatial DP mixture model. Alternative cost-effective MCMC algorithms for large data sets (e.g.,

Guha, 2010) may provide a platform for expanding the practical utility of the proposed method-

ology.
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Chapter 6

Conclusion

This dissertation concludes with a summary of the three and half years’ research work

on Bayesian nonparametric modeling for extreme value analysis, which plays an important role

in financial industry and environmental sciences. This work is motivated by the need to better

characterize the extremal behavior of observations generated from general stochastic processes.

Our main contribution is the development of a novel class of modeling approaches that provides

flexible inference methods for analysis of extremes under a generalization of the point process

approach.

We have presented the methodological contributions of the dissertation through model

specifications and a number of data examples in Chapter 3, 4, and 5. The first aim of this

dissertation is to show the flexibility of the proposed nonparametric mixture model in modeling

the extremal events. In particular, the model formulation combines the point process approach

of extreme value analysis with the inferential power on Bayesian nonparametric prior models.

Adopting a Bayesian nonparametric mixture modeling approach provides a natural means for
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propagating uncertainty into clustering, arguably resulting in richer inferences about extremes.

Hence, compared to the traditional parametric point process approach under which the intensity

of extremes is homogeneous in time, the key feature of the proposed Bayesian nonparametric

mixture model allows us to capture the changes in the shape of the underlying intensity function

over time. Additionally, we extend the model to characterize spatially varying intensities of

extremes by incorporating spatial dependence into the modeling. In such case, it allows for

capturing the flexible shapes and temporal heterogeneity for the intensity of extremes at any

particular location. Hence, our modeling approaches provide an appealing feature in modeling

extremes from general stochastic processes evolving over time and/or space.

From a practical point of view, modeling extremal events is vital to many of the risk

management issues related to finance and insurance. Unlike using methods based on normality

assumptions which are likely to underestimate tail risk, the presented work in this dissertation

focuses on utilizing extreme value analysis to assess the tail-related risk of financial series. In

particular, the different type of return levels developed in Chapter 3 provide an important and

distinct insight of the behavior of extreme price movements, especially what extremes look like

on a “normal” period, or on a particular “good” or “bad” period. Furthermore, our modeling

approach presented in Chapter 4 allows for modeling simultaneous risk in multiple correlated

financial markets. In that case, the risk associated with each individual market can be decom-

posed into two components: the systemic risk and the idiosyncratic risk. This feature is specially

appealing if different markets share similar products. Thus, this work provides an interesting

statistical modeling tool to help financial analysts and risk managers quantify extreme market

risks, and to give portfolio managers guidance for their purchases and sales of various financial
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instruments.

In addition to finance, climate change in environmental process is another active field

in which extreme value analysis is widely applied. The modeling approach developed in Chap-

ter 5 incorporated spatial dependence to model the intensity of rare natural events across multi-

ple locations. The practical implication is that it enables researchers to interpolate the intensity

of extremes at unobserved locations by borrowing strength from neighboring regions. More im-

portantly, it enables estimation of risk assessment functionals, which may help decision-makers

in government or industry build effective environmental policy.

In summary, the methods developed in this dissertation provide ample evidence of our

research contributions both theoretically and practically. Extreme value analysis is a wide-open

research area. As indicated before, there are numerous well-developed literatures on modeling

extreme values, which implies this area is still growing. While we applied the modeling ap-

proaches herein with applications in finance and environmental sciences, it is believed that the

methodologies would be widely applicable to other data analysis applications in the near future.
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The Annals of Statistics 1, 353–355.

BUSH, C. & MACEACHERN, S. (1996). A semiparametric bayesian model for randomised

block designs. Biometrika 83, 275–285.

CASSON, E. & COLES, S. (1999). Spatial regression models for extremes. Extremes 1, 449–

468. DOI: 10.1023/A:1009931222386.

127



CHANG, M., HUNG, J. & NIEH, C. (2011). Reexamination of capital asset pricing model

(capm): An application of quantile regression. African Journal of Business Management 5,

12684–12690.

COLES, S., TAWN, J. & SMITH, R. L. (1994). A seasonal Markov model for extremely low

temperatures. Environmetrics 5, 221–239.

COLES, S. G. (2001). An introduction to statistical modeling of extreme values. Springer-

Verlag, New York.

COLES, S. G. & POWELL, E. A. (1996). Bayesian methods in extreme value modelling: A

review and new developments. International Statistical Review 64, 119–136.

COLES, S. G. & TAWN, J. (1996). A Bayesian analysis of extreme rainfall data. Applied

Statistics 45, 463–478.

CONNOR, R. J. & MOSIMANN, J. E. (1969). Concepts of independence for proportions with

a generalization of the Dirichlet distribution. Journal of the American Statistical Association

64, 194–206.

COOLEY, D., NYCHKA, D. & NAVEAU, P. (2007). Bayesian spatial modeling of extreme

precipitation return levels. Journal of the American Statistical Association 102, 824–840.

COOLEY, D. & SAIN, S. R. (2010). Spatial hierarchical modeling of precipitation extremes

from a regional climate model. Journal of Agricultural, Biological, and Environmental Statis-

tics 15, 381–402.

128



COX, D. (1955). Some statistical methods connected with series of events. Journal of the Royal

Statistical Society 17, 129–164.

DALEY, D. & VERE-JONES, D. (2003). An Introduction to the Theory of Point Processes

(Second ed.). Springer.

DAMIEN, P., WAKEFIELD, J. & WALKER, S. (1999). Gibbs sampling for Bayesian non-

conjugate and hierarchical models by using auxiliary variables. Journal of the Royal Sta-

tistical Society, Series B 61, 331–344.

DAVISON, A. & SMITH, R. (1990). Models for exceedances over high thresholds (with discus-

sion). Journal of the Royal Statistical Society, Series B 52, 393–442.
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MACEACHERN, S. & MÜLLER, P. (1998). Estimating mixture of dirichlet process models.

Journal of Computational and Graphical Statistics 7.

MACEACHERN, S. N. (1999). Dependent nonparametric process. In ASA Proceedings of the

Section on Bayesian Statistical Science .

MACEACHERN, S. N. (2000). Dependent dirichlet process. Technical report, Ohio State Uni-

versity, Department of Statistics.

MANDELBROT, B. (1963). The variation of certain speculative prices. Journal of Business 36,

394–419.
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